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Abstract

Applications that manipulate sparse data structures contain memory reference
patterns that are unknown at compile time due to indirect accesses such as
A[B[i]]. To exploit parallelism and improve locality in such applications, prior
work has developed a number of run-time reordering transformations (RTRTS).
This paper presents the Sparse Polyhedral Framework (SPF) for specifying
RTRTs and compositions thereof and algorithms for automatically generating
efficient inspector and executor code to implement such transformations. Ex-
perimental results indicate that the performance of automatically generated
inspectors and executors competes with the performance of hand-written ones
when further optimization is done.

Keywords: inspector /executor strategies, runtime reordering transformations,
sparse polyhedral framework

1. Introduction

Many scientific computing applications and virtually all graph algorithms use
sparse data structures that are typically accessed using indirect array references
such as A[B[i]]. Such applications are commonly called irregular applications,
and examples include solving partial differential equations over irregular grids,
molecular dynamics simulations, and sparse matrix computations. These com-
putational simulations of physical phenomena are becoming increasingly impor-
tant in the natural sciences. For example, molecular dynamics simulations are
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used to aid drug design and study protein interactions [1]. The performance of
computational simulations is important because improved performance enables
finer-grained modeling for a larger number of time steps.

Unfortunately, indirect array accesses often result in irregular memory ref-
erence patterns that exhibit poor locality and consequently can result in poor
performance. Processors always move blocks of contiguous data into cache,
so whenever a program references a single array element, the entire enclosing
block is moved into cache. If the other elements of the block are used before
the block is evicted, the program can often achieve acceptable performance.
However, irregular memory references often do not have much localized reuse.
In fact, a typical irregular application only achieves 5-10% of the advertised
peak processor performance [2]. Poor data locality is becoming even more of a
performance problem with multicore architectures where shared memory results
in more cores competing for both space in cache and memory bandwidth; also,
access to shared memory is becoming non-uniform.

There have been many program optimizations and transformation frame-
works developed for improving the memory reference patterns for codes that
are limited to affine references [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Currently, the
dominant transformation framework for affine transformations is the polyhedral
framework [14, 3, 5, 8, 15, 16, 17, 18]. There are two reasons these techniques
cannot be applied when there are indirect memory references. The first is that
indirect references inhibit the data dependence analysis needed to determine if
a transformation preserves the semantics of the program. The second reason
is more fundamental: it is usually impossible to know at compile time whether
a particular indirect reference will lead to a good or bad access pattern — the
access pattern depends on values in the index arrays that are only known at
run-time.

To overcome these problems, Run-Time Reordering Transformations (RTRTS)
have been developed [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Typically,
an RTRT is implemented using an inspector and an executor. The inspector is
code that analyses the memory reference at runtime, perhaps by looping over
the index array (the B array in A[B[I]]), to generate a new mapping for the
data or a new order to execute the computation (e.g. by reordering entries in
B[]) that improves the data locality or enhances parallelism. The executor is a
modified version of the original code that incorporates the new data and com-
putation orders. The inspector is called outside of a loop that calls the executor,
so the time required by the inspector is amortized over many iterations of the
executor. In this paper, we present the Sparse Polyhedral Framework (SPF) for
the specification of computation with indirect memory references and program
transformations on such computations, which are then implemented with gen-
erated inspectors and executors. The focus of this paper is code generation for
data locality RTRTs.

Previous work has made some progress toward the automation of run-time
reordering transformations. Initially, such transformations were incorporated
into applications manually for parallelism [20]. Next, libraries with run-time
transformation primitives were developed so that a programmer or compiler



could insert calls to such primitives [31, 32]. Currently, there are run-time re-
ordering transformations for which a compiler can automatically analyze and
generate the inspectors [33, 24, 25, 30]. In general, theses techniques focus on
individual inspector/executor strategies. Other than a small subset of “hard-
coded” compositions, the generation of inspectors that implement a set of
RTRTSs has not been automated.

The components of a general automatic RTRT system should include:

1. A framework for specifying irregular computations and compositions of
RTRTs to apply to these computations.

2. A library of RTRTSs including compile-time and run-time support that can
easily be applied to particular computations.

3. Program analysis algorithms that update information summarizing the
effects of a sequence of RTRTs to determine when additional RTRTs are
legal.

4. A guidance system to choose a sequence of RTRTs given various evalua-
tion criteria such as minimizing execution time, maximizing throughput,
and/or minimizing memory footprint.

5. A code generator capable of generating inspector and executor code.

Creating a complete automated system is beyond the scope of this paper. In
particular, creating a good guidance system capable of automatically selecting
effective program optimization strategies is a very challenging problem. Before
one can automate the selection of a sequence of transformations, one must gain
extensive experience with user-selected transformations. The contributions de-
scribed in this paper aim at facilitating such experiments. In particular, we
focus on goals (1), (2) and (5) listed above, leaving some of the analysis and all
of the guidance to be provided by the experimenter.

In summary, the contributions of this paper are:

e A unified framework called the Sparse Polyhedral Framework (SPF) for
specifying irregular/sparse computations and Run-Time Reordering Trans-
formations (RTRTSs) on such computations (goal 1).

e Description of a code generator prototype, called the Inspector/Executor
Generator in Python (IEGen in Python), that enables the user to specify
computations and transformations as a substitute for goals 3 and 4. The
code generator fulfills goal 5 through the use of two new intermediate
representations: (1) the Inspector Dependence Graph (IDG) to represent
the components of a composed inspector and (2) the Mapping IR (MapIR)
to represent the executor.

e Experimental results that explore how well our automatic generators com-
pare against hand-coded and optimized inspectors and executors.

This paper is a more succinct version of a technical report [34] and includes
updated experimental results.



Section 2 presents the Sparse Polyhedral Framework (SPF) and how the
example transformations can be specified. Section 3 presents techniques for
generating inspector and executor implementations from the Inspector Depen-
dence Graph (IDG) and the Mapping Intermediate Representation (MapIR),
and Section 4 describes how transformations can be implemented as manipula-
tions of the IDG for the inspector and the MaplR for the executor. Section 5
evaluates the code generation techniques in terms of their performance in the
context of a molecular dynamics benchmark and an sparse matrix vector prod-
uct benchmark. Section 6 describes related work, and Section 7 concludes.

2. The Sparse Polyhedral Framework

RTRTSs fall into two main classes. Data reorderings change the mapping of
data to storage locations. They attempt to improve the spatial locality of the
memory reference pattern, for instance, by placing values that will be referenced
by nearby iterations in the same cache blocks. Iteration reorderings change the
order that iterations of a loop (or loop nest) are executed. Here the goal might
be to increase the temporal locality of iterations that access the same data.
Often performance can be further improved by applying a sequence of RTRTs.
A typical scenario is to first perform a data reordering, and follow it with an
iteration reordering.

Specifying run-time data and iteration reorderings in a compile-time frame-
work has several advantages. First, both run-time and compile-time transfor-
mations are uniformly described. Secondly, a framework supported with code
generation algorithms enables experimenting with different compositions of ex-
isting RTRTs. Third, the sparse polyhedral framework enables the development
and the eventual automatic selection of RTRT compositions. Finally, the trans-
formation legality checks can provide constraints on the compile-time specifi-
cation of RTRT compositions and on the run-time library of algorithms that
generate run-time reordering functions.

In general, a transformation framework includes

e an intermediate representation for representing computations,
e transformation specifications,
e formalizations for applying transformations,

e formalizations for checking transformation legality, and

algorithms for generating efficient code that implements the specified trans-
formations.

Example frameworks include the unimodular transformation framework [35, 36]
and various instances of the polyhedral framework [14, 3, 5, 8, 15, 16]. In the
polyhedral framework, the static control parts (SCoP) [37, 38] of a program can
been represented with some statement representation (e.g., an abstract syntax
tree), an affine function for each memory accesses within each statement, affine



functions to represent data dependences due to the memory accesses, and an
affine scheduling function for each statement. Transformation specifications and
data dependences are formalized as integer tuple functions. Transformations
are performed within a polyhedral framework by applying affine transformation
functions to the statement scheduling functions. Transformation legality checks
can be performed by applying the transformation to the dependence abstraction
and determining if the result is legal. Code generation algorithms generate code
that will execute the transformed iteration space in lexicographical order.

This section reviews the Sparse Polyhedral Framework (SPF) for specifying
irregular computations and Run-Time Reordering Transformations (RTRTs) on
such computations. The SPF enables the explicit composition of run-time data
and iteration-reordering transformations and was initially presented in [39]. As
the name indicates, the Sparse Polyhedral Framework (SPF) is based heavily
on polyhedral transformation frameworks, especially that of Kelly and Pugh [8].
Polyhedral frameworks focus on specifying transformations that can be com-
pletely specified and performed at compile time. The SPF enables the combined
compile-time and run-time specification of run-time reordering transformations.
Similar to the work in [40], the SPF uses uninterpreted function symbols such
as B(i) to represent non-affine memory references such as the indirect memory
references A[B[i]]. Additionally, we can express run-time data and iteration-
reordering within the SPF using uninterpreted function symbols.

2.1. Abstract Sets and Relations

Abstract sets and relations are the fundamental building blocks for the SPF.
Data and iteration spaces are represented with abstract sets and access func-
tions; transformations are represented with abstract relations. We use the term
abstract to differentiate between sets and relations specified at compile time,
which are abstract, and sets and relations that are explicitly constructed at
runtime with all of their members, which are referred to as explicit sets and
relations. This section defines abstract sets, abstract relations, and operations
that can be performed on them.

