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PREFACE 

This report constitutes the doctoral dissertation of the same title 

completed by the author in April, 1972 and accepted by the Department of 

Hydrology and Water Resources. 

This report series constitutes an effort to communicate to practi- 

tioners and researchers the complete research results, including economic 

foundations and detailed theoretical development that cannot be repro- 

duced in professional journals. These reports are not intended to serve as 

a substitute for the review and referee process exerted by the scientific 

and professional community in these journals. The author, of course, is 

solely responsible for the validity of the statements contained herein. 

A complete list of currently -available reports may be found in the back 

of this report. 
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ABSTRACT 

Two digital- computer models of the ground -water reservoir of 

the Tucson basin, in south - central Arizona, were constructed to study 

errors in digital models and to evaluate the worth of additional basic 

data to models. The two models differ primarily in degree of detail 

-- the large -scale model consists of 1,890 nodes, at a 1/2 -mile spacing; 

and the small -scale model consists of 509 nodes, at a l -mile spacing. 

Potential errors in the Tucson basin models were classified as 

errors associated with computation, errors associated with mathematical 

assumptions, and errors in basic data: the model parameters of coef- 

ficient of storage and transmissivity, initial water levels, and dis- 

charge and recharge. The study focused on evaluating the worth of 

additional basic data to the small -scale model. 

A basic form of statistical decision theory was used to com- 

pute expected error in predicted water levels and expected worth of 

sample data (expected reduction in error) over the whole model associated 

with uncertainty in a model variable at one given node. Discrete fre- 

quency distributions with largely subjectively- determined parameters were 

used to characterize tested variables. Ninety -one variables at sixty - 

one different locations in the model were tested, using six separate 

error criteria. Of the tested variables, 67 were chosen because their 

expected errors were likely to be large and, for the purpose of com- 

parison, 24 were chosen because their expected errors were not likely 

to be particularly large. 
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Of the uncertain variables, discharge /recharge and transmissiv- 

ity have the largest expected errors (averaging 155 and 115 feet, re- 

spectively, per 509 nodes for the criterion of absolute value of error) 

and expected sample worths (averaging 29 and 14 feet, respectively, per 

509 nodes). In contrast, initial water level and storage coefficient 

have lesser values. Of the more certain variables, transmissivity and 

initial water level generally have the largest expected errors (a maxi- 

mum of 73 per feet per 509 nodes) and expected sample worths (a maximum 

of 12 feet per 509 nodes); whereas storage coefficient and discharge/ 

recharge have smaller values. These results likely are not typical of 

those from many ground -water basins, and may apply only to the Tucson 

basin. 

The largest expected errors are associated with nodes at which 

values of discharge /recharge are large or at which prior estimates of 

transmissivity are very uncertain. Large expected sample worths are 

associated with variables which have large expected errors or which 

could be sampled with relatively little uncertainty. Results are simi- 

lar for all six of the error criteria used. 

Tests were made of the sensitivity of the method to such simpli- 

fications and assumptions as the type of distribution function assumed 

for a variable, the values of the estimated standard deviations of the 

distributions, and the number and spacing of the elements of each dis- 

tribution. The results are sensitive to all of the assumptions and 

therefore likely are correct only in order of magnitude. However, the 

ranking of the types of variables in terms of magnitude of expected er- 

ror and expected sample worth is not sensitive to the assumptions, and 
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thus the general conclusions on relative effects of errors in different 

variables likely are valid. 

Limited studies of error propagation indicated that errors in 

predicted water levels associated with extreme erroneous values of a 

variable commonly are less than 4 feet per node at a distance of 1 mile 

from the tested node. This suggests that in many cases, prediction er- 

rors associated with errors in basic data are not a major problem in 

digital modeling. 



CHAPl'P R 1 

INTRODUCTION 

This study is an attempt to evaluate the worth of additional 

hydrologic data on a ground -water system. The work focused on poten- 

tial errors associated with digital - computer models of ground -water 

basins and on the worth of data on aquifer parameters, initial condi- 

tions (water levels), and output /input (discharge and recharge) to a 

model of the Tucson basin, Arizona. As Bibby and Sunada (1971, p. 2) 

pointed out, "this [type of] deterministic model is frequently used in 

situations in which nothing is known of the accuracy of the input data 

to the model or how errors in the input data are related to the accu- 

racy of the results." 

Meteorologists also are interested in these problems as related 

to models which predict weather conditions. Hammond (1971, p. 394) 

noted that "numerical experiments are being done to answer questions 

about the amount and type of data that are most useful, about the ef- 

fect on predictability of observational errors in the data, and about 

the methods by which data are to be incorporated into models." 

The study consisted of two major parts: construction of the 

model of the Tucson basin and evaluation of worth of additional data 

to the model. A complex model of an actual basin was used for the 

study instead of a small, idealized model, such as has been used in 

other related studies (Bibby 1971, McMillan 1966), 

1 

in order to gain 
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additional insight into actual modeling problems. To a considerable 

extent, this goal was realized. During construction and calibration 

of the model many actual and potential errors were discovered and stud- 

ied. There are, however, marked disadvantages to using a large complex 

model. In general, sophisticated mathematical techniques cannot be ap- 

plied because they would use excessive amounts of computer time. How- 

ever, the aim here was to develop a technique that could be utilized by 

practicing field hydrologists (a category which includes the writer), 

so relatively practical methods which could be used in actual modeling 

efforts were developed, rather than methods for experimentation. 

Worth of data was studied using basic concepts of statistical 

decision theory. Statistical decision theory has been developed over 

the past two decades to aid in making decisions with uncertain informa- 

tion. An important basis of the theory, Bayes Theorem, is by no means 

recent, however, as it was proposed by Thomas Bayes in the 1700's. 

Use of statistical decision theory has been primarily confined to busi- 

ness and industrial decisions, and it is just beginning to be used in 

scientific problems. Folayan (1969), for example, used decision theory 

to evaluate the reliability of predicted soil settlement. The full 

power of this body of theory could not be applied in the study reported 

here because of the complexity of the basin model; so a relatively 

simple application of Bayes Theorem using subjectively- determined, dis- 

crete frequency distributions was used. 

The question addressed by this study is one commonly posed by 

a field hydrologist -- "What kinds of data on a ground -water basin 
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should I collect and where should I collect them in order to most im- 

prove my ability to predict the future behavior of the system ?" This 

question is usually answered, if answered at all, by applying experi- 

ence and intuition rather than by using any quantitative or more formal 

techniques. It is doubtful whether such approaches can be tolerated 

in the future, as the demands made on the limited funds for hydrologic 

studies likely will intensify. This study is one of a few beginning 

attempts to provide objective methods for planning programs for col- 

lecting hydrologic data. 

Perhaps studies such as this and the work by Meyer (1971) also 

will stimulate the use of preliminary models of ground -water basins to 

guide basin investigations by pointing out which aspects of the ground- 

water system are significant in predicting effects of development. 

The Tucson Basin 

The Tucson basin (fig. 1) includes an area of about 1,000 square 

miles in south - central Arizona (see index map, fig. 9), and is traversed 

by the Santa Cruz River and its principal tributaries, Rillito Creek, 

Pantano Wash, and Canada del Oro. The most recent and comprehensive 

evaluation of the water resources of the basin is the several chapters 

of U. S. Geological Survey Water -Supply Paper 1939. Most of the mater- 

ial in this summary section on the geography, geology, and water re- 

sources of the basin was taken from a report which will be published as 

one of these chapters (Davidson 1970). 
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Geography and Geology 

The Tucson basin is an alluvial valley bounded primarily by the 

Tortolita and Santa Catalina Mountains on the north and northeast, the 

Rincon Mountains (which include Tanque Verde Ridge) on the east, the 

Santa Rita Mountains on the southeast, and the Sierrita Mountains and 

Tucson Mountains on the west. Parts of the boundary are low passes 

between the Tucson basin and adjacent alluvial basins, such as San 

Pedro Valley to the east and Avra -Altar Valley to the west. As de- 

fined for this study, the basin extends about 50 miles from the town 

of Rillito on the north, where the Santa Cruz River leaves the basin, 

to the Pima County -Santa Cruz County line on the south, where the river 

enters the basin. Along the Santa Cruz River, the altitude ranges 

from about 2,000 feet at Rillito to about 3,000 feet at the county line. 

Tucson, the only large city in the basin, is in its north - central part. 

The climate of the basin is semiarid and warm. Precipitation 

over the basin ranges from 11 to 12 inches per year in the vicinity of 

Tucson to more than 25 inches in the adjacent Santa Catalina Mountains. 

About 65 percent of the precipitation falls between May and October and 

about 50 percent in thunderstorms in July and August (Davidson 1970, 

p. 38). The annual potential evapotranspiration is several times the 

annual precipitation. 

Geologically, the basin is an elongated structural valley filled 

with unconsolidated alluvial deposits and older semi- consolidated 

and consolidated alluvial deposits. These deposits, which are more 

than 2,000 feet thick in parts of the basin, include the Pantano Formation 
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and Tinaja beds of Tertiary age and the Fort Lowell Formation and sur- 

ficial deposits of Quaternary age. The mountains are composed primarily 

of metamorphic, intrusive igneous, and volcanic rock and to a lesser 

extent consolidated sedimentary rock. Structurally, the basin has been 

downfaulted with respect to the mountain blocks, which was a necessary 

condition for the accumulation of the basin fill. Faulting continued 

during the deposition of the fill, as beds of Tertiary and Quaternary 

age are offset. 

Water Resources 

The primary source of water in the Tucson basin is obtained 

from its ground -water reservoir. Tucson is one of the largest cities 

in the United States that is totally dependent on ground water, and 

thus knowledge of the ground -water reservoir is extremely important to 

the city and all residents of the basin. Realization of this fact has 

led to virtually continuous study of the water resources of the basin 

by the city of Tucson, The University of Arizona, the U. S. Geological 

Survey, the U. S. Bureau of Reclamation, and the U. S. Army Corps of 

Engineers, among others. The investigation reported here is a small 

part of this continuing effort to understand and manage the basin's 

ground -water reservoir. 

The ground -water reservoir has been defined as a single, uncon- 

fined aquifer which includes all of the unconsolidated and semi - 

consolidated sediments which make up the basin fill. A vast amount of 

water is stored in this reservoir -- estimated by Davidson (1970, p. 13) 
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to be about 52 million acre -feet to a depth of 1,000 feet below the 

water table. 

In 1965 about 160,000 acre -feet of water was pumped from the 

basin. More than 50 percent was used for irrigation, about 35 percent 

for public supply, and about 15 percent for industrial purposes 

(Davidson 1970, p. 14). Ground water in the aquifer is partly replen- 

ished by infiltration of streamflow to the channel of the Santa Cruz 

River and its tributaries and by subsurface inflow. Of the estimated 

110,000 acre -feet per year of recharge to the basin during the 1960's, 

about 51,000 acre -feet was supplied by streamflow infiltration 

(Davidson 1970, p. 213). 

Streamflow is not used directly for water supply in the basin 

because it is too erratic in time, duration, and volume of flow. The 

Santa Cruz River and Rillito Creek, for example, are dry on the average 

of 320 -335 days per year (Davidson 1970, p. 163). Flow in the streams 

is mainly in response to summer thunderstorms or winter frontal storms, 

and individual flow events rarely last more than a few days. The mean 

annual streamflow past gaging stations on the major streams of the 

basin is about 10,000 to 20,000 acre -feet; the mean annual streamflow 

out of the basin is about 17,000 acre -feet (Davidson 1970, p. 10). 

History of Modeling Fluid Reservoirs in Porous Media 

Pinder and Bredehoeft (1968) presented a good summary of the 

development of reservoir modeling. Electrical -analog computers made 

up of resistor - capacitor networks were used originally in the early 
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1940's to model the flow of heat but soon were adopted by the petroleum 

industry to solve problems involving oil and gas reservoirs. In the 

early 1960's analog computers were employed to study ground -water flow, 

and since then the U. S. Geological Survey and the Illinois State Water 

Survey, among others, have used these computers extensively. 

Digital computers first were used to attack problems of oil and 

gas reservoirs in the early 1950's. Digital models are very similar to 

analog models in that they both solve the partial differential equations 

of fluid flow by applying finite - difference approximations. When high- 

speed computers with large memories became available they soon were 

utilized to study reservoirs of fluids in porous media. Stallman 

(1956) first discussed the application of numerical analysis to ground- 

water problems, but the first large -scale use of digital computers to 

study the dynamics of ground -water basins was by the California Department 

of Water Resources (Tyson and Weber 1964). Tyson and Weber employed a 

relaxation technique, essentially the Gauss- Seidel iteration method, to 

solve the set of equations that represents a ground -water basin. Since 

then, digital computers have been used increasingly to solve fluid - 

reservoir problems. Many new solution techniques have been developed, 

primarily by the petroleum industry, although the finite - element (as op- 

posed to finite -difference) method was taken from structural engineer- 

ing. 

A method that is currently popular in the petroleum industry 

(Peaceman and Rachford 1955) and in ground -water studies (Pinder and 

Bredehoeft 1968) is the alternating- direction -implicit technique. This 
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method is faster computationally than the Gauss -Seidel method and often 

requires less computer memory. 

Little has been published, however, on studies of errors in 

digital and analog models and on the best methods of reducing errors, 

although Landau (1963) studied the accuracy of analog models used in 

heat -flow studies. Most investigators have been content to apply their 

numerical or analog technique to a relatively uncomplicated problem for 

which an analytical solution can be derived, and if the results match 

reasonably well, they assume the technique also will give good solu- 

tions to complex problems. This procedure shows that the particular 

computer model is a valid way to approximate an analytical solution 

which is itself an idealized model, but it tells less about the errors 

in modeling a complex hydrogeologic system. A few studies have touched 

on this problem but the writer knows of none that have dealt with it 

in a comprehensive way. Another common check is to compare the results 

from an analog and digital model, although this really only validates 

the procedures used because the two methods are theoretically similar 

and will have equivalent errors. Limited analyses of the sensitivity of 

the results to variations in parameters also commonly are done in opera- 

tional studies to estimate the possible variation from the "true" re- 

sults. 

Another aspect of modeling on which little has been published 

is model calibration. Calibration is the process in which initially 

assumed model parameters, initial conditions, and input /output func- 

tions are modified so that the model reproduces the known response of 

the physical system being modeled over some historical time period. 
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Calibration commonly is done by trial and error methods (Allison 1967, 

p. 12) although the writer knows of no published accounts of specific 

techniques used in trial and error calibration. 

Some workers have attempted to devise automatic, "objective" 

calibration procedures using mathematical techniques and computers; 

such as, for example, Coats, Dempsey and Henderson (1968) ; Halms, 

Perrine and Wismer (1968) ; Pliska (1968) ; and Y. Emsellem and G. 

de Marsily (1971) . Lovell (1971, pp. 13 -16) evaluated these methods 

and concluded that each of them depended on some mathematical assump- 

tions or simplifying assumptions about the physical system that made 

them of little use for the large, complex model of the Tucson basin. 

Previous Studies 

The only known previous work that is directly concerned with 

the subject matter of this investigation was done by Bibby (1971) who 

studied prediction errors in digital models of ground -water basins, 

and by Meyer (1971) who investigated the use of digital models to guide 

collection of ground -water data. In addition, McMillan (1966) studied 

the effects of random variations in transmissivity in a digital model 

on predicted water levels. None of these studies focused on quantifi- 

cation of the worth of additional data to such models. 

Bibby (1971) assumed that the values of the variables of a digi- 

tal model of a ground -water system -- in his study the variables were 

hydraulic conductivity, aquifer thickness, initial water level, dis- 

charge, and storage coefficient -- were random and, using statistical 

techniques, related the accuracy of the variables to the accuracy 



10 

of predicted water levels at a point in time. His method consisted of 

a Monte Carlo technique to generate a random sample of the final water 

level, computation of a tolerance -limit width and a coefficient of vari- 

ation on the final water level which were used as indicators of water - 

level accuracy, and a regression analysis to determine a relation 

between the accuracy of the variables and accuracy of the final water 

level. Bibby concluded (1971, pp. 71-72) that when only one variable 

at a time over the whole model is considered erroneous (for a confined 

aquifer), the error in the final water level is of the same order of 

magnitude as the error in initial water level; but he found that for 

all other variables, the errors in final water levels are one to two 

orders of magnitude less. When all variables are considered erroneous 

simultaneously (for both confined and unconfined aquifers) , the error 

in initial water level is the only significant cause of error in final 

water levels at any one node. 

There are a few similarities and several differences between 

the approach of Bibby and that used in this study. Both studies as- 

sumed errors at different nodes were independent, although as is pointed 

out below in Chapter 4, "Use of Statistical Decision Theory to Evaluate 

Worth of Ground -Water Data," this is commonly a poor assumption. Bibby 

used an idealized, 20 -node rectangular model with a nodal spacing of 

either 1,000 or 10,000 feet for his studies, possibly because use of 

an actual basin model would have been too costly in terms of computer 

time. He used only normal distributions for his variables because he 

assumed that the only errors in the data were those associated with 
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measurement; which, as is discussed in Chapter 3 in the section on 

"Errors Associated with Basic Data," may not always be valid. Bibby 

used relatively short periods of time for his studies, commonly less 

than 120 days, although some simulations were as long as 440 days; 

whereas this study used a 20 -year simulation period. 

Bibby assumed that errors in a variable occurred at all nodes 

in the model, which is certainly a more realistic assumption than in- 

troducing errors one node at a time, as was done for this study. How- 

ever, it is then difficult to study how errors in various parts of the 

model affect model results, or difficult to study error propagation. 

Bibby did not describe any extensive effort to determine what typical 

values of error would be, or in other words what typical values of the 

standard deviation of variable distributions would be, although he 

stated (p. 65) that data used were typical of aquifers in Colorado. 

Bibby made no attempt to evaluate the worth of additional data, 

although he pointed out (1971, pp. 67 -69) how his methods might be used 

to attack this problem. 

Meyer (1971) observed that preliminary digital models could be 

used to guide the collection of ground -water data for a more definitive 

model, and developed a practical, qualitative approach to evaluating 

worth of data. Essentially, Meyer generated errors in model variables 

over an entire model of an actual basin using Monte Carlo techniques 

and triangular or log- triangular probability distributions for the 

variables. He made little attempt, however, to determine how the param- 

eters of the probability distributions would vary over space and for 
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different variables, other than presenting a table of average error 

ranges for hydrologic variables in California (Meyer 1971, table 1) . 

He did not develop a quantitative measure of the effect of errors, but 

used hydrographs comparing "true" and erroneous predicted water levels 

and maps of errors over the model to evaluate uncertainty in data. 

McMillan (1966) studied the effects of random variations in 

transmissivity on resulting potential, i.e., water -level, distributions, 

using two- and three - dimensional digital models with rectangular 

boundaries and up to 576 nodes in two dimensions. He showed that a 

random variation in transmissivity produced potential distributions 

that did not vary significantly from those computed using constant 

transmissivity. McMillan assumed, in his primary numerical experiments, 

that transmissivity was log -normally distributed over the basin area 

and varied the log of the mean of transmissivity from 0 to 3 and the log 

of the standard deviation from 0.1 to 0.9. He also assumed that errors 

are statistically independent at adjacent nodes. McMillan used a 

steady -state system for his studies; his results, therefore, may not be 

applicable to the transient -state system studied in this investigation. 

He studied only transmissivity and not any other types of basic data, 

although he investigated the effects of variations in hydraulic gradi- 

ent and model -grid design on predicted potentials. 

McMillan concluded (p. 103a) that "for a wide range of ground- 

water basin conditions, extensive areas may be considered to be homo- 

geneous without serious error in predicted potential values." He 

stated (p. 102), however, that serious errors can arise if the poten- 

tial gradient and the nodal spacing are large and transmissivity is 
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highly uncertain. As an example, using a potential gradient of 1 foot 

per 100 feet, a nodal spacing of 10,000 feet, and a log -normal distribu- 

tion of transmissivity with a mean of 0 and a variance of 1, McMillan 

computed the standard deviation of the differences between water levels 

obtained under homogeneous and heterogeneous conditions of transmissiv- 

ity to be 1,410 feet. This degree of uncertainty in water levels is 

unacceptable for an operational study of a ground -water basin. 



CHAPTER 2 

THE DIGITAL MODELS OF THE TUCSON BASIN 

The digital - computer models of the Tucson basin were developed, 

primarily by the writer and A. F. Mbench, to use in studies of the ap- 

plication of operations - research techniques to management of ground- 

water resources, in studies of modeling errors, and in studies of the 

worth of ground -water data and efficiency of data - collection systems. 

Two digital models were constructed: the original large -scale model 

with 1,890 nodes of 1/4- square -mile area each and a small -scale model 

with 509 nodes of 1 square mile each. The less- detailed model was 

developed to reduce computation times during worth -of -data studies. 

The large -scale model covers about 470 square miles over a length of 

about 50 miles of the basin north of the Pima County -Santa Cruz County 

line. Figure 1 shows the area included in the large -scale model as well 

as the area of the electrical -analog model of the basin constructed by 

the U. S. Geological Survey (Anderson 1968), from which much of the 

data for the digital models were obtained. The small -scale model covers 

a slightly larger area of 509 square miles. 

Essentially another "model" was modeled, in that the starting 

point for the digital models was the two -dimensional, quasi- linear, para- 

bolic, time - invariant differential equation of incompressible flow 

through saturated porous media: 

14 
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Figure 1. Map of the Tucson basin, Arizona, showing the areas included 
in the electrical- analog computer model and the digital - 
computer model. 



ax Táx + áy Táy = S(x,y) + QR(x,y) , (1) 
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in which h = head or water level (PY + z), in units of length (L), 

S = coefficient of storage (dimensionless), 

T = transmissivity (L2t -1) , and 

QR = inflow or outflow (Lt 1) . 

The digital model "models" this equation using a finite - difference ap- 

proximation (after some rearrangement of terns): 

n+l n+l n+l n+l n+l n+l 
T. 1 (h. - h. + (hi+1 - hi 

+ Ti. z lhi 1 - hi ) j 1-1,j i,j 1 2j j j j- ,j- ,j 

+ T. i (hn+l - 0+1.) 
i ,j+2 1,3+1 1,3 

= S (hi J h1,3 ) 
/At 

+ 
QR(i j ) (2) 

where the i,j notation is a standard matrix or grid reference system, n 

refers to the time step, ox( =oy) = nodal spacing, and t = time -step size. 

The model consists of a set of these implicit equations, one per node. 

The set of simultaneous equations was solved using two separate methods: 

the Gauss- Seidel iterative algorithm and the alternating- direction- 

implicit algorithm. 

Gauss -Seidel Algorithm 

W. M. Little, at The University of Arizona, developed the first 

version of the digital - computer model that was later applied to the 

Tucson basin (written communication,1968). He used a finite -difference 
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approximation of equation (1) similar to that given by Tyson and Weber 

(1964, p. 72), and verified that the Gauss- Seidel iterative technique 

would converge to a solution of such a set of simultaneous equations. 

The Gauss -Seidel method solves a system of equations that can 

be represented by a pentadiagonal matrix, or a matrix with five un- 

knowns per equation. These five unknowns are the water level at a 

given node and the four surrounding nodes, as can be seen in equations 

(2) or (3). Solution of a system of equations represented by a penta- 

diagonal matrix using a direct method, such as Gaussian elimination, 

can involve a large amount of computer time. Therefore an iterative 

technique, such as Gauss- Seidel is commonly used, even though Gauss - 

Seidel commonly requires many iterations and uses a considerable amount 

of computer time (Carnahan, Luther. and Wilkes 1969, p. 452). 

Little's finite- difference equation (including some minor nota- 

tional changes by the writer) was: 

m 
n+1 n+1 n+1 ABSB n+1 n 

E (hi -hB 
) YiB - AB(QR)B - (1113 -h) (3) 

i=1 ' 

where B = the node for which water -level change is being computed, 

i = number of an adjacent node, 

A 
B 

= area of node B, 

Yi B = 
Ti 

BW. BBL. B 
is internodal conductance, 

> , 

Wi 
B 

= width of flow path (width of boundary between nodes), 

Li 
B 

= length of flow path (distance between nodal centers), 

Ti = transmissivity between nodes B and i, 

SB = coefficient of storage of nodal area, 
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m = number of adjacent nodes, 

n = number of time intervals, 

(QR)B = net withdrawal or recharge, 

t = time interval over which state changes are being calculated, 

hn = water -level elevation at the previous time interval, and 

hn +l = the water -level elevation being computed (present time 

interval). 

Equation (3) is actually an alternate way to express equation (2) , as 

the Yi terms in (3) are equivalent to the T terms in (2), and AB in 

(3) is equivalent to (Ax)2 in (2) . 

For purposes of computation the basic equation can be rearranged 

to give: 

E hn+1 Y. - hn+1 
i=1 

1,B B 

m ABSB 
E 

i=1 
Yl'B + At 

ABSBhB 
n 

n+1 
At 

AB(QR)B . 

(4) 

Little and N. E. Baran (written communication, 1968) collabo- 

rated in developing a computer program utilizing this equation. In ad- 

dition, they prepared an alternate program that treated transmissivity 

as a variable. After each time -step is solved, the change in water - 

table elevation is used to recalculate transmissivity (assuming trans - 

missivity is linearly related to saturated thickness of aquifer) and 

the new value is used in the subsequent time -step. Little and Baran 

also prepared modifications that could account for boundary nodes 

with constant potential instead of the impermeable boundaries of the 
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basic program. The programs finally developed for the Tucson basin, 

however, assumed transmissivity constant with time (see below pp. 66- 

67); and treated all physical boundaries as impermeable. The models 

simulated recharge and discharge at boundaries as simple input or out- 

put, identical to a simulated pumping or recharging well, at each 

boundary node where subsurface flow occurs. This procedure involves 

less programming than holding a potential gradient constant across a 

boundary, although it is then more difficult to simulate variable sub- 

surface flow in response to changes in water -table gradient. Because 

such changes in flow at boundaries are conjectural, especially along 

mountain -front boundaries, the simpler approach was used. 

The program, like that of the California Department of Water 

Resources, is readily adaptable to irregularly- shaped areas, and in- 

dividual nodal areas can be polygons of various sizes with a variable 

number of sides. 

R. L. Knickerbocker (written communication, 1969) modified 

the Gauss - Seidel method by adding an overrelaxation coefficient. The 

Gauss -Seidel method for solving the set of m simultaneous linear equa- 

tions generated at the m nodes of the model can be characterized by the 

equation: 

Ah = B , 

where A = matrix of coefficients CA. .), i = 1 to m, j = 1 to m, 
i, 

h = vector of unknown head values (hi)Tp, i = 1 to m CT indi- 

cates the transpose of the matrix) , and 

B = vector of constants (b. )Tp, i = 1 to m. 
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The system is solved iteratively by solving the ith equation for the 

ith unknown as follows: 

h. (k+1) 1 b. E 

-1 

ai 
jhJ 

(k) 
+ 
T a. 

jhJ 
(k) 

j=1 j=i+1 
, (5) 

1 ai 
i , 

where i indicates the unknown sought and k indicates the number of 

iterations. The equation can be rewritten as: 

h. 1) = h. k) + 
1 b. - E a. .h. (k) 

' 
(6) 

a 1 j =1 ,J J 

by adding and subtracting hi (k) to the right -hand side of the equation. 

The Gauss- Seidel method can be modified by the use of an over - 

relaxation coefficient (the method is then commonly referred to as the 

successive -overrelaxation method or SOR). The ith equation is solved 

for the ith unknown using: 

h (k+1) = h (k) + 
1 1 a. 1,1 

m 
b. - E a. .h. (k) 
1 j=1 1 'J J 

(7) 

For overrelaxation w ranges from 1 to 2. An optimum value of w (wopt) 

can be calculated for the Tucson basin model but the method took more 

computer time than was justified. An estimate of wopt of 1.8 gave a 

decrease in the number of iterations necessary for convergence that was 

deemed sufficient. 

Alternating- Direction - Implicit Algorithm 

Knickerbocker (written communication, 1970) determined that for 

a grid of square nodal areas, such as the Tucson basin digital model, 

the alternating- direction - implicit algorithm would be computationally 
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more efficient than the Gauss -Seidel algorithm. The alternating - 

direction- implicit method was devised to solve a system of equations 

represented by a pentadiagonal matrix by converting the system into two 

systems of equations, each with a tridiagonal matrix. A tridiagonal 

system can be solved directly, using a method such as Gaussian elimina- 

tion, without resorting to time - consuming iterative procedures. The 

method employs two finite -difference equations which are used in turn 

over successive time -steps, each of duration At /2 (Carnahan, Luther and 

Wilkes 1969, p. 452). The first equation includes 3 unknowns, the 

water level at the given node and at the two adjacent nodes in the same 

row (or) column), the second also includes 3 unknowns, the water level 

at a given node and at the nodes in the same column (or row). The 

solution of the first equation furnishes values used in the second equa- 

tion, the solution of which yields water levels at the end of the entire 

time -step, At. 

Knickerbocker wrote a computer program, following the discus- 

sion of the algorithm by Pinder and Bredehoeft (1968), that would solve 

a ground -water flow problem in a rectangular basin composed of 400 nodes, 

20 nodes by 20 nodes in size. 

Comparison of the Algorithms 

Mbench (written communication, 1969) devised a ground -water 

flow problem in a rectangular, homogeneous aquifer with three imperme- 

able boundaries and one recharge boundary, and obtained an analytical 

solution using heat -flow theory. Moench, Knickerbocker, and the writer 
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utilized both the Gauss - Seidel (as modified by successive overrelaxa- 

tion) and alternating- direction methods to solve this problem (using 

one time -step) and compared the results with the analytical solution 

(table 1). The area modeled in the problem is 10 square miles and was 

approximated by 400 nodes, each of which represents 1/4 square mile. 

Transmissivity was assumed constant over the model at 500,000 gpd /ft 

(gallons per day per foot) and the storage coefficient was assumed to 

be 0.15. The recharge was defined as 0.15 feet of water per day for 

a simulation period of one year in a row of nodes along one boundary. 

This totals to 0.15 ft /day x 43,560 sq ft /acre x 160 acres /quarter- 

square mile x 20 quarter - square miles or 20,900,000 cu ft /day (2.06 

gpm/ft (gallons per minute foot) of boundary). 

The alternating- direction method agreed best with the analyti- 

cal solution overall, although the Gauss- Seidel method gave better re- 

sults in the center of the model. Both methods gave poor results, in 

terms of percent error, at the boundary opposite the recharge boundary, 

although the alternating- direction method was much better there, 

yielding an absolute error of only 0.28 feet. In addition, the 

alternating - direction method used about 1/6 as much central processor 

time on the computer, although some of the difference was due to a 

simpler form of data input and output in the alternating- direction 

program. 

The writer and R. L. Knickerbocker then experimented with the 

Gauss- Seidel and alternating- direction techniques to see how to ap- 

proximate more closely the analytical solution. Several approaches were 
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tried using both the Gauss- Seidel and alternating- direction methods. 

For Gauss- Seidel, experiments included dividing the one -year time period 

into time -steps -- starting with a time interval of one minute and 

doubling each subsequent interval for a total of 20 time -steps -- and 

requiring a minimum of 10 iterations per time -step. In order to avoid 

large computation times, the error tolerance was reduced from an average 

of 0.001 to 0.01 foot per node. This reduced accuracy and thus partly 

offset the increase in accuracy obtained by using time -steps and other 

modifications. Therefore, the original solution of the problem by Gauss - 

Seidel cannot be directly compared to the solution using modifications. 

For the alternating- direction method, experiments included di- 

viding the time period into nine time -steps (an initial time interval 

of one day) and 20 time -steps (an initial interval of one minute) and 

reducing the nodal spacing to 1/4 and 1/8 mile. 

Comparison of results for these changes with analytical results 

are shown in table 2 for Gauss- Seidel and table 3 for alternating - 

direction. These very limited experiments on a simple, idealized prob- 

lem suggest that: (1) the alternating- direction method is still 

superior to the Gauss- Seidel with the time period divided into 20 time - 

steps, although reducing the error tolerance had an unknown effect; 

(2) checking the error at each node instead of the sum of the nodal 

errors, or requiring a certain number of iterations for the early time - 

steps (when the absolute value of water -level change is small) in the 

Gauss- Seidel method makes little difference in the result; (3) dividing 

the time period into steps gives better results for both the Gauss- Seidel 
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Table 2. Comparison between the Analytical Solution and Various Modifications of the Gauss - Seidel Algorithm. 

Distance from 
Re charge 

Boundary, 
in miles 

Water -level 
Rise, Analy- 

tical Solution, 
in feet 

Water -level 
Rise, Gauss - 
Seidelb,c 
in feet 

Percent of 
Analytical 

Water-level 
Rise, Gauss - 
Seideld,e 
in feet 

Percent of 
Analytical 

Water -level 
Rise, Gqu .s- 
Seidel, 

in feet 

Percent of 
Analytical 

9.5 0.35 1.05 300 1.02 290 1.02 290 
9.0 0.39 1.06 272 1.10 282 1.10 282 
8.5 0.52 1.20 230 1.27 244 1.27 244 

8.0 0.74 1.48 200 1.54 208 1.54 208 

7.5 1.09 1.88 172 1.93 177 1.93 177 

7.0 1.62 2.45 151 2.46 152 2.46 152 

6.5 2.37 3.19 135 3.18 134 3.18 134 

6.0 3.43 4.16 121 4.14 121 4.14 121 

5.5 4.89 5.42 111 5.39 110 5.39 110 

5.0 6.84 7.04 10 3g 7.01 102.5g 7.01 102.5g 
4.5 9.43 9.14 96.9 9.10 96.5 9.10 96.5 

4.0 12.78 11.82 92.6 11.78 92.1 11.78 92.1 

3.5 17.05 15.22 89.4 15.18 89 15.18 89 

3.0 22.40 19.51 87.2 19.47 81.9 19.47 81.9 

2.5 28.99 24.86 85.8 24.83 85.7 24.83 85.7 

2.0 36.97 31.48 85.2 31.46 85.1 31.46 85.1 

1.5 46.48 39.59 85.2 39.56 85.1 39.56 85.1 

1.0 57.64 49.36 85.6 49.33 85.5 49.33 85.5 

0.5 70.55 60.97 86.4 60.95 86.4 60.95 86.4 

0.0 85.25 74.59 87.5 74.53 87.5 74.53 87.5 

Average Deviation 2.22 45.7 2.23 47.3 2.23 47.3 

aModified by successive overrelaxation. 

bError tolerance is an average of 0.01 foot per node. 

c20 time -steps. 

dError tolerance is 0.01 foot per node. 

e20 time- steps, error tolerance checked at each node. 

f20 time -steps, error tolerance checked at each node, at least 10 iterations per time -step required. 

gValue closest to analytical. 
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Table 3. Comparison between the Analytical Solution and Various Modifications of the Alternating- Direction Algorithm. 

Distance from 
Recharge 

Boundary, 
in miles 

Water - level 
Rise, Analy- 

tical Solution, 
in feet 

Water -level 
Rise, Alt. 
Direction 
in feet 

Percent of 
Analytical 

Water -level 
Rise, Alt. 
Direction 
in feet 

Percent of 

Analytical 

Water -level 
Rise, Alt. 

