AI P The Journal of
Chemical Physics ]

Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-
electron explicitly correlated Gaussians with shifted centers
Monika Stanke, Ewa Palikot, and Ludwik Adamowicz

Citation: The Journal of Chemical Physics 144, 174101 (2016); doi: 10.1063/1.4947553
View online: http://dx.doi.org/10.1063/1.4947553

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/144/17?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Isotope shifts of the three lowest S 1 states of the B + ion calculated with a finite-nuclear-mass approach and
with relativistic and quantum electrodynamics corrections

J. Chem. Phys. 132, 114109 (2010); 10.1063/1.3358999

Darwin and mass-velocity relativistic corrections in non-Born-Oppenheimer variational calculations
J. Chem. Phys. 125, 084303 (2006); 10.1063/1.2236113

Darwin and mass-velocity relativistic corrections in the non-Born-Oppenheimer calculations of pure vibrational
states of H 2
J. Chem. Phys. 125, 014318 (2006); 10.1063/1.2209691

Asymptotic relation between Darwin and mass-velocity one-electron molecular relativistic corrections
Am. J. Phys. 74, 68 (2006); 10.1119/1.2121754

Relativistic and QED effects in few-electron high-Z systems
AIP Conf. Proc. 457, 3 (1999); 10.1063/1.57482

2 Special Topic Sections

ngvm%?oﬂgs Properties and Applications: Al P | appllied Physics
Reviews of Emerging Trends eviews



http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1765179907/x01/AIP-PT/JCP_ArticleDL_011316/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Monika+Stanke&option1=author
http://scitation.aip.org/search?value1=Ewa+Palikot&option1=author
http://scitation.aip.org/search?value1=Ludwik+Adamowicz&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4947553
http://scitation.aip.org/content/aip/journal/jcp/144/17?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/132/11/10.1063/1.3358999?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/132/11/10.1063/1.3358999?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/125/8/10.1063/1.2236113?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/125/1/10.1063/1.2209691?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/125/1/10.1063/1.2209691?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/74/1/10.1119/1.2121754?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.57482?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 144, 174101 (2016)

® CrossMark
¢

Algorithms for calculating mass-velocity and Darwin relativistic corrections
with n-electron explicitly correlated Gaussians with shifted centers
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Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections
are derived for electronic wave functions expanded in terms of n-electron explicitly correlated
Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms
are implemented and tested in calculations of MV and D corrections for several points on the
ground-state potential energy curves of the H, and LiH molecules. The algorithms are general and
can be applied in calculations of systems with an arbitrary number of electrons. Published by AIP

Publishing. [http://dx.doi.org/10.1063/1.4947553]

. INTRODUCTION

In high-accuracy quantum-mechanical molecular calcu-
lations, the quantum electrodynamics (QED) provides a
general theoretical framework for including relativistic
and QED corrections. The zeroth-order level in such an
approach is the nonrelativistic Schrédinger equation and
the perturbation Hamiltonian representing the relativistic
effects is derived based on the so—called non-relativistic
QED theory (NRQED).!™ In this theory, the relativistic
corrections appear as quantities proportional to powers of the
fine structure parameter @ (where @ = %) and are determined
using the perturbation theory. The development presented in
this work involves determining the expectation value of the
electronic relativistic Breit-Pauli Hamiltonian® representing
the mass-velocity (MV) and one- and two-electron Darwin
(D) relativistic corrections using the Cartesian representation
of the MV and D relativistic operators. The clumped-nucleus
wave functions used in the approach are expanded in terms of
all-electron explicitly correlated Gaussian functions (ECGs)
with shifted centers. The derived algorithms are general and
can be used in calculations of systems with an arbitrary
number of electrons.

Algorithms for calculating the leading electronic rela-
tivistic corrections for two-electron clumped-nucleus wave
functions expanded in terms of ECGs were derived and
implemented before by Cencek and Kutzelnigg.® They showed
that careful optimization of the non-linear parameters of the
ECGs not only yields accurate nonrelativistic energies but
also very well converged leading relativistic corrections, even
in the traditional approach employing the Pauli Hamiltonian.
Recently we have used ECGs in very accurate calculations of
some two-, three-, and four-electron systems, H,”'? LiH*,"!
LiH,!2 Hej ,13 and (H,),."* The calculations produced the most
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accurate nonrelativistic ground-state potential-energy surfaces
(PESs) for these systems ever calculated. PESes for some other
four-, five-, and six-electron systems, HeH™, BeH, Li,, are in
the process of being generated. In order to further improve the
quality of these surfaces the leading relativistic corrections
need to be calculated for each PES point. The present work
addresses this need.