Abstract sets are integer tuple sets with inequality and equality constraints
on set membership,

{[¢0,1,---;%4—1] | inequality and equality constraints }.

The arity of the set is the dimensionality of the tuples, which for the above is
d. The constraints can be affine expressions of the tuple variables iz, symbolic
constants, existential variables, and uninterpreted function symbols.

Symbolic constants are computation parameters that do no change during
the course of the computation. For example, the following set is a set of integer
d-tuples parameterized by the symbolic constants N and B:

{[i07i1, ...,Z'dfl] ‘ (io > O)A(io < N)/\.../\(B—l—io < ’L’dfl)/\(idfl < B—|—2*Zo)}

Ezistential variables are those not declared as tuple variables or symbolic
variables.



Uninterpreted function symbols, f(p1,p2,-..,Dq), are functions whose value is
unknown at compile time. As in [40], we assume that if p'= & then f(p) = f(Z).
We also allow the actual parameters p; passed to any uninterpreted function
symbol to be affine expressions of the tuple variables, symbolic constants, free
variables, or uninterpreted function symbols, whereas in [40] uninterpreted func-
tion symbols are not allowed as parameters to other uninterpreted function sym-
bols. In addition, in this prototype we require that the input domain and the
output range for each uninterpreted function each be specified as a union of
polyhedra that are not dependent on uninterpreted function symbols®.

Abstract relations specify a set of integer tuple relation pairs with the same
kinds of constraints allowed for abstract sets. For example, the following relation
maps all three-dimensional tuples to a one-dimensional tuple where the value is
their third element in the original tuple:

{lio, i1, 42] — [i2]}.

There are no constraints on the above relation so it is a set of infinite size with
integer tuple pairs such as {[0,0,0] — [0]}, {[0,0,1] — [1]}, {[42,7,99] — [99]},
etc. An abstract relation has an input tuple arity and an output tuple arity. As
a notational convenience we subscript the names of abstract relations to indicate
which sets are the domain and range of the relation. For example, the relation
Aj_,x has the abstract set [ as its domain and abstract set X as its range.

Operations performed on abstract sets and relations include taking the in-
verse of a relation, applying a relation to a set, composing two relations, and
taking the union or intersection of two relations or two sets. In [41], we provide
more details about the implementation of these operations.

2.2. Specifying the Computation

Computations consist of symbolic constants, data and index arrays, state-
ments, scheduling functions, access functions, and data dependences. This sec-
tion describes each of these computation components in detail.

2.2.1. Symbolics, or Parameter Variables

Symbolic constants represent a constant value that is unchanging for the
duration of the computation, but is not known at compile time. Examples of
symbolics in Figure 1 are Ny, N,, and Ne.

2.2.2. Data and Index Arrays

The SPF categorizes each array as either a data array or an index array.
A data array typically contains the data being read and written within the
computation and cannot be used to index into another array. An index array is
an integer array that is used to index into data arrays or other index arrays.

LQur current implementation is restricted to the input domains being specified as a union
of rectilinear domains and the output parameter being one-dimensional.



for (s=0; s < Ngs; s++) {
for (i=0; i < Ny; i++) {

S1: ) x[i] += ... fx[i] ... vx[i] ... ;
for (e=0; e < N¢; e++) {
S2: fx[left [e]] + = ... x[left[e]] ... x[right[e]] ... ;
S3:} fx[right[e]] + = ... x[left[e]] ... x[right[e]] ... ;
for (k=0; k < Ny; k++) {
S4: vx[k] + = fx [k] ;

}
}

Figure 1: Simplified moldyn example.

Fach data array has an associated data space represented with an abstract
set with the same dimensionality as the array. The data space bounds can be
affine functions of constants and symbolic constants. The original data space
for the x array in Figure 1 is

xo={[m] |0 <m < N,}.

The subscript “0” indicates that zy is the data space for data array x in the
original, untransformed program. Note that the data space is the index domain
of the data array.

Each index array is represented with an uninterpreted function symbol of
the same name. As an uninterpreted function symbol in SPF, the domain of the
index array, or its index space, must be specified along with the range of values
that can be in the index array. For the index array left in Figure 1, its input
domain is {[e] | (0 < e < Ne)}, and its output range is {[m] | (0 < m < N,)}.

2.2.8. Statements

Computation occurs when statements access data and index arrays and apply
various operations to them. Each iteration of a statement within a loop nest
is represented as an integer tuple, p’ = [p1, ..., pn], where p, is the value of the
iteration variable for the gth loop in the loop nest. Thus, a statement’s original
iteration space is a polyhedral set of integer tuples with constraints indicating
the affine loop bounds,

{[ph ~-~7pn] | b < p1 < uby A - Alby, < Pn < Ubn}
For statement S2 in Figure 1, the original iteration space is
Iso ={[s,e] |0<s< N;A0<e< N}

2.2.4. Scheduling Functions

In the SPF, a scheduling function maps each iteration of a statement into a
shared iteration space. The schedule is then a lexicographical traversal of the
points in the shared iteration space. Scheduling statements into imperfectly




nested loops in this fashion was also used by Ahmed et al. [42], Kelly-Pugh [g],
and is implemented as scattering functions in CLooG [43]. The statements in
the simplified moldyn example in Figure 1 are mapped to a five-dimensional
space (i.e., two dimensions for the loops and the other dimensions to denote
loop and statement placement). The following relation specifies the scheduling
function for statement S2 in Figure 1:

Sfo,sz—>‘1>o,sz = {[576] - [0757 1,6,0]},

where Iy g2 denotes the original iteration space for statement S2 and ®¢ g2
denotes the shared iteration space. Each loop nest level corresponds to a pair of
dimensions, where the first dimension of the pair is the numerical order of the
loop as a statement, and the second dimension is a value of the index variable.
The last value in the tuple corresponds to the statement’s position with respect
to other statements at the same level. The above scheduling function can be
interpreted as first statement located within the second loop nested within the
first loop when the iterator values are s and e.

We refer to the union of all the statement images in the shared iteration space
as the full iteration space. Iteration reordering transformations are specified
in terms of the full iteration space. The full iteration space is computed by
applying the scheduling functions to each statement and then taking the union
of the resulting sets.

The full iteration space @ for the (untransformed) program in Figure 1 is
the following set:

Dy = Py 51 UPg52UDg 53U P 54

= {[0,5,0,4,0] | 0<s<N)A(0<i<N,)}
U {[0,s,1,e,0] | (0<s< NN (0<e< N.)}
U {[0,s,1,e,1] | (0<s<Ns)A (0<e<N.)}
u{[0,s,2,k,0] | (0<s<Ng)A(0<Ek<N,)}

For instance, using this representation, the [s, k]-th iteration of S4 is denoted
[0,s,2,k,0] since 84 is in the third statement (loop k) of the outer loop, and its
the first statement within the k loop.

2.2.5. Access Functions

Given a specification of the original iteration space for each statement and
its scheduling function, the next step is to specify how each statement accesses
the data arrays. We define an access function as a function between the original
iteration space for a statement and the storage location being accessed in data
space a for a single memory access. We define an access relation Aj_,, from
sets of iterations to sets of storage locations into data space a, so that for each
iteration p € I, Ar_,,(p) is the set of locations that are referenced by iteration
tuple p. Notice that the subscript “I — a” gives the domain and range of the

mapping.



In the SPF, we use uninterpreted function symbols to abstractly represent
the access relations that involve indirect array addressing through index arrays.
The Figure 1 example has the following access relation for statement S2:

ALy soseg = {ls,el = [pl [p=left(e)} U {[s,e] = [q] | ¢ = right(e)}.

The relation Ay, ,—s, is the result of the two separate access functions (i.e., one
for x[left[e]] and another for x[right [el]) for S2 being unioned together
into one relation for the whole statement.

Note that the relation Ay, 4, .4, is expressed in terms of the original iteration
space for S2. Applying transformations to this access function requires that it
be expressed in terms of the shared iteration space, ®g 2. The desired relation
is therefore, Ag, 5, —u,-

—1

A<1>o,sz—>960 = AIo,sz—WoOSIo,sgﬁ@O,w

AIo,sz—mo ° S‘I’o,s2—>10,52

= {[0757 1’670] - [p] |p = left(e)} U {[O’Sv 176’0] - [Q] | q= Tight(e)}.

2.2.6. Data Dependences

The final step in specifying the computation is to specify the data depen-
dences between iterations of statements in the original unified iteration space.
The dependence relation De_,o = {p — ¢ | constraints } contains all pairs of
iteration points in the full iteration space p, ¢ € ® such that iteration p must ex-
ecute before ¢ due to a data dependence. It is also convenient to refer to subsets
of Dg_,¢ in terms of dependences between particular statements. We refer to
subsets of Dg_,o with the notation dg, s., where v and w are statement num-
bers. For example, the dependences between statements S1 ([0, s, 0,4,0]) and
S2 ([0, s,1,e,0]) due to the x and fx arrays can be specified with the following
dependence relation:

dSl,S2 = {[O,S,O,Z’,O} — [Oasla 176’0] | (S <

<sYni=left(e)}
u{[0,s,0,7,0] — [0,5",1,¢e,0]| (s < &

) Ai=right(e)}.