Directionc, 
in feet 

Percent of 

Analytical 

Water-level 
Rise, Alt. 

Directiond, 
in feet 

Percent of 
Analytical 

9.5 0.35 .28 80 . 32 91.4 . 31 88.5 . 31 88.5 

9.0 0.39 .33 84.5 .37 95e .37 95 . 38 97.4 

8.5 0.52 . 44 84.6 .47 90.4 .50 96.2e .51 98 

8.0 0.74 .63 85.2 .65 88 .69 93.2 .72 97.3 

7.5 1.09 .91 83.5 .93 85.2 .99 90.8 1.03 94.5 

7.0 1.62 1.33 82 1.33 82 1.43 88.2 1.49 92 

6.5 2.37 1.94 81.8 1.93 81.5 2.07 87.4 2.16. 91.2 

6.0 3.43 2.81 82 2.77 80.7 2.99 87.1 3.11 90.6 

5.5 4.89 4.02 82 3.95 80. 7 4.26 87.1 4.44 90.8 

5.0 6.84 5.69 83.1 5.58 81.5 6.02 88 6.27 91.7 

4.5 9.43 7.93 84 7.79 82.5 8.41 89.1 8.74 92.5 

4.0 12.78 10.89 85.2 10.73 84.1 11.56 90.5 12.01 94.1 

3.5 17.05 14.69 86 14.56 85.4 15.64 91.8 16.21 95.1 

3.0 22.40 19.51 87.1 19.42 86.8 20.79 92.7 21.50 96 

2.5 28.99 25.49 88 25.46 87.9 27.15 93.5 28.04 96.8 

2.0 36.97 32.81 88.8 32.84 89 34.89 94.4 35.96 97.2 

1.5 46.48 41.60 89.5 41.69 89.7 44.14 95 45.40 97.6 

1.0 57.64 51.98 90 52.13 90.5 54.99 95.4 56.46 97.8 

0.5 70.55 64.05 90.8 64.25 91 67.54 95.8 69.24 98 

0.0 85.25 77.90 91.4e 78.11 91.6 81.85 96 83.76 98.2e 

Average Deviation 2.23 14.5 2.23 13.3 1.18 8.2 0.60 5.7 

a9 time -steps. 

b20 time- steps. 

c20 time -steps and 1/4 -mile nodal spacing. 

d20 time -steps and 1/8 -mile nodal spacing. 

eValue closest to analytical. 
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and the alternating- direction methods; (4) the greatest improvement 

(shown experimentally only for alternating - direction) is made by de- 

creasing the nodal spacing; and (5) alternating- direction takes less 

central processor time than Gauss -Seidel. 

At present the Gauss -Seidel method, as used for the Tucson basin 

model, takes about 75 percent of the computer memory storage (exclusive 

of storage used by the computer for control and other uses) required 

for the alternating - direction method. This is largely because of the 

irregular boundaries of the Tucson basin model. Gauss- Seidel needs 

storage only for the interior nodes of the model whereas the alternating - 

direction technique needs storage for nodes outside of the model, so 

that the whole model has a rectangular shape. It may, however, be pos- 

sible to modify this requirement so as to reduce required storage. For 

a model for which all interior nodes form a rectangular shape, such as 

the 20 by 20 grid used for the recharge problem, the alternating - 

direction method requires only about half as much storage (exclusive 

of computer needs) as Gauss- Seidel. 

The writer adapted the basic alternating- direction program for 

the Tucson basin model by modifying the program so that it could solve 

models with non - rectangular outlines, such as the irregularly- shaped 

Tucson basin. In addition the transmissivity data were modified so 

that values could be read in directly for each node instead of reading 

in values between each node and all its adjacent nodes, as required 

for the Gauss- Seidel method. The data -input format also had to be 

modified so that data for the interior of the model -- within the 



28 

irregular boundaries of the model proper -- could be positioned "inside" 

the larger data arrays which include nodes outside the model proper. 

Thus, it was not necessary to punch large numbers of zeros on cards to 

represent nodes outside the model proper. 

The computer program using the alternating- direction algorithm 

was converted to a subroutine in the computer program prepared for the 

worth -of -data studies (Appendix A). The essentials of the alternating - 

direction algorithm and data output are included in subroutine ALDIRS, 

while the essentials of data input are included in the main program 

WODATA. 

Data for the Models 

In September 1968, A. F. Moench began collecting data, from var- 

ious sources, for the specific model of the Tucson basin and compiling 

them on computer punch cards. He divided the basin into 1,890 nodal 

areas of 1/4 square miles each - - a grid of square nodes spaced 1/2 mile 

apart. Moench decided not to use polygonal nodes because (written 

communication, 1969): 

(1) compilation was simplified, thereby making it possible for 

persons with little experience in hydrology to assemble data easily; 

(2) the nodal areas correspond with the nodal areas of the 

electrical -analog model constructed by the U. S. Geological Survey, al- 

though the University model covers only about two- thirds of the area 

covered by the Survey model; 

(3) the internodal conductance of equation (3) is equal to trans - 

missivity since the distance between nodes (L) equals the length of the 
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side of each node (W) , or Yi Ti B' 
' 1.,B 

Ti, 

nodal area is constant, saving computer storage and elimina- 

ting the need to measure individual nodal areas; and 

(5) computer print -out of data is simplified in that results 

can be printed out directly in map form and computer storage is not 

needed to record nodal locations. 

Moench pointed out that using a grid of equal -sized nodes has 

disadvantages, namely that the whole grid has to be fine enough to 

give good results in areas where potential gradients are steepest and/ 

or much data are available. Thus many "unnecessary nodes are included 

in areas where gradients are flat or data are few, leading to extra com- 

pilation and an impression of accuracy in these areas that really does 

not exist. 

The area of the large -scale digital model corresponds fairly 

well to the area of the analog model of the U. S. Geological Survey 

(figure 1) except that the digital model includes less of the Canada del 

Oro valley, less of the area between the Tucson and Sierrita Mountains, 

a narrower part of the Santa Cruz valley south of Continental, and omits 

a large area on the eastern side of the basin between Pantano Wash and 

the Santa Rita Mountains. The model boundaries are not smooth curves 

but are irregular approximations using the sides of the 1/4 square - 

mile nodal areas, as can be seen on figure 1. 
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Data on Coefficient of Storage 
and Transmissivity 

The coefficient of storage of a ground -water basin model is 

commonly assumed to be constant over the whole basin because few data 

are available to assess its variability. Transmissivity can be obtained 

from a test on a pumping well alone, but to obtain good values of stor- 

age coefficient, one or more suitable observation wells should be 

available. Consequently, there commonly are fewer values of S from 

aquifer tests than values of T. 

The storage coefficient for the Tucson basin, which is virtually 

equivalent to specific yield because the aquifer in the basin is uncon- 

fined, is commonly assumed to be between 0.05 and 0.20 by various workers, 

depending upon their experience or predilections. The storage coeffi- 

cient likely varies over the basin, depending on the lithology of that 

part of the aquifer where the water table is declining. Initially the 

coefficient of storage was assumed to be 0.15 for all nodes of the digi- 

tal model, as was initially assumed for the electrical -analog model. 

Aquifer tests in the basin commonly indicate that storage coef- 

ficients are less than 0.01, probably because the tests have short 

pumping periods, in the order of hours, and delayed drainage causes 

water -level declines to be too great and thus calculated storage coef- 

ficients to be too small (Clyma, Rebuck and Shaw 1968). Even when they 

used methods of analysis which attempt to account for delayed drainage, 

Clyma et al. (1968, table 2) computed values of storage coefficient 

which ranged only from 0.01 to 0.07. Apparently no long -term tests have 
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been run in the Tucson basin that have yielded realistic values of the 

coefficient of storage. 

Transmissivity data developed for the analog model were obtained 

from the U. S. Geological Survey. The Survey had compiled these data in 

the form of a map showing areas of equal transmissivity, sub divided into 

areas where transmissivity is (1) less than 10,000 gpd /ft, (2) 10,000 - 

50,000, (3) 50,000 - 100,000, (4) 100,000 - 180,000, and (5) more than 

180,000. From this map a value was read for the internodal transmis- 

sivity between each node and every one of its adjacent nodes for the 

Gauss - Seidel algorithm, and read at each node for the alternating - 

direction algorithm. Values of 7,500 gpd /ft, 30,000, 75,000, 140,000, 

and 250,000 were assigned to the map intervals for the purpose of spec- 

ifying nodal or internodal transmissivities. 

The Department of Agricultural Engineering of the University 

of Arizona compiled the results of aquifer tests made during the period 

1961 -68. Figure 2 shows the distribution of tests over the basin. 

This was the main source of data used by the U. S. Geological Survey 

for their map. 

Water -Level Data 

Water -level and water- level -change data were obtained from the 

Agricultural Engineering Department. They have prepared contour maps 

of the water -table surface for almost every year since 1947 and water - 

level -change maps for selected periods, both commonly using 10 -foot con- 

tour intervals, although some change maps use 5 -foot intervals. Initial 
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conditions, in terms of water levels (h), for any period can be inter- 

polated for each node using the water -table elevation maps, and values 

of change at each node for selected periods can be interpolated from 

the change maps for use in model calibration. In this dissertation, 

H(i,j) refers to the initial water level at any point, whereas h(i,j) 

refers to the predicted water level at a point at some future time. 

Water levels in about 1,500 wells in the drainage basin of the 

Santa Cruz River are measured annually by the Department of Agricul- 

tural Engineering (Schwalen and Shaw 1961). Levels commonly are mea- 

sured in the winter or spring when pumping in the basin is at a minimum, 

and thus are the best approximation of the basin's annual static (non- 

pumping) water levels. Many of the observation wells, however, are 

outside that part of the Tucson basin included in the digital model. 

In addition, data from all of these wells are not available for specific 

periods of water -level change, since every well was not measured both 

at the beginning and end of every period. As an example of the dis- 

tribution of data, figure 3 shows the locations of the approximately 

500 observation wells over the basin for which 1947 -66 water- level- 

change data are available. Data are concentrated along the streams and 

in the city of Tucson. 

Values of historical water -level change rather than historical 

water -table elevations were used for model calibration for several rea- 

sons. The computer could print out values of change on one sheet of 

paper because such values have a maximum of two digits while elevations 

have four. Also contour maps of change were believed to be much 
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more reliable than elevation maps. Values of change are commonly re- 

lated to factors such as pumping and recharge that can be evaluated 

readily, and thus subjective interpretation of contour spacing and posi- 

tion is simplified. Values of change also commonly decrease toward 

boundaries of a basin, away from centers of pumping, and can be esti - 

mated reasonably well from sparse data. 

Discharge (Pumpage) Data 

The pumpage (Q) data used in the electrical -analog model were 

obtained from the U. S. Geological Survey and were used in the digital 

model. The data were compiled for each 1/4 square -mile nodal area for 

nine time periods: 1940, 1941, 1942 -46, 1947 -49, 1950, 1951 -52, 1953- 

57, 1958 -61, and 1962 -65. The pumpage was considered constant within 

each of these time periods. The Survey made these estimates using field 

measurements of pumpage from some of the wells in the basin, pumpage 

records of the city of Tucson, and estimates of irrigated acreage. 

Anderson (1968, p. 22) revised pumpage in a few areas during analog -model 

calibration so that the model results corresponded better in a visual 

sense with actual changes. 

Recharge Data 

Data on infiltration into stream channels were obtained from a 

report by Burkham (1970, table 5). He studied channel losses for the 

period 1936 -63 and estimated the average annual infiltration per mile of 

channel for various streams in the Tucson basin. These data were used 
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in the digital model, assuming initially that infiltration equalled re- 

charge (R) and that recharge was constant for any given period. 

"Boundary" or "mountain- front" recharge is defined here as that 

water moving into the basin from bounding mountain ranges or from trib- 

utary basins. In the digital model, this is the water moving into the 

model from areas outside the model, including subsurface flow from the 

Tortolita, Santa Catalina, Rincon, Empire (located northeast of the 

Santa Rita Mountains), Santa Rita, Sierrita and Tucson Mountains; sub- 

surface flow from the Canada del Oro and upper Santa Cruz valleys; and 

any flow from the areas between the Rincon and Empire Mountains (San 

Pedro Valley), between the Sierrita Mountains and the southern edge of 

the model, and between the Sierrita and Tucson Mountains (Avra -Altar 

Valley). 

Data on boundary recharge were obtained from Anderson (1968, pp. 

20 -22), who used the electrical -analog model of the basin to estimate 

subsurface inflow and outflow. He assumed that inflow to and outflow 

from the basin were in balance in 1940 -- that is, no ground water was 

being withdrawn from storage, or that the flow system was in a steady 

state. He then adjusted values of transmissivity and subsurface inflow 

and outflow until the model duplicated the 1940 water -level elevation 

map. The resulting inflow and outflow values initially were assumed to 

be the correct average quantities for the digital model. 

Anderson (1968, fig. 4) estimated that there was no subsurface 

inflow from the Tucson Mountains or from the area between the Tucson 

and Sierrita Mountains, probably because annual precipitation over these 
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areas is low. Preliminary results from the digital model indicate that 

there may be some flow from these areas, although it is likely small. 

The subsurface outflow at Rillito in the northwest corner of the Tucson 

basin was also obtained from the analog model calibration. This quanti- 

ty is actually a form of discharge, but data on subsurface outflow were 

compiled with recharge data, and commonly will be discussed in conjunc- 

tion with recharge data in this dissertation, because they were derived 

from the same source. 

Calibration of the Nbdels 

After initial estimates were made for parameters, initial con- 

ditions, and input /output at each of the 1,890 nodes, the model was 

calibrated by adjusting these estimates until the model reproduced his- 

torical water -level changes fairly well for the period from the spring 

of 1947 to the spring of 1966. This period was selected because it was 

the longest period for which all types of data were available in signifi- 

cant amounts. Prior to 1947, water -level data are sparse; and the U. S. 

Geological Survey had not compiled pumpage data after 1965 for each node 

of the analog model. A fairly long period is needed for calibration so 

that historical water -level changes are at least 10's of feet. If 

changes at each node over the time period used are only a few feet, the 

model cannot be calibrated well because errors in the interpolated 

values of historical change will be of the same order of magnitude 

as the changes themselves. In this case, an analysis of differences 

between computed and historical change to indicate what model adjust- 

ments to make is not meaningful. 
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Allison (1967, pp. 100 -101) attempted to obtain, for a given 

total budget for a digital model of the southern San Joaquin Valley, 

California, the optimal combination of the number of tine periods used 

in calibration, the number of nodes, and the number of calibration runs. 

He estimated that the optimal combination was 3 -4 time periods, 440 -480 

nodes, and 260-280 calibration runs. 

It would have been preferable to calibrate the Tucson basin 

model over several separate time periods to obtain independent esti- 

mates of parameters, initial conditions, and input /output. These inde- 

pendent values could then be averaged to provide estimates that would 

be representative of more than one set of basin conditions. However, 

for calibrating over separate tine periods, pumpage data specific to each 

period should be available. If pumpage is lumped over a period, separate 

calibration on parts of the period is not meaningful. For the Tucson 

basin, the 1947 -66 period could have been divided into subperiods be- 

cause pumpage data were available for 1947 -49, 1950, 1951 -52, 1953- 

57, 1958 -61, and 1962 -65. However, water -level changes for these sub - 

periods are small, and errors in the data and in contour maps made from 

the data likely would be a significant proportion of the change. For 

this reason, calibration over subperiods of 1947 -66 was not done. In 

future work with the model it might be instructive to divide the 1947- 

66 period into two subperiods and compare calibrations over them. 

Some modelers prefer to calibrate using only measured values of 

historical change or water -level elevation (Allison 1967, p. 12). In 

this procedure, only the changes or elevations at nodes which include 
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observation wells are matched. This method enables a modeler to cali- 

brate over short time periods because there are no errors that are 

associated with interpolating data to other nodes and that would compli- 

cate the analysis. However, if the observation wells are poorly 

distributed over the basin being modeled, adjustments made in areas of 

few or no wells are likely unreliable. Another disadvantage to cali- 

brating solely with measured changes is that information can be lost, 

specifically the knowledge and experience of the hydrologist. It is 

not clear how much information such knowledge represents in comparison 

to measured data, but it likely is significant. Interpolating water 

levels to all nodes in a model for use in calibration necessarily incor- 

porates some of this knowledge because water levels are not interpolated 

mechanically, but by exercising judgment. 

In this study, calibration was done using water -level -change 

data interpolated to all nodes in the model because observation wells 

are not evenly distributed over the Tucson basin (figure 3), and be- 

cause it was judged that a significant amount of added information is 

obtained by using interpolated water -level data. 

The calibration procedures used for the two Tucson basin models 

were subjective and to a large extent trial and error. Subjective cali- 

bration is defined here as adjusting model variables largely using indi- 

vidual judgment; whereas objective calibration would involve setting 

rigid criteria to control the adjustment process, which process probably 

would be done automatically by computer. 
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At present subjective trial and error methods most commonly are 

used in calibration of ground -water models (Allison 1967, p. 12). Lovell 

(1971), using the southern end of the Tucson model, developed a semi - 

objective method of calibration which uses a computer to aid the hydrol- 

ogist in selecting the nodes at which variables should be adjusted and 

in determining the size of the adjustment. Lovell did his work during 

and after the calibration discussed here, and thus his techniques were 

not used. 

When the data used to construct the electrical -analog model were 

obtained fromthe U. S. Geological Survey, the Survey's calibration pro- 

cess almost had been completed. This process was discussed by Anderson 

(1968). He calibrated the analog model in two stages, a steady -state 

analysis for the year 1940, and a transient -state analysis for the 

period 1940 -65. In the steady -state analysis, Anderson assumed that the 

ground -water flow system was in equilibrium, in the sense that water 

levels were constant over time and inflow equalled outflow from the basin. 

In making initial estimates for recharge, he used the entire amount of 

streamflow losses by infiltration as an estimate of recharge from streams. 

Anderson then varied the analog -model recharge and subsurface outflow on 

a trial and error basis until he obtained the best match between the 

model potential field and the 1940 water -table contour map (Anderson 

1968, figure 1). He later used the derived values of recharge and sub- 

surface outflow as initial estimates in the transient -state analysis. 

Anderson also adjusted some values of transmissivity in the steady -state 

analysis. 



41 

In the transient -state analysis, Anderson used the analog model 

to simulate changes in water levels during 1940 -65. He varied values 

of pumpage, recharge, and storage coefficient until the best match was 

obtained between changes in the analog -model potential field and mea- 

sured changes in water levels during four subperiods of the period 1940- 

1965. 

Although many of the data used in the digital model were de- 

rived from the calibrated analog model, the digital model did not com- 

pute water -level changes for the 1947 -66 period that matched, in some 

sense, actual changes, and therefore it also had to be calibrated. 

Because much of the data on recharge, subsurface outflow, and pumpage 

were derived from analog calibration, no steady -state analysis was made 

using the digital model. 

The reasons for the lack of correspondence between the calibrated 

analog model and the digital model are not entirely clear but are likely 

related to the following factors: (1) the topographic areas encompassed 

by the two models do not correspond exactly; (2) initial water -level 

data and water - level -change data used in the digital model were obtained 

from maps drawn by the Department of Agricultural Engineering, while the 

Survey used their own data as well as University data and prepared their 

own maps; (3) changes in the initially - assumed values of stream - channel 

recharge and constant storage coefficient in the analog model were not 

incorporated in the digital model; and (4) the two models likely would 

not produce identical changes even if all other factors were equal be- 

cause the digital -model results are affected by round -off error (see 
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Chapter 3 below, "Errors in Digital Modeling," p. 62) , while analog model 

results are affected by errors in electrical components. In addition, 

the digital model uses a finite - difference approximation for the ah /at 

term in equation 1, whiJe the analog model does not. These four factors 

likely account for most of the lack of correspondence between results 

of the analog and digital models. 

Large -Scale Nbdel 

The writer calibrated the large -scale model of the Tucson basin 

during the spring and summer of 1970. In initial test runs of the model, 

the average of the absolute values of the nodal error -- calculated as 

the difference between computed values and historical values of 1947 -66 

water -level change at each node -- was 24.4 feet and the maximum error 

was 190.6 feet, located in the northwestern corner of the model. In 

several large areas, all nodes had errors of more than 50 feet, and 

along Pantano Wash errors were up to 110 feet. In comparison, maximum 

historical changes in water level for the 1947 -66 calibration period 

were 80 feet. Only 26 percent of the 1,890 nodes had errors less than 

10 feet, 48 percent had errors less than 20 feet, 65 percent had errors 

less than 30 feet, and 82 percent had errors less than 40 feet. A sum- 

mary of these errors for initial and final runs of both the large -scale 

and small -scale models of the basin is given in table 4. 

For each calibration run the computer printed maps of the value 

of error at each node and of nodes where errors were more than 20 feet, 

computed the average absolute error and average squared error over the 

whole model, and counted the number of nodes with errors greater than 
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10 feet, 20 feet, 30 feet, and 50 feet. These data were used to guide 

the calibration process, and indicated whether adjustments made to model 

parameters, initial water levels, and discharge /recharge were successful 

in reducing errors. The computer also punched values of error for each 

run on cards. These data were used as input to the following run so that 

a map of differences in errors for successive runs could be printed. 

These maps also were used to evaluate the effects of adjustments. 

A total of 38 separate computer runs of the model were made, 

reducing the average error from 24.4 to 5.3 feet, and the maximum error 

from 190.6 to 28.6 feet. At the final run, 87 percent of the nodes were 

in error by less than 10 feet, and 99.6 percent had less than 20 feet 

of error. Figure 4 shows the average error and the principal type of 

model adjustment for each run. Between two and three man- months of 

time were spent on model calibration and the cost of computer time was 

on the order of $100 - $150. 

In more detail, the calibration process was started by cor- 

recting errors in initial data. These were primarily card -punching 

errors in recharge, pumpage, and transmissivity. During calibration 

more such errors were found periodically and doubtless a few errors of 

this type remain in the model. 

After this, the calibration process attempted to eliminate large 

(greater than 20 feet) errors in computed water -level change. These 

errors seemed to be more "deterministic" than "random" in that errors 

were concentrated in specific areas rather than being scattered over 

the model, and appeared to be related to specific causes, such as errors 
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in input data in local areas. When model variables were adjusted to re- 

duce errors, care was taken so that adjustments did not put variable 

values outside a range judged to be reasonable. 

The first few calibration runs were aimed at eliminating the 

several errors of large magnitude and extent (greater than 50 feet per 

node and extended over more than 10 nodes). Some of the largest errors 

were concentrated on the model boundaries and apparently were associated 

with errors in boundary recharge. In addition, figure 4 shows that many 

of the significant decreases in average error were achieved by adjusting 

boundary recharge. This does not necessarily mean, however, that values 

of recharge from the analog model are incorrect. At least an equivalent 

source of error is in the values of initial water level around the 

boundaries. There are two sources of error here. First, the individuals 

who prepared the 1947 water -level map apparently discounted, or more 

likely were not concerned with, the possibility of much inflow from the 

mountain masses around the basin, and hence in many places where data 

were scarce drew water -level contours perpendicular to the basin bounda- 

ries, indicating no inflow. The digital model, in contrast, simulates 

subsurface flow from mountain masses, and the model "bends" the original 

contours parallel to the boundaries to account for this flow. This pro- 

duces apparent errors in water -level change which must be balanced by 

modifying boundary recharge. This condition is shown in figure 5a. In 

figure 5a, contours and gradients interpolated using historical water - 

level data are termed "actual" and contours and gradients simulated by 

computer are termed "computed." 
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i 

MODEL --/ 
BOUNDARY / 

2010' 

COMPUTED WATER -TABLE CONTOURS 

\ 
ACTUAL WATER -TABLE CONTOURS 

2040' 

A. PLAN VIEW OF DIFFERENCES IN WATER -TABLE CONTOURS CAUSED BY 
SIMULATING BOUNDARY RECHARGE WHERE NONE WAS ASSUMED IN 
CONTOURING. 

ACTUAL GRADIENT -\ 

COMPUTED 
GRADIENT 

B. CROSS- SECTIONAL VIEW OF 
DIFFERENCES IN WATER -TABLE 
GRADIENT CAUSED BY MODEL 
TRANSMISSIVITY BEING MORE 
THAN ACTUAL. 

COMPUTED GRADIENT -\ 

/ ACTUAL 

z GRADIENT 

C. CROSS- SECTIONAL VIEW OF 
DIFFERENCES IN WATER -TABLE 
GRADIENT CAUSED BY MODEL 
TRANSMISSIVITY BEING LESS 
THAN ACTUAL. 

Figure 5. Diagrams of differences between actual (interpolated from 
historical data) and computed water -table contours or 
water -table gradients caused by errors in model data. 
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A related problem occurs when the model boundaries do not coin- 

cide with the physical boundaries of the basin. In such cases, when con- 

tours are perpendicular to these assumed boundaries, and inflow is 

simulated, errors occur for the same reasons illustrated in figure 5a. 

However, in this case, the errors are not due to mistakes in water -level 

contours but occur because boundaries are not realistic. "Correcting" 

these errors may involve changing the initial water -level contours from 

their original interpolated positions in order to reflect the inflow. 

The area in which errors were as large as 190 feet is in the 

northwestern corner of the model at Rillito, where subsurface outflow 

leaves the basin. The initial estimate of outflow of 17,500 acre -ft/ 

yr (acre -feet per year) was reduced to 12,700, which eliminated most of 

the difference. Adjustment of boundary recharge also lessened the er- 

ror in several other areas. 

In a few locations, stream - channel recharge was modified. The 

only location where such changes were very large was along Rillito 

Creek between Pantano Wash and the Santa Cruz River, where recharge was 

increased as much as 585 acre-ft/yr/7d (acre -feet per year per mile) to 

raise water levels. This amounts to an increase of about 70 percent 

over Burkham's estimate (1970, table 5) of 820 acre- ft /yr /mi of stream - 

channel infiltration in this reach of Rillito Creek or a total of 1,405 

acre- ft /yr /mi. Moench and Kisiel (1970, table 1), however, estimated re- 

charge along ï:.illito Creek from one 10 -day flow event, beginning in 

December 1959, to be from 1,770 to 2,840 acre- ft /mi, so the new figures 

may not be unreasonable. 
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The other major type of adjustment that was made in the model 

was in values of transmissivity. The most effective type of change was 

in lowering values of T to increase the slope of the water table or in 

raising values of T to decrease the slope. If computed water levels 

down - gradient from a node were too high and levels above were too low, 

lowering T at the node would help correct both problems. Conversely, 

raising T at a node would raise water levels below and lower levels up- 

gradient. These relations are shown in figures 5b and 5c. 

In three areas, transmissivities were modified significantly 

to help calibrate the model. In a large area south of Rillito Creek, 

west of Pantano Wash, east of the Santa Cruz River and north of Davis - 

Monthan Air Force Base (the Base is in the southeastern part of T.14S., 

R.14E.), initially - computed water levels were as much as 110 feet above 

historical levels. The Geological Survey (Anderson 1968, p. 22) had a 

similar discrepancy in this area, as they lowered its storage coeffi- 

cient from 0.15 to 0.045 to lower computed water levels. Hydrologists 

have long noted (Schwalen and Shaw 1957, p. 85 -87) a steep water -table 

gradient along Pantano Wash and in an arc, although at a lesser gradient, 

to the south and then southeast, through the southern part of the Air 

Force Base. The model could not simulate this gradient using the data 

initially given; so the gradient was flattened during a run, resulting 

in large water -level rises, and thus errors, west of Pantano Wash. In 

order to maintain the gradients, minimum T values along the wash were 

lowered from 7,500 to 3,000 gpd /ft. These changes along with changes 

in recharge to the north, east, and south, changes in pumpage, and 
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changes in the storage coefficient, eliminated much of the error. This 

probably was the most difficult area in the basin to model. The maximum 

nodal error at the final calibration run, 28.6 feet, was in this area, 

indicating that the problem has not been resolved completely yet. The 

geologic factors causing this steep gradient are not fully known. The 

area east of the wash may be the upthrown side of a fault which lifted 

less permeable material close to the land surface. Flow over such a 

fault may cause the steep gradient, in effect, creating a ground -water 

"cascade." It is also possible that flow through material of low per- 

meability or a small storage coefficient in the area of low water -level 

causes the steep gradient. 

Transmissivity was also significantly modified around and to 

the north of the Tucson International Airport (which is in the west - 

central part of T.15S., R.14E.). In this area, computed water levels 

were as much as 60 feet below historical levels. Increases in trans - 

missivity south of the airport and decreases in minimum transmissivities 

to the north (from 7,500 to 4,000 gp d /ft), along with changes in the 

storage coefficient, eliminated much of the error. In a third area, just 

southeast of the confluence of the Santa Cruz River and Rillito Creek, 

transmissivities were increased to the south and decreased to the north 

to raise water levels in the area. 

In addition, transmissivities were modified in an area around 

and north of Sahuarita, and along Rillito Creek in T.13S., R.14E. In 

most of the areas in which T was modified, cross -sections of the water 

table were drawn between calibration runs by the writer to indicate 
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where changes in T would be most effective. Transmissivities were also 

changed at other nodes in the model to eliminate minor errors. 

Coefficients of storage were changed in two ways. First, S was 

modified to lessen errors in two specific localities. In the area west 

of Pantano Wash discussed previously under changes in T, computed water 

levels were too high. Values of S had to be reduced,from 0.15 to 0.075, 

to lower computed water levels because pumpage predominates over re- 

charge there. The Geological Survey made this same type of adjustment in 

this location, lowering values of S to 0.045. There are no geologic or 

hydrologic data that suggest such changes -- they were made solely to 

calibrate the model. 

In the area around the Tucson Airport discussed under changes in 

T, values of S were raised to as much as 0.30 to raise computed water 

levels. Again, no data indicated that such a change was justified. How- 

ever, this is also an area of low T, and may be underlain by much fine - 

grained material. Possibly over long periods of time, slow drainage 

from these deposits may yield relatively large amounts of water, even 

though T values are low. If this is the case, higher values of S may 

be realistic. 

Values of S over the rest of the model were adjusted slightly 

(from 0.150 to 0.156) during the last few calibration runs to balance 

the volume of water removed from the aquifer corresponding to computed 

water -level declines (equal to the computed dewatered volume of aquifer) , 

with the volume removed according to historical declines (equal to the 

historical dewatered volume) . The model always balances the net of 
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discharge from and recharge to the basin with the computed dewatered 

volume, as this is essentially the way the set of simultaneous finite - 

difference equations (one for each node) is solved. However, the his- 

torical dewatered volume does not necessarily check with this quantity. 

By raising or lowering S, the volume of water removed according to the 

fixed historical decline can be increased or decreased to match the net 

of discharge and recharge. Such a raising or lowering of S decreases 

or increases, respectively, computed water -level declines. These changes 

in computed declines generally reduce the average error slightly and 

improve the model. This second type of change in S is equal over the 

whole model, and is not varied according to area. 

Values of initial water level were modified where analysis of 

errors suggested that initial levels were incorrect. These areas mostly 

were around the boundaries of the model, and commonly resulted from con- 

touring that had not accounted for the possibility of boundary recharge, 

as was previously illustrated (figure Sa). At one location in the Tucson 

Mountains, however, an initially large water -table gradient resulted in 

the simulation of a large quantity of recharge in an area that likely 

furnishes little recharge. A check of the water -level data indicated 

an alternate interpretation which lessened the gradient, resulting in 

a more realistic quantity of recharge. In addition, initial water levels 

at a few locations in the interior of the model were adjusted where 

errors in computed change coincided with places where interpretation of 

contours of the 1947 water table seemed questionable in relation to 

observation -well data. 
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Values of historical water -level change for 1947 -66 also were 

adjusted at a few locations in the model. Again, wherever significant 

errors in computed change for 1947 -66 coincided with places where the 

contour map was questionable, historical contours were modified. 

In the Tucson basin, much of the pumpage is not measured and 

must be estimated. Therefore, amounts and assumed locations of pumpage 

are subject to error and were adjusted during model calibration; although 

such "hanges were commonly minor. Changes in pumpage were made when anal- 

ysis indicated that an error in pumpage was the most likely cause of an er- 

ror in computed water level. Three kinds of adjustment were made: one 

involving only the amount at a given node; another involving location 

of pumpage, and commonly involving amount as well; and a third involving 

a change in amount of pumpage over a fairly large area. 

The first type of change was made when there was pumpage at a 

node which had a significant error in computed water -level change. Ad- 

justments of as much as 90 percent in pumpage and as much as 1,050 

acre-ft/yr (650 gpm) were made to lessen errors. The second type of 

change was made when centers of significant water -level decline did not 

correspond with concentrations of pumpage or vice versa, and when such 

discrepancies were coincident with significant errors in computed water - 

level change. Because pumpage is the main cause of long -term water -level 

decline in the basin, centers of significant decline should correspond 

with concentrations of pumpage; and conversely, concentrations of pumpage 

should produce some water -level decline. The locations of a few pumpage 

concentrations were shifted slightly, on the order of a mile, and the 
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amounts were adjusted where such changes were warran,ed. The third type 

of change was made in the area west of Pantano Wash, where pumpage over 

the whole area was increased by 25 percent to increase computed water - 

level declines. Davidson (1970, pp. 119 -120A) discussed the difficulties 

in simulating historical water -level declines in this area with the 

electrical -analog model. He stated that the likely sources of error were 

in pumpage data and in estimated values of the coefficient of storage. 

The U. S. Geological Survey decided to adjust S only in this area, but 

for the study reported here a combination of adjustments in pumpage and 

S was made. 

The number and size of the time -steps used in simulating the 

1947 -66 period were varied to see how model results would be affected. 

In the early stages of calibration, use of 30 time -steps (initial step 

of one minute and successive steps doubled) and three time -steps (ei- 

ther an initial step of 2.72 years and successive steps doubled, or 

three equal steps of 6.33 years) were compared. The 30 -step runs used 

about 100 seconds of computer time each while the three -step runs used 

about 20 seconds each. The runs using different time -steps gave sig- 

nificantly different results at some nodes but the overall model results 

were very similar. During the rest of the calibration runs, three steps 

with an initial size of 2.72 years were used in order to minimize costs. 

At the end of calibration, a run using 30 equal steps of 231.3 days each 

was made. The model results were not significantly different from those 

of a three -step run, so the model was not calibrated further using 

30 -step runs. 
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Few published accounts document calibration of digital ground- 

water models, and the writer knows of no detailed accounts of calibrating 

a complex model such as that of the Tucson basin. It therefore is dif- 

ficult to evaluate the techniques used on this model. The writer had 

no previous experience in calibrating models, so doubtless this slowed 

progress. On the other hand, using data from the calibrated electrical - 

analog model probably shortened the calibration effort significantly. 