In the first part of this article we present the derivation
of the matrix elements involved in the expressions for the
MV and D relativistic corrections. Next we discuss the
computational implementation of the derived formulas and
the resulting computer code. The code is subsequently used to
run some test calculations. They concern several points of the
ground-state PESes of the H, and LiH molecules. The results
are compared with literature results.

Il. BASIS FUNCTIONS

The present work concerns molecular systems with only
o electrons such as Hp, Hs, and Li,. The ground-state wave
functions of these systems can be very accurately represented
using expansions in terms of the following explicitly correlated
Gaussian functions with shifted centers,

¢7(r) = exp [~(r —s) Ay (r = sp)] = ¢i(r), (1

where r is a 3n-dimensional vector of the spatial coordinates
of the n electrons forming the system, sy is a 3n-dimensional
vector of the Cartesian coordinates of the Gaussian shifts, 7"
denotes vector transposition, and A, is a 3n X 3n dimensional
symmetric matrix of the Gaussian exponential parameters
defined as

A = Ao, @

with I; being a 3 x 3 identity matrix, ® denoting the Kronecker
product, and Ay being a n X n symmetric matrix. For linear
molecules, Gaussian shifts s; are confined to the molecular
axis and for a planar molecule, like H;, they are confined to

Published by AIP Publishing.


http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
http://dx.doi.org/10.1063/1.4947553
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:monika@fizyka.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:epalikot@doktorant.umk.pl
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
mailto:ludwik@email.arizona.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4947553&domain=pdf&date_stamp=2016-05-02

174101-2 Stanke, Palikot, and Adamowicz

the molecular plane. For Gaussian (1) to be square integrable,
as a basis function used for expanding the wave function of
a bound electronic state should be, A; has to be positive
definite. This automatically happens if Ay is represented in
the Cholesky-factored form as LkLZ with L; being a lower
triangular matrix whose elements are real numbers ranging
from —oco to +oo. This feature is particularly important in
the variational optimization of the Gaussians, as it allows
to perform this optimization in terms of the L; matrix
elements without any restrictions, i.e., in the (—co, +00) range.
In the optimization approach we developed, we employ the
analytically calculated energy gradient determined in terms of
the L; matrix elements.'> The use of the gradient considerably
accelerates the optimization process and allows for achieving
high accuracy of the results.

lll. MATRIX ELEMENTS FOR THE MV AND D
RELATIVISTIC CORRECTIONS

The operators representing the MV and D relativistic
corrections can be separated into one-electron and two-
electron contributions. The one-electron parts are

N 1

Jai :_2_§ 4 3

MV a 8i=]pl 3
1 & § 1

Hy = -a® - a E v: —, 4

a=-a 8a:1Q 2, Ve, “)

where p; momentum operator for the ith electron, r;, is the
distance between the ith electron and the a-th nucleus, and
N is the number of the nuclei. The operator representing the
two-electron D correction is

N 1 & 1
Hyp=a® = V2 —. 5
2= 4; i &)

The total operator representing the MV and D relativistic
corrections used in the present work is

@’Eret = (Hwv + Ha1 + Hypo). (6)

The derivation of the individual contributions to E,; are
presented next.

A. Mass-velocity correction

The matrix element for ECGs ¢ and ¢; calculated with
the operator representing the MV correction

. I v
— 22 2 : 4
HMV = - 3 Z Vri (7)
has the following form:

2 n
(Oulaldn) = =7 > (V5 ulV: )

(LA RAPHILAF R AP
i=1
®)

J. Chem. Phys. 144, 174101 (2016)

where

(VF 3,90) ol (V5 3, Ve) 00
= (il [ 2 Tr[ék ‘lii] +4 (r- Sk)Ték ‘lii Ak (r —sg) ]
[_2 T(A, 3,1 +4 (c=s)'A I, A (r = s) ] 1)
€))

Matrix J;; used in the above equations is

i=j
i#j|’

where E;; is the n X n matrix with 1 in the ijth position and 0’s
elsewhere. Formally this can be written as (E;;); = 6;" 6, p.
It is easy to see that

J E;;
v E;; +Ejj _Eij _Eji

E;j-Ej; =0,
E;-E;; =E; (10)
Eij-Ej; =Eij,
Eji E;; =Eji-

The following integrals need to be derived to evaluate
expression (9):

(¢l ("B 1) 1), (el ("B 1) (" C 1) o),
(ol (x"B sy) 181, (8l (F"B r) (r'Cs,.) |41),
<¢k| (rTE Sn) (rTg Sm) |¢l>