2.8. Specifying RTRTs

The last section described how to express computations in the Sparse Poly-
hedral Framework (SPF) and this section describes how to express run-time
reordering transformations (RTRTSs) that can be applied to the computations.
At compile time, the SPF enables the specification of RTRT's and the automatic
determination of the effect an RTRT has on the scheduling function, access func-
tion, and data dependence specifications. The data and iteration reorderings
that do not become explicit until runtime are expressed with the help of un-
interpreted function symbols. At run-time the generated inspectors traverse
and construct explicit relations to determine the current state of access func-
tions, scheduling functions, and data dependences and to create reorderings and
tilings, which are also stored as explicit relations. One of the key ideas in the
SPF is that the effect of run-time reordering transformations can be expressed



at compile time through formal manipulations of the computation specifica-
tion (i.e., statement schedules, access functions, and data dependences), thus
enabling the compile-time specification of a sequence of RTRTs.

2.8.1. Data Reorderings

Formally, a data reordering transformation is expressed at compile time with
a data reordering specification R,_,,, where the data that was originally stored
in some location m will be relocated to R, 4 (m). The compile-time result of
reordering an array a is that all access functions with the a data space as their
range are modified to target the reordered data space a’,

Ap o = {ﬁg) Ra—m’(m) ‘ me A@—)a(ﬁ) AP € (I)}

The above equation for Ag_., is equivalent to composing the data reordering
relation R,_, o with the access function Ae_,q,

Alf—'—)a’ = Ra—nz’ © A<I>—>a-

For example, assume that we apply a data permutation reordering to the
data arrays x in Figure 1. The data reordering specification for data space x
can be specified as follows:

Ryysay ={lpl = [d] | g =0(p)},

where o is an uninterpreted function symbol that denotes the data permutation
reordering to be generated at runtime. At runtime, R,,_,5, can be realized with
an explicit relation, which is a generalization of a one-dimensional index array.

The key idea in the SPF is that we can express at compile time how RTRT's
will affect statement scheduling functions, access functions, and data depen-
dences and therefore statically plan a series of such transformations and gener-
ate the code for an inspector and executor that implement the composition of
a series of RTRTs. A data permutation reordering only affects access functions
whose range is the reordered data space. Scheduling functions and data depen-
dences are not affected because they relate iterations to time and iterations to
iterations respectively. For the Figure 1 example, the R, _,,, data permuta-
tion causes the incorporation of the o uninterpreted function symbol into any
access functions targeting the data array x. For example, the access relation for
statement S2,

A‘bo,s2%wo = {[07 s, 1, 670] — [Q] | q= left(e)}
U{[0,s,1,¢,0] = [q] | ¢ = right(e)},
will become an access relation between the original full iteration space and the

new x data space, 1,

A‘bo,sz—ml = Rx0_>331 © Aq’o,sz—mo
{[07 s, 1, 670] - [Q] | q= U(left(e))}
U{[0,s,1,e,0] — [q] | ¢ = o(right(e))}.

Figure 2 shows how the executor code will change after applying the data re-
ordering R;, .4, to the x and fx data arrays (i.e., Ryzo—rz; = Rogoaw:)-

10



for (i=0; i < ]7\71,, i++) {
S1 ) x[o[i]] + = . fx[o]i]] vx [1i] ;
for (e=0; e < N¢; e++)
S2 fx[o[left[e]]] + = ... x[o[left[e]]] ... x[o[right[e]]] ... ;
S3: ) fx[o[right[e]]] + = ... x[o[left[e]]] ... x[o[right[e]]] ... ;
for (k=0; k < N,; k++) {
S4 ) vx[k] + = . fx [o[k]] ... ;

Figure 2: Simplified moldyn example after reordering data arrays x and fx with o.

2.8.2. Iteration Reorderings

An iteration-reordering transformation is expressed with a mapping Te_, ¢/
that assigns each iteration p'in iteration space ® to iteration To_ ¢/ (p) in a new
iteration space ®'. The new execution order is given by the lexicographic order
of the iterations in ®’.

In the Figure 2 example, the ¢ data permutation of the x and fx arrays
introduces indirect accesses to those arrays in the i and k loops. A transfor-
mation we call iteration alignment is an iteration permutation reordering that
will cause the i and k loops to access the x and fx arrays sequentially in this
example. The o data permutation also introduced an additional level of indirec-
tion in the e loop, but we will remove that with a transformation called pointer
update [24], which composes nested index arrays into a single index array.

The iteration alignment transformation is mathematically specified as a func-
tion on the full iteration space to a new full iteration space as seen here:

Tq>0_>c1>l = {[0,5,0,i070] — [0,5,0,7:170] | il = O'(Zo)}
U {[0,s,1,e,q9] = [0,5,1,e,q] [0 < g <1}
@] {[0,8,2,k070] — [0, 8,27k1,0] | k1 = U(ko)}

Notice that the transformation permutes the i and k loops, but does not affect
the e loop. Also notice that this RTRT does not require a new explicit relation
to be created at runtime, because it is using the reordering function o that will
be generated by the initial data permutation reordering transformation.

In general, an iteration reordering affects the scheduling function, access
functions, and data dependences representing a computation. The scheduling
function for a statement SX in the transformed iteration space ®' is

Stsx ey, =10 = Tosae (7))}

or
stx—NP%X - T@—)‘b’ o Sst—)‘I)SX,
where {p’ = ¢} € Pgx.
The dependences of the transformed iteration space are

Do/ ot = {To—a (D) = To—a (7)) |7 — (€ Dosa}

11




or
Do/ = To a0 0 (Do—sa 0 Ty L))
and the new access function A4, for each data space a is
Ap o = {To e/ (P) = Asa(p) | P E O}
or
A<I>’—>a = Aq>_>a o Tq:i>q>/'

Given the transformed access functions, scheduling functions, and dependences,
we can specify further run-time reordering transformations (RTRTS).

In the Figure 2 example, the iteration alignment iteration permutation re-

ordering Ts,_,3, performs a loop permutation of the i and k loops. The effect
of Tp,— o, on the scheduling function for statement S1

510,31H¢0,s1 = {[S’ Z} — [07 5,0,1, 0]}
is the following;:

SIO,Sl—><I>1,Sl = TCI)O_>CI>1 © 510,51—>¢’0,51
= {[s,i] = [0,s,0,i1,0] | i1 = o (i) }.

The transformed full iteration space will use i1 as the iterator for the first loop
nested within the s loop. There will be the constraint that i1 = o(i), where ¢
is an existential variable. Since ¢ is a permutation, the code generation process
does not have to place a guard for the constraint ¢; = o(¢) around S1.

The access function for statement S1 accessing array x, Ag, ¢, —z,{[0,s,0,4,0] —
lg] | ¢ = (i)}, becomes

Apysioe = 100,5,0,,00 = [g] [ g = o(i)]} o Tyl o,
= {[O,S,O7i,0] — [q] | q= U(z)]} o {[O,S,O,ihO] — [0,8,0,’5'070] | 1= U(io)}
={[0,s,0,41,0] = [q] | to =i A1 =0c(ig) ANg=0(i)}
={[0,5,0,i1,0] = [q] | i1 = o(io) A g = 0o(io)}
={[0,5,0,i1,0] = [g] [ i1 = q}.

Above we use the fact that o is a permutation and therefore bijective to rewrite
q = o(ip) as ip = 0~ !(g) and find that i; = o(0c71(q)) = q.
The data dependences between statements 1 and 2,

dsis2 = {[0,s,0,4,0] = [0,s",1,e,0] | (s < s')ANi=left(e)}
U {[0,s,0,i,0] = [0,5",1,¢,0] | (s < s") Ai = right(e)}.
become

dsi.s2 = {[0,s,0,4,0] = [0,s",1,e,0] | (s < s')Ai=oc(left(e))}
U {[0,5,0,7,0] = [0,s",1,¢,0] | (s < s") Ai = a(right(e))}.

Figure 3 shows the executor for the example code after iteration alignment.
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for (s=0; s < Ng; s++) {
for (i1=0; i1 < Ny; ia1++) {

S1: ) x[i1] += ... fx[i1] ... vx[o " [ir]] ... ;
for (j=0; j < Nej j++) {
S2: fx[o[left [j]]] + = ... x[o[left[]j]]] . x[o[right[j]]] ... ;
s: axlolright (1)) + = xloller 1) lolrigne il s
for (k1=0; k1 < Ny; ki++) {
S4: ) Vx[o’fl[kl]] + = ... fx[ki] ...
}

Figure 3: Simplified moldyn example after aligning the loops i and k with the reordered data
arrays x and fx.

2.4. Composing a legal sequence of RTRTs

A run-time reordering transformation (RTRT) specified in the SPF is legal
if all current data dependences are respected in the new schedule. The com-
piler prototype presented here does not check transformation legality. However,
the legality of an RTRT can be determined manually by using SPF to derive
legality constraints on the uninterpreted functions generated by inspectors and
then proving that an inspector implementation does satisfy the necessary con-
straints [44]. These proofs show that an inspector satisfies certain constraints for
any possible input. Efforts are underway to automate such proofs [45]. Checking
that such constraints are satisfied at runtime is not practical because it could
significantly add to inspector overhead. Here we describe when dependences
are affected by transformations, and how a sequence of transformations must
coordinate.

Any permutation data reordering is legal in the SPF. If the data array x is
permuted with the permutation o, then all access functions targeting x can be
updated with an additional indirect access. For example, x[ ia[i] + jal[i]
] would become x[ sigmalial[i] + ja[i]] ]. Dependences between the data
order and index arrays that occur in sparse matrix data structures such as
compressed sparse row (i.e. the non-zeros for each row should be adjacent in
the data array) are not allowed in the current prototype compiler for SPF due
to the restriction that all loop bounds are affine expressions of the surrounding
loop iterators. This means that computations over sparse matrix data structures
other than coordinate storage will need to be flattened with some form of loop
restructuring [46].