Allison (1967, figure 3.11) showed the relation between mean water -level 

error and number of calibration runs for the Chino- Riverside basin model 

constructed by the California Department of Water Resources. The initial 

mean error was about 200 feet, and the mean error did not reach the 

Tucson initial mean error of about 25 feet until about 30 runs had been 

made. Subsequently it took about 25 additional runs to reduce the mean 

error of the Gino- Riverside model to about 5 feet, the point at which 

calibration of both models stopped. These data suggest that the avail- 

ability of the electrical -analog data cut the number of calibration runs 

of the Tucson model approximately in half. 

Figure 4 suggests that the average error in the Tucson basin 

model cannot be reduced much under 5 feet, since the curve of average 

error versus number of runs approaches 5 feet asymptotically. This is 

somewhat misleading, however, in that calibration involved attempts to 

eliminate errors greater than 20 feet. If the emphasis was on eliminat- 

ing errors greater than 10 or 5 feet, the mean error could doubtless be 

reduced to less than 5 feet. 

The parameters, initial conditions, and input /output of the model 

likely could be manipulated until the difference between computed and 
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historical water -level change was virtually zero at each node. Because 

the model cannot exactly reproduce the physical ground -water system of 

the Tucson basin, a model so calibrated would give a false impression 

of accuracy. A model that matches a S0- to 100 -foot historical change 

within 10 feet at most nodes, as the Tucson model does, probably is 

adequately calibrated. 

It is difficult to assess how closely the calibrated model ap- 

proximates the true parameters, initial conditions, and input /output of 

the physical system. There is no guarantee that values of model vari- 

ables adjusted during calibration are close to true values, or even 

that adjusted values are improved relative to initial estimates. Many 

combinations of various values of parameters, input and output functions, 

and initial conditions can produce an identical water -level or water - 

level change configuration, so in effect the true values are indeter- 

minate. In other words, a set of values obtained during calibration are 

non -unique. Adjusted values in the interior of the model, and especially 

along the major streams and in the city of Tucson, probably are best be- 

cause it is in these areas that most of the hydrogeologic data have been 

collected. Estimated values around the boundaries of the model are less 

reliable because there are few observation wells and few aquifer tests 

have been made there. Simulated values of boundary recharge, for 

example, could be greatly in error if the water -table gradients around 

the boundaries are incorrect. 

It probably should be stressed that the emphasis during construc- 

tion of the Tucson basin model was on developing an experimental or 
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research tool quickly, rather than a model which was the best possible 

representation of the basin. In order to make the model more representa- 

tive, every modification that has been made should be checked against 

all available hydrologic and geologic data to insure that the changes 

are valid. This was done in a general way during model calibration, 

but should be done more thoroughly. 

Small -Scale Model 

During planning for studies of the worth of ground -water data for 

the Tucson basin, it became apparent that the 1,890 -node model was too 

detailed because its use would consume too much computer time. It was 

decided, therefore, to develop a model with a 1 -mile nodal spacing in- 

stead of the 1/2 -mile spacing of the original model. The computer time 

needed for a run of the less - detailed model is 1/4 to 1/3 that of the 

original, and made the worth -of -data studies less expensive. 

Fortunately, R. E. Lovell (1971) had written a computer program 

to reduce a model to a coarser nodal spacing so his program was used to 

made the reduction automatic. The small -scale model was constructed by 

combining 4 -node groups of the large -scale model into single nodes of 

one - square -mile area. Wherever there were 1, 2, or 3 nodes remaining 

on a boundary these were made into one node. Thus, instead of a 472.5 

node model (1/4 of 1,890) the reduced model has 509 nodes. Construc- 

tion was begun by taking the northwestern -most two nodes of the original 

large -scale model as the first node of the reduced model. In this way, 

much of the western boundary of the reduced model coincides with that 

of the original model, while muchof the eastern boundary is extended 
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1/2 mile to the east. This was done because the boundaries of the 

original model are fairly close to the physical boundaries of the basin 

on its western side, but to the east, the model boundaries fall short 

of reaching the physical boundaries. 

The input data were transferred to the 509 -node model by com- 

bining values of each type of data for all the 1/4 -mile- square nodes 

included in a given one - square -mile node. For recharge and discharge, 

the value for the new node was the sum of values for the included origi- 

nal nodes. For other data (transmissivity, storage coefficient, initial 

water level, and historical water -level change) the new value was ob- 

tained by summing values from all included nodes and dividing by the 

number of nodes included (essentially calculating the average and 

applying the average to any extra area included). 

The initial run of the small -scale model had errors larger than 

the final run of the large -scale model -- 6.2 feet average error as 

compared to 5.3 feet, and a maximum error of 34.4 feet as compared to 

28.6 feet (table 4). About 80 percent of the nodes had less than 10 

feet error, 89 percent had less than 20 feet error, and two nodes had 

more than 30 feet error. One problem was that in combining groups of 

four original nodes into one node, some of the original boundary nodes 

were combined into nodes which were not on the boundary of the small -scale 

model. This resulted in transferring some of the original boundary re- 

charge into the interior of the new model, and was the major source of 

the 34.4 foot error. All original boundary recharge then was moved into 

adjacent boundary nodes of the reduced model. If more than one adjacent 
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node was on the boundary, recharge was moved to the one with the largest 

error in computed water -level change. 

These changes, however, did not lessen the model error much, and 

further adjustments in boundary recharge, transmissivity, and overall 

coefficient of storage were made in the course of six calibration runs. 

The model then had an average error of 5.7 feet, a maximum nodal error 

of 24.7 feet, 82 percent of the nodes with less than 10 feet error, and 

99.5 percent with less than 20 feet error. Changes in transmissivity 

were necessary in two locations where averaging T over 4 nodes had ef- 

fectively eliminated low values that were necessary to maintain steep 

water -table gradients. The overall coefficient of storage was lowered 

from 0.156 to 0.153 (or lowered 0.003 if the original S was larger than 

0.156) in order to achieve water -volume balance. 

The small -scale model can simulate the 19 -year period, 1947 -66, 

using three time -steps, in a run of about six seconds at a cost of less 

than $1.00. 



CHAPTER 3 

ERRORS IN DIGITAL MODELING 

For this study, an error in digital modeling is defined as the 

absolute difference, at a given time, between the water level computed 

at a given model node and the true water level at the corresponding 

point in the physical system being modeled. This definition is shown 

in equation 8: 

et,i,j 
= 

ht,i,j ht,i,j , (8) 

where e 
t,i,J 

= the modeling error at node (i,j) at time t, 

h 
t,i,j 

= water level computed by the digital model at node (i,j) 

at time t, 

and h = true water level at the corresponding point in the 
t,i,j 

physical system at time t. 

Nbdeling errors can be classified as (1) errors associated with 

computation, (2) errors associated with mathematical assumptions, and 

(3) errors caused by errors in basic data. Errors in basic data are 

defined as the difference between the estimated or measured value of 

a model variable and the corresponding true value of the physical sys- 

tem being modeled. The classification of modeling errors, as specifi- 

cally applied to the Tucson basin, is shown in more detail in table 5. 

Although all of these errors will be discussed in a general way, this 

60 
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Table 5. Errors Associated with the Digital - Computer Model 
of the Tucson Basin. 

I. Errors associated with computation and related effects 

A. Roundoff 

B. Truncation (discretization) 

C. Algorithm 

II. Errors associated with major assumptions of the mathematical 
model 

A. Two -dimensional representation 

B. Constant transmissivity and coefficient of storage with 
time 

C. Confined aquifer 

D. Miscellaneous 

III. Errors associated with basic data 

A. Parameters 

1. Coefficient of storage 

2. Transmissivity 

B. Initial and final conditions (water levels) 

C. Input and output functions 

1. Discharge 

a. Value 

b. Location 

c. Variation with time 

2. Recharge 

a. Value 

b. Location 

c. Variation with time 

D. Boundary configuration and idealization 
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study focused on errors in basic data, and specifically on the worth 

of additional data in reducing the errors in computed water levels 

caused by errors in existing basic data. 

Errors Associated with Computation 

Errors of computation result when a problem is solved by a 

digital computer, and include roundoff errors, truncation or discretiza- 

tion errors, and errors peculiar to the algorithm used. Roundoff er- 

rors occur when the computer rounds numbers, due to finite word -size, 

during arithmetic operations. The simplest method of evaluating round - 

off would be to compute water levels in both single and double preci- 

sion and to compare the results. Computing in double precision, instead 

of the normal single precision, would add about twice the number of digits 

to each computed number. Roundoff would affect mainly the added digits 

in each number, so the original digits would be relatively accurate. 

It was not possible to evaluate roundoff error for the Tucson basin 

model because sufficient computer storage was not available. Round - 

off, however, is not likely a major source of error. Carnahan, Luther, 

and Wilkes (1969, p. 442) discussed roundoff error for the algorithm 

used to solve the set of simultaneous flow equations for the Tucson basin 

model, and concluded that for most choices of nodal spacing and time -step 

size, roundoff error is small in comparison to truncation error. 

Truncation, or discretization, error results from the approxima- 

tion of a differential equation by a finite- difference equation, and 

essentially results from approximation of derivatives by assuming linear 
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changes in head between nodes and between time -steps. A mathematical 

expression for an approximation of truncation error for the Gauss - 

Seidel algorithm, as applied to the Tucson basin model, can be derived 

using a Taylor series. If equation 1 is simplified by assuming T con- 

stant over space to yield: 

a2ha2h -Sahgl 
T at T 

truncation 

a4h a4h 

+ 

' 

error (ELT) is: 

S At a2h 

T 2 -2- 

(9) 

(10) 

ax ay 
ay2 

then the local (at a given node) 

(Ax) 2 

ELT 12 ax4 ay4 

providing Ax = Ay is the nodal spacing. This can be derived easily 

using methods given by D. W. Peaceman (written communication, 1969, 

p. 34) in a set of notes for lectures at a NATO School on "Hydrocarbon 

Reservoir Simulation by Computers." This equation shows that trunca- 

tion error is proportional to the algebraic sum of the square of the 

nodal spacing ((Ax)2) and the time -step size (At). An approximation for 

truncation error for the alternating- direction -implicit algorithm is 

more complicated to derive, as the algorithm involves solution in two 

steps. However, Carnahan et al. (1969, p. 453) stated that the dis - 

cretization error for this method is proportional to the algebraic 

sum of the square of the nodal spacing and the square of the time -step 

size. 

It might be possible to obtain a rough estimate of local trunca- 

tion error at given nodes utilizing finite -difference expressions for 
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44 
+ 

a44 
and 

a22 
. However, as Peaceman points out (written communi- 

ax ay at 

cation, 1969, p. 35) , 

As a practical matter, for problems involving any complexity 

at all, estimates of the [truncation] error are best obtained 
by solving the difference equations with different mesh sizes 
[nodal spacings], varying both ax (and Ay and Az) as well 
as At to determine their effects on the solution. In many 

cases, practical values of Ax and At (wherein the computa- 

tional work is not excessive) may be so large that the error 
does not appear to decrease as rapidly as predicted by the 
formulas for local truncation error. The reason for this is 

that expressions for the order of the error describe the asymp- 
totic behavior as Ax and At approach zero and really say 
nothing about the behavior of the error for large mesh sizes. 
Consequently, we must content ourselves frequently with empir- 
ical estimates for the errors obtained by running the same 
problem with several different mesh sizes. We would then run 
the remainder of the cases with that mesh size which balances 
the risks associated with the apparent error against the cost 
of running with a smaller grid size. 

Tests of this type were not done for the Tucson basin model itself, but 

were done, to a limited extent, on a 400 -node model, as discussed in 

Chapter 2 above in the section, "Comparison of the Algorithms." Tables 

1, 2 and 3 show that the error can be more than 10 feet out of a total 

water -level change of 50 -90 feet, near an input or output source. 

Since in these experiments the mathematical model was assumed correct 

and the basic data were assumed correct, the error was associated only 

with computation, and likely was chiefly truncation error. 

The third component of computational error is defined here as 

algorithm error. This category includes errors that do not seem to 

fit into the classification of roundoff or truncation error. For 

example, in the Gauss- Seidel method, a solution is considered to be 

adequate when the sum of the nodal errors is less than a set quantity 
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or tolerance level. However, this tolerance level can be varied, and 

the difference in solutions for various tolerances is here classified 

as algorithm error. 

In addition, there will be differences in solutions depending 

on the method of computing the average or internodal transmissivities. 

Bouwer (1969, pp. 394 -396) estimated average values of K, hydraulic 

conductivity (for a definition of K see p. 107 below) , using the arith- 

metic, harmonic, or geometric means. He showed that the arithmetic 

mean is applicable when flow through porous media is parallel to re- 

gions of different K, and the harmonic mean is applicable when flow 

is across regions of different K, or series flow. Bouwer concluded 

that the intermediate value given by the geometric mean might be the 

best estimate of average K (or T) when flow is a combination of paral- 

lel and series flow. Lovell (1971) decided that the harmonic mean was 

most applicable to the Tucson basin model, but for this study the arith- 

metic mean was used, as was used by Pinder and Bredehoeft (1968, p. 1075) . 

These differences in computing average K or T might also be classified 

as algorithm errors, for lack of a better classification system. 

During this investigation, the only study of algorithm errors 

was in comparing results using different ways of computing tolerance 

levels, as discussed in Chapter 2 above in the section on "Comparison 

of the Algorithms." Defining tolerance at each node instead of over 

all nodes made little difference in results, but algorithm errors merit 

more study. 
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Errors Associated with the Assumptions 
of the Mathematical Model 

Using a relatively simple mathematical model, equation 1, to rep- 

resent the complex ground -water flow system of the Tucson basin involves 

many assumptions, some obvious and others more subtle. Equation 1 is a 

quasi- linear, time -invariant, 2- dimensional equation, in that T and S 

are constant over time and vertical components of flow are ignored. Some 

implicit assumptions of the equation are that wells (or points of input/ 

output via the term QR.) fully penetrate the aquifer, that water is re- 

leased from storage instantaneously with decline in head (this also re- 

fers to S being time -invariant), that the laws of Darcy and Hooke hold, 

and that temperature is constant. In addition, the aquifer system in the 

Tucson basin is unconfined, but strictly speaking, equation 1 applies 

only to confined aquifers. 

Some of the errors associated with these assumptions have been 

studied by those who have worked with the Theis equation (equation 24, 

below), a solution of a special case of the general flow equation. For 

example, Jacob (1950, p. 384) concluded that if the total head change is 

small relative to the total saturated thickness, equation 1 can be used 

to describe an unconfined system. The total effective saturated thick- 

ness over the Tucson basin is not well known, so this assumption is dif- 

ficult to evaluate. 

Two major assumptions that probably are violated for the Tucson 

basin, at least at some locations for some time periods, are (1) that 

components of vertical flow are not significant and (2) that transmis- 

sivity is constant with time, based on the assumption that the saturated 
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thickness of the unconfined aquifer is constant. At locations where re- 

charge or discharge is large, vertical components of flow may be sig- 

nificant, and a three - dimensional model would better describe the system. 

However, in a large -scale model, vertical components of flow in local 

areas might not be a significant source of error. Sufficient computer 

storage was not available to construct a three -dimensional model of the 

basin; and in addition, it is not likely that there are enough data on 

variations in hydraulic conductivity with depth to make such a model 

meaningful. 

It would be possible to include an approximation to a time - 

varying transmissivity in the Tucson basin model, at the cost of a rela- 

tively small increase in computation time. The model could recalculate 

transmissivity after each time -step, based on the change in saturated 

thickness during that time -step. The relation involved is: 

T = Kb , 

where K = hydraulic conductivity (defined more completely below, p. 107), 

in ft /day or gpd /sq ft; and b = saturated thickness of aquifer, in feet. 

However, K at each node might have to be considered constant over b 

because, as mentioned above, there likely are few data on the actual 

variations in K with depth. Therefore a comparison of results using a 

constant T and time - varying T might not give a good approximation of the 

actual error. 

The coefficient of storage also may undergo an apparent change 

with time because of the slow release of water from storage in relatively 

fine - grained sediments. These changes have been observed in the Tucson 
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basin (Clyma et al. 1968) . However, after long periods of time (months 

or years) such as are simulated with the model, the apparent S should ap- 

proach the true S and little error should result from assuming it con- 

stant with time. 

Although there has been little attempt in this investigation to 

study rigorously the errors associated with all the assumptions of the 

mathematical model, it is an area that needs further study. 

Errors Associated with Basic Data 

Errors in the basic data used in models probably are one of the 

major sources of error, and have been the focus of much of the work in 

this study. Remson, Hornberger, and Molz (1971, p. 65) are of the opin- 

ion that "errors in approximation [truncation errors] are generally out- 

weighed by the inaccuracies due to the uncertainties of the specifica- 

tion of subsurface hydrologic parameters." Most errors in basic data are 

well -recognized by modelers, although some, such as variations in dis- 

charge and recharge over relatively short time periods and errors in 

boundary configurations, commonly receive little attention. 

In general, errors in data can be of several types, such as in- 

strumental or measurement error, interpolation error, and errors due to 

data not being representative of the aquifer. Instrumental or measure- 

ment error probably is present always, although it likely is a minor 

problem. Interpolation errors arise when field data are contoured to 

yield estimates at all nodes, as is commonly done for the coefficient 

of storage, transmissivity, and initial water levels. Some field data 

may not be representative of or even may not be from the aquifer being 
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modeled. Measurements of water levels in wells that are being affected 

by local pumping, or in wells tapping perched water bodies, for example, 

will not be representative of aquifer conditions. Errors due to inter- 

polation and non - representative data are likely significant problems. 

Even if measurement errors and errors due to interpolation and 

non - representative data were not present, estimates of the parameters 

and initial water levels at a model node still would be in error because 

of imperfect sampling in space. Values of parameters and initial water 

levels of the physical system being modeled will vary naturally over a 

nodal area, and any sampling procedure can only approximate the true 

value. The problems discussed above suggest a need for study of optimal 

design of networks for collecting ground -water data. 

Parameters 

Errors in estimating the coefficient of storage over the Tucson 

basin model are due mainly to a lack of data, as discussed in "Data for 

the Models "(in Chapter 2 above). Even if data were available from 

properly - designed aquifer tests, errors would be associated with measure- 

ment of well - discharge and water levels during tests, interpretation of 

test results, and interpolation of data from tested to untested nodes. 

For transmissivity, errors arise for the same reasons: from 

erroneous aquifer -test data, errors in interpretation, and faulty inter- 

polation of these data to all nodes of the model. In preparing the map 

of transmissivity used to estimate T at each node, the U. S. Geological 

Survey likely used sources of data other than aquifer tests, such as 
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geologic data from test wells and general knowledge about patterns of 

sedimentation in the basin. However, these sources of data and inter- 

pretations made from them likewise are not free of error. 

For the Tucson basin, transmissivities estimated using data from 

short -term aquifer tests and using methods of analysis which do not ac- 

count for delayed drainage likely will be larger than actual values. 

Clyma et al. (1968, pp. 13 -14) demonstrated that delayed drainage during 

the first few hours of pumpage lessens the rate of water -level decline, 

and that using these water -level data leads to unrealistically large 

values for T. 

Initial and Final Conditions 

In order to compute water -level changes for any period, initial 

water levels for each node must be estimated from a contour map. At this 

point in the model construction, interpolation of data is always re- 

quired, unless water -level data are available for every node. The maps 

are contoured using measurements of water levels in observation wells. 

The estimated values at each node may be in error because of errors in 

measurement or because data are not representative of the aquifer. Con- 

touring water -level data over the Tucson basin was a subjective process, 

and errors certainly were introduced during contouring. 

Digital models commonly are calibrated by adjusting model param- 

eters and other data so that computed water levels match historically - 

measured levels, which could be termed "final conditions," at one or 

more points in time. Errors also enter the model because historical 

"final" water levels include measurement errors or are non -representative. 
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In addition, if historical water -level data were interpolated to all nodes 

in a model, such as was done for the Tucson basin model, interpolation or 

contouring errors also are present. 

Input and Output Functions 

Errors in assumed values of discharge and recharge lead to er- 

rors in the model. Such errors can be classified as errors in the quanti- 

ty of or in the assumed location of discharge or recharge and errors 

related to time- variations of discharge and recharge not accounted for 

by the model. 

In many basins pumpage is measured, so the major error is in 

measurement with no error in location. In the Tucson basin, however, 

pumpage, except for that by the city of Tucson, largely is estimated and 

there are errors both in the quantity and assumed location of pumpage. 

In addition, the model assumes pumpage constant over long periods of time. 

The smallest time periods over which the U. S. Geological Survey esti- 

mated pumpage is one year; thus, actual variations in pumpage within a 

season, week or day cannot be included in the model and can lead to er- 

rors in predicted water levels. 

Another form of discharge, evapotranspiration from the water table, 

is not included specifically in the model. Although such discharge is 

small over most of the basin, it may be significant along some stream 

channels. However, this discharge likely was at least partly accounted 

for in the model by adjusting values of recharge along streams during 

model calibration. 
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The various categories of recharge are also in error with respect 

to quantity, location, and variation with time. Recharge from streams 

was estimated primarily using data from infiltration studies by the U. S. 

Geological Survey, and any errors in the assumptions or in the measure- 

ments made during those studies will lead to errors in the model. In 

addition, the amounts of infiltration into stream channels are not equiv- 

alent to recharge to the water table because some water is lost by 

evapotranspiration and some is used to satisfy soil -moisture requirements. 

Any method of estimating recharge from infiltration data necessarily will 

include errors. 

The model also assumes recharge constant for long reaches of 

streams, when in fact recharge probably varies along a reach because of 

variations in the hydraulic conductivity of sediments beneath the stream - 

channels. Stream - channel recharge also varies with time, contrary to the 

model assumptions. For ephemeral streams such as those in the Tucson 

basin, significant recharge occurs during only a few months of the year 

and commonly during only a few days of those months. Total stream - 

recharge also varies from year to year and the proportion of recharge 

contributed by a given channel reach also varies from year to year. 

There is also some lag between the time of infiltration to the 

stream - channel bed and the time when water actually reaches the water 

table, for which the model does not account. This lag apparently is of 

the order of a few days for the reach of Rillito Creek studied by Moench 

and Kisiel (1970, figure 3). The lag, of course, would be greater if 

the water table were deeper than the less than 50 -foot depth at the time 
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of the flow event studied by Moench and Kisiel. In predicting regional 

water levels at the end of a long tine period with a digital model, how- 

ever, local space and time variations in recharge assumed constant may 

not cause significant errors. 

Boundary recharge, including recharge directly from mountain 

masses or from stream - channel infiltration in the foothills, and subsur- 

face inflow under stream - channels from tributary basins, can be estimated 

roughly at best, as these quantities cannot be measured directly. Bound- 

ary recharge and subsurface inflow chiefly were estimated as the quanti- 

ties necessary to achieve model calibration, but as was previously 

discussed in Chapter 2 (in "Calibration of the Models "), lack of data 

around the boundaries makes such estimates unreliable with respect to 

quantity and location. Subsurface outflow, actually a form of discharge, 

also was estimated in this way and includes similar errors. 

Boundary recharge, and especially recharge from mountain masses, 

may not vary with time significantly because variations in precipitation 

on the mountains may be largely damped as the water moves into the alluvi- 

al basin. This is also true, although perhaps to a lesser extent, of 

subsurface flow from tributary basins. The assumed nature of the boundary 

probably also leads to error. The boundary is assumed to be impermeable 

in the model and rates of recharge thus are not affected by changes in 

hydraulic gradient at the boundary. In reality, an increase in hydraulic 

gradient, such as is caused by water -level declines in the basin, likely 

will increase recharge, mostly due to withdrawal of water from storage in 

the bedrock of the mountains or in tributary basins. 
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The Tucson basin model does not now simulate any recharge from 

infiltration of excess irrigation water. The electrical -analog model 

calibration process suggested that prior to 1958, about 25 percent of 

pumpage was infiltrated to the water table in the southern part of the 

basin, but that this percentage lessened after 1958 (Anderson 1968, p. 

24). This same recharge, however, may have been at least partly ac- 

counted for by adjusting pumpage during calibration of the digital model. 

Boundary Configuration and Idealization 

Model boundaries commonly are delineated along contacts between 

permeable alluvium and rock of low hydraulic conductivity in the moun- 

tains around a basin, or at water -table divides between adjacent hydrau- 

lically connected alluvial basins. However, geologic data on effective 

contacts between permeable and less permeable material, or on estimated 

water -table divides, may be in error. Perhaps a larger source of error 

is that model boundaries often cannot be placed exactly at geologic con- 

tacts or water -table divides, either because of limitations on the total 

size of the model or because smooth lines cannot be closely approximated 

by the model grid. 

In summary, all types of data used in a digital model of a 

ground -water basin contain some error of which modelers should be well 

aware. Additional errors are introduced by the process of computation 

and because of the simplifying assumptions of the mathematical model. 

During model calibration, when model parameters, initial conditions, and 

input /output are adjusted so that the computed water -level change matches 
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historical change, compensation is made for these various errors. In 

other words, errors are "eliminated" by altering values of storage co- 

efficient, transmissivity, initial water levels, pumpage, and recharge. 

The calibration process initially may move estimated values of 

basic data closer to true values, but eventually, if calibration pro- 

ceeds until computed changes approach the exact historical changes, a 

point will be reached where calibration yields adjusted values of basic 

data that will move away from true values. This will happen, however, 

only when computational errors and errors due to mathematical assump- 

tions are significant. In addition, as stated previously, many combina- 

tions of various values of parameters, initial conditions, and input/ 

output can produce identical water- level -change values, especially for 

a single historical time period; so that the true basic -data values are 

indeterminate, and a set of values derived from calibration is thus non- 

unique. If many historical matching periods are available, the cali- 

brated basic -data values may approach some mean values which adequately 

predict water levels in the future, but these will not be identical to 

the true values because they are in part still compensating for other 

model errors and assumptions. If future conditions in the basin, such 

as water levels, pumping and recharge patterns, etc. , vary greatly from 

those in the periods used for model calibration, the calibrated values 

for model parameters may not predict future water levels accurately. 

As Lovell (1971, p. 11) pointed out, "continued withdrawal of water 

from the aquifer below the level where data have previously been avail- 

able would produce behavior not encountered at the time of calibration 

and, therefore, not incorporated in the adjustment program." 
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After calibrating the Tucson basin model, it was observed that 

calibrated values of transmissivity conunonly were far from sample values 

obtained from aquifer tests in corresponding nodal areas. The means 

of sample values of T at the 57 nodes in which more than one aquifer 

test had been made were compared to the calibrated values of T. The 

mean ratio of the absolute value of the difference between the sample 

mean and the calibrated value to the sample mean was 0.47. For example, 

if the sample mean was 100,000 gpd /ft, the calibrated value tended 

to be about 47,000 larger or smaller. At 8 of the 57 nodes compared, the 

difference between the sample mean and the calibrated value was about the 

same magnitude as the sample mean. 

These relatively large differences, of course, may not be caused 

primarily by compensation, during calibration, for errors in computation, 

errors due to mathematical assumptions, and errors related to the al- 

gorithm. As is pointed out in the present discussion (see pages 69 and 

107), sample values of T may be in error for several reasons. Delayed 

drainage during the aquifer -test period, for example, may result in 

sample values of T being too large. This particular problem may be the 

cause of a large part of the observed difference between sample means 

and calibrated values, because 40 of the 57 sample means were larger 

than the corresponding calibrated values. 



CHAPTER 4 

USE OF STATISTICAL DECISION THEORY TO EVALUATE 
WORTH OF GROUND -WATER DATA 

This study focused on a problem often faced by field hydrol- 

ogists -- given that error exists in estimates of parameters, initial 

conditions, and input /output for a ground -water basin, what additional 

data collected at what locations in the field would add the most knowl- 

edge about the basin? For this study the question was rephrased to 

ask -- what new data collected in the Tucson basin would yield the most 

improvement in the digital model? It probably would be necessary in any 

case to evaluate improvement, or worth of new data, in terms of a digi- 

tal or other type of model because these tools presently offer the best 

method of estimating the response of a complex ground -water flow system 

to development of water. Davis and Dvoranchik (1971) and Davis (1971) 

evaluated the worth of additional surface -water data using statistical 

decision theory, and their approach has been modified here to study the 

worth of additional ground -water data to a digital model. 

For the present worth -of -data studies values of parameters, 

initial water levels, and discharge /recharge were assumed to be still far 

enough from true values so that additional sampling of the actual physi- 

cal system would tend to improve model data. Although this assumption 

likely would be good during the early stages of studies of a basin, later 

it would be difficult to be sure that it was valid. If this assumption 
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were invalid, of course, worth -of -data studies such as these would be of 

little value, because additional sampling might yield variable values 

that would result in a poorer model, in the sense that predicted water 

levels would be less accurate, even though the variable values would be 

more representative of the physical system being modeled. 

Statistical decision theory was used in this study because some 

more or less objective method was needed to compare the effects of er- 

rors in different kinds of variables. Sensitivity analyses, such as 

those proposed by Meyer (1971), can be used to evaluate the sensitivity 

of the model to an error introduced in a variable at a given node, but 

this sensitivity cannot be compared directly with sensitivities of dif- 

ferent variables because there is no way to choose exactly equivalent 

errors, representing the same degree of uncertainty, in two variables 

at the same or different nodes. Statistical decision theory provides 

a relatively objective method of choosing equivalent errors, in that 

errors located at the same number of standard deviations from the mean 

can be considered equivalent. 

In this study, errors in one variable at one node at a time 

were evaluated, and data at all other nodes were assumed correct. Thus 

errors in a given variable at different nodes were considered indepen- 

dent of one another. Where variable values at each node are measured 

separately, such as is commonly done for pumpage, sometimes done for 

initial water levels, and which theoretically could be done for all 

other variables, the assumption that errors are independent may be 

reasonable. However, if data on a variable are not available at each 
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node, such as is common for storage coefficient, transmissivity, initial 

water levels, and recharge; estimates commonly are made at nodes without 

data. These estimates can be interpolated from a map showing contoured 

values of a variable, such as is common for transmissivity and water 

levels, or by using point measurements to estimate values over wide areas 

or along zones, such as is common for coefficient of storage and recharge. 

In these cases, errors at one node are not independent of one another. 

For this study, data on variables were judged to be insufficient to 

estimate joint probabilities of dependent errors, and all errors were 

considered independent even though this was somewhat unrealistic. In 

addition, use of dependent errors and use of the technique described 

in this report would consume a prohibitive amount of computer time 

(see p. 147). However, study of the dependence of errors at adjacent 

nodes resulting from the contouring process merits more work. 

Errors in different variables at the same or different nodes 

were also assumed independent. This assumption is reasonable because 

variables commonly are measured independently. Even though trans- 

missivity and storage coefficient can be obtained from a single aquifer 

test, values of S from aquifer tests in the Tucson basin are unreliable 

and were not used (see p. 30). Errors in recharge are the only errors 

that might be dependent on errors in other variables. Recharge for the 

Tucson digital model was derived largely from calibration of the analog 

and digital models, and thus values of, and errors in, R depend on 

values of, and errors in, initial water levels, transmissivity, and 

storage coefficient along model boundaries and stream channels. 
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Loss Functions 

In order to use statistical decision theory, a loss or objective 

function must be specified. As used in this study, this function is an 

attempt to quantify the cost of an error in predicted water levels. 

The basic loss function (L) was defined: 

TT I J 

L(Vk,p,q' t=1 i=1 j=1 m) 

= E E E 
C(eij)ij.et,i,J,k,p,q; (11) 

where Vn = the nth (n= 1,2,...N) possible value of the kth (k= 1,2,...K) 
k,p,q 

variable V (in the Tucson model K was assumed to be 4 

and the K variables are storage coefficient, transmissiv- 

ity, initial water level, and discharge /recharge) at a 

given single node (p,q) in a digital model; 

m = mth value of V (m can be any of the N values of Vk) , 

assumed to be its true value; 

t = time -step; 

TT = total number of time -steps in the simulation period; 

i = row location in grid (north -south coordinate); 

I = total number of rows in model grid; 

j = column location; 

J = total number of columns; 

and C(e. .). . = cost per foot of water -level error at node (i,j) as a 

function of the magnitude of that error. 

The magnitude of water -level error at node (i,j) for time t caused by an 
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error in the kth variable (Vk) at a given node (p,q) was further defined 

as: 

n 

et,i,J,k,p,q -Iht,i,J,k,p,g ht,i,J,k,p,gl ; 

(12) 

where ht,i,j,k,p,q = predicted water level (head or potential) at node 

(i,j) for time t computed by a digital model using 

the nth possible value of the kth variable at node 

and hm 
1,3,k,p,q 

(p,q), 
( ,p,q) 

= water level at node (i,j) for time t computed 

assuming that the mth value of V 
k,p,q 

is the true. 

value. 

Thus L is the loss over all nodes (i, i = 1,2,..., I; j, j = 1,2,..., J) 

associated with using the nth value of Vk at node (p,q) instead of 

the "true" mth value. This equation implies that the errors at each 

node (i,j) at each time t have independent effects and that they can 

be summed to yield a total effect. If the ground -water basin is 

operated as a single unit, these assumptions are reasonable. If this is 

not the case, the cost coefficient C. can be set equal to zero for 
l,j 

any node at which an error does not affect a given water user. 

Although the basic loss function probably gives the most infor- 

mation about loss, other functions were judged to be necessary to give 

a more complete evaluation. For example, the basic function, equation 

11, yields the same results if (1) all nodes have a moderate error or (2) 

most nodes have a small error while a few nodes have a very large error. 
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Therefore in addition to the basic loss function, five alternate loss 

functions were derived and used in the worth -of -data studies. The first 

is a quadratic loss function: 

TT I J 
L= E E E C(ei 

)i,j (etijkp,q)2 ' t=1 i=1 j=1 '3 

(13) 

the second is the loss associated with the maximum nodal error in the 

model: 

L = Max C(e. ) .e ; 

t,i,j 1,j i,j t,i,j,k,p,q 

and the last three are losses associated with numbers of nodes in 

error by specified quantities: 

TT I J 
L(u) = E E E C(e. ) .NN(u) 

t=1 i=1 j=1 l,j i,j t ' 

where wto 
{1 if et,i,j,k,p,q 

> u ; 

t,i,j 
0 otherwise 

u = 5, 10, 25. 

(14) 

(15) 

(16) 

Equation 13 defines the loss associated with an error in V 
k,p,q 

as the 

sum of the squares of the errors in water levels over all nodes and 

time -steps; equation 14 defines the loss as the maximum water -level error 

over all nodes and time -steps; and equation 15 defines the loss (for u =25, 

for example) as the number of nodes over the model, for all time -steps, 

at which the error in water levels was equal to or greater than 25 feet. 



83 

If the variable value Vn that would minimize the loss as 
k,p,q 

expressed by equation 14 were chosen, it could be viewed as an appli- 

cation of the minimax decision criterion. This procedure consists of 

minimizing the maximum possible error (in this case it would be the 

maximum expected error). Minimax is commonly a more conservative 

decision criterion because, for example, a higher overall level of error 

over a digital model might be accepted in return for a lower maximum 

error. 