The reader can find the derivation of the above integrals in the
supplementary material.'®

B. Darwin correction

As mentioned, the D correction consists of one- and
two-electron parts. They can be calculated using two different
approaches. The first approached termed “Method I”” involves
direct use of operators (4) and (5). In the second approach
termed “Method II,” the Darwin one- and two-electron
operators are obtained by using the Poisson equation’ applied
to transform Darwin operators (4) and (5) to the following
operators involving Dirac delta functions:

alt =gl + Ay, (11)
where
1 N n
Al =a*sn ) Qu ) 8'(ria) (12)
a=1 i=1
and
Al = —azﬂZ 5(ri)). (13)
i>j

We first consider the matrix element of operator I-AI({
= Hy, + Hy (see Eqgs. (4) and (5)) of Method 1,
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1 N n
Y10 = — Pt 1 1
(GulH{lo1) = —a 8; Z{ el |¢z>+<¢k| —IVE 0 +2 (Veel |vrl¢z>} (14)
1 2 _ il v/
ta 42 <Vrl¢k| |¢l>+<¢k| |Vr,¢z>+2<vrl¢k| Vo) (15)
i>j
1 ¢ 1 1 1
.2t T L Lyt L
=-a 821 a;{wr 3,9 il =100 + il 1 Vi giivr¢z>+2<giivr¢k|rm|L,-Vr¢z>}
1 n
ta ZZ{WTJ Ve ¢kl—|¢z>+<¢kI—IVTJ NVeg)+2(J Ve ¢k| |J v, ¢l>} (16)
i>]
(
Thus, to calculate the matrix element the following we find as

integrals need to be evaluated: (¢x|(r’Br) i |¢;) and

(¢r|(B s,,)Tr L |¢;), where g stands for either ij or ia.
The derivation of the integrals is shown in supplementary
material.'®

In Method II, the evaluation of the corresponding matrix
element involves the following representation of the 3-
dimensional Dirac delta function:'’

S (b L) r-§)

3/2
= lim (;) exp[-B((b L) r-¢)°], (17)
where b is a real n-component vector, the result (b ® I5) is
a n X 3 rectangular matrix and € is some real 3-dimensional
parameter. The matrix element of delta function (the derivation
of the matrix element is shown in supplementary material'®)

J

(Brl&> i)y = (deldr) exp[-sTA, s8]

X exp

Tr (A7) 4

(Bl6* (D @ 13)r = £)|¢r)
= (¢k|¢1) exp [—STA ] 772 AT
exp ——§T§ + — TAk}bg (18)
where A,, =A, +A,, s and w are 3n-component vec-
tors defined as follows s=A; (Ausc+As), w=2(A,s;
+As;), while A = bTA,leb. The above formula represents a
general case of the expectation value of 63((b ® I;)"r — £) and,
with an appropriate choice of vector (b ® I), it can be used to
calculate matrix elements of operators representing 6°(r;;) in
the Darwin term A/ (13) and 6%(r;,) in the Darwin term A1/
(12). The matrix elements (63(r;;)) and (63(r;,)) are obtained
by setting bb” ® I; = J. and bb? ® I; = J.,, respectively. In
the first case the matrix element has the followmg form:

where € = A, s; + A/s;, and in the second case the matrix element is

(16> (ria) ) = (ldr) exp[—(s —a)' A, (s — a)]

1
X exp

where w = 2A (s — a).

IV. NUMERICAL TESTS

The formulas for the MV and D corrections derived above
have been implemented on a parallel computer platform using
the MPI protocol. The computer code is written in Fortran90.
The code has been tested in the calculations involving the
H, and LiH molecules. For the former system, the results
are compared with the calculations of Wolniewicz'® and

Tr [AJo] 4

71'_3/2 Tr [A;;Jij]_3/2
e (Tr [A;Jij]AL - A TiAL e, (19)
7T73/2 TI' [AZIIJii]73/2
w! (Tr [A;]Ji]AL - AL TGALD) w} , (20)

(

for the latter system with the calculations performed by
Holka et al.' The present calculations of the MV and D
corrections of the two systems have been performed for same
selected internuclear distances sampling the full range of the
corresponding potential energy curves.