For iteration-reordering transformations, the new execution order must re-
spect all the dependences of the original. Thus for each {§ — ¢} € Dy,
T (P) must be lexicographically earlier than Tr_,/(7),

VP, q: (P — ) € Disr = Trr (9) < Tr—1 (7).
Lexicographical order on integer tuples can be defined as follows [47]:

[Pl, ~--apn} = [q1>---aQn] g
Im: Vi: 1<i<m=p;=0q)ANDm<qm)-
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Since the dependences may involve uninterpreted function symbols, compile-
time legality checking is not straightforward. It requires computing pre and
post conditions that individual explicit relations or index arrays must satisfy
for the transformation to be legal and then either checking those conditions at
runtime or performing a compile-time pre and post condition analysis of the
run-time library routines that generates the explicit relations or index arrays in
question. We show how this can be done for a sparse tiling of the Gauss-Seidel
computation in [48].

The compiler creates a composition of transformations, but currently each
transformation is specified individually. Between transformations there are some
simpler legality checks that can be leveraged to provide helpful error messages
to users of the sparse polyhedral framework. These checks include determining
if an iteration transformation has been properly specified for the full iteration
space, checking that any run-time reorderings are providing input of the appro-
priate domain to uninterpreted function symbols, ensuring that uninterpreted
function symbols are placed in equality constraints with expressions whose do-
main matches the function range, and verifying that an iteration transformation
matches the dimensionality of the full iteration space. As an example of the last
check, if the first transformation maps the iteration space into a 2D iteration
space, then the second transformation on the iteration space must map a 2D
iteration space to its target.

2.5. Example RTRT Compositions

Data and iteration reordering RTRTs can be applied in a sequence. Appro-
priate composition of the transformations with the statement schedule functions,
access functions, and data dependences determines the effect of the transforma-
tions on the resulting executor code. Figure 4 summarizes the examples of the
data permutation consecutive packing (cpack) and the iteration permutation it-
eration alignment described in Sections 2.3.1 and 2.3.2. The net effect of cpack
followed by iteration alignment on the executor code can be seen in the code
fragment that includes statement S1. The schedule function is implemented with
appropriate loop nesting, and the access functions specify the index expressions
for data array accesses.

Figures 5 and 6 summarize some subsequent RTRT's for the running example.
Figure 5 shows how a data permutation transformation called data alignment
removes the additional indirect reference through o~! that was introduced due
to consecutive packing followed by iteration alignment. Figure 5 also shows the
effect of an iteration permutation on the e loop. For this iteration permuta-
tion, the user indicates which loop should be permuted based on how that loop
is accessing certain data arrays (e.g., x and fx in the example). One possible
iteration permutation reordering algorithm is locality grouping [24]. The re-
ordering algorithm selected is responsible for generating the § permutation at
runtime. In the executor, the statements all maintain the same scheduling func-
tion, because the transformation is an iteration permutation, which does not
require changing the loop structure. In other words, the loop being permuted
will still need the same bounds. The permutation of the iterations is reflected
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Name RTRT class

Input Abstract Relations

Transformation Specification

Composed effect on executor for Figure 1

cpack data permutation on x and fx

Arsey = {le] = [d |a=left(e) NO<e< N}
U{le] = [q] | ¢ = right(e) NO < e < N.}

Ragsey ={lpl = [d] [ ¢ =0(p)}

for (s=0; s < Ns; s++) {
for (i=0; i < Ny; i++) {
S1 x[o[i]] + = Lo fx[oi]] ... owvx[i] ...
for (e=0; e < N¢; e++) {
S2 fx[o[left [e]]] + = ... x[o[left[e]]]
.. x[o[right[e]]] ... ;
iter iteration permutation on i and k

align

since the o function is already available, this transformation
does not have a run-time component that needs input

TIO_>II = {[O,S,O,iQ,O] — [0,8,0,7;1,0] | il = U(io)}
U {[07 571767Q} % [07 571767q]}
U {[0,8,2,]€0,0] — [0,5,2, kl,O} | ]fl = O'(k())}

for (s=0; s < Ng; s++) {
for (i1=0; i1 < Ny; i1++) {
S1: x[i1] + = ... fx[i1] ... Vx[o’fl[il]] e

Figure 4: Summary of the data permutation and iteration permutation examples described
in Sections 2.3.1 and 2.3.2. Includes the RTRT specification, the specification of the input for
the run-time reordering algorithm, and the RTRT’s effect on parts of the executor code.

in changes to the access relations and the data dependences (i.e., instead of e
using 6~ 1(ez)). Note that pointer update [24] is used to compose nested index
arrays into a single index array.

Figure 6 summarizes an RTRT called sparse tiling. A sparse tiling is a
transformation that maps a space of iteration points into a set of tiles. The
new schedule for the iteration space is then to execute the iteration points by
tile. Therefore, the transformed code includes a new loop that iterates over
the tiles. One goal of a sparse tiling transformation is to group iterations such
that iterations that reuse the same data are within the same tile and therefore
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Name RTRT class
Input Abstract Relations

Transformation Specification

Effect on example computation in Figure 1

data data permutation on vx
align

no input abstract relations
Rozo—sva, = {[p] = la] | ¢ = o(p)}

for (s=0; s < Ns; s++) {
for (i1=0; i1 < Ny; i1++) {
S1: x[i1] + = ... fx[i1] ... vx[i] ...

locality | iteration permutation on the e loop based on accesses to x
group-

ing
Ar,sz, = {le] = [d | g=o(left(e))}
U{le] = [d] | ¢ = a(right(e))}
T]1_>[2 = {[O,S,O,i,O} — [O,S,O,i,O]}

U {[075717€IaQ] — [O,S, 13627(]} | €2 = 6(61)}
U{[0, 5,2, k0] — [0, 5,2, k, 0]}

for (s=0; s < Ng; s++) {

for (e2=0; ez < Nej; eat++) {
S2: fx[o[left [67 [e2]]]] + = ... x[o[left[6 ' [ea]]]]
- x[o[right [67 [e2]]]] ... ;

Figure 5: Sequence of RTRTs applied to e loop after cpack and iteration alignment. Data
alignment is applied to array vx and an iteration permutation is applied to the e loop.

the computation as a whole can experience improved temporal data locality.
Another possible goal is to create task-level parallelism.

In Figure 6, we sparse tile across the i, e, and k loops. The sparse tiling
algorithm partitions the iterations in one of those loops and then place iterations
from the other loops into tiles so that when the tiles are executed in order,
the dependences of the computation are satisfied. Note that the dependences
between the i and e, and the e and k loops are input to the sparse tiling inspector
that will execute at runtime. Full sparse tiling [28, 49] is one possible sparse
tiling algorithm that places iterations into disjoint tiles. Unstructured cache
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Name | RTRT class
Input Abstract Relations

Transformation Specification

Effect on example computation in Figure 1

sparse groups iterations across loops i, e, and k based on dependences
tiling between those loops

Dr,1, = {[0,5,0,i,0] = [0,s,1,e,q] | i=c(left(6"1(e)))}
U {[0,s,0,i,0] = [0,s,1,e,q] | i = o(right(§~1(e)))}
U {[0,s,1,e,q] = [0,5,2,k,0] | k= o(left(67(e)))}
U {[0,s,1,e,q] = [0,5,2,k,0] | k= o(right(6~1(e)))}
T, = {[0,s,0,4,q] = [0,5,0,¢,0,4,q] | t =60(0,%)}
U {[0,s,1,e,q] = [0,s,0,t,1,e,q] | t =6(1,€)}
u{[0,s,2,k,q] = [0,s,0,t,2,k,q] | t =6(2,k)}

for (s=0; s < Ng; s++) {
for (t=0; t < Ng; t+4) {
for (i=0; i < Ny; i++) {
S1: ) if (¢t =06(0,i)) { x[i] = ... fx[i] ... vx[i] ... ; }
for (e=0; e < N¢; e++) {
S2: if (t = 0(1,e)) { fx[cr[lcft[6 ellll
+= .. xlo[left [571e]]]]
- x[olright[671[e]]]] ... ; }
S3: if (t == 6(1,e)) { fx[o[right[6 " [e]]]]
+= x[o[left [~ [e]]]]
) x[o[right [6 1 [e]]]] -..; }
for (k=0; k < Ny; k++4) {
S4: if (t =0(2,k)) { vx[k] += ... fx[k] ... ; }

}

Figure 6: Sparse tiling RTRT applied to i, e, and k loops after all data and iteration permu-
tations.

blocking [50] is another approach. The communication-avoiding algorithms of
Demmel et al. [51] also create sparse tiles, but those tiles overlap so as to enable
parallel execution of the tiles and minimal communication between tiles.