These loss functions are all symmetrical, in that positive and 

negative errors of equal size are considered equivalent. For specific 

management problems this may not always be true. For example, suppose 

the problem was to forecast when the water level would fall below the 

bottom of a well, necessitating its deepening or replacement. The cost 

of predicting the water level too low, so that the well was replaced 

prematurely, would be different than the cost of predicting the level 

too high, so that the well went out of production before it could be 

replaced. However, specific management problems of this type were not 

considered in this study, so asymmetric loss functions were not derived. 

In the basic worth -of -data studies, losses were computed or evalu- 

ated only at the end of the simulation period, and were summed over time 

only for a sensitivity test, primarily because summing or evaluating loss 

over all time -steps used too much computer time (see Appendix A). 

In addition, the cost coefficient C(e. ) was set equal to 1.0 at all 
1,3 1,3 

nodes and was not made a function of e. In order to define a mean- 
1,3 

ingful cost - coefficient function, a specific management problem would 
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have to be considered. Except for an idealized management problem, 

for which a simple cost coefficient was assumed, management problems 

were not defined for the worth -of -data studies, and the cost 

coefficients were set to unity for simplicity. 

Normally loss functions are defined as the economic loss 

pertaining to a given decision in light of the unknown true state of 

nature. However, the determination of true economic loss was judged 

to be beyond the scope of this study, and loss was defined in terms 

of feet of error in predicted water levels, e 
t,i,j' 

A loss or objective 

function in true economic terms might be expressed as the difference 

between all benefits derived from the use of a bit of additional data 

and all costs expended in obtaining it. Costs could be determined 

relatively easily, but determining all the future primary economic 

benefits, let alone secondary benefits, from an added bit of data would 

be very difficult. This subject, however, deserves a detailed formal 

study. 

If the ground -water resources of a basin were controlled by 

one organization or manager, and this manager could assign an economic 

cost per foot of prediction error at each node of a digital model, then 

the loss functions defined previously would yield true economic loss. 

However, to the writer's knowledge there has been little research in 

determining costs of prediction errors. In fact, it is not entirely 

clear what level of accuracy is necessary in model studies of ground- 

water basins. A modeler may require that the model reproduce historical 

water -level elevations or change within 10 feet, but such results may be 
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more (or less) accurate than those needed by water - resource administra- 

tors. The cost of pumping ground water for irrigation in central Arizona 

is about $0.03 per acre -foot per foot of lift (Nelson and Busch 1967, 

p. 36). If predicted water levels were in error by 10 feet, the 

resulting error in estimated pumping costs would be $0.30 per acre -foot. 

This error is only three percent of the value of $10.00 per acre -foot 

for water used to irrigate low -value crops, and even a lesser percentage 

if the water were applied to high -value uses. This suggests that models 

do not need to be particularly accurate, especially if constructing 

and operating accurate models is costly. 

However, such a conclusion may ignore other aspects of ground- 

water basin operation. Fairly accurate knowledge of water levels may be 

necessary for scheduling well- deepening or replacement, for planning 

artificial recharge operations, for prediction of the migration of 

poor - quality water or of land subsidence, and other activities. 

The simple cost coefficient, C(e. .). ., as defined in the loss 

functions, can be used in a general way to approximate economic loss. 

If water -level errors in one part of the model are judged to cause more 

harm than in other parts, the cost coefficient can be used to weight the 

losses accordingly. 

In larger perspective, it is possible that errors in knowledge 

of non -hydrologic aspects of ground -water basin development and opera- 

tion, such as economic, legal, political, or institutional factors, 

may be more significant than errors in hydrologic data. Generally 

similar conclusions were drawn by James, Bower and Matalas (1969) in 
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relation to use of the water resources of the Potomac River, and 

tentatively drawn by Thomas Maddock III in relation to a problem 

involving irrigation with pumped ground water (oral communication, 1970). 

Risk 

Loss cannot be computed directly, however, because the true value 

of the variable is not known. Risk (RK) is the expected value of loss 

given any choice of a value of a variable, and is a more useful con- 

cept: 

RK(p,q' Ppr) -m(L) 

where 

TT N I J 

= E E E E C(e ) 
.e P 

t=1 m=1 i=1 j=1 1,J 1,j t,i,j,k,p,q pr 

{Vm }; 

E = the expectation operator; 

N = the total number of possible values of V; and 

Ppr {Vm} = the probability of occurrence of the mth value of 

V which is distributed N(11 
pr 

, o ) (normally with 
pr 

mean I,, and variance a pr) or LN(u pr ) 

(log- normally), a prior probability in Bayesian terms 

where pr signifies prior. 

(17) 

The risk given any choice of a value of a variable is computed 

by summing the losses over all possible true values of the variable 
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weighted by the prior probabilities of the true values. This defi- 

nition requires the variable to be a random variable that can be 

described by a probability distribution, in this example a discrete 

distribution. The above definition means that risk is evaluated using 

an expected -value criterion. Benjamin and Cornell (1970, p. 531 -541) 

concluded that expected value is a logical basis for choosing among 

alternatives in engineering decisions. 

The use of continuous distributions for the variables was 

considered, but the expected costs of computation were judged to be 

too great. For each point on a distribution of a variable, a complete 

set of water levels must be computed by the digital model. Although 

continuous distributions are more representative, many more points are 

needed to define them adequately, and computing sets of water levels 

for these extra points would be costly. In addition, data on the 

variables likely are insufficient to define adequately their distri- 

butions. 

Admittedly, the use of discretized and truncated distributions 

requires careful evaluation in the context of Bayesian statistical 

decision theory. Little work was done on these problems in this study, 

although some of the results of the sensitivity tests (see p. 151) 

indicated that discretization did not well approximate the frequency 

distributions of the model variables. 
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Expected Opportunity Loss 

Opportunity loss was defined by Benjamin and Cornell (1970, 

p. 528) as the loss associated with not making the best possible choice 

of action in light of the true state of nature. Opportunity loss is 

then the difference in benefit (or cost) of the choice actually made 

and the benefit (or cost) of the choice that would have been made if 

the true state of nature had been known. 

Because the true state of nature is not known, expected 

opportunity loss (EOL) is a more useful concept. EOL was defined for 

this study as: 

EOL = 
Min 

(RK) (18) 

where 
Min= 

the minimum value of risk over the N values of V 
n k,p,q' 

EOL is thus the expected loss associated with the value of V 
k,P,q 

that 

yields the minimum risk, or V kq ,p,(under 
the assumption that there 

is no loss if knowledge of the variable is perfect). This, under 

normal conditions, is the value of V 
k'p,q 

with the highest probability 

of occurrence and would be the logical choice for the variable value 

if no further sampling were possible. EOL also can be characterized 

as the expected error over the model associated with the uncertainty 

in a given variable at a given node V 
k ,p ,q 

Expected Worth of Sample Data 

The goal of this analysis was to estimate the improvement that 

could be made in a model by sampling for more data. This improvement 

was defined as the difference between EOL (or expected error) before 
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sampling and EOL after sampling. However, the so- called expected 

value of the expected opportunity loss after sampling (EEOL) can be 

estimated, without doing any actual sampling, by computing EOL for 

every possible sample result. First, for every possible result of 

sampling an unknown V 
k,P,q 

, a new probability distribution, called 

a posterior probability distribution, can be computed for the variable 

by means of Bayes Theorem (Benjamin and Cornell 1970, p. 556; Schmitt 

1969, p. 62 -65). This theorem, put in_ the context of our example is: 

Vm \1x { Vxl } 
Ps k,p ,g 

P 
P {Vx} 

where Vx 
k,p,q 

PQ{VxI Vm} 

P {Vx} 

(19) 

= the xth possible result of sampling 
Vk,p,q 

(x = 1, 2, ... N); 

= the probability of sampling Vx given that Vm is 

the true value of V 
k,P,q 

, distributed N or LN(Vma2) 

where a 2 is the variance of a sample (P is a 

likelihood function in Bayesian terms where Q sig- 

nifies likelihood) ; and 

N Ppr {Vm} pQ {VxVm} 
m=1 

(20) 

the total probability of observing a sample Vx. 

P {Vx} acts as a normalizing factor in equation 19. Therefore Pps 

is the probability of a value Vm being the true value given 

that a sample yields a result Vx, a posterior probability in 

Bayesian terms, where ps signifies posterior. Equation 19 ex- 

presses the idea that posterior probability is proportional 
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to the product of prior probability and likelihood. In general, if 

Vm is really the true value of V, successive sampling increases the 

posterior probability that Vm is the true value given the available 

data Vx on V 
k,P,q' 

Using these distributions, EEOL can be computed as defined in 

equation (21): 

N TT N I J 
EEOL = 

E(EOL) 
= E 

[Min n 
E E E E C(e. ) e 

x=1 n t=ï m=1 1=1 j=1 l,j i,j t,i,j,k,p,q 

{VmIVx }] P {Vx} (21) 

EEOL is determined using equation 21 by (a) computing the risk for 

each choice of a variable value Vn assuming a given sample result, (b) 

determining the value with the minimum risk for each possible sample 

result (V ), and (c) weighting the sum of these minimum risks by the 

probability of observing each sample result. 

The expected worth of sample data (EWSD) was defined as: 

EWSD = EOL - EEOL. (22) 

This is the difference between expected opportunity loss before and 

after sampling. The optimum bit of data to collect for the model is 

the bit with the largest EWSD (EWSD ), defined as: 

* Max 
EWSD = 

k,p,q 
EWSD , (23) 

where Max = the maximum EWSD over all k variables (k = 1,2,....K) at 
k,p,q 

each node (p,q) (p = 1, 2, ....I), (q = 1, 2, ...J). Alternately, 
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the variables at various locations could be ranked in order of the 

worth of additional samples of data on V for improving model results. 

The equations given in this chapter were incorporated in a com- 

puter program (Appendix A) and used to estimate worth of additional data 

to the Tucson basin model. This technique includes basin dynamics in 

estimating worth of additional data, by means of using the digital model 

to compute all values of predicted and "true" water levels included in 

the loss function. 

In actual practice, evaluating worth of data might proceed in 

stages. A preliminary or initially - calibrated digital model could be 

used to choose the data that would most improve the model. This data 

would be collected, if possible, and used to modify the model, which 

then would have to be recalibrated to some extent. The process could 

be repeated until model improvement was judged, by some objective 

criterion, to be of less value than the cost of collecting additional 

data. However, the techniques developed in this study likely are 

adequate only to indicate, in the initial stages of model building, 

which data are most critical to the model. 



CHAPTER 5 

WORTH OF DATA FOR THE TUCSON BASIN MODEL 

As an example in using statistical decision theory to approxi- 

mate the worth of collecting additional hydrogeologic data to improve a 

digital model of a ground -water basin, variables of the small -scale Tucson 

basin model were tested to determine their associated expected error and 

expected worth of sample data. 

Major Assumptions of the Worth -of -Data Studies 

The major assumptions made in the worth -of -data studies include 

the assumptions inherent in the digital model and the assumptions of the 

method used to compute worth of data. The main assumptions in the digi- 

tal model are discussed briefly in Chapter 3 in the section on "Errors 

Associated with the Assumptions of the Mathematical Model." This sec- 

tion summarizes the assumptions of the method, although specific assump- 

tions also have been discussed in the text where they are made. 

First, only the worth of additional data to a digital model is 

evaluated, and not the worth of data to any other kind of evaluative 

tool. Secondly, worth of added data is evaluated only in terms of feet 

of reduction in error in predicted water levels over the model, and not 

in terms of economic benefits resulting from reduced error. In addition, 

only the worth of added hydrologic data is considered; the worth of added 

data on legal, political, or institutional factors was not studied. 

92 
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Thirdly, the statistical criterion used to evaluate error and reduction 

in error is expected value, and not the maximum likelihood, the minimiza- 

tion of the maximum error, or some other criterion (see pp. 83 and 87). 

Fourthly, this study assumes that a digital model is in a relatively 

early state of calibration, so that collection of added data will tend 

to improve the model, rather than yield values which will result in a 

poorer model. 

Some additional detailed assumptions of the method are listed 

below. (1) Errors at individual nodes are assumed to be statistically 

independent, or not related to each other. (2) Only one variable at one 

node at a time is considered in error; all other model variables are as- 

sumed to be correct. (3) Functions of loss due to error are assumed to 

be symmetrical -- in other words, positive and negative errors are given 

equal weight. (4) Errors are assumed to be additive in that the model 

error over all nodes is an algebraic sum of errors at individual nodes. 

The computer program, however, has the capability of weighting errors at 

individual nodes if such weighting is justified. (S) Functions of loss 

due to error are computed only at one point in time, although the program 

has the capability of approximating the integration of loss functions over 

time. (6) The frequency distributions of the model variables are as- 

sumed to be either normal or log- normal, and to be adequately represented 

by discrete and truncated distributions. Parameters of the distributions 

had to be subjectively estimated because few sample data are available 

at individual nodes. 
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Time Period Used 

In order to make the worth -of -data studies as realistic as pos- 

sible, a time period in the future was used. A hydrologist interested 

in determining which types of additional data at what locations would 

most improve the predictive capability of his model would have to select 

a time period to use for his worth -of -data studies. He probably would 

select the future time period over which he wished to predict for his 

studies. The period selected for this study was the 20 years from the 

spring of 1970, assumed to be the "present," to the spring of 1990. 

In order to use this period, additional basic data had to be compiled 

for the Tucson basin model. The coefficients of storage and trans - 

missivity over the model were assumed to be the same as for the 1947 -66 

calibration period. Recharge to the model was likewise assumed equal 

to that previously determined, and constant over the 1970 -89 period. 

Initial water levels and discharge, however, had to be recompiled. 

A map of the contours of water -table elevations for the spring 

of 1970 was obtained from the Department of Agricultural Engineering 

and used to estimate representative water levels at each node of the 

509 -node model. These initial levels were used to predict water -level 

change for an arbitrary 19 -year period in order to check their compati- 

bility with the computer model. A 19 -year period was assumed because 

the already compiled 1947 -66 pumpage and recharge data were used in the 

test simulation. Predicted changes were unrealistic at several places 

around the model boundary, due to the same problems discussed in Chapter 

2 in the section on "Calibration of the Models." All measurement data 
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used in preparing the contour map were then plotted on the map of 1970 

water levels and used to make reasonable adjustments of the contours 

around the model boundaries. 

Estimating pumpage for the 1970 -89 period was not as straight- 

forward, primarily because nobody has made comprehensive estimates of 

future pumpage from the Tucson basin. The U. S. Geological Survey made 

an estimate of 1962 -65 pumpage over the basin and assigned values to 

each node of their electrical - analog model. In addition, they made 

lumped estimates of pumpage from the basin as a whole for the years 

1965 through 1969. J. F. Rauscher, Chief Engineer of the city of Tucson 

Department of Water and Sewers, has made the only basin -wide predictions 

of water use in a chart entitled "Table of Water Requirements in Acre - 

Feet, period 1970- 2030," dated May 16, 1968. In addition, the Depart- 

ment of Agricultural Engineering supplied their available, although 

incomplete, data on locations of the wells owned by the mining com- 

panies in the southern part of the basin, and the city of Tucson fur- 

nished data on well locations and current and projected pumpage for the 

mines. 

All these data were used in making a rough estimate of pumpage 

for 1970 -89. A better estimate could have been made but would have 

taken considerable time and effort. Since the purpose of this study 

was primarily to test the method using realistic data rather than to 

obtain the best possible worth -of -data values for the Tucson basin, the 

rough estimates of pumpage were deemed sufficient. 
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The estimates were made using the following procedure. First, 

the 1962 -65 values at each node in the 1,890 -node model (distributed 

values) were summed and compared with the lumped 1965 estimate. The 

1965 total was about 10 percent greater, so 1962 -65 distributed values 

were increased to match by first adding any pumpage for the mines that 

did not appear to have been included in the Geological Survey analog 

model, and then increasing each node by the remaining seven percent 

difference. 

The 1965 distributed values were then adjusted to match the 1969 

lumped value. The Geological Survey subdivided their lumped values into 

irrigation, municipal, and industrial uses. From 1965 through 1969 

irrigation use declined slightly, municipal use increased by about 30 

percent, and industrial use almost doubled, primarily due to increased 

pumpage for the mines. The 1965 values were adjusted to 1969 by (1) 

adding the pumpage by the mining companies, (2) assuming that all the 

irrigation decrease was accounted for by wells taken out of production 

on irrigated farm land retired by the mining companies, and (3) in- 

creasing pumpage over the area in and around Tucson in which the city 

has production wells. In addition, some pumpage was added to account 

for new wells drilled by the city in their Santa Cruz well -field be- 

tween Tucson International Airport and Sahuarita. The 1970 values of 

pumpage were assumed to be equal to 1969 values, except for wells of 

the mining companies, for which actual 1970 estimates were available. 

The 1970 distributed values then were adjusted to give an es- 

timate of 1989 values of pumpage. This was probably the poorest of the 
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estimates, as the only projections available node by node were those 

for wells of the mining companies. Even the estimates by the mining 

companies are likely too high because the companies apparently assumed 

they would do no recycling of water. The adjustment to 1989 was made 

by increasing the total pumpage for the mines from 35,000 to 43,000 

acre -ft /yr -- this corresponds with the city of Tucson's estimate of 

pumpage for the mines rather than the mining companies' own estimate 

of 53,000 acre- ft /yr. In addition, some wells drilled in the city's 

Santa Cruz field and presently held in reserve were assigned some pump - 

age. Pumpage over the rest of the basin was assumed equal to 1970 

values. This may seem a poor assumption in view of the general belief 

that population in the Tucson basin will continue to grow over the next 

20 years. However, J. F. Rauscher of the city's Department of Water 

and Sewers (oral communication, 1971) claimed that basin pumpage will 

likely be declining by 1980 because of availability of alternate sup- 

p7ies outside the basin, such as water from the Central Arizona Prpject 

and Avra Valley. However, because some degree of doubt exists about 

when and whether either of these supplies will be available, the basin 

discharge for 1989 was not decreased from the 1970 values. The assump- 

tion that it will be about the same is perhaps as reasonable an 

assumption as could be made currently. 

The average pumpage for 1970 -89 used for the worth -of -data 

studies with the 509 -node model was derived by averaging the annual 

values for 1970 and 1989, multiplying by 20 years and converting the 

data from the 1,890 -node grid to the 509 -node grid. 
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Basic Worth -of -Data Studies 

Estimation of Parameters for the Prior Distributions 
and the Likelihood Functions 

In order to use statistical decision theory to estimate worth 

of data to the Tucson basin model, parameters (11,c) of the assumed nor- 

mal frequency distributions -- or log - normal for transmissivity -- 

for the variables studied had to be determined or estimated for both 

prior distributions and likelihood functions. Unfortunately, few sample 

data commonly are available within given nodal areas for the four var- 

iable types studied, so the parameters had to be estimated, and to a 

large extent, subjectively estimated. This was true even though the 

Tucson basin is typical, or even well- endowed, in the amount of hydro - 

geologic data available. For problems of this type, therefore, such 

subjective estimates invariably will be necessary. 

Subjective estimates of parameters are those made primarily on 

the basis of the experience, judgment, and intuition of the estimator; 

whereas objective estimates are based only on sample data. Subjective 

estimates of probability are especially useful where repetitive sampling 

to obtain objective estimates of relative frequency is not possible. 

Benjamin and Cornell (1970, pp. 40 -41) contrasted estimating the proba- 

bilities associated with tossing coins, which can be done by experiment, 

with estimating the probability that the material at a depth of 30 feet 

beneath a bridge footing is clay. This probability must be estimated 

subjectively prior to drilling, which will settle the question once and 



99 

for all. In this case the probability is not a relative frequency 

but expresses an individual measure of the relative likelihood of an 

outcome. 

The process of subjective estimation can be made more "objec- 

tive" by employing standard techniques, such as those discussed briefly 

by Benjamin and Cornell (1970, pp. 538 -539; pp. 541 -544). Folayan 

(1969, pp. 26 -33) obtained subjective estimates of parameters for the 

distribution of the in -situ compressibility of a soil by questioning 

engineers familiar with the soil. Such techniques were not used in 

this study because the writer made all necessary subjective estimates. 

Subjective estimates were needed for parameters of distributions of 

variables at each node of the digital model. Making the approximately 

2,000 necessary estimates was considered to be too formidable a request 

to make of local practicing hydrologists, and unnecessary for a study 

which was primarily to develop a general approach for evaluating worth 

of ground -water data. 

A prior distribution, Ppr, for a given variable at a given node 

represents the best estimate on the distribution of possible true or 

representative values of the variable, based on available sample data 

and /or the experience and intuition of the hydrologist making the esti- 

mate. A likelihood, PQ, is the probability of observing a given sample 

assuming the mean of its distribution has a given value. For the dis- 

crete distributions used in the worth -of -data studies, a likelihood is 

the probability of observing, or sampling, one of the discrete values 

of the variable being tested, assuming that one of these possible 
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values is the true value, or PQ {Vx1V111}. Each likelihood was estimated 

by using the assumed true value as the mean of a normal, or log -normal, 

distribution. However, estimating the standard deviation of this dis- 

tribution, or likelihood function is more complicated. 

Initially a "sampling" standard deviation (o, see p. 125) 

was estimated for each variable to be tested. This is the standard 

deviation of the likelihood function associated with collecting one more 

sample, assuming that the model value of the variable, or the value as- 

sumed true in the model, is the true mean. The first set of likeli- 

hoods, then, is the probability of observing each of the possible values 

of the variable, including the model value, if the model value is the 

true mean. Subsequently, each of the other possible values is assumed 

to be the true mean and a likelihood function is derived. The method 

used here to estimate the standard deviations of these likelihood func- 

tions was different for each variable type. 

As an example, assume that the value of T at a node in the model 

is 50,000 gpd /ft, and six alternate, or erroneous, values are assumed 

to be 5,000, 15,000, 30,000, 75,000, 125,000, and 200,000 gpd /ft. The 

first likelihood function consists of the probability of obtaining each 

of the seven values of T from an aquifer test if the mean, or expected 

or true, value of T for the node is 50,000. These probabilities are 

determined from a standard normal probability table, using uT = 50,000 

and the assumed value of aT In this study, however, the logarithms 
lms 

of the values of T were used as T was assumed to be log -normally distri- 

buted. The next set of likelihoods is determined by assuming that the 
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mean or expected nodal value is 5,000 gpd /ft and again computing the 

probability of obtaining each of the seven values of T from an aquifer 

test. This process is repeated for each of the other five values of 

T to obtain the complete set of likelihood functions. 

One difficulty in discretization is associated with the discreti- 

zation of likelihood functions. If the extreme lower (or upper) value 

of V 
k,p,q 

is assumed to be the mean, all the alternate values like above 

(or below) the mean. In fact, for only the model value as mean are 

there equal numbers of alternate values above and below the mean. 

Therefore, almost SO percent of the area under the probability curve 

is not assigned initially to any value of V 
k,P,q 

Normalization dis- 

tributes this "unused" probability to each variable value, but the re- 

sulting probabilities are not equivalent to probabilities computed when 

the mean is centrally located. Because of the asymmetry, the assumed 

mean and its two closest values have a higher probability, and the 

four values farthest from the mean have a lower probability, than if 

values were symmetrically distributed around the mean. Additional al- 

ternate values could be selected so that each assumed mean were cen- 

trally located, but then the total number of variable values would be 

43 -- six extra alternate values for each of the six original alternate 

values plus the original seven values. This would require computing 

43 sets of water levels over the model instead of 7, and would be much 

more costly. 
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Coefficient of Storage 

The "true" value of storage coefficient that is uncertain at 

a given node is not a physical entity that could be measured if means 

were available, but it is the representative storage coefficient for 

the node. The coefficient of storage is defined as the volume of water 

an aquifer releases from or takes into storage per unit surface area 

of the aquifer per unit change in head (Lohman and others 1970, p. 38). 

The value is already somewhat of an average, representing an integra- 

tion of the specific storage -- defined by Lohman and others (1970, 

p. 37) as the volume of water released from or taken into storage per 

unit volume of the aquifer per unit change in head -- over the satu- 

rated thickness of the aquifer. The representative S for a node might 

be defined as that value which when used as the nodal value, results 

in correct water -level changes corresponding to given water -volume 

changes in the node. Providing that the digital model of the aquifer 

is a good approximation of the physical system, this representative S 

should be close to an average of S values measured over the node. If 

an aquifer test were made in a node so that the cone of depression ex- 

tended over the entire node, the derived value of S also might be a 

good approximation of the representative S. 

Unfortunately, as previously discussed in Chapter 2 in the 

section on "Data on Coefficient of Storage and Transmissivity," there 

are few reliable samples of S in the Tucson basin. Therefore the prior 

mean and standard deviation and the standard deviations of the likeli- 

hood functions had to be estimated for each node in the model. The 
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estimation of means was discussed under "Data on Coefficient of Storage 

and Transmissivity," and the standard deviations were estimated sub- 

jectively. 

Frequency Distribution. There has been little research on what 

type of frequency distribution samples of S might follow. Transmis- 

sivity is commonly assumed to be distributed log -normally, as will be 

discussed subsequently, and it might be argued that S also is distrib- 

uted log -normally over nodal and basin areas because many of the fear 

tures of sediments that affect transmissivity affect S in the same way. 

For example, well - rounded, well -sorted, coarse, uncemented sediments 

tend to have both high S (Johnson 1967, table 17) and high transmis- 

sivity. However, the relation between the two, if any direct relation 

exists, is complex because the highest S values are commonly observed 

in medium or coarse sand and slightly lower values are observed in 

gravel (Johnson 1967, table 29), which presumably have higher values 

of transmissivity. In addition, fine- grained sediments which are being 

compacted may, over long periods of time, yield significant quantities 

of water, and thus have a relatively high value of S along with a low 

transmissivity. 

The writer knows of no study in which measurements were made 

of S at random over an aquifer and then plotted to obtain a frequency 

distribution. Johnson (1967, table 11) reproduced a table of specific 

yields (for the unconfined aquifer of the Tucson basin, specific yield 

is virtually equivalent to storage coefficient) of core samples from 

California. The distribution around the mean specific yield of each 
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textural classification -- sand, silt, etc. -- apparently is symmetrical 

because the mean and median of each class are virtually the same. These 

data suggest that S is not log -normally distributed; however, the sta- 

tistics are not computed for data from random samples so no conclusion 

is warranted. 

The distribution of S over nodal areas was assumed to be normal 

for lack of data suggesting any other distribution. Because normal dis- 

tributions extend from values of minus infinity to plus infinity, trun- 

cated normal distributions commonly are used to avoid negative values 

when they are physically impossible, unreasonably low values, or un- 

reasonably high values. In this study discrete distributions were used 

for all model variables, and the computer program automatically elim- 

inated any alternate variable values that were infeasible. For this 

reason, truncated normal distributions were not needed. 

Estimation of Parameters. For the purpose of this study, 

standard deviations of both prior distributions and likelihood functions 

of S were estimated to be constant over given intervals of S, as shown 

in table 6. Estimates were made for two classes, nodes in the interior 

of the basin and nodes near the boundaries. Uncertainty about given 

values of S was assumed to be somewhat less in the interior of the basin, 

where hydrogeologic data are more plentiful -- because of more wells, 

and thus more geologic data, aquifer tests, water -level measurements, 

and pumpage data -- than near the basin boundaries, where data are 

sparse. Presumably judgment and experience would be more effective in 

estimating S in areas of much hydrogeologic data. Therefore, standard 
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Table 6. Estimated Standard Deviations around Mean Values of the 
Coefficient of Storage. 

Interval of 
Storage Coefficient 
in which Mean Occurs 

Standard Deviation, 
for Nodes in the In- 

terior of the Basin 

Standard Deviation, 
for Nodes near the 

Boundaries of the Basin 

0.0- 0.05 0.07 
0.0375 

0.0375- 0.06 0.08 
0.1125 

0.1125- 0.07 0.09 
0.1875 

0.1875- 0.08 0.10 
0.2625 

> 0.2625 0.09 0.11 
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deviations in the interior of the model were assumed to be uniformly 

0.02 less than those on the boundaries. 

Standard deviations also were assumed to be proportional to 

the magnitude of the mean S, although there were no data to use in ob- 

taining an objective estimate of such a relationship. If S was in the 

artesian range, for example, the standard deviation around a value of 

0.0001 would certainly be less than that around a value in the water - 

table range of 0.01. 

The standard deviations of the prior distribution and the like- 

lihood function were assumed equal for a given value of S. This implies 

that the amount of information, or number of samples or aquifer tests, 

used to estimate the prior probability distribution is equal to the 

amount collected in an additional sample. For example, this could be 

interpreted as assuming that the equivalent of one sample of S in pro- 

fessional judgment and experience was used to estimate its value in a 

nodal area. Sampling to modify this prior estimate to obtain a new, 

or posterior, probability then is assumed to involve collecting the 

equivalent of one additional sample. 

The assumptions made in estimating parameters for frequency dis- 

tributions of S, or for that matter, any of the variables studied, are 

inadequately justified and represent very subjective judgment. They 

are, however, the kinds of assumptions that will have to be made in 

using this type of technique to estimate worth of additional data to 

a digital model of a ground -water basin; and they were believed adequate 

to illustrate the technique. If the goal of this study had been to 
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obtain the best worth -of -data estimates possible, the parameters could 

have been defined better by utilizing such methods as interviewing 

hydrologists familiar with the basin and eliciting their opinion on 

the distributions of S, or other variables, at various points in the 

basin. Folayan (1969) used questionnaires to obtain similar opinions 

from engineers about soil properties. Research to determine the type 

of frequency distribution followed by the coefficient of storage also 

would be useful. 

Transmissivity 

The "true" value of transmissivity desired at a node of a model 

is the value that best represents T over the whole nodal area. Similar 

to storage coefficient, T is already somewhat of an averaged quantity 

in that it is defined as the rate at which water of the prevailing kin- 

ematic viscosity is transmitted through a unit width of aquifer under 

a unit hydraulic gradient (Lohman and others 1970, p. 41). Transmis- 

sivity thus refers to the entire thickness of aquifer whereas hydraulic 

conductivity, K, refers to a specific volume of aquifer. A medium has 

a hydraulic conductivity of unit length per unit time if it will trans- 

mit in unit time a unit volume of water, at the prevailing kinematic 

viscosity, through a cross -section of unit area, measured at right angles 

to the direction of flow, under a hydraulic gradient of unit change in 

head over unit length of flow path (Lohman and others 1970, p. 9). 

Therefore, T might be considered as representing an integration of K 

over the aquifer thickness, although T also depends on the degree of 

interconnection of beds with high (or low) hydraulic conductivity. 
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If point measurements of T could be made over a nodal area, the 

representative value of T probably could be estimated by averaging these 

measurements; providing, of course, that the digital model of the aqui- 

fer was a reasonably good representation of the physical aquifer system. 

Estimates of T commonly are obtained by aquifer tests, and an equivalent 

to sampling T over the nodal area might be an aquifer test for which 

the cone of depression extended over the whole nodal area. The length 

of test required can be roughly estimated using a variant of the Theis 

equation (Ferris and others 1962, pp. 92 -94): 

s - 
4 

(W(u)) , 

where u = r2S /4Tt, 

(24) 

r = radius, in feet, 

s = drawdown, in feet, at a radius r, 

S = coefficient of storage, 

T = transmissivity, in cubic feet per day per foot (cu ft /day /ft), 

t = time, in days, 

Q = pumpage, in cu ft /day, 
CO 

and W(u) = u1(e 

u 
/u) du. 

If a well is pumped at the center of a node, it can be computed that 

the cone of depression will take on the order of nine days to reach the 

boundaries of the node -- assuming values typical of the Tucson basin 

such as T = 10,000 cu ft /day /ft or 75,000 gpd /ft, 

S = 0.15, 

and Q = 192,000 cu ft /day or 1,000 gpm, 

and that r = 3,190 ft or 0.6 miles and a significant s = 0.005 ft. 
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Choosing 0.005 as a significant value for drawdown is somewhat arbi- 

trary, but 0.005 is about the limit of precision for the wetted - 

tape method of measurement. 

However, few aquifer tests of this length have been made in the 

Tucson basin. Most of the available tests were several hours in length, 

and the cone of depression for a 6 -hour test, using the assumed values 

in the previous computation, would have a radius of about 525 feet -- 

which includes only about three percent of a nodal area. Therefore, 

even with several aquifer tests per node, considerable uncertainty re- 

mains about the representative value. 

There are only 168 nodes in the digital model in which aquifer 

tests have been made, and 341 without tests. Of the sampled nodes, 45 

have two aquifer tests, and only 12 have more than two tests, the maxi- 

mum being five. For only a handful of nodes, then, are data adequate 

for even a rough estimate of the natural variability of T. The indi- 

vidual test results are, of course, subject to error, primarily due to 

errors in measurement of discharge and in the subjective interpretation 

of test results by the hydrologist, mainly in the curve - fitting pro- 

cedures. 

Figure 2 shows the distribution of aquifer tests over the basin. 

The numbers on the map indicate the tests per land section or square 

mile, which is not equivalent to the tests per nodal area because the 

nodal areas are not exactly equivalent to sections. For this figure, 

only the aquifer tests analyzed by the U. S. Geological Survey were used, 

which include 94 percent of the total number of tests. The map 
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illustrates that most of the aquifer tests have been made in the city 

of Tucson and in the irrigated areas along the Santa Cruz River. 

Frequency Distribution. McMillan (1966, pp. 8 -17) summarized 

available research on the frequency distribution of permeability 

(hydraulic conductivity, K) and transmissivity. He pointed out that 

the variation in K depends on the volume of material considered. On 

a microscopic scale K could vary from zero to infinity depending on 

whether the volume considered was impermeable rock or a pore space. As 

sample volume increases, the possible limits of the variation in the 

average K for the volume lessen, which is a result predicted by the cen- 

tral limit theorem of statistics. However, when the sampling procedure, 

such as an aquifer test, obtains information from more than one geolog- 

ic unit, the variation may well increase. In the Tucson basin, where 

the aquifer material consists of basin -fill deposits which are made up 

of small (measured in tens of feet) individual units largely of alluvial 

origin, the cone of depression of even a short -term aquifer test inev- 

itably will extend across several units. 

McMillan (1966, pp. 10 -15) discussed research by several workers 

in petroleum reservoir engineering which indicated a log- normal dis- 

tribution for K. He also plotted data (pp. 15 -17 and figures 2.3 -2, 

2.3 -3, and 2.3 -5) on transmissivity from ground -water basins in 

California and concluded that T was approximately log -normally dis- 

tributed. McMillan did not speculate on why K and T are log -normally 

distributed, although he mentioned that explanations for the natural 

occurrence of the distribution have been based on the assumption that 
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the effects of an underlying random variate are multiplicative (p. 11). 

Benjamin and Cornell (1970, pp. 262 -263) further discussed how the log- 

normal distribution represents aspects of a breakage process, such as 

the transport of sediment in streams. The final size of a particle 

depends on collisions with particles of many sizes traveling at various 

velocities. This multiplicative process may produce a particle -size 

distribution that is log- normal. Since hydraulic conductivity is related 

to particle size, (Todd 1959, p. 51), the log - normal distribution of K 

may result from a log - normal distribution of particle sizes. Although 

this relation seems logical for K for small volumes of aquifer, it does 

not necessarily explain a log -normal distribution of K or T over a 

large ground -water basin. A log -normal distribution for values of T 

representing large subareas of a basin implies that there is more coarse 

than fine sediment in an aquifer than there would be if sediment size 

was normally distributed around some mean. 