The results of the H, calculations are shown in Table 1. In
the case of our calculations 1000 ECGs have been employed
and for each PES point the non-linear parameters of the
Gaussians, i.e., the L; matrix elements and the elements
of the s; shift vector, have been extensively variationally
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TABLE 1. (Hmv), and one- and two-electron Darwin, (Hy;+ Hyo), relativistic corrections for the H, molecule at different internuclear distances, R. The
corrections are reported in a.u. after multiplication by a?. The total energy with the relativistic corrections is obtained as: Ere] = Eqr + (I:IMv+ Ha + ﬂdz) where

Ey; is the nonrelativistic energy. The present results are compared with the results of Wolniewicz.

18

R Enr S (Amv) (Hmv)'® (Hq1+Hg) (Hgi + Hap)'® Erel Er'®

0.40 -0.120230225 -0.120230242 -0.000298 446 —0.000299072  0.000239 460 0.000 240095 -0.120230229 -0.120230245
0.60 -0.769 635412 —0.769 635353 —0.000209 270 —0.000209396  0.000170029 0.000 170 141 -0.769635414  -0.769 635 355
0.80 —1.020056 651 —1.020056 603 —0.000 156 684 —0.000156779  0.000 128 835 0.000 128 909 —1.020056 653 —1.020056 604
0.90 —1.083 643227 —-1.083643180 —0.000 138 500 —0.000138586  0.000114487 0.000114 552 —1.083 643228 —-1.083643 181
1.00 —1.124 539707 —1.124 539 664 —0.000 123954 —0.000124030 0.000102944 0.000 103 002 —1.124 539708 —1.124 539 665
1.35 -1.173963711 —1.173963 683 —0.000091 204 —0.000091260 0.000076 610 0.000076 654 -1.173963712 —1.173963 684
1.40 —1.174 475 696 -1.174475671 —0.000088 070 —0.000088 123  0.000074 051 0.000074 093 —1.174475 697 —1.174475672
1.70 —1.162458 725 —1.162458 688 —0.000074 163 —0.000074 194  0.000062 547 0.000 062 569 —1.162458726  —1.162458 689
2.00 —1.138132884  —1.138132919 —0.000 065 954 —0.000065985  0.000055 507 0.000055 575 —1.138132884  —1.138132920
2.60 —1.085791 227 —1.085791190  —0.000058936 —0.000058988  0.000049 088 0.000049 135 —1.085791227 —-1.085791 191
3.40 —1.036075383 -1.036075 361 —0.000059 325 —0.000059363  0.000048 435 0.000048 477 -1.036075384 —1.036075362
4.20 —1.012359954  —1.012359938 —0.000062 784 —0.000062 824  0.000050594 0.000 050638 —1.012359955 —1.012359939
6.00 —1.000835702 —1.000835702 —0.000 066 067 —0.000066 187  0.000052 856 0.000052974 —1.000835702  —1.000835703
8.00 —1.000055 599 —1.000 055 603 —0.000066 483 —0.000066537  0.000053178 0.000 053230 —1.000055 599 —1.000 055 604
10.00  —1.000008 718 —1.000008 754 —0.000 066 508 —0.000066560  0.000053 196 0.000 053248 —1.000008 718 —1.000008 755

optimized using the procedure employing the analytical
gradient determined with respect to these parameters. 15
PES points have been considered in the calculations ranging
from 0.4 a.u. to 10.0 a.u. After the optimization finished, the
basis set obtained for each PEC point is checked for linear
dependencies among the basis functions and if any are found
the functions causing them are removed from the set. Due
to this removal the average size of the basis set was reduced
from 1000 ECGs to about 950 ECGs.

The nonrelativistic variational energies obtained in the
calculations and the corresponding energies of Wolniewicz'®
are shown in the second and third columns in Table I. As one
can see, the energies are very similar and, except for the most
peripheral points our energies are slightly lower than those of
Wolniewicz. In the fourth and fifth columns we compare the
values of the MV corrections. As one can notice our results
reproduce the results of Wolniewicz with the accuracy of three
significant digits or better. Similar accuracy is also obtained
for the D correction. This can be seen by comparing the results
shown in the sixth and seventh columns in Table I. Finally,
in columns eight and ninth, the total energies obtained in the
present calculations that include the MV and D relativistic
corrections are compared with the corresponding energies of
Wolniewicz.'® As one can see the values are very similar

and the difference are primarily due to the differences in the
non-relativistic energies.

In the calculations of the D corrections shown in Table I,
we have used method I. Method II that employs Dirac delta
functions is also implemented in our code. This allows for
an additional verification of the results. For example, at the
H, equilibrium distance (R = 1.4 a.u.), the results for the
nucleus-electron and electron-electron D corrections (before
multiplication by @?) obtained with method I are equal to
1.443 496 555989 50 and —0.052 616295 209 14 a.u., respec-
tively, while the corresponding values obtained with method
IT are 1.44349655599016 and —0.05261629524849 a.u.,
respectively. The results being virtually identical for the two
methods justify the use of only one method, i.e., method I, in
the calculations.