A sparse tiling inspector creates an explicit function, which we call 8, that
maps points in an iteration sub-space to tiles. Note that in the resulting code
in Figure 6 the tiling function 6 is used to guard statements in the i, e, and k
loops. Guard encapsulation [52] removes the guards and makes the i, e, and k
loops only execute the iterations specific to the current tile by using a sparse
data structure similar to compressed sparse row (CSR).
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2.6. Sparse Polyhedral Framework Summary

A transformation framework provides a formal way to represent all aspects
of the transformation process. The Sparse Polyhedral Framework (SPF) rep-
resents computations with indirect memory accesses and run-time reordering
transformations with integer tuple sets and relations with affine constraints and
constraints involving uninterpreted function symbols. A composed transforma-
tion is a sequence of data and iteration transformation mappings. The reorder-
ing heuristics that the inspector will apply for each transformation use as input
the transformed data dependences and access functions that result from all pre-
vious transformations. A composition of transformations is legal if the final data
dependences can be shown to be lexicographically positive, and it is possible to
check post-conditions on the reordering functions generated by inspectors. This
section shows how the SPF could be used to represent a molecular dynamics
computation and various RTRT transformations.

The SPF can be used to generate an inspector containing all of the run-time
reordering algorithms being applied in the appropriate order and an executor
that implements the transformed code and uses the reordering functions pro-
vided by the inspector. The next sections describe how we generate code for
composed inspectors and their corresponding executors and enable the author-
ing of run-time reordering transformations (RTRTS).

3. Inspector/Executor Code Generation

Run-time reordering transformations are typically implemented with inspec-
tor/executor strategies. When a series of RTRT's are expressed within the Sparse
Polyhedral Framework (SPF) as shown in Section 3, the code for most of the
inspector and all of the executor can be automatically generated. This section
presents intermediate representations for both the inspector and executor, a
run-time library that provides support for the inspectors, and algorithms for
generating inspector and executor code.

3.1. Intermediate Representations (IRs) for RTRTs, Inspectors, and Ezecutors

As is typical with a transformation framework, SPF includes a mechanism
for specifying the original computation and data spaces and transformations on
those spaces. The Mapping IR is a data structure that implements the SPF
and as such represents the executor, which is a (un)transformed version of the
original computation. The Mapping IR also represents the run-time reordering
transformations (RTRTSs) as a sequence of data and/or iteration reordering rela-
tions. The Inspector Dependence Graph (IDG) represents various computations
the inspector must perform to generate the necessary reordering functions and
relations and reorder data.
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3.1.1. The Mapping IR (MapIR)

The Mapping Intermediate Representation (MapIR) encodes the compu-
tation specification, which includes statements, symbolic constants, data and
index arrays, access relations, and data dependences. Section 2.2 describes
the computation specification components of the Sparse Polyhedral Framework
(SPF) in detail. The MapIR implementation in our prototype Inspector/Execu-
tor Generator Python prototype (IEGen in Python) provides a Python interface
for specifying integer tuple sets and relations for the various components of the
computation specification. As an example, the index array left in the molecular
dynamics example in Figure 1 can be specified in the IEGen Python prototype
as follows:

spec.add_index_array(
name=’left’,
type=’int * %s’,
input_bounds="{[q]: 0<=q && q<N_e}’,
output_bounds=’{[q]: 0<=q && q<N_v}’)

The RTRTs are represented in the MapIR as a sequence of iteration and data
reordering relations. For iteration reorderings, the transformation is specified
for the full iteration space. For data reorderings, information about which data
spaces will be affected by the reordering is included. Figure 3.1.1 summarizes
the sequence of transformations for the molecular dynamics example.

When transformations are applied to the computation, they modify the
statement scheduling functions, access functions, and data dependences in the
MaplR to indicate their compile-time effect on the computation. Section 2.3 for-
malizes the effect of data and iteration reordering transformations on scheduling
functions, access relations, and data dependences. A transformation imple-
mented in IEGen Python uses the mathematical framework provided by SPF
to automate the application of run-time reordering transformations (RTRT).

3.1.2. Inspector Dependence Graph (IDG)

In addition to the application of a transformation modifying the computa-
tion specification in the MapIR, each transformation typically involves run-time
reordering functionality that the inspector will perform. Therefore, the appli-
cation of a sequence of transformations leads to a set of related inspector tasks.
The Inspector Dependence Graph (IDG) represents these tasks, the data struc-
tures consumed and generated by the inspector, and the dependences between
data and tasks within the inspector.

Figure 8 shows an example IDG, where the rectangular nodes represent data
structures and the elliptical nodes represent tasks. An edge that starts at a data
node and ends at a task node indicates that the task will be using that data.
An edge that starts at a task node and ends at a data node indicates that the
task will be generating that data.

The IDG in Figure 8 represents the inspector that along with the corre-
sponding executor implements the consecutive packing and iteration alignment
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Name Transformation Specification ‘

cpack data | Ryypy = Rizgn e, = {[lp] = ] [ ¢ = 0(p)}
reordering

T[OH[1 = {[07 S7O,i0, 0] — [0, S7O,i1, 0] | il = U(io)}
iteration U {[0,s,1,e,q] — [0,s,1,¢e,q]}
alignment U {[0, 5,2, ko, 0] = [0, 5,2, k1,0] | k1 = o(ko)}
data  align- | Ryzgmvey, = {[p] = [d] | a=0c(p)}
ment

T[1*>[2 = {[O,S,O,i,O] — [0, S,O,’L',O]}
loca’lity ) {[07 S, 17 elvq} — [07 S, 17627 q] | €2 = 5(61)}
groupmng u{[0,s,2,k,0] = [0,s,2,k,0]}.
1teration
reordering

T, = {[0,s,0,4,q] = [0,5,0,¢,0,4,q] | t =0(0,7)}
sparse tiling U {0,s,1,e,q] = [0,s,0,t,1,e,q] | t =6(1,e)}

U {[07872’ k7q] — [O’S’O7t72? k7q] ‘ t: 9(27k)}

Figure 7: Sequence of data and iteration reordering transformations that are applied in the
running example in Figures 4, 5, and 6.

RTRTSs summarized in Figure 4. Recall that in the molecular dynamics example,
the interactions between atoms are encoded in the index arrays left and right,
where left[1] and right [i] are the indices for interacting atoms. In Figure 4,
the input to the consecutive packing data reordering heuristic is an abstract re-
lation describing how the e loop is accessing the x and f£x arrays associated with
atoms. The IDG in Figure 8 shows that the left and right index arrays are
used as input to an inspector task that will construct an explicit relation, which
will then be passed to the consecutive data reordering algorithm to generate the
o explicit relation that represents the data permutation. After reordering o has
been generated, the reorderArray function applies the ¢ permutation to the
x and fx data arrays. Note that the data arrays in the IDG include a version
number to represent versions of the same array, where the array is undergoing
in-place data reorderings.

In the example, the application of iteration alignment can be performed
entirely at compile time as modifications to the access functions for the x and
fx arrays in the i and k loops. Therefore, no tasks are added to the IDG for
iteration alignment in this example, because the o uninterpreted function has
already been generated by the inspector, and the cancelation of o by o' in the
access function for the array vx occurs at compile time.

In general, there are two main kinds of computation nodes within the IDG:
explicit relation generation loops and function calls. Explicit relation generation
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[ left : index array ] [ right : index array ]

construct explicit relation

Y

‘ Arsay = {lel = ldl | g=lefi(e) A0 < e < Ne}

U{[e]%[]lq:right( )A0 <e< N}

———

[ fmo : data array ] [ Ryy—say ={lp) = ld] | ¢ = [ ¢ : data array ]

DN e

reorderArray(...) reorderArray(...)

\ 4 \ 4
[ fxq : data array ] [ w1 : data array ]

Figure 8: The Inspector Dependence Graph (IDG) after the compile-time application of data
permutation on the data arrays x and fx based on how x and fx are accessed in the e loop.

loops are loops that construct an explicit relation at runtime. These loops are
automatically generated by our code generator prototype called IEGen Python.
These loops iterate over the domain of the abstract relation (e.g. the domain
of A1z, is {[e] | 0 < e < N.}) and compute all of the relations for insertion
into the explicit relation data structure. Function call nodes within the IDG
represent function calls to run-time library routines either written by the trans-
formation writer to support a transformation (e.g. cpack) or general run-time
support routines such as reorderArray.

3.2. Ezplicit Relation Run-Time Library

Run-time Reordering Transformations (RTRT) consist of compile-time and
a run-time components. The compile-time components include an interface
for the RTRT user to specify the abstract relation for the transformation and
any transformation-specific parameters. Other compile-time components in-
clude routine(s) for modifying the MapIR and IDG to show the effects of the
transformation. The run-time component of a transformation includes any rou-
tines that the inspector will call at runtime. In the example, the reorderArray
utility routine takes a one-dimensional array with specified size and element
size and a permutation and then reorders the array. Also, as can be seen in the
example IDGs in Figures 8, 10, and 11, explicit instances of sets and relations
are built in the inspector as inputs and outputs of the reordering algorithms
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void ERG_cpack (ER.UlDx inputRelation, EF_1Dx sigma) {
// assigned[i] indicates whether the value % has been reordered
bool xassigned;
int N = EF_1D_in_domain_size (sigma);
assigned = (intx)malloc(sizeof(int)*N);
for (i=0; i<N; i++) assigned[i]=false;

// Loop over the [in] —> [out] and reorder out values
// based on a first—come—first—served policy.
int count = 0;
for (int in=ER_UlD_in_domain_lb(inputRelation);
in<=ER_UlD_in_domain_ub (inputRelation);
in4+)

for (int out=ER_UlD_out_begin(inputRelation ,in);
out!=ER_UlD_out_end (inputRelation ,in);
out=ER_UlD_out_next (inputRelation ,in))

{
if (!taken[out]) {
EF_1D_set (sigma, out, count);
assigned [out] = true;
count—++;
}
I3

}

// Reorder any leftover walues in the output domain.
for (int i=0; i<N; i++) {

if (!assigned[i]) EF_1D_set(sigma, count+-+);
}

Figure 9: Consecutive packing inspector that uses specialized implementations of the explicit
relation data structure for performance reasons, but not specific to any single input code.

such as consecutive packing (cpack), locality grouping (locgroup), and sparse
tiling (fullSparseTile). These run-time components of the run-time reordering
transformations are performed by the generated inspector code with support
from a run-time library with routines that manipulate the explicit relation data
structure and that implement reordering algorithms that operate over instances
of the explicit relation data structure.