Data on T from aquifer tests over the entire Tucson basin were 

compiled (table 7) and the cumulative percentages of T values were 

plotted against T on log- normal probability paper (figure 6). The data 

fall on a straight line over most of their range, indicating the values 

are log -normally distributed. The line is curved, however, at its ex- 

tremes. At its upper end, the curve indicates fewer very high values 

of T than if T were distributed purely log -normally. For example, the 

curve shows that 99.5 percent of the T values are less than 700,000 

gpd /ft; whereas if the straight -line portion of the curve were extended, 

97 percent would be less than 700,000. At the lower end of the line, 
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there is a slight indication of more low values of T than if T were 

distributed log -normally. 

These data from the entire basin, however, likely have not been 

sampled randomly. Water- supply wells are drilled where conditions are 

known or predicted to be most favorable, and the major "favorable" con- 

dition is high T. After completion, only the wells with an acceptably 

high specific capacity are equipped with pumps, so that very low T val- 

ues are not sampled often. The specific capacity of a well is defined 

as its rate of discharge divided by the drawdown of water level at a 

given time after pumping, and specific capacity is directly propor- 

tional to T (Lohman and others 1970, p. 32). Such wells are almost the 

only wells available to use in aquifer tests because only a few wells 

have been drilled in the basin specifically for the purpose of hydro- 

logic testing. Therefore, aquifer -test data probably are biased towards 

high values of T. Such a bias might result in a log -normal distribu- 

tion of T values when in fact the true distribution was of another type. 

An attempt was made, using the available data, to avoid the 

potential bias in sampling. The Tucson basin was divided into subareas 

corresponding to the areas of equal T on the Geological Survey map, and 

the aquifer tests from each of these areas were compiled and plotted 

separately (table 7 and figure 7). This procedure partially removed 

bias because data from more favorable (and less favorable) areas were 

studied separately. However, wells still have been drilled in the best 

parts of the subareas and any poor wells in a "favorable" subarea 

probably are abandoned, so some bias remains. The plots of figure 7 
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show generally linear trends, suggesting log -normal distributions, but 

the linearity is not as evident as it was in the plot of data from the 

entire basin. The curves also indicate that there are more high values 

and more low values of T than if T were distributed log -normally. 

One of McMillan's figures (1966, figure 2.3 -2) is a frequency 

plot of T values which were randomly "sampled" from a contour map of T 

values for the Los Angeles Coastal basin. He concluded (p. 15) that 

these data showed an irregular tendency to follow a log- normal distri- 

bution. However, the field data used to construct the contour map 

likely were biased towards high values of T, so even with such random 

"sampling" methods, bias is possible. 

In summary, although the evidence is not absolutely conclusive, 

values of T over a basin, and specifically over the Tucson basin,proba- 

bly are distributed more nearly log- normal than normal. During the 

worth -of -data studies the distribution of values of T in a one- square- 

mile nodal area also was assumed to be log -normal. 

Estimation of Parameters. The available aquifer -test data were 

used in an attempt to devise methods of estimating standard deviations 

for transmissivity (aT) at all nodes in the basin. Unfortunately, 341 

of the 509 nodes have no test data and 111 of the 168 nodes with data 

have only one aquifer -test per node. Thus not even a crude estimate 

of the standard deviation can be made for 453 of the 509 model nodes. 

Test results for each node were compiled, including two fic- 

titious samples per node in addition to actual aquifer -test values 

in order to increase sample sizes. These "pseudo- samples" were added 
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only to nodes with some actual data, and were added primarily so that 
aT 

at the 111 nodes with only one test could be estimated crudely. The 

pseudo -samples were (1) the nodal value shown on the map of T compiled 

by the U. S. Geological Survey and (2) the nodal value after calibra- 

tion of the digital model -- at 71 nodes these two values were equal. 

Addition of these pseudo -samples was believed to be justified somewhat 

because (1) considerable geologic knowledge and professional judgment 

were used in preparing the T map and (2) the value after calibration 

was one that improved the model's ability to match historical water - 

level changes and thus may represent additional information. 

An attempt was made to estimate 
aT 

at unsampled nodes by relat- 

ing aT to some factor which could be measured at all nodes. It was hy- 

pothesized (1) that aT was proportional to the magnitude of T, and (2) 

that aT was proportional to the local variability in T. It was believed 

reasonable, for example, that if aT around a mean value of 10,000 gpd/ 
1 

ft 
(«T 

) were 5,000, then aT around a mean value of 100,000 (uT 
) 

1 2 2 

would be nearer to 50,000, which assumes a = a x u /, , than it 
T2 T1 T2 T1 

would be to 5,000, which assumes aT = constant. It was also believed rea- 

sonable that aT would be greater in an area where values of T varied 

greatly over short distances, because results from short -term pumping 

tests likewise would be variable. Such a marked variability in T might 

be encountered in areas where deposition was controlled by several dif- 

ferent processes, or deposits came from several source areas, such as 

along a stream channel or near a mountain front. 

Assuming the above hypotheses were true, an attempt was made to 

relate aT to (1) the magnitude of the nodal T from the U. S. Geological 
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Survey map, TM, as this was the only available prior estimate of T at 

all nodes; (2) the maximum difference between TM and values at the four 

adjacent nodes -- essentially,the local maximum T "gradient," and an es- 

timate of local variability; and (3) both of these factors combined. 

In addition, the uncertainty in T, and therefore 6T, was assured pro- 

portional to the distance to the nearest sample of T, as the farther a 

node was from a sampled node, the more uncertain its value likely would 

be. Although this attempt to estimate 6T at unsampled nodes was unsuc- 

cessful, as discussed below, the estimated values of aT at sampled nodes 

were used as a general guide to standard deviations and therefore the 

procedure will be discussed here. 

A computer program was written to compute the information re- 

quired to analyze the T data. The program first computed the two sta- 

tistics, the "prior" sample mean x,I, , based on both actual and pseudo - 
pr 

samples; and the prior sample standard deviation, sT , of T at each 
pr 

node, in arithmetic units. The program also computed the standard de- 

viation of the likelihood function for the model value as mean, the 

"sampling" standard deviation or s T. This represents the standard 
Q 

deviation associated with collecting one additional sample, and was 

computed using the equation: 

sT = sT , r , (25) 

2, pr 

where n = the number of samples per node. Equation 25 is an adaptation 

of the standard statistical formula: 

ax= ai , 

where 
6x = the population standard deviation, and 

QX = standard deviation of a group of n samples. 

(26) 
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Here sT is assumed equivalent to GR.., as it represents a standard 
pr 

deviation from prior sampling or equivalent information; and sT is 

Q 

equivalent to ax in that sT is related to the uncertainty in collec- 
Q 

ting one more sample. The computer program also calculated the dis- 

tance between each uisampled node and the nearest sampled node. 

Equation 26 is applicable only if the samples of T obtained by aquifer 

tests are statistically independent. If the hydraulic properties of 

the aquifer vary significantly over distances as small as tens of feet, 

as is likely in the Tucson basin, then values of T from short -term 

aquifer tests spaced more than a few hundred feet apart likely are in- 

dependent. 

After these initial computations, the program computed the 

mean and standard deviation of the 168 values of sT (xs and ss ) . 

pr Tpr Tpr 
The maximum sT at an individual node was 706,000 gpd /ft, xST was 

pr 
56,000 and ssT was 75,000. These results showed that about two- thirds 

r 
of the values of sT varied between 0 and 130,000 gpd /ft, and indicated 

pr 
significant variability in the results. 

In order to determine whether 
aT 

was related to the magnitude 

of T and /or the local variability in T, all T data at a node were trans- 

formed by dividing them by (1) TM, (2) the local maximum T gradient, 

and (3) both of these factors. Then the program recomputed values of 

pr 

xr and sT for each node, and x and s over all nodes. If 
pr pr sT sT 

r pr 
the magnitude and variability of T were hypothesized to be related to 

standard deviation, then 

less for the transformed 

the value of s would be proportionally 
sT 

pr 
T data than for the original data. For 



example, if a perfect relation were found between 
6T 

and TM, and all 

sample values of T were divided by TM, then 
aT 

would be constant over 

all sampled nodes and ß would equal zero. The standard statistical 
6T 

relation: 

= a2aX or alternately óax = au x 
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(27) 

shows that transforming individual sample data, where a = 1 /TM, will 

modify the standard deviation of the samples by the same ratio. If 

this statistic were less for transformed than for original data, 
aT 

might be estimated at unsampled nodes using derived relations between 

aT 
and the magnitude and local variability of T. 

Unfortunately, the values of ss obtained from the transformed 
T 
pr 

data on T were all proportionally larger than ss computed using the 
T 
pr 

original data, using both arithmetic and logarithmic units for T. This 

may have been due to factors such, as (1) the small sample sizes; (2) 

inadequate justification for using the two "pseudo -samples" per node; 

(3) the values of TM were significantly different from the mean nodal 

values of the samples -- this was checked at several nodes and found 

to be the case; and (4) the maximum T gradients were not well approxi- 

mated, because eithe the values of TM were not representative of the 

physical system or the real maximum gradients were over smaller dis- 

tances than the nodal spacing. Although this attempt was unsuccessful, 

the results (primarily sT ) were used as a general guide in estimating 
pr 

aT at both sampled and unsampled nodes. The results also suggested 

that the values of T from the short -term aquifer tests were not 
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representative samples of the values of TM, or that the values of TM 

did not represent well the physical system. 

The prior mean, or model, values of T used in the worth -of -data 

studies were the final values at each node after model calibration. 

The prior standard deviation of T (°T ) at each sampled node was es- 
pr 

timated subjectively after taking into account (1) the computed statis- 

tic sr at each node, (2) the local variability in T, and (3) the 
pr 

interval around the model value in which about two- thirds of the samples 

were included. Of the three components used in estimation, (3) was 

given the most weight. 

The standard deviation of the likelihood function for the model 

value as mean (aT ) was estimated using (1) the computed sr at each 
2 Q 

node, (2) the local variability in T, and (3) an interval about I times 
the interval around the model value in which about two- thirds of the 

samples were included. For nodes in which no aquifer tests had been 

made, the values of aT and aT were set equal, which implied that the 
pr 

amount of data involved in estimating the prior was equivalent to the 

data obtained from one more sample (see above, p. 106). In estimating 

aT and a at unsampled nodes the following factors were considered: 
pr 

T 
(1) estimates of aT and aT for sampled nodes, (2) the distance to 

pr 
the nearest sampled node, and (3) the local variability in T. 

The technique used to estimate the standard deviation of a 

likelihood function for an alternate, or erroneous, value of T as the 

mean for a node was more complex. It was recognized that the value 

of 01 for the model value as the mean might not be appropriate for 



123 

extreme erroneous values. For example, if the model value of T is 

200,000 gpd /ft, and aT for the model value is also 200,000, aT for 
Q Q 

the likelihood for which an erroneous value of 50,000 was the mean 

likely is less than 200,000. For this reason, a relatively objective 

method of estimating alternate values of aT was devised. 
Q 

The writer estimated standard deviations subjectively for a 

series of 16 values of T ranging from 2,000 to 500,000 gpd /ft. These 

were judged to be values typical of the aquifer in the Tucson basin, 

assuming that the sampling procedure was an aquifer test of several 

hours duration, similar to the actual tests in the basin. A second 

set of 16 estimates was made under the assumption that the test was of 

several days duration, or close to the time required to obtain a 

reasonably good test of T for a nodal area. These estimates were "edu- 

cated guesses" by the writer. The values, in logarithmic units, of 

the first set of standard deviations are about double the values of 

the second set. The two sets of estimates then were plotted against 

the logarithm of T (figure 8) and equations derived for the assumed 

linear relationships. These relations are equations for straight lines 

on semi - logarithmic paper, for which the first term is the intercept 

of the line on the vertical axis, the coefficient of the second term 

is the slope, in logarithmic units, per the three log cycles, and the 

part in brackets is the fraction of the three log cycles over which the 

interpolation of ai, is made. For any given value of T, then, these 

equations can be used to estimate a "typical" standard deviation 
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around the value, given that sampling is done by short -term or longer - 

term aquifer tests. 

The derived typical values then were used, together with aT 
Q 

for the model value as the mean, to estimate 
aT 

for alternate values 

as means. First the typical value of 
aT 

for the model value as mean 

was computed using one of the two equations. Then the ratio of the 

aT 
, which was estimated using actual sample data and other factors, 

Q 

to the typical GT was computed. Finally, to obtain aT for any 
Q Q 

alternate value as the mean, the typical value corresponding to this 

mean was multiplied by the ratio. In this way, if T at a given node 

was more uncertain than was typically expected, this additional uncer- 

tainty was included in standard deviations for all the likelihood func- 

tions for the node. This procedure can be summarized by the relation: 

a 

a ms Q 
T 

t 
a aT Qat 

Qmt 

where aTQ = standard deviation of the likelihood function ((TT ) for 
a 

an alternate value of T as mean; 

(28) 

GT = GT for the model value of T as mean, estimated using 
2, HS 

sample data, etc. -- the "sampling" standard deviation; 

G T = GT for the model value of T as mean, estimated from the 

Qmt 
equation that yields typical values of GT; 

and aT = aT for an alternate value of T as mean, estimated from 

Qat 
the equation that yields typical values of GT. 
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These methods of estimating parameters of the distribution of 

T at model nodes are not, of course, the only or are they necessarily 

the best possible methods that could have been used. They likely are, 

however, typical of the techniques that will have to be employed in 

this type of study, considering the quantity and reliability of the 

data on T that are commonly available. More research on the frequency 

distribution of T would be useful. 

Initial Water Level 

Initial water level (H) was assumed to be in 1970 for the 1970- 

90 simulation period. The representative value of H for a nodal area 

is not a quantity that can be measured directly, but it likely could 

be approximated best, providing the digital model is a good representa- 

tion of the physical system, by averaging water levels over the node. 

The frequency distribution of values of H around a nodal mean 

was assumed to be normal, primarily because data were insufficient to 

identify any other distribution. However, if only measurement errors 

influenced estimates of H, the distribution probably would be normal, 

as this distribution commonly is used to describe the distribution of 

measured "erroneous" values around a true value. The major sources of 

error in estimating H likely are interpolation error and non- 

representative data; and although it is not obvious that these types 

of error also would be normally distributed, a normal distribution is 

probably a sufficient description. 



127 

Although more data on H are available than on any other vari- 

able in the Tucson basin, commonly few data are within individual nodal 

areas. There are 311 nodes in the model in which H was sampled, or 

measured, in 1970, and 198 nodes with no samples. Of the sampled nodes, 

109 had two samples, 45 had three samples, and 19 had more than three, 

the maximum being six samples at a node. 

Using the same approach and computer program that was prepared 

to analyze the data on T, the data on H at individual nodes were studied. 

For H, one pseudo -sample per node was added to increase sample sizes. 

This added "sample" was the water level estimated to be the representa- 

tive value at each node from the 1970 water -level contour map prepared 

by the Department of Agricultural Engineering. Values of xKp sHpr, and 

sH were computed for each sampled node, and the shortest distance to a 

sampled node was computed for each unsampled node. The maximum water - 

table gradient between each node, both sampled and unsampled, and its 

four surrounding nodes was also computed. The maximum value of sHpr 

was 115 feet but x was only 9.5 feet and s was 8.3 feet. Thus 
sHpr sHpr 

about two- thirds of the values of sHpr were between 1 and 18 feet. 

As for T, an attempt was made to devise a method of estimating 

standard deviations of H at unsampled nodes by seeking a relation be- 

tween standard deviations and (1) the magnitude of the model value of H 

at each node, (2) the maximum water -table gradient at each node, and (3) 

both of these factors taken together. Similar to T, the transformed val- 

ues of H had values of ss that were proportionally larger than ss 
Hpr Hpr 

for the untransformed value. Thus, it was not possible to obtain a 



128 

relation between standard deviation and some measurable factor to use 

in estimating Hpr and aH at unsampled nodes. The values of ss for 
Q Hpr 

transformed H, however, were closer to the original ss than were cor- 
H.p r 

responding values for T. This result may reflect the additional sample 

data on H and the greater certainty associated with the model value of 

H assigned to each node. The factors that may have prevented the def- 

inition of a usable relation between standard deviation and the other 

quantities were likely (1) the small sample sizes, (2) insufficient 

justification for the added pseudo -sample at each node, and (3) an in- 

adequate method of estimating the maximum nodal water -table gradient. 

The prior mean, or model value,of H at each node was estimated 

from the 1970 water -table contour map prepared by the Department of 

Agricultural Engineering. Values of QHpr at each sampled node were 

estimated using (1) the computed values of s 
Hpr, 

(2) the local variabil- 

ity in H and (3) the interval around the model value that includes about 

two -thirds of the samples. For unsampled nodes, estimates were made 

using (1) the aHpr estimates at similar sampled nodes, (2) the local var- 

iability in H, and (3) the distance to the nearest sampled node. Values 

of 
6H 

were estimated in a similar way. If no sample data were avail- 

able for a node, ß was set equal to 
HR 

a 
Hpr 

The standard deviations for the likelihood functions that as- 

sumed alternate nodal values of H as the mean values were assumed to be 

constant and equal to the "sampling" standard deviation, ßH . This pro- 

cedure was equivalent to assuming that errors in H would be independent 

of the magnitude of H and that uncertainty would be the same for any of 

the alternate values. 
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Discharge and Recharge 

Discharge -- primarily pumpage in the Tucson basin -- and re- 

charge were tested together or considered as one variable in the worth - 

of -data studies. This is possible because the model treats them 

identically in solving the flow equations, the only difference being 

that pumpage and subsurface outflow are defined as positive quantities 

and recharge as negative. The only difference in the way discharge and 

recharge were treated in the worth -of -data studies is that values of 

recharge and subsurface outflow were assumed to be more uncertain than 

pumpage. Estimates of discharge and recharge were assumed to be 

normally distributed, as the main reason why nodal values differ from 

true values is the presence of measurement and estimation errors. 

Discharge cannot be measured, of course, for the future period 

1970 -89. In many model studies the future discharge is considered to 

be the variable under the manager's control and is manipulated to pro- 

vide the optimal combination of benefits. In this study discharge 

was considered only as an unknown to be estimated. 

Future pumpage can be estimated based on current rates and 

projections of future demands derived from estimated population 

growth, industrial use -- which in the Tucson basin is primarily use 

by the mining companies in the southern half of the basin, and agricul- 

tural use. Estimation of the prior mean values of discharge was dis- 

cussed in the section "Time Period Used." The prior standard deviations 

for each nodal value of discharge are directly proportional to the un- 

certainty of the estimate, and had to be estimated subjectively. 
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The uncertainty in pumpage is related to several factors. These 

factors include uncertainties in the estimates of current pumpage and 

in projections of population growth. Another factor is errors in es- 

timates of industrial use, which further depend on uncertainties in 

future copper prices or perhaps in future environmental legislation 

which could reduce ore production. An additional factor is uncertainty 

in estimates of future agricultural demand, which is further related 

to uncertainty in crop and water prices and governmental subsidies. 

Finally, uncertainty in future pumpage also is related to uncertain- 

ties in future quantities of water available from proposed supplemental 

water sources such as the Central Arizona Project. 

For the purposes of this study, pumpage was divided into two 

classes: (1) pumpage within the greater city of Tucson area and (2) 

pumpage in the remainder of the basin. Pumpage within the city is 

better known currently because most of it is metered, and it likely can 

be projected better into the future. Therefore, the prior standard 

deviations of pumpage at nodes in the city were assumed to be 25 per- 

cent of the estimated mean values, and prior standard deviations at 

nodes outside the city were assumed 35 percent of the means. 

So little is known of current values of recharge and subsurface 

outflow that in the model they were considered constant with time, and 

future values were also assumed constant and equal to current rates. 

Recharge can be classified as: (1) infiltration from stream channels, 

(2) recharge across model boundaries, and (3) subsurface inflow through 

the alluvium under stream channels where channels cross the boundaries 
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of the model. Recharge in each of these classes generally was esti- 

mated in slightly different ways, so the uncertainty associated with 

each will also differ. Subsurface outflow was estimated in the same 

way as subsurface inflow, so they are discussed together, even though 

outflow is a form of discharge. 

Stream - channel recharge was estimated largely from channel - 

infiltration studies made by the U. S. Geological Survey, and was modi- 

fied during calibration of the digital model. Uncertainties in 

stream - channel recharge thus are related to the assumptions and mea- 

surement errors associated with the infiltration studies, including 

errors in estimating how much of the infiltration reaches the water 

table; and on the quality of model data, and especially historical 

water -level data, along the streams. Boundary recharge was estimated 

during calibration of the electrical -analog and digital models, so 

its uncertainties will be related to uncertainties in model data along 

the boundaries. Subsurface inflow and outflow largely were estimated 

during model calibration, although values were checked roughly by the 

Geological Survey (Davidson 1970, pp. 182 -184) using estimates of satu- 

rated cross -section, permeability of alluvium, and hydraulic gradient 

at the points where channels cross boundaries. Of the three categories 

of recharge, stream -channel recharge likely is the least uncertain, sub- 

surface inflow (and outflow) is intermediate, and boundary recharge is 

likely the most uncertain. For the purposes of this study the prior 

standard deviations of stream -channel recharge, subsurface inflow and 
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outflow, and boundary recharge were assumed to be 40, 50, and 60 per- 

cent, respectively, of the estimated nodal values. If a node had more 

than one class of recharge, the standard deviation corresponding to 

the largest component was used. 

The method used to estimate the standard deviations of the 

likelihood functions was straightforward. First, the standard devia- 

tion of the likelihood function for the model value -- the "sampling" 

standard deviation -- was assumed equal to the prior standard deviation, 

primarily because actual sample data on discharge and recharge were not 

available. Then errors in estimates of discharge and recharge were 

assumed to be directly proportional to the quantity estimated. This 

assumption probably is good for measured pumpage, as errors commonly 

are expressed as a percentage of estimates, and the assumption is rea- 

sonable for estimated pumpage and recharge. Standard deviations of 

likelihood functions associated with alternate mean values of discharge/ 

recharge were estimated by computing the ratio of the alternate value 

to the model value and multiplying this by the "sampling" standard 

deviation. 

Results of Selecting and Testing Variables 

The worth -of -data studies for the Tucson basin consisted of 

testing 91 variables -- 24 coefficients of storage, 22 transmissivities, 

23 initial water levels, and 22 values of discharge or recharge -- from 

61 different nodes of the small -scale digital- computer model of the 

Tucson basin. Variables for testing were selected from all parts of 

the basin, both from areas where there are relatively much 
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hydrogeologic data, mainly in the areas of pumpage for irrigation along 

the Santa Cruz River and within the city of Tucson, and from areas with 

few data, generally on the margins of the basin. The variables were 

tested for expected opportunity loss, which could be defined as expected 

error in predicted water levels at the end of a simulation period ex- 

tending from 1970 to 1990, and expected worth of sample data, which 

could be defined as expected reduction in error. Values were computed 

in terms of feet, or other units depending on the error criterion used, 

over the 509 nodes of the model. 

The studies were divided into two parts, 67 variables chosen 

because their expected errors were likely to be large and, for the pur- 

pose of comparison, 24 variables chosen because their expected errors 

were not likely to be large. Each of the two categories, however, in- 

cludes a few nodes at which all variables were tested in order to com- 

pare expected errors associated with each variable at a single node. 

All of the variables at these few nodes did not fall always into either 

the "large- error" or "small- error" categories. Figure 9 shows the lo- 

cations of the tests, and tables 8 and 9 and 10 and 11 include results 

of testing variables in the large- and small -error categories, respec- 

tively. 

Nodes at which errors in the coefficient of storage were 

thought likely to produce large expected errors were not chosen on the 

basis of large uncertainty in the true values of S because, as previ- 

ously discussed, uncertainty in S is about the same over the entire 

basin. During calibration of the Tucson basin model, however, changes 



Figure 9. Map showing the locations of the nodes in the 509 -node 
digital - computer model of the Tucson basin, Arizona; 
and locations of the variables tested in the worth -of- 
data studies. 
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in S were observed to cause the most change in predicted water levels 

at nodes where discharge and /or recharge were large or where water -level 

change itself was large over the simulation period. Nodes were selected 

for the large -error category of test, then, if discharge or recharge 

was large or if water -level change was large. Conversely, nodes at 

which prediction errors were expected to be less were chosen where dis- 

charge or recharge or water -level change was less. Comparison of mean 

values of expected error, vs, computed for each of the six error cri- 

teria and for each category (tables 9 and 11) generally shows that val- 

ues are slightly higher for the large -error category, so that the above 

assumptions have some validity. 

For transmissivity and initial water levels, it was assumed 

that if the standard deviation of the prior distribution was relatively 

large, the expected error would be large, and that if the standard de- 

viation was relatively less, the error would be less. The mean expected 

errors for transmissivity are in fact considerably more, and for 

tial water levels generally are slightly more for the large -error 

category than for the small -error category (tables 9 and 11). 

For discharge /recharge, standard deviations were assumed to be 

directly proportional to the magnitude of the value of discharge or 

recharge, as previously discussed. Values chosen because they were 

likely to have large expected errors were thus at nodes where discharge 

or recharge was relatively large, and values expected to have smaller 

errors were at nodes where discharge or recharge was relatively smaller. 
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Comparison of results in tables 9 and 11 shows that these choices were 

correct. 

Table 8 gives results of testing variables in the large -error 

category. The table lists results for four of the six error criteria 

used -- omitting numbers of nodes in error by more than 5 feet and 25 

feet, as results were similar to those from the criterion of numbers 

of nodes in error by more than 10 feet -- arranged in order of descend- 

ing worth of sample data for absolute value of error. The data indi- 

cate that for the error criteria tabulated, discharge /recharge and 

transmissivity generally have the largest expected errors and sample 

worths, while initial water levels and storage coefficients generally 

have smaller values. The maximum expected error and sample worth for 

the absolute error criterion are 504 and 98 feet, respectively, over 

the 509 nodes of the model, associated with discharge (subsurface out- 

flow) at node (3,2) . 

Mean values and standard deviations of expected error, expected 

worth of sample data, and percent improvement, the latter defined as 

(sample worth /expected error) x 100, were computed for each variable 

for each of the six error criteria, and are given in table 9. Although 

these means and standard deviations may be misleading because they are 

based on only about three percent of the possible 509 values of each 

variable, they are helpful in comparing the results. 

Discharge /recharge has the largest mean expected error, mean 

expected sample worth, and mean percent improvement for four of the 

error criteria. For absolute value of error, for example, mean expected 
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Table 8. Results of Tests on Variables, Cost of Which Were Expected to Show Large Expected Errors. -- Data arranged in order of descending worth of sample data for 
absolute value of error; S - coefficient of storage, T - transmissivity, H - initial water level, Q - discharge (so - subsurface outflow, otherwise pumpage); 
R - recharge (sc - stream channel, b - boundary, si - subsurface inflow); T in gallons per day per foot; H in feet above mean sea level; and Q and R in acre - 
feet per 20 years. 

Variable 

so 
Hs c,b,si 

Q 
Q 
T 
Q 
R 
Qsc,si 

T 
T 
Rb 
R 
sc 

Tsc,b,si 

T 
T 
Q 
H 
Q 

Rb 
T 
T 
T 
T 
T 
T 
S 
H 
T 
H 
S 
H 
S 

R 
Ssc 

Location 
in Model 

Model 
Value 

Standard 
Deviation 

of the 
Prior 

Distribution 

Absolute Value of Error, 
in feet per 509 Nodes 

Square of Error, in feet 
squared per 509 nodes 

Maximum Nodal Error, 
in feet 

Number of Nodes in Error by 
More than 10 feet 

Row Column 
Expected 
Error 

Expected Worth 
of Sample Data 

Expected 
Error 

Expected 
Worth of 

Sample Data 
Expected 
Error 

Expected 
Worth of 

Sample Data 
Expected 
Error 

Expected 
Worth of 

Sample Data 

2 147,400 73,700 504.1 98.4 10,311.9 2,929.3 35.1 6.9 14.7 3.5 

34 
4 13 

10 
102,105 

2,610 
61,500 

160 
420.2 
105.8 

84.2 
73.0 

9,544.5 
179.7 

2,746.2 
150.5 

45.5 
3.4 

9.1 
2.4 

10.1 
0.0 

1.9 
0.0 

40 11 124,100 43,400 295.4 52.9 1,891.3 518.5 14.3 2.6 4.1 1.5 
37 13 115,300 40,300 273.9 49.1 1,319.8 361.8 9.7 1.7 1.8 0.92 
45 11 135,000 540, 00 232.9 44.0 1,375.5 408.3 9.3 1.6 2.7 1.1 
5 4 69,800 24,500 169.8 30.4 619.8 170.0 4.5 0.80 0.14 0.04 

32 
44,200 22,100 150.5 29.4 1,419.3 403.1 10.9 2.1 4.6 1.9 13 
101,500 25,250 169.0 28.9 503.8 133.6 7.1 1.2 0.41 0.07 

40 11 30,000 170,000 157.9 27.6 852.9 282.6 9.3 1.5 1.8 0.67 
16 22 3,800 100,000 258.1 22.44 2,662.8 368.2 14.6 1.3 4.5 0.36 
29 17 25,800 15,500 99.3 19.9 264.0 76.0 7.3 1.5 0.40 0.13 
13 16 29,500 11,800 103.4 19.1 159.8 44.4 3.6 0.67 0.0 0.0 
12 22 21,100 12,650 90.5 18.2 444.3 127.9 10.2 2.1 0.81 0.35 
11 17 12,500 80,000 96.4 17.8 943.7 303.3 15.7 2.9 1.6 0.38 
15 27 11,300 1,000,000 310.6 17.5 20,716.5 3,161.8 27.5 2.6 5.7 0.33 
44 11 222,500 150,000 97.0 16.3 200.9 50.6 3.0 0.50 0.0 0.0 
18 12 51,400 12,750 94.4 16.1 193.1 51.2 4.0 0.69 0.0 0.0 
42 
17 

16 

19 
2,806 

43,200 
50 

10, 700 
33.3 
94.0 

16.1 
16.1 

18.4 
126.5 

12.4 
33.5 

0.91 
2.1 

0.44 
0.37 

00 
.Ó 0.0 

11 17 16,800 10,100 77.8 15.6 126.6 116.6 12.1 2.4 0.67 0.30 
4 3 178,700 175,000 170.7 14.5 1,532.2 214.4 20.2 1.8 2.6 0.19 

18 12 85,000 200,000 127.6 14.2 280.9 56.3 5.2 0.58 0.071 0.0016 
32 13 52,500 50,000 60.3 10.0 101.9 27.9 3.7 0.62 0.0 0.0 

2 6 13,100 80,000 50.9 7.7 342.3 116.9 10.2 1.8 0.54 0.09 
20 14 4,500 40,000 60,8 9.7 309.8 101.7 8.1 1.3 0.54 0.22 
13 22 85,000 175,000 87.9 9.4 361.1 57.2 9.0 0.85 0.95 0.16 
32 13 0.153 0.07 50.9 7.7 36.9 8.9 1.4 0.22 0.0 0.0 
16 22 2,459 60 43.7 7.2 25.9 6.4 0.91 0.15 0.0 0.0 
12 9 222,500 225,000 42.7 7.0 34.0 9.4 1.7 0.25 0.0 0.0 
31 11 2,540 60 42.6 7.0 25.8 6.4 1.5 0.24 0.0 0.0 
27 16 0.30 0.11 35.1 6.9 32.8 9.8 2.3 0.46 0.0 0.0 
3 11 2,277 60 41.1 6.8 33.3 8.3 1.4 0.23 0.0 0.0 

40 11 0.153 0.09 40.6 6.2 45.2 9.6 2.1 0.19 0.0 0.0 
25 12 12,600 5,040 32.0 5.9 17.9 5.0 1.1 0.21 0.0 0.0 
12 19 0.153 0.09 34.6 5.7 42.7 10.6 2.9 0.45 0.0 0.0 
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Table 8 -- continued 

Variable 

Location 
in Model 

Standard 
Deviation 

of the 
Model Prior 
Value Distribution 

Absolute Value of Error 
in feet per 509 Nodes 

Square of Error, in feet 
squared per 509 nodes 

Maximum Nodal Error, 
in feet 

Number of Nodes in Error by 
More than 10 feet 

Row Column 
Expected 
Error 

Expected Worth 
of Sample Data 

Expected 
Expected Worth of 
Error Sample Data 

Expected 
Error 

Expected 
Worth of 

Sample Data 
Expected 
Error 

Expected 
Worth of 

Sample Data 

8 6 10,600 4,240 30.2 5.6 13.1 3.6 0.71 0.13 0.0 0.0 
Hs 

11 17 2,430 40 32.5 5.4 16.0 4.0 1.1 0.19 0.0 0.0 

H 40 11 2,688 25 30.1 5.0 22.8 5.6 .6 0.26 0.0 0.0 

S 5 4 0.153 0.07 28.9 4.6 55.9 14.1 3.2 0.50 0.0 0.0 
S 22 14 0.30 0.09 22.6 4.4 13.4 3.9 1.6 0.32 0.0 0.0 

H 8 5 2,063 50 67.6 4.3 142.5 13.3 .4 0.28 0.0 0.0 

Ssc 
46 
11 

10 
17 

8,350 
0.153 

3, 320 
0.09 

22.6 
24.9 

4.2 
4.1 

15.0 
40.5 

4.2 
10.1 

0.81 
3. 8 

0.15 
0.62 

0.0 
0.0 

0.0 
0.0 

S 13 18 0.153 0.07 26.1 4.0 10.3 2.5 0.87 0.13 0.0 0.0 
S 24 16 0.25 0.10 24.7 4.0 17.6 4.5 1.8 0.29 0.0 0.0 
S 23 14 0.26 0.08 25.9 3.9 12.4 3.0 0.99 0.15 0.0 0.0 
H 42 12 2,755 20 41.8 3.8 66.9 9.6 3.3 0.30 0.0 0.0 
H 15 21 2,430 55 49.5 3.5 37.5 3.9 1.7 0.12 0.0 0.0 
T 5 4 250,000 150,000 61.2 3.3 115.8 10.0 2.8 0.15 0.0 0.0 
S 19 13 0.153 0.07 21.3 3.2 9.1 2.2 0.85 0.13 0.0 0.0 
S 22 21 0.153 0.09 19.4 3.2 18.7 4.6 1.4 0.22 0.0 0.0 
H 18 12 2,318 20 18.4 3.0 5.5 1.4 0.84 0.14 0.0 0.0 
S 46 10 0.153 0.07 19.2 2.9 16.5 4.0 1.4 0.20 0.0 0.0 
S 13 8 0.075 0.08 25.7 2.9 54.7 7.2 3.9 0.45 0.0 0.0 
H 32 13 2,550 36 30.1 2.8 12.7 1.8 1.0 0.09 0.0 0.0 
S 18 12 0.153 0.07 16.8 2.6 11.6 2.9 1.5 0.23 0.0 0.0 
S 13 22 0.153 0.09 15.8 2.6 11.9 3.0 1.4 0.23 0.0 0.0 
H 21 18 2,402 50 36.5 2.3 16.7 1.6 0.85 0.05 0.0 0.0 
S 5 12 0.153 0.09 16.1 2.3 8.5 1.7 1.1 0.13 0.0 0.0 
H 13 22 2,503 15 13.5 2.2 5.1 1.3 0.67 0.11 0.0 0.0 

T 29 14 250,000 250,000 15.1 2.0 7.1 1.6 0.88 0.12 0.0 0.0 

S 16 20 0.075 0.06 18.1 2.0 5.5 0.88 0.56 0.05 0.0 0.0 

H 5 4 1,990 15 58.2 1.6 204.3 6.5 7.5 0.20 0.55 0.04 

H 17 22 2,430 45 33.0 1.3 14.3 0.71 0.78 0.03 0.0 0.0 

Q 13 22 3,840 950 7.0 1.2 1.8 0.48 0.43 0.07 0.0 0.0 

T 23 22 75,000 55,000 1.70 0.27 0.24 0.06 0.29 0.05 0.0 0.0 
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Table 9. Means and Standard Deviations of Results from the "Large- Error" Category of Tests. 