The next test calculations concern the LiH molecule.
These are the first calculations of the MV and D relativistic
corrections ever done for a system with more than two elec-
trons employing wave functions expended in terms of all-
electron ECGs. The literature data which can be used for
comparison are much more limited than in the case of the
H, molecule. The most recent calculations of the relativ-
istic corrections for the LiH molecule are those of Holka
et al.'"” However, their calculations were performed using

TABLE II. (Hyy), and one- and two-electron Darwin, (Hg; + Hgy), relativistic corrections for the LiH molecule at different internuclear distances, R. The

corrections are reported in a.u. after multiplication by a?. The total energy with the relativistic corrections is obtained as: Eyej = Eqr + (Bwmy + Hyi + Hy) where

E, is the nonrelativistic energy. The present results are compared with the results of Holka ez al.'

R Enr (Hyv) (Ha1) (Hwv +Har) (Hwv +Ha)Y (Ha) Erel

2.0 -8.00076117 —0.004 27093 0.003536 84 -0.000734 10 —0.00072941 —0.000094 83 —8.001 590 09
2.5 —8.05826245 —0.004 23222 0.00351127 —0.00072095 —-0.00071632 —0.000093 18 —8.059076 58
3.0 —8.070540 63 —0.004 209 96 0.00349593 -0.00071403 —0.000709 37 —0.000092 18 —8.071346 84
3.5 —8.064723 19 —0.004 19779 0.003 486 85 —0.00071094 —0.000705 67 —0.000091 57 —8.065 52570
4.0 -8.05224940 —-0.004 19023 0.003481 55 —0.000708 68 —0.00070377 —0.000091 21 —8.053 04929
5.0 —-8.02440673 —0.004 184 60 0.003477 44 —0.000707 16 —0.000702 88 —0.000090 89 —8.025204 78
6.0 -8.00197627 —0.004 18951 0.003478 64 —-0.000710 86 —-0.000704 49 —0.00009090 —-8.002778 04
10.0 -7.978505 11 —0.004 196 09 0.00348117 -0.00071493 —0.00071142 —0.000091 37 -7.97931140
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multi-reference configuration-interaction (MRCI) wave func-
tions expanded in terms of Slater determinants and their rela-
tivistic correction, in addition to the MV term, only included
the one-electron part of the D correction. Thus the comparison
of the present results with their results only involves the sum
of the MV and one-electron D corrections. That comparison
is presented in Table II. Our results are obtained with the
wave functions expanded in terms of 2400 ECGs generated
in our previous work.'? By comparing the fifth column in the
table that contains the present results with the sixth column
that contains the results of Holka et al.,'® one can see quite
good agreement. On average, the results differ only in the third
significant digit. In the table, we also show the two-electron
part of the D corrections obtained in our calculations which,
as expected, is much smaller than the one-electron part. In the
last column we show the sum of the non-relativistic energy and
the MV and D relativistic corrections.

V. SUMMARY

Algorithms for calculating the leading MV and D
relativistic corrections have been derived for the wave
function expanded in terms of all-electron explicitly correlated
Gaussian functions with shifted centers with no restrictions
on the number of electrons. The algorithms have been
implemented and tested in the calculations concerning the
H; and LiH molecules for which previously obtained high-
accuracy results exist in the literature. Good agreement of the
present results and the literature results is demonstrated. This
provides an evidence that the implementation is correct.

The implementation paves the way for performing
high-accuracy calculations of potential energy curves and
surfaces of small molecular systems with more than two
electrons. The previous implementation of the analytical
gradient of the variational energy with respect to the non-
linear parameters of the ECGs has enabled to generate
very accurate electronic wave functions expanded in terms
of all-electron ECGs."> The present work by adding the
capability to calculate relativistic corrections lifts the accuracy
level of the approach even higher. The next step of the
development will involve implementation of the algorithms
to calculate orbit-orbit, spin-orbit, and spin-spin relativistic
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corrections. After that capability for calculating the non-
adiabatic correction will be developed (an algorithm for
calculating the adiabatic correction is already developed').
This will be followed by the development of algorithms
for calculating the leading quantum electrodynamics (QED)
corrections. These future developments will eventually enable
very accurate calculations of small molecular systems with
more than two electrons and with two and more nuclei.
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