The explicit relation abstract data type represents any m-to-n-dimensional
relation and is the core concept in the IEGen run-time library. By using the
explicit relation concept, the run-time library routines do not need to be spe-
cific to data structures within each application being transformed. The IEGen
Python prototype generates the parts of the inspector that are specific to an
individual application such as the names of index and data arrays. However,
since a fully general explicit relation data structure is not efficient enough to
compete with inspectors written for specific index array usage, our prototype
run-time library contains the following specializations:

e explicit relations that are functions and have 1D to 1D arity (EF-1D),
e explicit relations that have 1D to 1D arity and can be represented as a

union of 1D to 1D explicit functions (ER_U1D),
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e explicit relations with 1D to 1D arity and 2D to 1D arity where the re-
lations are not inserted in the order of the input tuples (ER-1Dto1D and
ER_2Dto1D),

e explicit relations that are functions and have 2D to 1D arity (EF_2D), and

e explicit relations that represent 1D to 1D arity dependences between loops
(ExplicitDependence).

Future work includes automating the process of specializing the explicit relation
implementations.

3.8. Code Generation for Inspectors

The inspector code generation algorithm consists of three topological vis-
its of the IDG where the computation nodes (ellipses) in the IDG trigger the
generation of explicit relation construction loops or function calls, and the data
nodes (rectangles) trigger the generation of the appropriate parameter list, vari-
able declarations, and deallocation code at the end of the inspector. The first
pass over the IDG determines which data nodes have no incoming or outgoing
edges and therefore will become parameters to the inspector function. The one
exception for this selection of parameters is that data arrays are represented
as multiple versions in the IDG and only one instance of the data array exists
at any one time during the execution so only one parameter per data array is
necessary. During the second pass over the IDG, the inspector code generator
produces an explicit relation declaration and initialization for each of the explicit
relation and index data nodes. Specialized explicit relation implementations are
selected based on the characteristics of the corresponding abstract relation. As
a final step, we generate the main body of the inspector and cleanup code by
performing a topological visit to all of the computational nodes and keeping
track of which IDG data nodes are only used within the IDG and therefore need
to be deallocated at the end of the inspector.

3.4. Code Generation for Executors

The two main steps of executor code generation are: statement generation
and loop structure generation. In the IEGen Python prototype, each statement
is represented as a string with holes for access functions. Additionally, each
statement has an iteration space and a scheduling function that maps the state-
ment iteration space to a full iteration space that includes all statements. To
generate each statement, we plug the access function holes with the transformed
access functions. The statement is defined as a C macro with the iterators of
the loop as input parameters to the macro. We use CLooG [43] to generate
loops that scan all of the iteration points in the part of the iteration space that
is constrained by affine constraints.

As CLooG is not able to generate code to iterate over sparse sets, we have
a final step that adds code to do this within the IEGen Python prototype.
Any constraints involving uninterpreted function symbols equalities in the ex-
ecutor set representation will be placed in the statement macro as a wrapper
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around the new version of the statement. Figure 6 shows an example of up-
dated data array references and uninterpreted function constraints resulting in
if-statement guards within the innermost loops of the computation. A portion
of that example is repeated here for illustrative purposes:
for (s=0; s < Ng; s++) {
for (t=0; t < N¢; t+4) {

for (i=0; i < Ny; i+4) {
S1: if (¢t =06(0,i)) { x[i] = ... fx[i] ... vx[i] ... ; }

}

}

Introducing guards into the innermost loops is a performance problem be-
cause guards cause a conditional branch within the innermost loops and because
they result in a significant amount of loop overhead since many more iterations
are visited than actually executed. For the molecular dynamics example, the
number of iterations after straight-forward sparse tiling code generation is the
number of tiles times the number of original iterations in each of the i, e, and
k loops, which is significantly greater than the number of original iterations.
Guard encapsulation [52] solves this performance overhead problem.

Past work has included run-time reordering transformations (RTRTSs) for
which a compiler can automatically analyze and generate the inspectors [33, 24,
25, 30] for specific run-time reordering transformations. Through the manip-
ulation of the SPF abstract sets and relations at compile time and the use of
explicit relation data structures at run time, we are able to generate inspectors
and executors for more general compositions of RTRTs.

4. Authoring RTRTSs

The SPF can be thought of as the assembly-language level for specify-
ing Run-Time Reordering Transformations (RTRTs). Much like in the CHill
project [53], we suggest that specific RTRTs should be made available to per-
formance programmers as higher-level concepts such as “consecutive packing
based on the memory references in loop e” and “sparse tiling of the three loops
using the second loop as the seed partition”. Therefore the IEGen Python pro-
totype code generator provides implementations of the abstract relations and
sets in addition to the explicit relation implementation in the run-time library,
so that transformation writers can provide a higher-level interface to users.
This section describes how a transformation writer might implement the data
reordering consecutive packing and the iteration reordering full sparse tiling.

Our experiences with the IEGen Python prototype is that authoring and
using the RTRT transformations require an expert user. More work is needed
to ease the use of the IEGen transformation tool. Possible improvements include
automating the data dependence analysis based on previous research in value-
based dependence analysis [54, 55, 56, 57] and dependence analysis in irregular
applications [58], and computing the SPF transformation specification based on
high-level information such as which data arrays should be reordered and which
loops should be sparse tiled.
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Figure 10: The inspector dependence graph after the compile-time application of sparse tiling

on the i and e loops based on the dependences between the i and e loops.
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4.1. Data Reordering Fxample

A transformation writer is responsible for (1) providing the user a way
to specify transformation parameters, (2) providing an implementation of the
transformation that modifies the inspector and executor intermediate represen-
tations the IDG and MaplR to reflect the effect of the transformation, and (3)
providing any functions needed for the run-time generation of reorderings. For
an example instance of each of these transformation components, we describe
applying data reordering to the molecular dynamics example in Figure 1.

In Figure 1, the e loop is accessing the x and £x arrays in an irregular fashion.
Therefore a data permutation reordering of the x and fx arrays could improve
spatial locality and consequently the performance in the loop. The parameters
for a data reordering permutation transformation include an indication of which
data arrays should be permuted (i.e. x and fx) and which access functions
should be inspected to determine a heuristic permutation (i.e. the access relation
between the e loop and the x and fx arrays).

The transformation writer implements the transformation by enabling the
user to specify the needed parameters and then using those parameters to mod-
ify the inspector and executor intermediate representations, the IDG and the
MaplIR. In the molecular dynamics example, the access functions between the
e loop for data arrays x and fx are used as input to the data reordering for
the creation of o (see Figure 8). A user of the data permutation transformation
provides parameters indicating the run-time reordering algorithm to use (e.g.
cpack), the access functions to use as input to the reordering algorithm (e.g.
Aj, sz, in Figure 8), and the data arrays that should be reordered based on the
generated data permutation (e.g. x and £x).

Given the transformation parameters, the transformation compile-time com-
ponent is responsible for modifying the MapIR and IDG representations to
record the compile-time effect of the RTRT. For example, the data permutation
transformation creates the initial IDG in Figure 8. There are utility functions
available in the IEGen Python prototype that help ease the task of constructing
subgraphs within the IDG and connecting nodes with edges. A transformation
modifies the MapIR by leveraging the Sparse Polyhedral Framework, which in-
dicates the effect of data and iteration reordering transformations on access
functions, scheduling functions, and data dependences. For the example, the
cpack data permutation transformation modifies the access functions as shown
indirectly in Figure 4 (i.e., x[i] becomes x[o [1]]).

4.2. Sparse Tiling Reordering Example
For a more complex example, consider the sparse tiling transformation whose
modifications to the MapIR are shown indirectly in Figure 6 and whose mod-
ifications to the IDG are shown in the white nodes of Figure 10 (e.g., x[i] =
fx[i]l ... wvx[i] ... ; becomes if (t == 60(0,i)) =x[i] = ...
fx[i] ... wx[il ... ; ). The full sparse tiling transformation applied to
the moldyn example schedules some iterations of each of the i, e, and k loops
to be executed atomically before moving on to another tile with the goal of
improving temporal locality and possibly exposing task graph parallelism.
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For the molecular dynamics example, the full sparse tiling transformation is
applied after the iteration permutation called locality grouping (i.e., locgroup ()
in Figure 10). The light grey nodes in Figure 10 represent the nodes inserted into
the IDG due to the locality grouping transformation described in Section 2.5.
Note that the invert() call is inserted due to the modifications that occur
to the data access functions after the locality grouping transformation (i.e.,
fx[o[left [e2]]] becomes fx[o[left [0~ 1 [e2]11]).