Variable 

Absolute Value 
of Error Square of Error 

Maximum Nodal 
Error 

Number of Nodes with Er- 
rors More than 5 feet 

Number of Nodes with Er- 
rors More than 10 feet 

Number of Nodes with Er- 
rors More than 25 feet 

EOL EWSD PCIMP EOL EWSD PCIMP EOL EWSD PCIMP EOL EWSD PCIMP EOL EWSD PCIMP EOL EWSD PCIMP 

úS 25.9 4.1 15.6 24.7 5.7 23.6 1.8 0.28 14.9 0.10 0.03 11.4 0.0 0.0 0.0 0.0 0.0 0.0 

aS 9.3 1.6 2.2 17.0 3.9 4.0 1.0 0.16 2.8 0.16 0.058 21.6 0.0 0.0 0.0 0.0 0.0 0.0 

uT 114.9 14.1 13.6 1,862.3 323.1 23.5 8.8 1.1 13.7 4.0 0.79 22.1 1.3 0.22 12.6 0.26 0.043 7.9 

a,i, 89.2 10.8 4.6 5,078.7 769.4 8.1 7.6 0.88 4.0 4.5 0.96 16.9 1.8 0.31 15.4 0.63 0.080 14.2 

PH 
42.4 9.1 17.4 51.7 14.6 24.4 2.0 0.33 17.4 0.27 0.074 9.1 0.034 0.003 0.49 0.0 0.0 0.0 

aH 21.6 17.4 17.3 64.1 36.5 21.7 1.8 0.55 17.3 0.56 0.21 25.1 0.14 0.011 2.0 0.0 0.0 0.0 

uQR 154.9 29.1 18.5 1,603.0 454.4 27.7 10.0 1.9 18.5 6.4 1.5 20.4 2.2 0.62 19.8 0.44 0.15 12.0 

aQR 141.4 27.5 1.1 3,184.3 910.4 0.86 12.4 2.5 1.1 8.1 1.7 15.7 4.2 1.00 19.0 1.2 0.39 24.3 

18 samples of S, 16 samples of T, 17 samples of H, and 16 samples of QR (discharge or recharge). 

EOL - expected opportunity loss (expected error) . 

EWSD - expected worth of sample data. 

PCIMP - percent improvement. 

Mean - p. 

Standard deviation - a. 
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error is 155 feet and mean expected sample worth is 29 feet. For the 

squared error criterion, discharge /recharge has the second largest 

expected error; and for nodes with errors more than five feet, it has 

the second largest percent improvement. 

Transmissivity has the second largest mean expected error and 

mean expected sample worth for all criteria except squared error, where 

it has the largest mean expected error. For absolute value of error, 

mean expected error and sample worth for T are 115 and 14 feet, respec- 

tively. However, transmissivity also has the lowest mean percent im- 

provement for absolute error (13.6%), squared error and maximum nodal 

error, which is because of the relatively large uncertainties, re- 

flected in the large standard deviations of the likelihood functions, 

associated with transmissivity. 

Together, discharge /recharge and transmissivity dominated the 

results in tables 8 and 9. Mean expected errors and sample worths for 

these two variables are as much as or more than an order of magnitude 

higher than for initial water level and storage coefficient for the 

criteria of squared error and numbers of nodes with errors more than 

5, 10, and 25 feet. 

Initial water level ranks third in both mean expected error 

and mean expected worth of sample data for all error criteria except 

nodes in error more than 25 feet, where results are zero for both 

initial water level and storage coefficient. For absolute value of 

error, for example, mean expected error and sample worth are 42 and 9 
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feet, respectively. Initial water level also has the second highest 

mean percent improvement for the first three error criteria. 

Storage coefficient has the lowest mean expected error and 

sample worth and next -to- lowest percent improvement for all of the er- 

ror criteria for which results were non -zero. For absolute value of 

error, mean expected error and sample worth for S are 26 and 4 feet, 

respectively. 

Results of testing variables in the small -error category are 

given in table 10. The make -up of this table is the same as for table 

8. The data show that for the error criteria tabulated, transmissivity 

and initial water level generally have the largest expected errors and, 

to a lesser extent, the largest expected sample worths; while storage 

coefficient and discharge /recharge have smaller values. For the small - 

error category the maximum expected error and sample worth for absolute 

value of error are 73 and 12 feet, respectively, over the 509 nodes 

of the model, associated with the initial water level at node (11,10). 

However, for this category all the expected errors and sample worths 

are of the same order of magnitude. Means and standard deviations for 

results under five error criteria (all results for the sixth, nodes in 

error more than 25 feet, are zero) were computed for each variable type 

(table 11). For these computations, however, there were only six tests 

per variable, so the computed statistics may not be applicable to other 

than the data used to compute them. 
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Table 10. Results of Tests on Variables Which Were Not Expected to Show 

Large Expected Errors. -- Data arranged in order of descend- 
ing worth of sample data for absolute value of error; S - 

coefficient of storage, T - transmissivity, H - initial water 
level, Q - discharge, and R - recharge (sc - stream -channel, 
b - boundary, si - subsurface inflow). T in gallons per day 
per foot, H in feet above mean sea level, and Q and R in acre - 
feet per 20 years. 

Location 
in Model 

Variable Row Column 
Model 
Value 

Standard Absolute Value of Error, 
Deviation in feet per 509 nodes 

of the 
Prior Expected Expected Worth 

Distribution Error of Sample Data 

H 11 10 2,165 15 73.0 12.0 
R 11 10 13,100 5,240 42.1 7. 8 

Tsc 46 10 195,000 50,000 40.1 6.6 
H 4 3 1,960 10 40.2 6.6 
S 6 8 0.153 0.09 38.5 6.4 
T 19 21 15,000 20,000 65.5 5.4 
Rb 2 9 6,320 3,780 25.7 5.2 
Tb 

5 10 41,300 30,000 50.5 4.8 
H 19 16 2,340 30 28.2 4.6 

T 11 10 250,000 100,000 27.4 4.5 

R 29 13 7,680 3,080 20.0 3. 7 

Ssc 11 10 0.153 0.07 20.7 3. 3 

S 19 16 0.112 0.07 17.2 3.3 

S 38 17 0.156 0.09 18.2 3.0 

Q 48 10 6,420 2,240 15.3 2.7 
T 35 14 63,800 35,000 32.9 2.6 
T 19 16 52,500 50,000 47.4 2.5 
H 29 14 2,530 12 47.9 2.3 
Q 15 23 6,780 1,700 12.2 2.1 

Q 19 16 5,270 1,326 11.1 1.9 

S 48 11 0.153 0.09 10.6 1.5 

S 16 24 0.153 0.09 3.3 0.41 
H 15 23 2,510 15 11.6 0.31 
H 39 13 2,674 6 9.3 0.25 
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Table 10 -- continued 

Square of 
Error, in 

feet squared 
per 509 nodes 

Maximum Nodal 
error, 

in feet 

Number of Nodes 
in error by 
more than 10 

feet 

Variable 
Expected 
Error 

Expected 
Worth of 
Sample 
Data 

Expected 
Error 

Expected 
Worth of 
Sample 
Data 

Expected 
Error 

Expected 
Worth of 
Sample 
Data 

H 151.3 37.5 5.5 0.90 0.14 0.07 
R 22.6 6.3 0.80 0.15 0.0 0.0 
Tsc 48.7 12.1 1.5 0.25 0.0 0.0 
H 58.8 14.6 3.0 0.49 0.0 0.0 
S 71.2 18.7 2.5 0.42 0.0 0.0 
T 158.8 26.5 5.4 0.46 0.20 0.04 
R 64.9 18.7 5.1 1.0 0.14 0.11 
T-b 73.9 12.2 2.7 0.25 0.0 0.0 
H 18.0 4.5 1.4 0.23 0.0 0.0 
T 8.6 2.2 0.66 0.11 0.0 0.0 
R 6.6 1.8 0.54 0.10 0.0 0.0 
Ssc 11.9 2.9 1.1 0.17 0.0 0.0 

S 5.4 1.5 0.70 0.13 0.0 0.0 
S 21.6 5.3 2.2 0.35 0.0 0.0 
Q 9.7 2.7 0.79 0.14 0.0 0.0 
T 21.0 2.6 1.4 0.10 0.0 0.0 
T 76.0 5.6 4.8 0.25 0.07 0.008 
H 45.7 2.9 2:1 0.10 0.0 0.0 
Q 5.2 1.4 0.78 0.13 0.0 0.0 
Q 2.2 0.58 0.48 0.08 0.0 0.0 
S 17.9 4.4 2.3 0.28 0.0 0.0 
S 1.1 0.14 0.61 0.08 0.0 0.0 
H 3.3 0.11 0.51 0.014 0.0 0.0 
H 2.2 0.07 0.46 0.012 0.0 0.0 



Table 11. Means and Standard Deviations of Results from the "Sma]l- Error" Category of Tests. 

Variable 

Absolute Value 
of Error Square of Error 

Maximum Nodal 
Error 

Number of Nodes with Er- 
rors More than 5 feet 

EOL EWSD PCIMP 

Number of Nodes with Er- 
rors More than 10 feet 

EOL EWSD PCIMP 

Number of Nodes with Er- 
rors More than 25 feet 

EOL EWSD PCIMP EOL EWSD PCIMP EOL EWSD PCIMP EOL EWSD PCIMP 

PS 
18.1 3.0 15.6 21.5 5.5 23.3 1.6 0.24 15.2 0.10 0.058 23.6 0.0 0.0 0.0 (all zero) 

aS 11.8 2.0 2.3 25.5 6.7 5.4 0.87 0.13 2.5 0.18 0.12 36.8 0.0 0.0 0.0 

PT 
44.0 4.40 10.6 64.5 10.2 17.2 2.7 0.24 10.7 0.32 0.043 9.6 0.046 0.008 5.3 

aT 13.6 1.6 4.7 53.6 9.1 7.0 2.0 0.13 4.7 0.46 0.058 16.8 0.082 0.016 8.6 

PH 
35.0 4.36 9.9 46.5 10.0 14.5 2.2 0.29 9.9 0.23 0.081 13.9 0.024 0.012 8.6 

aH 24.0 4.5 7.2 56.2 14.5 11.3 1.9 0.35 7.2 0.50 0.17 22.1 0.058 0.030 21.0 

uQR 21.1 3.9 18.2 18.5 5.2 27.5 1.4 0.27 18.2 0.067 0.021 5.2 0.023 0.018 13.0 

aQR 
11.6 2.2 1.1 23.8 6.9 0.88 1.8 0.37 1.1 0.16 0.051 12.8 0.055 0.043 31.7 
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6 samples per variable type. 

EOL - expected opportunity loss (expected error). 

EWSD - expected worth of sample data. 

PCIMP - percent improvement. 

Mean - p. 

Standard deviation - a. 
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Transmissivity has the largest mean expected error for all er- 

ror criteria and the largest mean expected worth of sample data for 

the first two error criteria. For example, the mean expected error 

and sample worth for T for absolute error are 44 and 4 feet, respec- 

tively. Similar to results in table 9, transmissivity has a low mean 

percent improvement, ranking third for all error criteria. 

Initial water level has the second largest mean expected er- 

ror and either the second largest or largest mean expected sample worth 

over all error criteria. The mean expected error and sample worth for 

absolute error are 35 and 4 feet, respectively. However, initial water 

level ranks lowest in mean percent improvement for the first three 

criteria. 

Storage coefficient ranks lowest in mean expected error and 

sample worth under the criterion of absolute value of error, and next 

to lowest for the criterion of squared error. For example, for ab- 

solute error, S has a mean expected error of 18 feet and a mean ex- 

pected sample worth of 3 feet. However, it ranks second or first in 

mean percent improvement for all error criteria under which its results 

were non -zero. This reflects the fact that although storage coef- 

ficient generally has a small expected error, its expected sample worth 

is generally intermediate in magnitude. 

Discharge /recharge has the next- lowest mean expected error and 

sample worth for the absolute error criterion and the lowest values 

for the criteria squared error and number of nodes in error more than 

10 feet. Mean expected error and sample worth for the absolute error 
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criterion are 21 and 4 feet, respectively. Discharge /recharge, how- 

ever, also has a high mean percent improvement, ranking first under 

four of the five error criteria. This is also a result of combining 

a small expected error with a moderately large sample worth. 

The above conclusions on the results of both categories of 

tests probably are applicable only to the Tucson basin model, and may 

apply only to the specific nodes tested. 

In summary, when discharge or recharge at a node is estimated 

to be large, more than about 1,000 -2,000 acre- ft /yr, the expected er- 

ror and expected reduction in error with sampling are larger than for 

any other variable. However, for smaller values of discharge /recharge, 

expected errors and sample worths can be the lowest of any variable. 

Transmissivity commonly yields a large expected error, especially if 

the prior standard deviation is larger than the variable value. Trans - 

missivity also yields fairly large values of expected reduction in 

error with sampling; especially if the standard deviations of the like- 

lihood functions are less than the values of the variable, which in- 

dicates that T can be sampled with relatively little uncertainty. Ini- 

tial water level has intermediate values of expected error and sample 

worth, which can be large if the prior standard deviation is large -- 

more than 50 feet -- and the standard deviation of the likelihood 

function is smaller. However, results also seem to depend on basin 

dynamics or other factors, as several values of initial water level 

with low -- less than 20 feet -- prior standard deviations have 
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relatively large expected errors. Storage coefficients commonly have 

low expected errors and expected reductions in error. 

An analysis of expected errors and expected worth of sample 

data such as this, however, is somewhat misleading in at least two 

respects. First, it evaluates expected errors in predicted water 

levels over the entire model due to an error in one variable at one 

node, with all other variables assumed true. This analysis, then, does 

not indicate what prediction errors might be due to errors in all var- 

iables at all nodes, which would be more realistic. At present, a 

study of errors in all variables using the identical approach described 

here would use a prohibitive amount of computer time because of the in- 

numerable combinations of possible errors that would have to be inves- 

tigated. For example, if all five variables were considered in error 

at each of the 509 model nodes, and seven variable values were assumed 

for each discrete distribution, there would be 72,545 possible combina- 

tions of errors. 

Secondly, extreme errors in predicted water levels, such as 

are simulated using the end members of the discrete distribution of 

each tested variable, likely would not be present in the model except 

during the early stages of calibration. Calibration would reduce these 

extreme errors through adjustment of model parameters, initial condi- 

tions, and input /output. Prediction errors then would be much smaller 

at the node which contained the data error, but might be larger at 

other nodes due to the effect of the adjustments. If the model had not 

been calibrated, however, or if it had been calibrated over only one 
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time period, errors in variable values as large as those represented 

by the end members of the frequency distributions would still remain 

in the model. In addition, the extreme values of the distribution are 

to a large extent discounted because they are assumed to have a low 

probability, commonly less than 0.10. 

The results of this study are not in agreement with the con- 

clusions of Bibby (1971), who made a statistical study of the effects 

of errors in model variables on errors in predicted water levels. The 

chief difference is that Bibby found that errors in initial water levels 

were the major cause of errors in predicted levels, while this study 

indicated that errors in initial water levels commonly were less sig- 

nificant than errors in transmissivity and discharge /recharge. Sev- 

eral factors may cause the difference in results, specifically, (1) the 

difference in the length of time simulated, (2) differences in assumed 

ranges in error for the variables , and (3) differences in the methods 

used and their assumptions. 

Bibby simulated time periods on the order of months, while the 

writer simulated a 20 -year period. The short time periods may have 

influenced Bibby's results markedly, because it seems intuitive that 

errors in initial water levels would have a great effect during the 

early part of a simulation period, but that the effect would be damped 

over long times. Bibby pointed out (1971, p. 60) that his results may 

not hold for longer time periods. Some of the results of this study 

(see the section which follows, "Sensitivity of Results to Modification 
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of the Assumptions of the Method ") suggest that errors in initial 

water levels are more significant during early times. 

Differences in assumed ranges in error may also be a signi- 

ficant source of the difference in results. For example, Bibby (1971, 

table A.1.la) assumed, in one of his tests, a maximum standard devia- 

tion for hydraulic conductivity of 35 ft /day in relation to a mean 

value of 100 ft /day; and a maximum standard deviation for aquifer thick- 

ness of 6.25 feet in relation to a mean value of 75 feet. These assump- 

tions are approximately equivalent to a maximum standard deviation for 

transmissivity (as T = hydraulic conductivity times aquifer thickness) 

of about 220 sq ft /day in relation to a mean value of 7,500 sq ft /day. 

The standard deviation of T is thus an order of magnitude less than its 

mean. In contrast, in this study standard deviations of T are commonly 

of the same order of magnitude as the means. For initial water level, 

however, the standard deviations used by Bibby are comparable to those 

used in this study. These differences might be much of the reason why 

errors in variables other than initial water level were more significant 

in the study reported here. Bibby (1971, p. 64) was careful to point 

out, however, that his results are applicable only to the range of er- 

rors he considered. This is of course true for this study as well. 

The results of this study may be atypical because of the rela- 

tively large uncertainty in values of T for the Tucson basin. Trans - 

missivity likely is uncertain there because T values were obtained from 

short -term aquifer tests in an unconfined aquifer in which delayed 

drainage is significant. However, this illustrates the fact that results 
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obtained from generalized or idealized models may not apply to every 

ground -water basin. 

Sensitivity of Results to Modification of 
the Assumptions of the Method 

Many gross assumptions and simplifications were made in order 

to estimate worth of data, chiefly in discretizing the distribution of 

each variable; in choosing the type of distribution function; and in 

estimating the parameters, primarily the standard deviations, of the 

distributions. In an attempt to evaluate the effects of these assump- 

tions, several sensitivity tests of limited extent were made. These 

tests included: (a) computing expected errors and sample worths at the 

end of each time-step and summing over all steps , instead of computing 

results only at the end of the simulation period, or essentially ap- 

proximating integration over time; (b) computing results using a vari- 

able distribution made up of five elements instead of the standard seven; 

(c and d) computing the seven elements of the variable distribution 

more closely spaced and less closely spaced than those of the original 

distribution; (e) computing results using prior standard deviations and 

standard deviations Of the likelihood functions that were an arbitrary 

80 percent as large as the original values; (f) computing results for 

transmissivities using likelihood standard deviations that represented 

sampling by aquifer tests of several days duration instead of the ori- 

ginal several hours duration, the latter of which is equivalent to the 

tests that have been made in the Tucson basin; and (g) computing results 

for transmissivities assuming they are normally distributed instead 
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of log -normally. Results of these sensitivity tests, for the first 

three error criteria only, are given in tables 12a through 12g, and 

nodes at which these tests were made are identified on figure 9. The 

same eight variables, of which four were selected from the large -error 

category of tests and four from the small -error category, were used in 

sensitivity tests A, C, D, and E. Some different variables, when neces- 

sary, were substituted in tests B, F, and G. 

Results from the sensitivity tests indicate that the method is 

quite sensitive to such assumptions as the type of distribution func- 

tion, the number of elements in the function, the spacing of the ele- 

ments, and the differences in assumed standard deviations for prior 

distributions and likelihood functions. In addition, the expected 

errors and sample worths are much different if results are computed over 

all -time steps, as was anticipated. A summary of mean values of dif- 

ferences between original test data and sensitivity -test data is given 

in table 13. 

For test A, mean expected errors and sample worths obtained by 

summing over all three time -steps are more than twice the values com- 

puted at the end of the period for the absolute error criterion, and 

almost six times the original values for the squared error criterion. 

For individual variable types, mean expected errors and sample worths 

(these means were computed, however, from only two samples per vari- 

able) for the absolute error criterion range from about 1.6 (discharge/ 

recharge) to about 3.1 (initial water level) times the original means, 

and mean expected errors and sample worths for the squared error 
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Table 12. Results of Sensitivity Tests 

Location Number 
in Model of Table 

Containing 
Standard 

Variable Row Column Results 

Standard 
Deviation 

of the 
Likelihood 
Function 

Absolute Value of Error, 
in feet per 509 Nodes 

Expected Expected Worth 
Error of Sample Data 

Square of Error, in feet 
Squared per 509 Nodes 

Maximum Nodal Error, 
in feet 

Number of Nodes in Error 
by more than 10 feet 

Expected Expected Worth Expected Expected Worth Expected Expected Worth 
Error of Sample Data Error of Sample Data Error of Sample Data 

A. Tests done by computing expected errors and sample worths at the end of each 

S 32 13 8 99.4 15.2 
T 16 22 8 491.5 38. 3 
H 34 10 8 319.1 220.1 

4 13 8 657.2 131. 8 
19 16 10 25.8 4.90 

T 19 16 10 94.5 4.97 
H 19 16 10 88.0 14.5 

Q 19 16 10 17.8 3.06 

time -step 

85.3 
5,883.0 
4,925.8 

14,914.7 
7.80 

171. 8 
126.0 

3.43 

20.5 
755.8 

4,125.7 
4,291.3 

2.17 
13. 3 

31.3 
0.91 

Not computed Not computed 

B. Tests done using 5 alternate variable values 

T 11 17 8 83.4 8.94 713.3 143.0 13.6 1.44 1.32 0.14 
T 12 9 8 35.9 3.48 23.1 3.30 1.39 0.12 0.0 0.0 
T 18 12 8 110.1 5.83 20 7. 3 13.2 4.52 0.24 0.15 0.065 
S 5 4 8 24.7 2.19 40.6 4.82 2.72 0.24 0.0 0.0 
H 8 5 8 57.3 0.91 102.1 0.0 3.75 0.060 0.0 0.0 
Q 5 4 8 144.0 16.5 444.1 66.4 3.79 0.43 0.0 0.0 
R 11 17 8 66.8 9.3 295.6 61.4 10.4 1.44 0.74 0.014 Rs 
so 

3 2 8 427. 8 54.7 7,388.2 1,336.1 29.8 3.81 11.3 1.98 

C. Tests done by multiplying the model value by n x 0.40 x a (n = 1,2,3) to 
is 80% of the original) r 

obtain alternate variable values (a is the prior standard deviation) (the factor 0.40 
Pr 

26.9 4.47 1.18 0.14 0.0 0.0 
S 32 13 8 44.6 4.90 1,579.3 114.8 12.5 0.77 2.45 0.15 
T 16 22 8 207.6 11. 7 132.4 106.0 3.00 1.91 0.0 0.0 
H 34 10 8 92.6 58. 8 7,186.1 1,682.8 40.3 6.46 9.21 1.59 

Sb 
4 

19 
13 
16 

8 

10 
371.9 
15.3 

59.6 
2.13 

4.08 
57.0 

0.84 
1.38 

0.63 
4.21 

0.087 
0.10 

0.0 
0.0 

0.0 
0.0 

T 19 16 10 41. 7 1.00 13.3 2.18 1.22 0.13 0.0 0.0 
H 19 16 10 24.6 2.63 1.62 0.29 0.42 0.049 0.0 0.0 
Q 19 16 10 9.71 1.12 
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Table 12. Results of Sensitivity Tests -- continued 

Location Number 
in Model of Table 

Containing 
Standard 

Variable Row Column Results 

Standard 
Deviation 

of the 
Likelihood 
Function 

Absolute Value of Error, 
in feet per 509 Nodes 

Expected Expected Worth 
Error of Sample Data 

Square of Error, in feet 
Squared per 509 Nodes 

Expected Expected Worth 
Error of Sample Data 

Maximum Nodal Error, 
in feet 

Expected Expected Worth 
Error of Sample Data 

Number of 
by more 

Nodes in Error 
than 10 feet 

Expected 
Error 

Expected Worth 
of Sample Data 

D. Tests done by multiplying the model value by n x 0.60 x cs (n = 1,2,3) to 
Pr 

S 32 13 8 55.3 11.2 
T 16 22 8 303.2 31.2 
H 34 10 8 114.5 83.4 

4 13 8 438.4 93.6 Rb 
b 19 16 10 17.8 3.78 
T 19 16 10 51.0 3.98 
H 19 16 10 30.5 6.31 
Q 19 16 10 12.0 2.51 

obtain alternate variable values (the factor 0.60 is 120% of original) 

46.1 14.3 1.54 0.29 0.0 
4,508.0 815.0 16.6 2.01 5.37 

219.0 187.2 3.71 2.70 0.0 
10, 806.4 3,398.9 47.5 10.1 10.9 

5.96 1.91 0.73 0.15 0.0 
90.9 11.2 5.11 0.40 0.10 
21.9 6.95 1.51 0.31 0.0 
2.68 0.87 0.52 0.11 0.0 

0.0 
0.52 
0.0 
2.29 
0.0 
0.033 
0.0 
0.0 

E. Tests performed using standard deviations (for both prior distributions and likelihood functions) that were 80% of original estimates 

S 32 13 8 40.8 6.74 23.3 5.86 1.07 0.18 0.0 0.0 
T 16 22 8 233.3 19.9 2,132.9 299.9 13. 5 1.24 4.01 0.64 
H 34 10 8 84. 7 58.4 115.0 96.3 2.74 1.89 0.0 0.0 

4 13 8 340.1 65.7 6,241.6 1,761.5 36.8 7.12 8.41 1.72 
Sb 19 16 10 13.9 2.8 3.53 1.08 0.57 0.12 0.0 0.0 
T 19 16 10 40.4 1.91 55.4 3.54 4.07 0.19 0.0 0.0 
H 19 16 10 22.5 3.71 11.5 2.86 1.12 0.18 0.0 0.0 

Q 19 16 10 8.87 1.49 1.41 0.37 0.39 0.065 0.0 0.0 

F. Tests on transmissivities using an estimated likelihood function corresponding to an aquifer test of several days duration 

T 4 3 8 81,000 Same 74.3 Same 955.6 Same 8.97 Same 1.47 
T 16 22 8 3,800 234. 8 2,494.0 13.2 4.25 
T 18 12 8 46,500 as 84.4 as 228.9 as 3.46 as 0.071 
T 29 14 8 104,000 7.30 4.8 0.43 0.0 
T 5 10 10 26,000 Original 11.0 Original 25.2 Original 0.59 Original 0.0 
T 19 16 10 32,000 15.6 37.0 1.57 0.058 
T 15 27 8 8,900 308.0 20,696.8 27.2 5.69 
T 45 11 8 66,000 190.3 1,253.7 7.53 2. 70 
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Table 12. Results of Sensitivity Tests -- continued 

Location Number 
in Model of Table 

Containing 
Standard 

Variable Row Column Results 

Standard Absolute Value of Error, 
Deviation in feet per 509 Nodes 

of the 
Likelihood Expected Expected Worth 
Function Error of Sample Data 

Square of 
Squared 

Expected 
Error 

Error, in feet 
per 509 Nodes 

Expected Worth 
of Sample Data 

Maximum Nodal Error, 
in feet 

Number of 
by more 

Nodes in Error 
than 10 feet 

Expected Expected Worth Expected 
Error of Sample Data Error 

Expected Worth 
of Sample Data 

G. Tests on transmissivities using a normal distribution 

T 11 10 10 33.0 5.91 12.8 3.68 0.81 0.14 0.0 0.0 
T 35 14 10 42.1 3.89 35.0 6.44 1.75 0.16 0.0 0.0 
T 46 10 10 45.8 7.80 64.8 17.1 1.73 0.30 0.0 0.0 
T 5 4 8 79.3 5.37 200.2 31.0 3.80 0.26 0.0 0.0 
T 5 10 10 60.3 6.00 99.8 16.6 3.20 0.32 0.0 0.0 
T 19 16 10 58. 3 4.61 126.7 21.8 5.96 0.47 0.18 0.0025 
T 44 11 8 123.9 21.0 349.9 99.5 3.76 0.64 0.0 0.0 
T 23 22 8 2.07 0.34 0.41 0.11 0.38 0.06 0.0 0.0 
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criterion range from about 1.6 (discharge /recharge) to as much as 17.2 

(initial water levels) times original means. Initial water levels 

probably have much higher expected errors because during early time - 

steps the errors in water levels are not damped as much as they are at 

the end of the simulation period. 

For test B, mean expected errors computed using five elements 

per discrete distribution range from 15 to 28 percent below original 

values for the three error criteria tabulated; and mean expected worths 

of sample data range from 53 to 65 percent below original values. 

These different results suggest that five elements are not sufficient 

to describe the distributions. Additional tests should be run to see 

how many elements are necessary to stabilize the results. 

For results computed using seven elements spaced more closely 

than the original (test C) , mean expected errors are from 12 to 28 per- 

cent below, and mean expected sample worths are from 37 to 51 percent 

below original values. Results computed using less closely- spaced 

elements (test D), yielded mean expected errors from 8 to 26 percent 

above, and mean expected sample worths from 32 to 58 percent above 

original values. The probabilities for the more widely- spaced elements 

in the outer parts of the distribution are lower, or for more closely - 

spaced elements are higher, than for the original elements. These dif- 

ferences in probabilities should counter- balance the effects of 

differences in the element values and yield expected errors and sample 

worths that are about the same as the originals. The fact that 
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significant differences exist shows that the discretization did not 

approximate the distributions well. 

For test E, mean expected errors computed with smaller stan- 

dard deviations for likelihood functions for transmissivities -- the 

modified standard deviations averaged about a quarter as large in 

arithmetic units or a third as large in logarithmic units, as original 

estimates -- are much higher than the original results (test F), 

ranging from more than 4 to about 7 times original values for the three 

error criteria tabulated. If future sampling for transmissivity were 

to be done by aquifer tests of several days duration, providing assumed 

standard deviations were reasonably correct, the worth of additional 

data on transmissivity would be significantly higher than for the other 

three variables. 

For results computed using a normal distribution for trans- 

missivity (test G) mean expected errors are from 23 to 55 percent 

higher, and mean expected sample worths are from 41 to 115 percent 

higher, than original values. A log -normal distribution is asymmetric, 

towards high values of the variable, compared to a normal distribution 

with an equivalent mean and standard deviation. Elements of a discrete 

set of alternate values based on the normal distribution, then, will 

be of much smaller magnitude below the mean and of slightly larger mag- 

nitude above the mean. This larger spread of alternate, or erroneous, 

values associated with the normal distribution results in larger ex- 

pected errors and sample worths. 
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The sensitivity tests indicate that computed values of expected 

error, and especially of expected worth of sample data, depend on the 

assumptions and techniques of the method. Therefore these values likely 

are correct only within an order of magnitude. As used in this disser- 

tation, the term "within an order of magnitude" implies that the true 

value lies within a range from a tenth to ten times the estimated val- 

ue. However, the sensitivity tests also suggest that the relative 

rankings of the magnitude of expected errors and sample worths remain 

fairly constant. Table 14 shows a comparison of the rankings, for ab- 

solute value of error only, for expected error and sample worth of 

original results against sensitivity -test results. Seven sensitiv- 

ity tests of eight variables each were conducted; for 48 of these tests 

both an expected error and sample worth were computed; whereas for 

eight tests only expected sample worth was computed. Thus 104 pos- 

sible rankings could change. Of these 104 rankings 86 stayed the same, 

16 changed only one position, and 2 changed two positions. 

Worth -of -Data Computations for an 
Idealized Management Problem 

As an illustration of the potential application of worth -of- 

data studies, an idealized management problem was formulated for the 

Tucson basin. Two of the major users of ground water in the basin are 

the city of Tucson and the mining companies -- Pima Mining Co., 

American Smelting and Refining Co., Duval Corp., and the Anaconda Co. -- 

who pump water for mining operations in the southern part of the basin. 

Predictions are that the mining companies will increase their pumping 
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sharply during the period 1970 -1975 (J. F. Rauscher, written communi- 

cation, city of Tucson Department of Water and Sewers 1968; Mark Wilmer, 

written communication to the city of Tucson Department of Water and 

Sewers 1970; and Clausen 1970, p. 85) . 

The city of Tucson has a large well- field, the Santa Cruz well - 

field south of the city, from which it pumped about 30 percent of its 

total supply in fiscal year 1970. The city should be interested in how 

much the predicted increase in pumping by the mines during 1970 -1989 

will affect water levels in the Santa Cruz field in 1990. However, 

estimates of future pumping for the mines are uncertain because of fac- 

tors such as uncertain estimates of future ore production, due to un- 

expected changes in copper prices or environmental legislation result- 

ing in curtailing production, etc.; or the amount of water that will 

be recycled. The simplified management problem posed here is: what 

is the worth of additional data on pumpage -- actually the worth of 

additional studies made to estimate future pumpage, as actual data 

cannot be collected -- to the city of Tucson in terms of reducing er- 

rors in predicted water levels? 

Figure 10 shows the approximate location of pumping for mining 

and the nodes in which the Santa Cruz well -field is located. Pumping 

for mining occurs in three general areas, one northwest of Sahuarita, 

one southwest of Sahuarita, and one southwest of Continental. Table 

15A lists the 17 nodes in which pumping for mining occurs and gives the 

total estimated 1970 -89 pumpage for each node. More than half of the 

pumpage will occur northwest of Sahuarita, the area closest to the Santa 
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Cruz field. Table 15B shows the nodes in which wells of the Santa 

Cruz field are located and the number of wells per node. 

The basic computer program for the worth -of -data studies was 

modified so that six alternate, or erroneous, values of pumpage were 

assumed at each pumping node. The criteria used to estimate the prior 

standard deviations and the standard deviations of the likelihood func- 

tions were the same as for the basic worth -of -data studies. The pro- 

gram put all the smallest alternate values of pompage into the model, 

then all the next smallest values, etc., and thus tested seven separate 

lumped values of pompage over all nodes. The program could have been 

modified to put various combinations of erroneous pompage into the 

model, such as negative errors at some nodes and positive errors at 

others, provided the errors were assumed independent, but this would 

have resulted in many more than seven lumped values with an enormous 

increase in computer time. Specifically, 717 values are possible if 

every combination is used. The resulting expected error and expected 

worth -of- sample -data computations would have been more accurate, but 

not enough to justify the large increase in cost. 

Table 15B also shows the maximum prediction errors, using the 

most erroneous values of pompage, at each node for the year 1990. 