The white nodes in the IDG are those inserted for the full sparse tiling trans-
formation. The sparse tiling algorithm fullSparseTile() performs a block
partitioning of the iterations in the e loop for the seed partitioning and then
inspects all the dependences to and from the seed space within the sub space of
the full computation that is being sparse tiled. The full sparse tiling transforma-
tion implementation includes methods for updating the MapIR and IDG given
input from the transformation user. Currently the user of the full sparse tiling
transformation specifies what subspace of the iteration space is being sparse
tiled, what seed space should be used for the seed partitioning, the transfor-
mation specification as shown in Figure 6, and which dependences are carried
within the subspace being sparse tiled and have the seed partitioning subspace
as a source or target.

5. Experimental Results

We experimentally compared the performance of automatically-generated
inspectors and executors with hand-written ones for the moldyn and sparse
matrix-vector product (spmv) benchmarks. The execution time of the generated
executors should come close to the execution time of handwritten transformed
code for this technology to be successful. To work toward improving the perfor-
mance of the generated code, we also evaluate the effectiveness of the pointer
update and guard encapsulation code-improving transformations and some ad-
ditional code-improving transformations that were not incorporated into the
IEGen Python prototype. Inspector execution time has less impact on appli-
cation performance than that of the executors. The inspectors are executed a
single time; the execution time should be within a range that can be amortized
across the repeated use of the executors.

The results show that more work on improving the generated code is needed.
The performance of the generated executors on the moldyn benchmark is be-
tween 5% and 60% slower than the hand-written executors. The performance
of the generated inspectors ranges from 25% to 260% slower. For the spmv
benchmark the slowdown in the optimized executor was around 2x. The spmv
inspector was competitive until the extra work for performing optimizations for
the executor was included.

Finally we observe the performance impact of the run-time reordering trans-
formations that were implemented in the prototype. Generally, each benchmark,
input file, and architecture combination requires significant tuning to determine
the best combination of RTRTs to apply and how to parameterize them. Here
we only tune the number of sparse tiles or cache blocks used but do not attempt
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Table 1: Table of input data files used with moldyn benchmark.

Name | Num atoms | Num interactions Average Footprint
inter /atom in MB
1TTF 50,472 9,328,136 185 75.6
3CC2 90,886 294,253 3.2 8.5
27V5 80,652 236,600 2.9 7.3
27V4 80,652 236,587 2.9 7.3
2700 80,652 236,514 2.9 7.3

to find the best RTRT sequence. Our goal here is to focus on the comparison
between automatically generated and hand-written inspectors and executors.
However, we do note some performance wins by the RTRTs we use even when
compared with Intel MKL’s sparse matrix vector product implementation [59].

5.1. Experimental Methodology

We ran our experiments on a six core HP-server. Each core is an Intel Xeon
CPU E5-1650 running at 3.50GHz. The 15MB L3 is shared among all cores.
Each 256KB L2 is shared between 2 PUs on a single core and the L1 caches are
32KB. The operating system is Fedora release 21. MKL version 11.1.1 was used
as a comparison point for the spmv experiments. The code was compiled with
icc version 14.0.0 and the flags “-O3 -DNDEBUG”.

A key aspect to obtaining consistent execution times for MKI was using the
taskset command to pin execution of each of our executors to a single PU. Oth-
erwise, migration between PUs was causing cache effects that led to differences
in execution times of an order of magnitude or more. We also ran each executor
100x and took the average of the execution times. The machine being used was
quiescent in that no one else could log into it.

5.2. The moldyn benchmark

The moldyn benchmark [60] is sparse in that there are a set of atoms and the
data arrays for the atoms are accessed indirectly through index arrays that track
interactions between pairs of atoms. The example in Figure 1 is a simplified
version of the moldyn benchmark.

Table 1 presents the five data sets we selected for use with the moldyn bench-
mark. It contains the input file name, number of atoms, number of interactions,
average number of interactions per atom, and footprint of the data including
atoms and interactions. All of the datasets are from the Protein Data Bank [61].

5.2.1. Executor and Inspector Ezxecution Times

Figure 12 shows the execution times for the different versions of the moldyn
executor for a number of input data sets. The yellow bars all correspond to
executors that have been generated by the IEGen Python prototype. The blue
bars correspond to the handwritten executors. For each input file, we show four
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Figure 12: Executor execution times of the generated code grouped by input data file.

code versions that have been generated by the IEGen Python prototype and
written by hand: untransformed, after applying the consecutive packing (cpack)
data reordering, after applying consecutive packing and the locality grouping
(locgroup) iteration reordering, and after applying consecutive packing, locality
grouping, and full sparse tiling (FST) across the three loops within the outer
time stepping loop. We also apply pointer update after consecutive packing and
locality grouping, and apply the guard encapsulation optimization after FST.

This paper focuses on the performance difference between the hand-written
inspectors and executors and the ones generated by the IEGen Python proto-
type. Figure 13 highlights the performance difference between these two by
showing the execution time for the IEGen executors normalized to the time of
the hand-written executors. Figure 13 shows that our generated executor code
code performs no worse than 60% slower than the hand-optimized executor ver-
sion. Figure 14 shows our results for the generated inspectors for the moldyn
benchmark.

5.2.2. Discussion of the moldyn Inspector and Ezxecutor Results

The normalized results for the executors in Figure 13 and the inspectors
in Figure 14 indicate that there is still some overhead in the generated code.
We deal with some of the overhead resulting from the more general reordering
algorithms by having specialized explicit relation implementations based on the
relation arity as was discussed in Section 3.2. However, the generated inspector
code still does not match the hand-written inspector code. One issue is that in
the hand-written code, the pointer update is incorporated into the reordering
algorithms because the inspector is specialized to the specific index array data
structures in the benchmark. This reduces the number of traversals over the
index arrays in the inspector by one.

Another issue is that all of the data dependences in the molecular dynamics
benchmark are inspected in the more general IEGen full sparse tiling algorithm.
In the inspector implementation that was written by hand, the inspector as-
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Normalized Time

Figure 13: Each executor execution time of the generated code is normalized to the corre-
sponding hand-optimized version, grouped by input data file.

Normalized Time

Figure 14: Each inspector execution time of the generated code is normalized to the corre-
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Figure 15: Executor execution times of the generated code with and without code-improving
transformations: pointer update and guard encapsulation (referred to here as SPO for sparse
loop optimization). Each bar is normalized to the untransformed generated version and the
bars are grouped by input data file.

sumes that the dependences between loops i and e mirror the dependences
between loops e and i. As such the hand-written inspector avoids a separate
traversal over the dependences coming into the seed partition space and those
going out of the seed partition space. Since the SPF representation of the de-
pendences uses abstract relations, it would be possible to detect this symmetry
at compile time and specialize a reordering algorithm such as full sparse tiling.
This would require however that the reordering algorithms be implemented in a
higher-level scripting language instead of as C run-time libraries, which is what
the current prototype implementation does.

Yet another issue is that the data dependences are explicitly constructed
outside of the full sparse tiling reordering algorithm and passed in as input. This
requires an additional pass over index arrays that the hand-written inspectors
do not need to do. This could also be solved by doing some kind of specialized
code generation of the reordering algorithms.

5.2.8. Evaluation of Code-Improving Transformations

The executor and inspector results in Figures 13 and 14 already incorporate
the use of the code improving transformations pointer update and guard encap-
sulation. Figure 15 shows the executor performance with and without the code-
improving transformations. The yellow bars show the normalized execution time
of various versions without code-improving transformations, and the solid blue
bars are the normalized execution time with code-improving transformations.
Note that the guard encapsulation is critical for executor performance. When
the guard encapsulation is not used, the slowdown can be over 3x. Perform-
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Table 2: Table of input data files used with SpMV benchmark.

Name Average Num rows | Num cols Num Footprint
non-zeros/column non-zeros in MB
cagel3 17 445,315 445,315 7,479,343 120
torsol 73 116,158 116,158 8,516,500 132
kim2r 24 456,976 456,976 11,330,020 179
nd24k 399 72,000 72,000 28,715,634 439
spal_004 143 10,203 321,696 46,168,124 707
Idoor 49 952,203 952,203 46,522,475 721

ing pointer update after the consecutive packing data reordering and locality
grouping iteration reordering improves the performance of the executor slightly.
For these code-improving transformations, the inspector performance actually
degrades because of the extra overhead needed to actually perform the pointer
update and guard encapsulation.

Figure 15 also shows that the sequence of RTRTs we selected only result
in improved performance over the original code for the 1TTF_P100 dataset.
That is the dataset where the atoms from the 1TTF PDB file have been 100%
randomly reordered. This points to a crucial aspect of using RTRTs in that
although there are many contexts where RTRTs have been found useful, finding
profitable combinations depends highly on the structure of the data itself.

5.83. Sparse Matriz Vector Multiply

The sparse matrix vector multiply (SpMV) benchmark measures the time it
takes to multiply a sparse matrix by a dense vector. SpMV is an important ker-
nel in many applications [62]. There are many optimizations that are applicable
to SpMV. Most of them involve some form of reordering of the non-zeros in the
sparse matrix. To evaluate the IEGen Python prototype, we wrote the cache
blocking transformation by hand and then specified it using SPF and generated
code with IEGen. Table 2 shows the datasets we use with the SpMV benchmark.
All of the sparse matrices are from the Florida Sparse Matrix collection [63].

5.3.1. Executor Execution Times

Figure 16 shows the execution times for the various SpMV executors. SpMV
is typically executed using a compressed sparse row (CSR) representation, so
the first bar represents a handwritten version that uses CSR. The next bar is
a handwritten version using coordinate storage (COO). In the SPF, we repre-
sent computations using flat sparse data structures like COO before applying
transformations. The third bar labeled IEGen COO shows the non-transformed
version of the executor as generated by the IEGen Python prototype. The fourth
bar shows a handwritten version of cacheblocking. This handwritten version is
specialized and fused in that the cache blocking, pointer updates, data remap-
pings, and guard encapsulation all occur within the same set of loops. The
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Figure 16: Executor execution times of the generated code, grouped by input data file. SPO
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which is guard encapsulation.
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IEGen cacheblock SPO and cacheblock SPO packed versions break up the spec-
ification of each of these components and enable their specification in a more
general way. The last IEGen bar shows the performance of the IEGen executor
after we perform some hand optimizations, which we discuss below.

We selected the sparse matrix spal_004 because [64] indicated that cache
blocking should work well with this matrix. Figure 16 shows that cache blocking
does perform well on this matrix, but interestingly enough coordinate storage
performs just as well. The other matrices were selected at random from the
Florida sparse matrix collection to provide a broad range of matrix sizes and
sparsity. Cache blocking (the handwritten executor that uses cache blocking
is the dashed line) also improves over the performance of MKL CSR for the
cagel3, ldoor, and torso matrices.

We can evaluate the code generated by the IEGen Python prototype by
comparing its performance to the handwritten code even if the transformation
being applied does not result in a performance improvement. Figure 17 shows
the various versions of IEGen cache blocking normalized to the handwritten
executor. The IEGen cacheblock SPO version performs the cache blocking and
the guard encapsulation optimization, but does not reorder the non-zeros based
on cache block and row. The IEGen cacheblock SPO packed version does reorder
the non-zeros. The results are mixed. In all of the cases the IEGen cacheblocked
versions of the executors experience a slowdown. In all cases the hand-optimized
version of the IEGen code performs within 2x of the hand-written cache blocked
code.

5.8.2. Code-Improving Transformations Applied by Hand

The ITEGen cacheblock SPO packed hand-optimized version incorporates
some hand optimizations to the inspector and the executor. For the execu-
tor, we know that since the non-zeros have been packed based on their cache
block and row that the innermost loop only needs the guard encapsulation data
structure to count the number of non-zeros per cache block and row. We modify
the innermost loop so that the index into the non-zero values and column arrays
is sequential. The handwritten cache blocked version already takes advantage
of this.

The other optimization that could be easily incorporated into IEGen is the
realization that the cb and row arrays are used in the executor code after the
guard encapsulation. Therefore, it was not necessary to perform pointer update
on them in the inspector.

5.3.3. Inspector Ezxecution Times

Figure 18 shows the execution time of the inspectors, and Figure 19 shows
those execution times normalized to the handwritten cache blocking inspector.
Even the hand-optimized inspector is sometimes more than twice the execu-
tion time of the handwritten inspector. This suggests that more optimizations
within the IEGen generated code are needed. This time difference is proba-
bly due to some of the excess memory and work needed to explicitly pass the
mapping of nonzeros to cache blocks to the data packing algorithm and the
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Figure 18: Inspector execution times of the generated code, grouped by input data file. SPO
stands for sparse loop optimization, which is guard encapsulation.
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guard encapsulation pieces. It should be possible to leverage the abstract set
and relation descriptions to fuse some of this work at compile time when the
reordering algorithms themselves are specified in a higher level language instead
of C run-time library routines.

6. Related Work

In this section, we review existing Runtime Reordering Transformations
(RTRTs) and indicate which of the existing RTRTs can be expressed within
the sparse polyhedral framework (SPF). To organize the discussion, we place
RTRTSs into categories based on whether they permute data or loop iterations,
or increase the dimensionality of a data array or loop (embeddings, or group-
ings). We also overview some ongoing development of various RTRTs for the
sparse matrix vector benchmark.

6.1. Data and Iteration Permutation Reorderings

A number of data and iteration permutation reorderings have been devel-
oped in the context of loops with no inter-iteration dependences or only re-
duction dependences. The goal of these data and iteration permutations is to
improve the data locality within an irregular loop. Such run-time reordering
transformations inspect access functions (the mapping of iterations to data) to
determine a better data or iteration permutation. The most common approach
for using these RTRTs is to perform a data permutation and then an iteration
permutation [30]. For example,

SPF can express any one-dimensional loop permutation or data permutation
as an abstract relation where the output tuple variable is specified as equivalent
to the output value of an uninterpreted function that represents the reordering,

Permutation RTRTs that SPF can represent include Cuthill-McKee [19], Re-
verse Cuthill-McKee [65], breadth-first [23], Sloan [26], recursive coordinate
bisection [66], consecutive packing [24], reordering based on graph partition-
ing [21, 30], hybrid techniques based on graph partitioning and another heuristic
within the partition [23, 67], reordering based on space-filling curves [29], lexi-
cographical grouping or sorting [20, 24, 26], and hyper-breadth-first [68]. The
reordering algorithms that depend on a mapping of data indices to simulation
space coordinate data (e.g., recursive coordinate bisection [66] and space-filling
curves [29]) will require additional input be provided to the inspector, but this
input can be expressed as an abstract relation.

The SPF can also express loop and data permutation transformations such as
array alignment and iteration alignment that are performed to localize memory
accesses occurring in loops other than the loop where an initial data or iteration
permutation occurred.
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6.2. Data and Iteration Embedding Reorderings

A data embedding reordering is a transformation that introduces an addi-
tional dimension to an array. Smashing [69] is an example of a data embedding
reordering that folds regular data spaces to remove non-uniform dependences in
regular computations. Smashing can be expressed in the SPF as affine trans-
formations on the data space.

An iteration embedding reordering is a transformation that introduces an-
other loop into a computation to iterate over groups of iteration points in some
way. Iteration embeddings are used to improve data locality and/or parallelize
irregular computations.

In the context of improving data locality, an example transformation is
bucket-tiling [25], where iterations are placed into buckets based on the range of
data accessed within the iteration. The cache blocking provided by OSKI [27, 62]
used within the context of sparse matrix vector multiplication is another group-
ing data locality improving transformation. Both bucket tiling and cache block-
ing can be expressed within the SPF.

The sparse tiling transformations, unstructured cache blocking [50], full
sparse tiling [28, 49], and communication avoiding rescheduling[70] improve tem-
poral data locality in computations and also can be used to create coarse-grain
parallelism by grouping iterations across iterations in an outer loop or between
loops. The sparse tiling transformations are expressible within the SPF and the
IEGen Python prototype can generate inspectors and executors for the serial
version of these transformations.

In the context of parallelizing irregular applications, gather/scatter paral-
lelism is commonly used in irregular applications where the programmer has
specified the data decomposition for a distributed array [71, 72, 73, 74, 75].
Typically there is language and compilation support for data distribution spec-
ifications, parallel loops, and reductions, which involves generating code with
calls to the appropriate inspector, scheduling, and gather/scatter functions in a
run-time library such as CHAOS [76]. The sparse polyhedral framework (SPF)
and IEGen runtime build on these ideas with the key extensions being that
many more transformation types can be specified with the SPF, and the trans-
formations being applied can be specified as well as the original computation.
Although the SPF enables the specification of parallel schedules, the TEGen
Python prototype does not generate parallel code.

When parallelizing irregular loops with loop-carried dependences, an inspec-
tor must determine the dependences at run-time before rescheduling the loop.
One approach is to dynamically schedule iterations into wavefronts such that
all of the iterations within one wavefront may be executed in parallel. In [77],
Rauchwerger surveys various techniques for dynamically scheduling iterations
into wavefronts such that all of the iterations within one wavefront may be ex-
ecuted in parallel. An inspector for detecting partial parallelism inspects all
the dependences for a loop, and places iterations into wavefronts. The SPF can
express partial parallelism transformations, but again the IEGen code generator
does not yet generate parallel code.
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6.3. Sparse Matrixz Vector Multiplication

Sparse matrix vector multiplication is an important kernel that is the perfor-
mance bottleneck in many large scale scientific applications. As such, techniques
for improving its performance have been studied in the context of multicore
architectures [78, 79], GPUs [80, 81], and Xeon Phi [82, 83]. Many of these
techniques include an inspector phase where reordering or reorganization of the
sparse matrix non-zeros occurred. Other techniques include various paralleliza-
tions and vectorization. The sparse polyhedral model is focused on how the
application of reordering techniques can be automated in a compiler in a way
that various reorderings can be composed. We have started incorporating some
of the concepts of the sparse polyhedral framework for specifying loop transfor-
mations and using those loop transformations to transform code to operate on
different sparse matrix data structure formats [84, 85].

7. Conclusions

The performance optimization process for irregular/sparse scientific applica-
tions has generally been hand-coded and/or supported with libraries, and typ-
ically involves using inspector/executor strategies to implement various Run-
Time Reordering Transformations (RTRTs). In this paper, we present the
Sparse Polyhedral Framework (SPF) for specifying irregular/sparse computa-
tions and RTRTs on those computations. We show how to represent inspectors
and executors at compile time with the Inspector Dependence Graph (IDG) and
Mapping Intermediate Representation (MapIR), manipulate those representa-
tions to show the effect of the RTRTs being applied, and then generate the
inspector and executor code. Additionally we present code-improving transfor-
mations that do not reorder data or computation, but perform other transfor-
mations such as collapsing nested index arrays to improve the inspector and
executor performance. Finally, we show experimental results that indicate the
generated inspectors and executor still require some optimizations in the gener-
ated code to compete with the performance of handwritten code, and we explain
what remaining gaps exist.
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