These errors range from 3.2 feet at the northern end of the Santa 

Cruz field to 38.4 feet at the southern end. Table 15C gives the 

results of the worth -of -data tests. For these computations, the cost 

coefficient in the loss function was set equal to the number of city 

wells per node for the criteria of absolute error and squared error, 
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and set equal to 1.0 or 0.0 if city wells were in a node or not for 

the other criteria. The results show, for example, that the sun of 

expected absolute errors over the 16 nodes, including 23 wells, 

of the Santa Cruz field is about 108 feet -wells, or less than 10 feet - 

wells per node. If additional studies were made to estimate future 

pumpage, which were roughly equivalent in extent to studies already 

made, the error could be reduced by about 18 percent. As a further 

example, if it were judged desirable to reduce the maximum nodal 

error, analogous to using a minimax decision criterion, further data 

might reduce this error by about 18 percent. 

Such studies indicate to a manager, in a qualitative sense, how 

much he can improve model predictions with further collection of data. 

The basic worth -of -data results (tables 8 and 10) also indicate, 

qualitatively, the worth of collecting additional data on a given 

variable at a given node. If a manager could assign a cost to each 

foot of prediction error through the cost coefficient, or cost co- 

efficient function, if one were derived, an actual economic worth of 

collecting additonal data could be computed. 



CHAPTER 6 

STUDIES OF ERROR PROPAGATION 

Some very limited studies were made of the propagation of error 

over the model. These consisted of printing maps of the differences 

between water levels, at the end of the simulation period, computed 

using the model value of a variable and water levels computed using 

selected alternate values of the variable. The eight variables used 

in sensitivity tests A, C, D, and E were used to obtain these maps, 

and table 16 summarizes the results. 

Of the six possible alternate values of storage coefficient and 

transmissivity, data from the two variable values farthest from and 

the two closest to the model value are tabulated. For initial water 

level and discharge /recharge, data from only one outer value and one 

inner value are tabulated because errors for the other two values are 

identical to the first two, differing only in that they were opposite 

in sign. For all tests, the two outer values had probabilities of 

occurrence of either 0.06 or 0.07 and the two inner values had 

probabilities of 0.19, as opposed to the model or central value 

which had a probability of either 0.21 or 0.22. 

Table 16 shows the alternate values, the associated errors 

at the tested nodes, the maximum errors at 1 mile, 5 miles, and 10 miles, 
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Table 16. Data on Error Propagation over the Model. -- A minus ( -) indicates water levels computed using alternate values were above those computed using the model 
value; a plus ( +) indicates they were below. 

Location in 
Model Grid Error at Maximum Error Maximum Error Maximum Error Maximum Radius 

Selected Alternate Node, in at 1 mile, at 5 miles, at 10 miles, at 1 foot of error. 
Variable Row Column Model Valuea (Erroneous) Values feet in feet in feetb in feetb in miles 

S 32 13 0.153 0.048 -0.4 +3.3 +0.8 +0.5 4 
0.118 +0.7 +0.9 +0.2 +0.1 0 

0.188 -1.0 -0.7 -0.2 -0.1 < 1 

0.258 -3.5 -2.3 -0.7 -0.3 4 

T 16 22 3,800 26.6 -2.4 -3.9 +0.5 +0.1 2 

727 -1.9 -3.1 +0.4 +0.1 2 

19,860 +5.0 +13.4 -1.6 -0.4 7 

542,500 +10.1 -68.4 -14.4 -4.9 14 
H 34 10 2,610 2,370 +7.7 +6.7 +2.4 +0.2 7 

2,690 -2.6 -2.2 -0.8 -0.1 3 

Pb 
4 13 102,105 194,355 -103.6 -62.4 -5.3 -0.9 11 

71,355 +34.5 +20.8 +1.8 +0.3 8 

S 19 16 0.112 0.007 -0.8 +1.9 +0.4 +0.0 1 

0.077 +0.0 +0.5 +0.1 0.0 0 

0.147 -0.2 -0.5 -0.1 0.0 0 

0.217 -0.7 -1.5 -0.3 -0.0 1 

T 19 16 52,500 19,240 +1.5 -9.4 +0.4 +0.1 3 
37,570 +0.4 -3.5 +0.2 0.0 2 

73,360 -0.3 +3.8 -0.2 0.0 2 

143,220 -0.4 +11.5 -0.5 -0.1 3 
H 19 16 2,340 2,295 +1.0 +2.4 +0.7 -0.2 2 

2,355 -0.3 -0.8 -0.2 0.0 0 

Q 19 16 5,270 3,281 -1:1 -0.7 -0.2 0.0 < 1 

5,933 +0.4 +0.2 +0.1 0.0 0 

aUnits as in Tables 8 and 10. 

bDirectly north, south, east, or west only. 
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and the maximum radii of 1 foot of error. The first four variables in 

the table are from the large -error category, and the second four are 

from the small -error category and are all at the same node. 

For the first set of four tests, the largest errors and extent 

of error are associated with discharge /recharge and transmissivity; 

and for the second set are associated with transmissivity and initial 

water level. These results match the results from the basic worth -of- 

data computations. The largest error at a tested node is about 104 feet 

associated with an extreme alternate recharge value at node (4,13) . 

The largest error at 1 mile is 68 feet, at 5 miles is 14 feet, and at 

10 miles is about 5 feet, and the maximum radius of 1 foot of error 

is 14 miles; all associated with an extreme alternate transmissivity 

value at node (16,22). 

Of perhaps more interest, however, is that for the six tests 

other than on R at (4,13) and T at (16,22) , errors in predicted water 

levels were relatively small, even for the extreme erroneous variable 

values. For these tests, eight of nine maximum errors at the tested 

node and six of nine maximum errors at 1 mile are less than 4 feet; 

eight of nine maximum errors at 5 miles are less than 1 foot; and all 

nine maximum errors at 10 miles are less than 0.5 feet. These 

limited results suggest that in many cases, prediction errors asso- 

ciated with errors in basic data are not a major problem in modeling. 

Lovell (1971, p. 26 -27 and Appendix B) also studied error 

propagation in the southern part of the Tucson basin digital model, 

using slightly different methods in that he observed propagation with 
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time. He concluded that maximum errors in predicted levels tended 

to stay at the tested node for storage coefficient, transmissivity, 

and discharge /recharge, provided the error in discharge /recharge 

continued over the whole simulation period; and stayed within a radius 

of a few nodes for initial water level. The data in table 16 generally 

support Lovell's conclusions, although they show that maximum errors 

associated with storage coefficients do not necessarily remain at the 

tested node. 

In addition, errors in computed water levels associated with 

erroneous values of initial water level produced some unexpected results. 

A test on the initial water level at node (19,16), using an extreme 

erroneous value of 2,295 feet instead of the model value of 2,340 feet, 

yielded a computed water level at the end of the simulation period 

at (19,16) that was 1.0 feet below that computed with the model value. 

The maximum error was at node (21, 17) and represented a computed 

level 3.1 feet below the standard value. Eight miles directly to the 

north on the model boundary, however, was a secondary maximum error 

representing a computed water level 2.2 feet above the standard 

value. Errors between this node and the tested node were as little 

as 0.1 feet. This secondary maximum appeared at the same location in 

other tests at this node, although values were smaller. 

Tests of errors in transmissivity at node (19, 16) produced 

similar, although less striking, results. Errors decreased steadily 

in size to a point five miles directly north of the tested node, then 

increased a maximum of 0.5 feet at a point seven miles to the north. 
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The reason for these irregularities in error propagation is not known, 

although it may be related to boundary effects. 



CHAPTER 7 

FUTURE WORK 

Potential Extensions of the Method 

This initial attempt to evaluate worth of ground -water data could 

be extended in several ways while retaining the basic approach as used 

here. Three types of errors in basic data: (1) in the location of dis- 

charge /recharge, (2) in the variation in discharge /recharge with time, 

and (3) in the position of the model boundaries, were not included in 

this investigation because the methods used here were not easily adap- 

table to their study. Conceivably, however, these types of errors could 

be studied without major modification of the basic approach. For var- 

iation in the location of discharge /recharge, for example, quantities 

of discharge or recharge could be assigned to the most likely node and 

to 4 or more adjacent nodes. Probabilities of discharge or recharge 

being at a given node could be assumed to be proportional to the dis- 

tance from the most likely node. Probabilities also could be associ- 

ated with various boundary configurations at a given location and to 

various plausible patterns of time variation of discharge /recharge. It 

should be pointed out, however, that to model daily or even seasonal 

variations in discharge /recharge over a simulation period of several 

years would involve using many time -steps and would be costly. 
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The basic approach could be modified by using continuous in- 

stead of discrete probability distributions for the variables. This 

procedure would involve extensive changes in the computer program and 

numerical integration might be necessary to compute probabilities. 

Also, as discussed in Chapter 4 ( "Use of Statistical Decision Theory 

to Evaluate Worth of Ground-Water Data "), using continuous distribu- 

tions would necessitate using much more computer time. If discrete 

probabilities are retained, however, an attempt should be made to 

improve the procedures used in discretizing and truncating the proba- 

bility distributions. 

Further Research Suggested by the 
Results of this Study 

This section summarizes the recommendations for future research 

that are scattered through the text, as well as some research for which 

need is implied in the text by discussion of deficiencies in the digi- 

tal model and in the method of computing worth of data. 

During this study, areas of possible research on digital model- 

ing became evident. More work should be done on model calibration, 

both to develop better objective and semi- objective calibration methods 

and to develop efficient techniques for trial and error calibration. 

Calibration based on inclusion of all model nodes should be compared to 

calibration based only on nodes with historical data to see which is 

most efficient under given conditions of areal distribution of data. 

More research is needed on how many time periods are necessary for the 

calibration process to approach a unique set of calibrated parameters, 

and to determine how closely the true parameter values are approximated. 
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The errors in a model that are caused by computation, by mathe- 

matical assumptions, and by the particular algorithm used merit more 

study. It would be of especial interest to determine how far the var- 

iable values of the final calibrated model are from true values because 

of errors caused by computation, model assumptions, and the algorithm. 

This will be difficult, of course, for actual ground -water basins be- 

cause it normally isn't possible to determine the true variable values. 

Research on whether boundary effects in a digital model are 

equivalent to boundary effects in a real physical system would be use- 

ful. More work also is needed on methods of determining the optimum 

number of time -steps for simulating the historical record for various 

areal distributions of aquifer parameters, initial water levels, and 

recharge /discharge. 

Additional research could improve the method for computing worth 

of data that was developed in this study. The types and parameters of 

probability distributions of hydrogeologic variables need better defi- 

nition. This should include definition of both the natural variability 

of hydrogeologic parameters and the variability caused by measurement 

errors and errors due to interpolation and non - representative data. It 

also would be important to determine if probability distributions are 

dependent or independent of the area or volume of aquifer being consid- 

ered. More work could be done on using the subjective knowledge of a 

hydrologist to estimate parameters of probability distributions. 

Another subject that needs study is the economic benefit of 

digital models of ground -water systems. A closely- related subject for 
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research is the cost of errors in water -level predictions obtained from 

such models. Such research would help to define more realistic loss 

functions, for example by specifying whether the functions are symmetric 

or asymmetric, and by better defining the function for cost per foot of 

prediction error. Costs of collecting ground -water data also need bet- 

ter definition. 

A major improvement in the method would be to extend it to 

model and evaluate the effects of errors concurrently at more than one 

node or at all nodes in a model. Formulation of the probability distri- 

butions of variables would be difficult if variable values were not as- 

sumed independent. Research thus would be needed on joint probability 

distributions of variables, especially joint distributions related to 

errors resulting from contouring, interpolation, and non -representative 

data. The basic approach in evaluating worth of data would have to be 

modified if many or all nodes were considered in error simultaneously, 

so that the amount of computer time would not be prohibitive. 

The studies reported here also suggest that research on the op- 

timal design of networks for sampling ground -water data would be useful. 

Networks to optimally collect data for digital models and for other 

uses could be developed and compared. 



CHAPTER 8 

SUMMARY 

Potential errors in the digital models of the Tucson basin were 

classified as errors associated with computation, errors associated 

with the mode]'s mathematical assumptions, and errors associated with 

basic data -- the model parameters S and T, initial water levels, and 

values of discharge and recharge. This study focused on estimating the 

worth of additional basic data on a simulation period 1970 -90 to the 

digital model. The method is most applicable in the early stages of 

collecting data for a basin model, prior to the time when additional 

field data might result in a poorer model. 

Statistical decision theory was used, in a basic form, to com- 

pute expected error and expected worth of sample data over the whole 

model associated with uncertainty in one variable at one location. 

Tests were made on 91 variables at 61 different locations in the model. 

At 30 nodes, more than one variable was tested. Of the tests, 67 were 

on variables whose prior estimates generally were considered to be un- 

certain; the other 24 were on variables whose prior estimates were 

considered to be less uncertain. 

Of the uncertain variables, discharge /recharge and transmis- 

sivity have the largest expected errors and worth of sample data, 

while initial water levels and storage coefficients have lesser values. 
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However, transmissivity has a low percent reduction in error because 

of the large uncertainty commonly associated with sampling for T. 

Of the variables whose prior estimates were more certain, transmis- 

sivity and initial water level generally have the largest expected 

errors and worth of data, while storage coefficient and discharge/ 

recharge have smaller values. The large expected errors and worth of 

data associated with transmissivity may be peculiar to the Tucson 

basin because T's for this basin commonly are uncertain. 

In general, the largest expected errors are associated with 

nodes at which values of discharge /recharge are large or at which 

prior estimates of transmissivity are very uncertain. Large worth of 

sample data is associated with variables which have large expected er- 

rors or which could be sampled with relatively little uncertainty. 

The results are generally the same for all six of the separate cri- 

teria used. 

The size of the Tucson basin model necessitated the use of 

probability distributions composed of only seven discrete values of a 

given variable. In addition, most of the parameters of the distribu- 

tions had to be estimated, largely on a subjective basis, because of 

the fact that sample data within individual nodal areas conuuonly were 

lacking. 

Tests of the sensitivity of the results to the various assump- 

tions inherent in the approach indicated that results are sensitive to 

all of the assumptions. For these reasons, individual values of 

expected error and sample worth likely are accurate only to an order 
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of magnitude. For example, if the expected error were computed to be 

100 feet over the 509 nodes of the model, the true expected error might 

range from less than 50 to several hundred feet. However, the sensi- 

tivity tests indicated that the ranking of types of variables, in terms 

of the magnitude of expected errors and sample worths, are not sensitive 

to the assumptions of the approach. The general conclusions on compa- 

rison of the effects of errors in the four variable types therefore 

should be reasonably reliable. 

The results of this study do not agree well with those of 

Bibby (1971), who concluded that errors in predicted water levels are 

largely a result of errors in initial water levels. This lack of agree- 

ment may be partly a result of the differences in the degree of uncer- 

tainty assigned to the, variables, and also may be related to the 

different methods and assumptions of the two studies. 

The approach used in this study can be applied to idealized 

management problems. An example application addressed the question: 

what is the worth of additional data on pumtpage in a local area in 

terms of reducing errors in predicted water levels in a nearby area? 

In general, the method can be used by a ground- water -basin manager to 

indicate qualitatively how much he can improve model predictions by the 

collection of additional data. 

Limited studies of error propagation indicated that expected 

errors in predicted water levels were fairly small outside of a 

radius of a mile around the tested node, except for those errors asso- 

ciated with very large values of discharge /recharge or very uncertain 
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values of transmissivity. This result suggests that in many cases, 

prediction errors associated with errors in basic data are not a 

major problem in digital modeling. However, this conclusion is only 

for errors taken one node at a time, and does not say anything about the 

actual condition in which all model data have some degree of uncertainty. 

A drawback of the approach is that most of the required 

statistical parameters had to be estimated subjectively. Subjective 

estimation of parameters likely will be necessary for most basins, 

because no more hydrogeologic data are available for the Tucson basin 

than are available for most other basins. Therefore, worth of data 

evaluated by one person will not be exactly the same as that evaluated 

by another. However this disadvantage is in one sense somewhat of 

an advantage. By means of subjective estimation of the parameters of 

distributions, a hydrologist can enter his judgment and intuition about 

the uncertainty associated with basic data directly into the process 

of evaluating the worth of model predictions. 



APPFNDIX A 

COMPUTER PROGRAM 

The writer prepared the computer program used for the worth -of- 

data studies, which consists of a main program, WODATA, and seven sub- 

routines, CYCLER, AVAL, BAYESGW, SIGMA, PROBDN, TBLKUP, and ALDIRS. 

Figure 11 is a simplified flow chart of the entire program. The pro- 

gram contains several options to control how extensive a set of worth - 

of -data studies will be, such as whether worth of data is computed 

over all time -steps or at the end of the simulation period, whether 

maps of errors are printed, the number of error criteria used, and the 

number of discrete values in each probability distribution of a tested 

variable. The computer time for a test will vary markedly depending 

on the options chosen. For example, if a test of a single variable 

does not involve summing worth of data over time -steps or printing 

maps, and uses one of the six error criteria and five discrete values 

for the distribution, the test takes about 13 seconds of time, 

exclusive of the computer time taken to compile the program, on the 

University of Arizona's CDC -6400 computer, at a cost of about $1.50. 

If, however, the program calls for maps of errors and uses seven 

values per distribution, the time per test increases to about 25 seconds; 

and if the program uses all six error criteria and seven values per 
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distribution, the time is about 30 seconds. If the program sums worth 

of data over three time -steps, and uses two error criteria and seven 

values per distribution, the time rises to about 55 seconds per test 

at a cost of about $6.00. 

In brief, WODATA reads in all data and processes it for use 

by the subroutines. These data include the number of tests to be 

made; which operational options are selected; the type of probability 

distribution; the length of the simulation period; the size of the 

initial time -step; the size of the model grid; and data specific to 

each test, such as nodal location, variable type, and standard 

deviations of the prior distribution and initial likelihood function 

( QQus). WODATA also converts data to proper units, computes inter - 

nodal transmissivities, and, at the end of a test, sorts all results 

in order of magnitude and prints them in tabular form. 

CYCLER is an input subroutine that reads data for the variables 

S, T, H, Q, and R and the coefficient for cost per foot of error, 

converts them to proper units, and fills the rest of each data array 

outside the model boundary with the necessary values - -0 for T, Q, and 

R and 1 for S and H. 

AVAL takes the model value, or mean, of each variable to be 

tested and computes four or more alternate values, at least two larger 

and two smaller than the mean. These alternate values are spaced from 

the mean ± 1, 2, 3, 4, etc. times a specified spacing factor times the 

standard deviation of the prior distribution. The spacing factor for 
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the basic worth -of -data studies was 0.50. AVAL puts all values in 

ascending order, except that the mean is the first value in the array. 

BAYESGW is the subroutine that actually computes expected 

error, or expected opportunity loss, and expected worth of sample data. 

First, the subroutine computes all necessary statistical data- - 

probabilities for the discrete prior distribution of the variable, for 

the likelihood functions, for observing sample results, and for the 

posterior distributions - -by using subroutines SIGMA, PROBEN, and TBLKUP. 

Subroutine BAYESGW then obtains water -level elevations over the model, 

computed using each possible variable value, by calling subroutine 

ALDIRS. Then BAYESGW computes risks for each variable value and selects 

the minimum risk for each error criteria as the expected opportunity 

loss (EOL) . EOL can be considered the minimum expected error summed 

over all 509 nodes of the Tucson basin model. Then the subroutine com- 

putes risks and EOL for each possible sample result, and computes the 

expected value of expected opportunity loss (EEOL) over all possible 

samples, for each error criteria. BAYESGW finally computes expected 

worth of sample data (EWSD) and the percent improvement with sampling, 

or percent reduction in error (PCIMP) and punches all results for all 

error criteria on cards for future reference. 

SIGMA is the subroutine that computes the standard deviations 

for the likelihood functions. In the first call to SIGMA the program 

assumes the model value is the mean of the distribution and uses it and 

the "sampling" standard deviation,a to compute the probabilities 
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of the first likelihood function. In subsequent calls to SIGMA 

alternate variable values are assumed to be means, and the subroutine 

derives standard deviations associated with each alternate value. 

Subroutine PROBEN computes probabilities for all possible 

values of the variable, using one specified value as the mean and a 

specified standard deviation. This subroutine can compute probabilities 

using either arithmetic or logarithmic units. PROBDN sorts all 

variable values in ascending order and computes the midpoints between 

adjacent values. These midpoints are used to compute standard normal 

deviates, defined as (Midpoint value - p ) /a . Adjacent standard 

normal deviates then are passed in pairs to TBLKUP which interpolates 

the probability of the included interval. Subroutine PROBDN then 

normalizes each of the probabilities by dividing by their sum, to form 

a discrete probability distribution. 

Subroutine TBLKUP estimates the probability of the interval 

between two adjacent standard normal deviates by approximating the 

corresponding area under the standard normal probability curve. The 

approximation utilizes an array which contains a condensed table, 

including 65 values, of areas under the curve. The 65 values are spaced 

at intervals of 0.05 standard units from 0.00 to 3.00 units, and at 

intervals of 0.5 units from 3.0 to 5.0 units. 

Subroutine ALDIPS is the alternating- direction - implicit algorithm 

which computes water -level elevations over the model at the end of a 

specified time period. The core of this subroutine is essentially the 
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Tucson basin model. ALDIRS takes each variable value, inserts it in 

the model, and recomputes internodal transmissivities around the tested 

node, if necessary. The subroutine then computes a set of water levels 

using each variable value. If worth of data is to be summed over all 

time- steps, the sets of water levels are passed to BAYESGQ at the end 

of each step; if not, ALDIRS completes computations of water levels for 

the whole simulation period. ALDIRS then prints differences, in the 

vicinity of the tested node only, between water levels computed using 

the model value and using alternate values,or prints maps of the differ- 

ences in water levels over the whole model. 

The following pages are a complete listing of the computer 

program WODATA and subroutines. 
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PROGRAM MOOATAI: NPUT,OUTPUT,PUNCH) 
C PROGRAM TO EST!NATE dORTH CF A00ITIONAL DATA TO A DIGITAL MODEL 
C OF A GROUND -WATER BASIN 
C 

PROGRAMMED BY JOSEPH S. GATES, DEPT. OF HYDROLOGY AND WATER RESOURCES, 
C UNIVERSITY OF ARIZONA 
C 
C OATS OF LAST CHANGE - JULY 6, 19/1 

000003 

000303 

DIMENSION IHOW(100), JCOL(100), NVARTYP(1001, SPERM, FMTRN(8), 
2 NFG(100), SIGPI1001, SIGS(100), FMTI(8), FMT7(8), FMT0(8), 
3 A(100), NY(100), NRTYP(100), PVAL(10), FMT4(8) 
COMMON /WBA /IR, JC, NUT, VAL(10), NUMVAL, IS, IE, NSTART(51), 

2 NEND(51), LPASS, LTSF 
000003 COMMON /NOOOGW/ EWSD(6,100), PCIMP16,L0J1, EOL(6,L001, SP, SS, 

2 N :LA:, LFLAS, VRT, C(51,30), NUMIA8 
039:03 COMMON /W3OTLJ/ TKALPH(GS), TALPH(65) 

C :1MON /d70SI:/ SIGSTC(2J), SIGSTU(20), SINT(10), NVSINT 
000003 CCAMON /WO3A0S /FHEAD(8), TIME, T(51,30), 5(51,30), JS, JE, 

IEM1, JEH1, A, MAPS, TI4(51,30,41, 0(51,30), IEPI, JEPI, 
3 HJ(51,30), R(51,30), TSIEPI 

C A IS ARRAY USED FOR RESULTS DURING SORTING, NZ IS ARRAY USED TO 
C 
C 

STORE THE ORIGINAL STORAGE LOCATIONS OF RESULTS DURING SORTING, 
LPASS ST3RES THE TEST NUMBER DURING A TEST, PVAL IS THE ARRAY 

C FOR TEMPORARY STORAGE OF UNSCALEC VALUES 
C 
C 
C READ IM GENERAL DATA T3 RUN PRDGRAM 
C REID RJR NUMBER AND THE NUMBER OF VARIABLES TO BE TESTED 

:3:3:3 READ S. F1TRN 
099011 S FO+MATTAI1J1 
00:011 READ 111, NUMTEST 
01::17 101 FJRMAT(4I101 

C PE.D TOTAL NUMBER OF VALUES ALLOWED FOR EACH DISCRETE DISTRIBUTION 
C OF A VARIABLE (MODEL VALUE AND ALIEHNATE (ERRONEOUS) VALUES) 

: LC 17 REID 101, NJNVALS, NUIVALT, NUMVAHJ, NUMVALO, NUMVALR 
:79:5: F.I:.:T 1j3 

_:r1 IC's FCPAT' ..:,mDx,WCN(H OF GROUND -WATER DATA, TUCSON 9ASIK) 
C "' 1 PRINT FeTRN 

C REID FORMATS FOR OUTPUT HEADING, INPUT DATA (3), ANO HEACINC 
C FOP PRINTED MAPS 

C00045 PEAD 5, FMTI, FMTA, F4T7, FMTB, FHEAO 
C READ FLAG FOR NORMAL (3) / LOGNORMAL (1) DISTRIBUTIONS ASSUMED 
G FCR TRAHSMISS(VITY 

010063 PEAS 1:1, LFG 
C REA: FLAGS FD( WHETHE°. NORTH -OF -DATA COMPUTATIONS ARE MADE AT 

TAE EI:3 3F EA:1 TIME STEP (2) OR AI THE ENO OF THE SIMULATION 
C PEPIOC (I) ILTSF), FOR WHETHER MAPS CF COMPUTED WATER LEVELS ARE 
C PR:::TEU (2) OR NOT (1) (MAPS), ANOF3R THE NUMBER OF ERROR CRITERIA 
C TO 2E USED :1I CCHPJTING SEPARATE TABLES OF WORTH OF DATA (NUMTAB) 

033071 REAO 1:i, LTSF, MIPS, NUMTAB 
C READ TIME PERI00 TO BE SIMULATED, IN YEARS 

030103 2E13 107, TPER 
:30111 137 FCRMAT(8FIC.0) 

C REAC 3IMJLATION PERIOD (ARRAY FOR PRINTING.) 
:00111 READ 5, SPE( 

C READ ACRES PER NODAL AREA 
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000117 READ 107. ACRES 
C READ INITIAL TIME -STEP, IN YEARS 

030125 READ 107, TSTEPI 
000133 PRINT FMTL 

C TIME IS TOTAL SIMULATION PERIOD, IN DAYS 
000137 TIME *365.25TPER 

C IS AND IE, JS AND JE ARE THE NUMBERS OF THE FIRST AND LAST ROWS ANO 
C COLUMNS, RESPECTIVELY, WITHIN THE MODEL BOUNDARIES 

000141 READ 2, IS, IE, JS, JE 
000155 2 FORMAT(20I4) 
03CL55 IEM1*IE -1 
000157 JEM1 *JE -1 
000161 IEP1 =IE+1 
000162 JEPI =JE1 

C NSTART IS THE COLUMN NUMBER OF THE LEFT -HAND (WESTERN) BOUNDARY 
C NODE IN EACH ROW, NEND IS THE COLUMN NUMBER OF THE RIGHT -NANO 
C BOUNOARY NODE IN EACH ROW 

000163 READ 2,(NSIART(I), I =1,IEP1), (NENO(I), I *1,IEP1) 
C 
D READ DATA FOR THE DIGITAL BASIN MODEL, INPUT IS A ROW AT A TIME, 
C FROM LEFT BOUNDARY TO RIGHT OCUNOARY 
C HJ IS INITIAL .ATER LEVEL (BEGINNING OF SIMJLATION PERIOD), IN FEET 
C ABOVE MEAN SEA LEVEL 
C SET NJ ARRAY 13 1.0 - AT NODES OUTSIDE BOUNDARY, WATER LEVELS ARE 
C CALCULATED EQUAL TO 1.0 AUTOMATICALLY. IF NJ ARRAY NOT EQUAL TO 1.0, 
C MODEL WILL INDICATE CHANGE OUTSIDE BOUNDARY. 

046223 CALL CYCLER (HJ,NSTART,NENO,51,30,FMT4, 1.0,1.0) 
C Q IS OISCHAR;E (PUMPAGE), A POSITIVE QUANTITY, R IS RECHARGE, NEGATIVE 
C FOR UOUNDARY AND STREAM -CHANNEL RECHARGE ANO SUBSURFACE INFLOW AND 
C POSITIVE FOR SUBSURFACE OJTFLOW, BOTH Q ANO R ARE IN ACRE -FEET PER 
C LEN +TH OF SIMULATION PERIOD 
C LONVERT RECI:AR.E AND DISCHARGE FNOM ACRE -FE:T PER TOTAL TIME PERIOD 
C TO CUBIC FEET PER DAY (QRF IS THE CONVERSION FACTOR) 

C00213 ORF *43560. /TI.1E 
309215 CALL CYCLER( Q, NSTART,NEN0,51,30,FMT8,QRF,0.0) 
000225 CALL CYCLER( R,NSTART,NEN0,51,30,FMT8,QRF,0. 0) 

C T IS TRANSMISSIVITY, IN THOUSANDS OF GALLONS PER DAY PER FOOT 
C CONVERT T TO SQUARE FEET PER DAY (IF IS THE CONVERSION FACTOR) 

000235 TF *1000./7.48 
000231 CALL CYCLER( T ,NSTART,NEND,51,30,FMT4,TF,3.J) 

C S IS THE COEFFICIENT OF STORAGE (DIMENSIONLESS) 
C SET S ARRAY EQUAL TO 1.0 - S MUST BE NONZERO SO GAM IS NONZERO, IF NOT, 
C DIVISION BY ZERO WILL RESULT. 

000245 CALL . YCLER( S, NSTART,NENO,51,30,FMT7,1.0,1.0) 
C 
C READ COST COEFFICIENTS FOR NOOAL ERRORS 

000256 CALL CYCLER( C ,NSTART,NEEND,51,30,FMT8,1.0,0. 0) 
C 
C THIS SEQUENCE 3F INSTRUCTIONS COMPUTES ALL :NTERNODAL TRANSMISSIVITIES 

000266 00 150 I *IS,IE 
093273 JSTART *NSTARTII) 
093272 JE40 =NEN3(I ) 
007273 03 150 J =JSTART,JENO 

C BASET IS TRANSMISSIVITY OF NODE IJ (NODE BEING COMPUTED) 
000275 B:.SET =T(I,J) 
000301 K*1 
000302 1F(T(I,J- 1).EQ.0.1151,152 
û003C7 151 TIN(I,J,K) *C. 
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030315 K =1(.1 

000316 GO TO 153 
000316 152 TIN(I,J,K)(BASET.T(I,J- 1))/2. 
030317 K =1(.1 

030330 153 ¡F(T(I,J.I).EQ.0.)154.155 
030337 154 TI4(I,J,K) =0. 
033345 K =K.1 
330346 CO TO 156 
000346 155 TIN(I,J,K)(BASET.T(I,J.1)) /2. 
000357 K =K.1 
030360 156 IF(T(I- 1,J).EQ.0.)157,156 
030.767 157 TIN(I,J,K) =0. 
090375 K =101 
000376 GO TO 159 
033376 156 TIN(I,J,K1=(BASET.T(I- 1,J))/2. 
033407 K =K.1 
CO0410 159 IF(T1I.1,J).EQ.0.)160,161 
000417 160 TIN(I,J,K) =0. . 

C 23425 GO TO 153 
033425 161 TIN(I,J,K)=(BASET.T(I.1,J)) /2. 
003436 153 CONTINUE 

C 

C A IS NOBAL AREA IN SQUARE FEET 
003443 A =ACRES43563. 

C READ VALUES FROM NORMAL PROBABILITY TABLE (K ALPHA AND ALPHA, FROM 
C HILLIER AND LIEBERMAN, INTRODUCTION TO OPERATIONS RESEARCH, P. 623) 

003445 READ 135,(TKALPH(I), I =1,65) 
033457 10: FORMAT(23F4.2) 
630457 READ 130,(TALPH(I), I =1,65) 
000471 100 FORMAT(5F12.10) 

C READ ROW LOCATION, COLJM)( LOCATION, VARIABLE TYPE, RECHARGE TYPE, 
C FRIOR STANDARD DEVIATION OF VARIABLE, STANDARD DEVIATION OF LIKELIHOOD 
C FUNCTION FUR MODEL VALUE (VALUE ASSUMED TRUE IN THE MODEL), ANO FLAG 
C FOR wHETMER MODEL VALUE IS RELATIVELY CERTAIN OR UNCERTAIN (S AND T 

C ONLY), FOR E: :1 VARIABLE TO BE TESTED (VALUES ARE READ IN SAME UNITS 
C AS MODEL DATA) 

:00471 READ IC2,(IROH(I), JCOL(I), NVARTYP(I), NRTYP(I), SIGP(I), SIGS(I) 
2, NFO(Ii, I= 1,NUMTEST) 

60052: 102 FCPHAT(415,1Jz,2F10.3,I10) 
C CONVERT STANDARD DEVIATIONS TO PROPER UNITS 

330520 00 109 I =1,NUMTEST 
4;7522 N'JT =NJA /TYP(I) 
000524 GO TO(109,113,109,114, 114)NVT 
000535 '113 SIGP(I) =SIGP(I)1000. /7.46 
036543 SIGS(I) =SIGS(I).1000. /7.46 
0C3541 GO TO 109 
03[542 104 SIGP(I). SIGP( I)43560. /TIME 
::3546 SIGS(I7= SIGS(I1.43560. /TIME 
000547 109 CONTINUE 

C READ NJMOER OF INTERJALS FOR S VALUES FOR WHICH SIGNAS (STANDARD 
C DEJIATI3'(S) ARE ASSUMED CONSTANT AND THE INTERVAL LIMITS 

333552 READ 131, NVSINT 
033557 READ 106,(SINT(I), I=1,NVSINT) 
000572 NVSPI =NVS INT.1 

C READ THE SIGMAS CORRESPON3ING TO EACH INTERVAL (BOTH FOR RELATIVELY 
C CERTAIN AND UNCERTAIN S VALUES) 

000574 READ 106,(SIGSTC(I), SIGSTU(I), I.1,NVSP1) 
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000611 106 
C 
C 

FORMAT(10F6.61 
READ THE FACTOR WHICH IS MULTIPLIED BY PRIOR SIGMA TO OBTAIN 
ALTERNATE VARIABLE VALUES 

030612 READ 106, FACT 
003617 PRINT SPER 
033623 PRINT 64 
330627 64 FORMAT( / / / /,25X,VARI4BLE DESIGNATIONS, //,30X,1 STORAGE COEFFI 

2CIENT, /,30X,2 TRANSMISSIVITY, /,30X,3 INITIAL WATER LEVEL *, 
3/00X0.4 = PUMPAGE, /,30X,5 RECHARGE, / / /,25X,RECHARGE DESIGNA 
4TI3NS, //,30X,1 STREAM -CHANNEL., /,30X,2 BOUNDARY, /,30X,3 
5 SUBSURFACE INFLOW, /,30X,4 = SUBSURFACE OUTFLOW (ACTUALLY A FORM 
6 OF DISCHARGE)., /,34X,(0 INDICATES NON- RECHARGE VARIABLE)) 

003627 GO TO(65,67)LTSF 
730535 65 PRINT 66 
000641 66 FORMAT(////,20X,COMPUTATIONS OF EXPECTED OPPORTUNITY LOSSES, EXPE 

2CTEU WORTHS OF SAMPLE DATA,, /,22X,AND PERCENT IMPROVEMENT ARE 00 
3NE AT THE ENO OF THE SIMULATION PERIOD ONLY./ 

000641 GO TO 70 
000642 67 PRINT 66 
000646 66 FORMAT( / / / /,20X,C04PUTATIONS OF EXPECTED OPPORTUNITY LOSSES, EXPE 

2CT_D WORTHS OF SAMPLE DATA,, /,22X,ANO PERCENT IMPROVEMENT ARE DO 
3NE AT THE ENO OF EACH TIME STEP AND SUMMED, /,24X,FOR EXAMPLE, FO 
4R THREE TIME STEPS THE EXPECTED MAXIMUM NODAL ERROR, /,22X,DOES N 
50T REPRESENT A SINGLE ERROR, BUT THE SUM OF THREE EXPECTED ERRORS, 
6, /,47X,ONE FOR EACH TIME STEP./ 

C 
C 
C START TESTING VARIABLES - THIS SEQUENCE CYCLES ONCE FOR EACH VARIABLE 
C TESTED. NVT, NRT. IR, JC, SP, SS, ANO NFLAG TEMPORARILY MOLD ARRAY 
C VALUES DURING A TEST, LFLAG =0 INDICATES NORMAL PROBABILITY 
C OISTRIBJTIONS UNLESS OTHERWISE INDICATED BY. LFG 

000646 70 DO 10 LMAIN= 1,NUHTEST 
00365 LPASS =LMAIN 
01 ;651 =N L N) 

003653 NRT= t(RTYP(LMAIN) 
030654 IR =IROW(LMAIN) 
090656 JC=JCOL(LMAIN) 
030657 SP= SIGP(LMAIN) 
000661 SS =SIGS(LMAIN) 
000662 NFLAC =NFG(LMAINI 
000664 LFLAG=0 

C THIS SEDJENCE PUTS THE INDICATED MODEL VALUE OF THE VARIABLE TO BE 
C TESTED IN VAL(1), INDICATESTHE VARIABLE TYPE FOR PURPOSES OF 
C COMPUTIN: ALTERNATE VALUES, AND CALLS THE SUBROUTINE TO COMPUTE THEM 

00'2665 GO TO(51,52,53,54,55)NVT 
330676 51 NUMVAL =NUMVALS 
003733 VAL(1) =S(IR,JC) 
000734 M1ARTYP =1 
030735 CALL AVAL( MVARTYP ,NUMVAL,VAL,FACT,LFLAG,SP,TIME) 
037713 GO TO 60 
30071: 52 NUMVAL =NUMVALT 
COC716 LFLAG =LFG 
030717 VAL(1)= T(IR,JC) 
333723 MVARTYP =2 
030724 CALL AVAL( MVARTYP ,NUMVAL,VAL,FACT,LFLAG,SP,TIME) 
000733 GO TO 60 
300734 53 NUMVALNUMVAHJ 
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n107 s 
3ODT42 
090743 
000751 

VAL(1) =HJ(IR,JCI 
MVARTYP =3 
CALL AVAL( MVARTYP ,NUMVAL,VAL,FACT,LFLAG,SP,TIME) 
GO TO 60 

0007552 54 NUMVAL =NUYVALQ 
000754 VAL(1) =QIIR,JC) 
C00760 MVARTYP=. 
C01761 CALL ANAL( MVARTYP ,NJMVAL,VAL,FACT,LFLAG,SP,TIME) 
001767 GO TO 60 
000770 S5 NUMVAL =NUMVALR 
000772 VAL(1) =R(IR,JC) 
000776 MVARTYP =5 

C RECHARGE TYPE 4 (SUBSURFACE OUTFLOW/ IS TREATED AS A FORM OF DISCHARGE 
000777 IF(NRT.EQ.4) MVARTYP =4 
001002 CALL AVAL( MVARTYP ,NUMVAL,VAL,FACT,LFLAG,SP,TIME) 
001011 63 CONTINUE 

C 

C THIS SEQUENCE PRINTS THE JNSCALED MODEL VALUE AND ALTERNATE VALUES 
001011 PINT 63, NVT, IR, JC 
031023 63 FORM3Ti.1',20X, *THE VARIABLE BEING TESTED LS TYPE *,I3, /,25X,AND 1 

25 AT LOCATION (',13,,,I3,)) 
001023 GO TO(98,92,98,94,94)NVT 
001034 92 CO 91 I =L,HUMVAL 
081636 91 PALII) =VAL(I) 7.48 
401042 GO T0 99 
001343 94 DO 93 I =1,N'UlVAL 
301045 93 PVAL(I) =0AL(I)TIME /43560. 

C IF ALL VARIABLE VALUES FOLLOWING THE INITIAL (MODEL/ VALUE ARE NOT 
C IN ASCENDING ORDER, THE COMPUTATIONS OF WORTH OF DATA ARE NOT VALID 

001053 99 PRINT 61 
001857 61 FORMAT(/ / /,15X,v4RIABLE VALUES FOR THE FREQUENCY DISTRIBUTION *) 
001057 PRINT 62,1PVAL(I), I=1,N'JMVAL) 
001072 GO TO 97 
001373 98 PRINT 61 
031077 PRINT 62,IVAL(I), I=1,NUMVAL) 
001112 62 FORMAT( 23X,F12.3) 
331112 97 CONTINUE 

C 
C CALL THE SEQUENCE OF SUBROUTINES THAT COMPUTES WORTH OF DATA 

001112 CALL BAYESGWITIME) 
001114 10 CONTINUE 

C 

C 
C THIS S23UENCE SORTS ALL RESULTS IN TABLES IN DESCENDING ORDER, AND 
C Pi!INTS THE SORTED TABLES 

301117 03 200 II =1,8UMTAB 
001120 DO 100 K =1,2 

C INT RECORDS THE POSITION OF THE LAST INTERCHANGE (ALL NUMBERS 
C BEYOND X(INT) ARE SORTED/, LIM IS THE LIMIT TO WHICH THE SORTING 
C SHOULD EXTEND IN ANY GIVEN SORTING PASS 

001121 LIM =NUMTEST -1 
001123 IF(K.E2.1)301,302 
0,1126 331 DO 303 I =1,NUMTEST 
031133 NX(I > =I 
001131 303 XII) =EWSD(II,I) 
001137 GO TO 305 
001137 302 DO 304 I=1,NUMTEST 
001141 NX(I) =1 
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001142 304 X(I)=PCIMP(II,I) 
0í11:3 305 INT =1 
001151 IF(NUMTEST.E3.11G0 TO 320 
00:153 DO 310 I =1,LIM 
001155 IF(x(I1).LE..X(I)l GO TO 310 
791163 TEMPI =X(1.1) 
OG1161 TEMP2=Nx(I.11 
001163 x(I.1) =x(I) 
001 :64 NX(I.1)=NX(I1 
031166 x(I1 =TEMPI 
001167 NX(I)=TEMP2 
001171 INT =I 
001172 310 CONTINUE 
331175 IF(INT.E0.11 GO TO 320 
351177 LIN =INT -1 
001177 SO TO 305 
031230 320 GO TOt321,322)K 
031206 321 PRINT 323 
0:1212 323 FORMAT(0.20x0TABLE OF SORTEO VALUES OF EXPECTED WORTH OF SAMPLE 

2 DATA (DESCENDING ORDER)) 
001212 SO TO 325 
001213 322 PRINT 324 
001217 324 FORMAT('1',200, =TABLE OF SORTEO VALUES CF PERCENT IMPROVEMENT IN E 

2XPECTED OPPORTUNITY LOSS' /.41x,WITH SAMPLING ( OESCENDING OROER) =) 
3J1217 325 GO TO(331.332,333,334,335,336)II 
C31231 331 PRINT 341 
031235 341 FURMAT( /,20X, =(ABSOLUTE VALUE OF ERROR, IN FEET (TIMES A COST COEF 

2FICIENT) PER 509 NODES)) 
001235 :0 TO 353 
031236 332 PRINT 342 
33 :242 342 FORMAT(/,20x,(50JARE OF ERROR, IN FEET SQUARED(TIMES' A COST COEF 

2FICIENT1 PER 509 NODES)*) 
^61242 +i T3 353 
0,31243 333 PRIi7 343 
031247 343 FG1MAT( /,29x,(MAXIMUM NODAL ERROR, IN FEET (COST COEFFICENT = 1 0 

2R 3))) 
091247 GO TO 350 
001253 334 PRINT 344 
0:1254 344 F,',RMAT( /,20X,(NUMBER OF NODES IN ERROR BY MORE THAN 5 FEET (COST 

2 COEFFICIENT = L OR 0)11 
33,254 GO TO 353 
001255 335 PRINT 345 
0312E1 345 FOPMAT( /,2340.(NUMBER OF NODES IN ERROR BY MORE THAN 10 FEET (COST 

2 COEFFICIENT = 1 OR 011) 
031261 GO TO 350 
001262 336 PRINT 346 
331266 346 FORMAT( /,20x, =(NUMBER OF NODES IN ERROR EY MORE THAN 25 FEET (COST 

2 COEFFICIENT = 1 OR 011'1 
321266 353 GO 10(351,3531K 
:31274 351 PRINT 352 
331330 352 FORMAT( / / /,13x,VARIABLE TYPE,5X,RECHARGE TYPE0,5X,ROW',50,'COL 

2UM4,5X,ExPiCTEO OPPORTJNITY LOSS,5X,'EXPECTEO WORTH OF SAMPLE 0 
3A1Á) 

001330 GO TO 355 
300.331 353 PRINT 354 
001335 354 FORMAT( / / /,25X,VARIABLE TYPE,5X,RECHARGE TYPE,SX,ROW ,5X,COL 

2UMN,5X,PERCENT IMPROVEMENT).. 
031305 355 CO T0(356,3501K 
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001313 
001315 
001317 

C 

356 

360 

LAT IS TIE ORIGINAL STORAGE LOCATION OF EACH RESULT 
00 360 I =1,NUMTEST 
LAT =NX(I) 
PRINT 357, NVARTYP(LAT), NRTYP(LAT1, IRON(LAT), JCOL(LATI, 

2LAT), x(I) 
EOL(II, 

001343 357 FORMAT(/, 15x, I2, 16X, I2, 11X ,I3,6X,I3,10X,F12.4,20X,F12.4) 
001343 GO TO 100 
001343 356 DO 370 I= 1,NUMTEST 
001345 LAT =NX(I) 
001347 370 PRINT 359, NVARTYP(LAT), NRTYP(LAT), IRON(LAT), JCOL(LAT), X (I) 
001367 359 FORMAT(/, 30X, I2 ,16X,I2,11X,I3,6X,I3,10X,F9.4) 
001367 100 CONTINJE 
001371 239 CONTINUE 
001374 400 CONTINUE 
001374 STOP 
001376 ENO 
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SUBROUTINE CYO LER (VAR,NS,NE,II,JJ,FNT,FACT,FILL) 
C SUBROUTINE TO READ IN ALL VARIABLE VALUES (VAR) OF A DIGITAL MODEL 
C 

000013 DIMENSION VAR(II,JJ), NS(II), NE(II), FMT(01 

C 

FMT IS THE READ -IN FORMAT, FACT IS THE SCALING FACTOR FOR EACH VARIABLE, 
AND FILL IS THE VALUE TO BE STORED IN THE PARTS OF THE ARRAY 

C OUTSIDE THE MODEL BOUNDARIES 
C 

000013 DO 10 I -1,II 
000014 00 10 J =1,JJ 
000015 10 VAR(I,J) =FILL 
000027 IIM1 =II -1 
CO0031 DO 1 I =2,IIH1 
0:.'.32 JS T ART =. "S(I) 
00.03'4 JENO =NE(I) 
OCC036 READ FMT,(VAR(I,J), J =JSTART,JENO) 
000060 00 2 J =JSTART,JEND 
OOOOE6 2 VAR(t,J) =VAR(I,J)'FACT 
000076 1 CONTINUE 
000101 RETURN 
000101 ENO 
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C 

C 

C 
C 

SUAR)UTINE AVAL( MVT ,NUMVAL.VAL.FACT,LFLAG.SP.TIME) 
SUBROUTINE TO CuMPUTE THE ALTERNATE (EP0ONECUSI VALUES CF THE VARIA1.E 
TO 1E TESTED ANO STORE THEM IN ASCENDING OPCER (AFTER THE HG)EL VALUE 
IS STORED IN VALU)). THE VALUES APE COMPUTE) BY AOGIVG (AN'l 

SUBTRACTING( 1. 2. 3. ETC TINCS A FACTOR TIES THE PRIOR STAVOAR0 
1EVIATION TC (FROH) VALU) 

7.:12 DIMENSION VAL(1C1 
C LIM IS THE PAMPER CF ASSUMED VALUES ABCVE AND 9ELON THE MEAN. 

AND MUST AE 2 OP MORE 
C 

LIM= (NUMVAL -1)/2 
.CC014 LP1 =LIMA 
:x:315 MVP1=LIM.2 
]3:017 L =2 

C 
C THIS SEQUENCE CGUPUTES ALTERNATE VALJES (EXCEPT FCR T, 1CG- N)'M41) 

374:20 IF(MVT.E0.2.ANO.LFLAG.E9.1) GO TO 2 

302:26 1 00 13 I.1,LIH 
C0:C3G VAL(L )=VAL HI- FLOAT(LIH.1- I)FACT =S0 
001036 1 =L1 
):0C37 IC CONTINUE 
0O:v42 00 16 I=1,LIM 
1:3:47 VALIL) =VL (11 FLOAT (I)F 2í5F 
1ITZ19C L =L.1 
3CCC51 16 CONTINUE 

C 

C THIS SEIUEVCF CHECKS TO SLE IF ANY ALTERNAT= VALUES OF THE VARIAILE 
C APE LESS THAN 9 (OR GREATER THAN 0 FOk. ECHARGE WHICH HAS SEEN 
C DESIGNATED A NEGATIVE QUANTITY). THOSE LESS THAN : AKE PECOMOUTEJ 
C SPADED EQUALLY PET MEEN 0.:1 AN() C FOR S. PETwEEN THE LCMEST NON -S 
C VALUE ANO J.0 FOR T (NCRMAL )ISTRI?UTION), LEFT AS NEGATIVE VALUES 

033654 
f, FOR NJ. ANO SET EQUAL TO 10 OR -17 FOk DISCHARGE OR P?CHAkGE 

GO T0(11,17.3C,14,15)MVT 
C SI ANO TI APE SPACING INTERVALS F01 S AN1 I 

006í.64 11 Ir =O 
C1;065 00 13 I =2.LP1 
:32067 IFIVAL(I).L1.4.6117.13 
67::74 17 ix =IX.l 
2Já076 13 CONTINUE 
003111 IFIIX.E0.3)33.18 
31)105 16 L =2 
005136 SI =3.31 /FLOAT(Ix) 
C32111 00 19 I =1.IX 
0C1112 VAL(L) =0.31- FLOAT(IX -IISI 
6:3117 L =L.1 
C0:12í 19 CONTINUE 
00017= GO TO 3C 
7`1123 12 Ix =3 
:31124 00 22 I =2.LP1 
20 5176 IFIVAL(II.LT.C.C123,22 
0:.133 23 Ix =IK.I 
ùv3135 22 CONTINUE 
0áJ140 IFIIx,E0.0133.24 
Cí3144 24 L=2 
3C 2145 II =V AL (7(x)/FLOATIIX.I) 
301153 00 26 I =1.Ix 



194 

:4:155 
üC164 
OCu166 
ft:0171 

:_)171 

'6 

14 

VAL(L)=1/AL(2.I10-FLOAT(IV-I411TI 
L-L1 
CONTINUÉ 
GO TO 3C 

DO 43 I=2.LP1 
03C173 IFIVAL(I),IE.C.C) VAL(I)=1c.L4T560./TIrE 
C01231 4: CONTINUE 
9`02:4 63 TO 3C 

:32"4 15 00 41 I=MVP1.NUMVAL 
:(276 IF(VAL(I).GE.C.J) VALCU =-1J.04355:./TIME 

I''214 41 CONTINUE 
0::217 10 RETURN 

C THIS SEQUENCE COMPUTES ALTERNATE VALUES FOP ToANSMISSIVITY (LOG- 
NORMALLY DISTRIBUTED) 

::C22C ? V1l =41OG13(VAL111) 
:.'227 SPL =ALOG13(SP.VAL(1) I -V1L 
0.C241 00 23 I=1.LIM 
:ù'.742 VLF =FLOAT(LI4.1- I)FACTSPL 
::246 VALILI=1G.C(V1L -VLF) 

C:1265 1 =L.1 
0:(256 ?C CONTINUE 
333261 00 25 I =1.LIM 
33J263 VLF= FLOATlI1FACTSPL 
J: :265 VALIL) =10. 0(V1L.VLF) 

'75 L =L.1 
,3?76 25 CONTINUE 

:COS01 RETURN 
C':I/2 ENO 
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SUBROUTINE BAYESr,N(TIME) 
C SUBROUTINE TO COMPUTE THE EXPECTED WORTH OF GROUND WATER DATA. 
C USING BAYESIAN STATISTICAL DECISION THEORY. 
C 

000003 DIMENSION EIOSS(6,10), ELOSSM(6), EEOL(6), VMXE(101, 
2 NGT5(10), NGT10(10), NGT25(10), ELOSS2M(10,6), PRP(101, 
3 PREI(131, PRPE(10,10), PSTPE(1O,10), PRPV(101, ELOS2(6,10,10) 

000003 COMMOII /WBA /IR, JC, NVT, VAL1101, NUMVAL, IS, IE,. NSTART(51), 
2 NEND(51), LPASS, LTSF 

000003 COMMON /WODBSW/ EWS0(6,100), PCIMP(6,100), EO1(6,100), SP, SS, 
2 NFLAG, LFLAG, NRT, C(51,30), NUMTAB 

000003 COMMON /BG4ADS/ 1(51,30,71 
C EWSO IS EXPECTED WORTH OF SAMPLE DATA, PCIMP IS PERCENT IMPROVEMENT, 
C ELOSS IS EXPECTED LOSS (BEFORE SAMPLING), ELOSSM IS MINIMUM ELOSS 
C (EXPECTED OPPORTUNITY LOSS OR EOL), ELOS2 IS EXPECTED LOSS GIVEN 
C SAMPLING HAS OGCURREO, ELOSS2M IS MINIMUM ELOS2, EEOL IS EXPECTED VALUE 
C OF EXPECTED OPPORTUNITY LOSS, VMXE IS THE VALUE OF THE MAXIMUM NODAL 
C ERROR, NGT5, 13, 25 ARE THE NUMBERS OF NODES WITH ERRORS MORE THAN 
C 5 FEET, 10 FEET, AND 25 FEET, PRP IS PRIOR PROBABILITY, PRPE IS 
C LIKELIH00J,.PREI IS PROBABILITY OF OBSERVING A GIVEN SAMPLE, PSTPE IS 
C POSTERIOR PROBABILITY, PRPV IS AN ARRAY FOR TEMPORARY STORAGE OF 
C LIKELIHOODS. COMPUTED FOR A GIVEN ASSUMED MEAN, VARMUP IS UNSCALEO 
C MODEL VALUE (MEAN OF PRIOR DISTRIBUTION), SPU IS UNSCALEO SP, 
C SIG IS THE STANDARD DEVIATION FOR THE GIVEN TEST ANO VARIABLE VALUE, 
C SIGUSC IS UNSCALEO SIG, LCALL INDICATES A CALL FOR PRIOR PROBABILITIES 
C (1) OR LIKELIHOODS (2), SIGFACT IS THE FACTOR BY WHICH ALTERNATE VALUES 
C OF O AND R ARE MULTIPLIED TO GET THEIR STANDARD DEVIATIONS (FOR 
C LIKELIHOOD FUNCTICNSI (SIGMA IS ASSUMED PROPORTIONAL TO THE MAGNITUDE 
C OF Q AND R), VMU IS ASSUMED MEAN 
C 
C THIS SEQUENCE SETS VAL(1) EQUAL TO THE MEAN ANO. USING THE SPECIFIED 
C PRIOR STANDARD DEVIATION, CALLS THE SUBROUTINE THAT COMPUTES THE PRIOR 
C ?ROBAOILITY DISTRIBUTION, ANO PRINTS THE RESULTS 

C30003 VAPwUP =VAL(1) 
033005 IF(r:VT.EO.2. ANO. LFLAC.EQ. 1)4,5 
033014 4 VAR4JPU =VARMU ?47.46 
000016 SPU =SP7.40 
306020 SIG=ALOG10(VARMUPU.SPU) - ALOGLO(VARMUPU) 
000030 PRINT 67, SIG 
000036 67 FORMAT( /,32X.4SIGMA (LOG) ,F6.3) 
003035 GO TO 70 

000040 S SIG =SP 
003742 GO TO(71,72,71,73,73)NVT 
030053 71 PRINT 69, SIG 
330Có1 69 FORMAT( ,33X,SIGMA = ,F10.3) 
COCC61 GO TO 70 
033063 72 SIGUSC =SIG7.40 
303065 GO TO 75 
300 :66 73 SI.USC4SIG4TIME /43560. 
003071 75 PRINT 69, SIGUSC 
000077 70 LCALL =1 
030110 CALL PROBDN(NUMVAL, PRP, IO, VAL, 10, VARMUP,SIG,LFLAG,NRT,LCALL,NVT) 
000113 PRINT 61 
330117 61 FORMAT ( /,15X,PRIOR PROBABILITIES OF THE STATES REPRESENTED BY T 

2HE VALUES (VAL(I))4,/,21X,4OF A GIVEN VARIABLE AT A GIVEN NODE (IR 
3.JC), /) 

000117 PRINT 62,(I,PRP(I), I.1,NUMVAL) 



 

000134 62 
C 
C 

FORMAT (22X,VALUE(,I2,1,F10.4) 

THIS SEQUENCE SETS EACH VARIABLE VALUE EQJAL TO THE MEAN IN TURN AND, 
C PASSING THE SPECIFIED STANOARO DEVIATION OF THE LIKELIHOOD FUNCTION 
C 

C 

(FOR MEAN = MODEL VALUE), CALLS THE SUOROUTINE THAT COMPUTES SIGMA, 
CALLS THE SUBROUTINE THAT COMPUTES THE LIKELIHOOD FUNCTION, AND 

C PRINTS THE RESULTS 
000134 PRINT 66 
000147 60 FORMAT ( / /,20X,SIANOARO DEVIATIONS AND NON -NORMALIZED TOTAL PROBA 

2B!LITIES, /) 
C00140 SICFACT=SS /VAL(11 
030142 LCALL =2 
330143 00 50 I=1,NUMVAL 
000146 IX =I 
006147 VMU =VAL(I) 
030151 CALL SIGNA(SS,NVT,VMU, SIG ,SIGFACT,NFLAG,IX,TIME,LFLAG) 
300162 CALL PR0B0N( NUMVAL, PRPV, I0, VAL, IO,VMU,SIG,LFLAG,NRT,LCALL,NVT) 
00C17í 00 49 J =1,NUMVAL 
033273 49 PRPE(J,I)=PRPV(J) 
070211 50 CONTINUE 
C30213 PRINT 41 
000216 41 FORMAT ( /,15K,PRIOR PROBABILITIES OF EVENTS E(I) GIVEN STATES VA 

21(J) - (LIKELIH000S1) 
333216 PRINT 42,(I,I =1,NUMVAL) 
000230 42 FORMST(/,9X,VAL(J),10I10) 
000230 DO 46 I =1,NUMVAL 
033233 PRINT 43, I,(PRPE(I,J), J =1,NUMVAL) 
730251 46 CONTINJE 
330255 43 FORHAT(10X,E(, I2,),10F10.4) 

C 
C THIS SEQUENCE COMPUTES THE PROBABILITY 0% OBSERVING A GIVEN VARIABLE 
C VALUE IN A SAMPLE, AND COMPUTES THE PROBABILITY THAT A GIVEN VALUE IS 
C TRUE GIVEN A SPECIFIED SAMPLE HAS BEEN OdSERVED (USING BAYES RULE ANO 
C THE PREVIOUSLY COMPUTED PRIOR PROBABILITIES, LIKELIHOODS, AND 
C PROBABILITIES OF OBSERVING GIVEN SAMPLES) (OR COMPUTES PREI ANO PSTPE) 

030255 OC 10 I= 1,NUMV4L 
0:07;5 PREI(I) =C.0 
060260 33 :3 J.1,NU1VAL 
031261 PREI(T) =PREI(I) PRP(J)PRPE(I,J) 
0:3271 10 CONTINJE 
030275 OO 11 J =1,NUMVAL 
000277 IF(PREI(J).tQ.0.0)15,16 
00(334 15 DO 17 II =I,NUIVAL 
000336 PSTPE(II,J) =0.0 
0031:2 17 CONTINJE 
006315 GO TO 11 
030315 16 00 18 I.1,NUHVAL 
000317 PSTPE( I,J) =(PRP(I)PRPE(J,I)) /PREI(J) 
030333 10 CONTINUE 
003336 11 CONTINUE 
033341 PRINT 54 
0.0344 54 FORMAT ( / / /,15)(0.PROBABILITIES -OF EVENTS E(I), /) 
000344 PRINT 55,(I,PREI(I), I =1,NUNVAL) 
000361 55 FORMAT (10X, E(,I2.),F7.5) 
GSS3C/ PRINT 44 
03:3:5 44 FORMAT( / / /,15X,POSTERIOR PROBABILITIES OF STATES VAL(I) GIVEN EVE 

2NíS E(J)1 
033365 PRINT .8,(I,I =1,NUMVAL) 

196 
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300377 45 FORMAT( /,11X,E(J),10I10) 
000377 00 47 I =1,NUMVAI 
000432 PRINT 45, I,(PSTPE(I,J), J =1,NUMVAL) 
000420 47 CONTINUE 
000424 45 FORMAT (OX,VAL(,I2,),10F10.4) 

C 
C 
C THIS SE)UEN;E COMPUTES EXPECTE3 LOSSES (EXPECTED ERRORS) USING SIX 
C SEPARATE ERROR CRITERIA 

2 :3424 DO 7 N =1,NUMVAL 
000425 00 7 NN=1,NUMTAB 
000426 ELOSSRIN,N) =0.0 
000432 DO 7 K =1,NUMVAL 
000433 7 ELOS2(NN,N,K)=0.0 

C KCALL1 IS THE FLAG IVOICATING WHETHER WATER LEVELS FOR ALL TIME -STEPS 
C HAVE BEEN COMPUTED BY ALDIRS, KCALL2 COUNTS THE NUMBER OF CALLS TO 
C A_OIRS, ACIFF IS ABSOLUTE DIFFERENCE, SQOIFF IS SQUARE OF DIFFERENCE 
C BETWEEN¿ WATER LEVELS COMPJTED USING TWO DIFFERENT VALUES OF THE VARIABLE, 
C ECOIF, ECSDIF REPRESENT ECONOMIC DIFFERENCES (ADIFF, SQOIFF TIMES 
C A COST COEFFICIENT) 

000450 KCALLI =1 
030451 KCALL2 =0 

C CALL TO THE SUBROUTINE THAT COMPUTES PREDICTEO WATER LEVELS OVER THE 
C MODEL FOR EACH GIVEN VARIABLE VALUE 

0:0452 132 CALL ALDIi(S(KCALLI,KCALL2) 
)]3454 0J 2 )t =1,NU1VAL 
030457 DO 2 M =1,NUMVAL 
003463 GO TO(302, 302,333.334,345,306) NUMTAB 
0:5472 336 NGT25(M) 0 
000474 305 NGT10(4) =0 
000476 304 NGT5(N)=0 
300500 303 VMXE(M) =0. 
000552 302 00 300 I =IS,IE 
000504 JSTART= NSTART(I) 
000506 JEHG =NEND!I) 
030510 00 330 J=JSTART,JEND 
0005:2 ADIFF= AOS(H(I,J,N) - H(I,J,M)) 
330526 GO T3( 311, 312, 313,314, 315,316) NUMTAB 
030540 316 IF( ADIFF .GT.25.0.AND.C(I,1).NE.0.0) NGT25(M1 =NGT25(M)1 
000555 315 IF( ADIFF .GT.10.0.AHD.CCI,J).NE.0.01 NGT10(M) =NGT10(M),1 
033574 314 IF( AOIFF.GT.5.0.ANO.C(I,J).NE.0.0) NGT6(M) =NGT5(M)1 
000612 313 IF( A0IFF .5T.VMxE(M).ANO.C(I,J).NE.0.0) VMXE(M) =ADIFF 
0)3633 312 SOOIFF= A0IFF2 
030632 ECSOIF SVUIFFL(X,J) 
'070636 ELOSS(2,'1)= ELOSS(204) ECSOIFPRP(M) 
030645 311 ECOIF =AOIFFC(I,J) 
030652 ELOSS(1,N) =ELOSS(1,N) ECOIFFRP(M) 
000661 300 CONTINJE 
030666 GO TO12,2,323,3241325,326)NUMTAB 
0:0700 326 ELOSS(60)= ELOSS(S,N) FLOAT(NGT25(M))PRPIM) 
330711 325 ELOSS(5,N) =ELOSS(5,N) FLOAT(NGT10(M))PRP(M) 
000722 324 ELOSS(4,N) =ELOSS(4,N) FLOAT(NGT5(M)) PRP(M) 
033733 323 ELOSSt3,N) =ELOSS(3,N) VMXE(M)PRP(M) 
030742 2 CONTINJE 
030747 IFCKCALL1.EQ.11112,111 

C 

C THIS SEQUENCE SEARCHES FOR THE MINIMUM EXPECTED LOSS (COL) FOR 
C EACH ERROR CRITERIA 
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000753 111 NVM1 =NUMVAL -1 
000755 DO e II= 1,N'JMTA6 
310757 B ELOSSM(III =ELOSS(II,11 
O3376á 00 3 II =I,NUMTAB 
030767 00 3 I =1,NVH1 
O00770 IF( ELOSSM (II1.GT.ELOSS(II,I.1))52,3 
031033 52 ELOSSH(II) =ELOSS(II,I.1) 
001(05 3 CONTINUE 
001012 UO 13 II=I,NUMTAB 
001014 13 EOL(II,L,ASSI =ELOSSM(II) 

C 

C IRIS SEQUENCE COMPUTES EXPECTED LOSSES FOR EACH GIVEN SAMPLE RESULT, 
C USING THE SIX ERROR CRITERIA, ANO SEARCHES FOR THE MINIMUM EXPECTED 
C LOSS FOR EACH GIVEN SAMPLE AND ERROR CRITERIA 

001025 112 DO 20 K =S,NUHVAL 
071027 DO 22 N= 1,NUMVAL 
001635 00 22 M=1,NUMVAL 
001031 GO TO (352,352,353,354,355,356)NUMTA6 
001,43 356 NGT25(11) =0 
031045 355 NGTIO(l)=O 
0í,1G47 354 NG05(1)=0 
G01051 353 VMXE(H) 0 . 
0uí653 352 00 350 I =IS,IE 
011655 JSTART=NSTART(I) 
031557 JEND =NENG(I) 
001661 00 350 J=JSTAR1,JENO 
001063 AOIFF=ADS(H(I,J,N1 - M(I,J,M1) 
031177 GO 101361 ,362,363,364,365,3661NUMTA6 
031111 366 IF( AOIFF .GT.25.0.ANO.C(I,J1.NE.0.01 NGT25(M)=NGT25(H1.1 
011127 365 IF( ACIiF .GT.10.0.ANO.C(I,JI.NE.0.0) NGT10(M1 =11GT10(M)+1 
031145 364 iF( A0IFF.GT.5.0.ANO.C(I,J1.NE.0.0) NGT5(M1 =NGT5(M)1 
0:1:63 363 IF(ADIFF .5f.VMXE(M).AND.C(I,J1.NE.0.01 VMXE(H1 =ADIFF 
71211 362 SQOIFF= AUIFF2 

031223 ECS1IF =531IFFCII,J) 
0:1257 ELCS2( 2, N, KI= ELOS2(2,N,10ECSOIFPSTPE(M,K) 
031221 361 ECOIF =A0IFF111I,J1 
031220 ELOS211, N, K I =ELOS2(1,N,K)ECOIFPSTPEIM,KI 
07:243 350 CONTINUE 
011245 GO 13(22,22,373, 374,375,3761 NUMTAB 

7 376 ELCS2l 6, N, 10= ELOS2( 6, N,K14.FLOAT(NGT25(M))PSTPE(M,K1 
0:1274 375 ELOS2( 5, N, KI= ELOS2( 5, N,K)FLOATlNGT10(M1IPSTPE(M,K) 
001311 374 ELOS2( 4, N, K)= ELOS2( 4 ,N,K)4FLOAT(NGT5(M))PSTPE(M,KI 
001326 373 ELOS2(3,N,KI= ELOS2(3,N,K1VMXE(M)PSTPE(H,K) 
091341 22 CONTINUE 
03:3:6 IF(KCALLI.EQ. 1)20,121 
001352 121 CO 3.0 II =I,NUMTAB 
001354 340 ELOS52M(K,II)=ELOS2(II,1,K) 
001367 00 23 II =1,NUMTAB 
531373 00 23 I =1,NVM1 
001371 IF( ELOSS24IK ,I11.5T.ELOS2(II,I.1,K1153,23 
001435 53 ELOSS2M(K,II1 =ELOS2(II,I.1,K) 
601416 23 CONTINUE 
001423 20 CONTINUE 

C 

C THIS SEQUENCE COMPUTES EXPECTED VALUE OF EXPECTED OPPORTUNITY LOSS, 
C EXPECTED NORTH OF SAMPLE DATA, ANO PERCENT IMPROVEMENT, ANO PUNCHES 
C THE RESULTS 

001426 IF(KCALLI.EQ.1)132,131 
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001432 131 00 30 II.I.NUMTAB 
071434 EEOI(II)=0.0 
001436 00 30 I=1,NUMVAL 
001437 EEOL(II)=EEOI(II) ELOSS2M(I,II)PREI(I) 
001447 30 CONTINUE 
001454 00 14 II1.NUMTA0 
001456 ENSO(II.LPASS)=EOL(II.LPASS) EEOL(II) 
001465 IF(EOL(II.LP4SS).EO.0.)391.392 
001472 391 PCIMP(II.LPASS)0. 
001476 GO TO 19 
001477 392 PCIMP(II.LPASS).(ENSO(II.LPASS)/EOL(II.LPASS))100. 
001510 19 PUNCH 395, IR. JC. NVT, NRT, EOL(II.LPASS). ENSO(II.LPAS$) 
001536 PUNCH 395. IR. JC. NVT, NRT, PCIMP(II.LPASS) 
071556 395 FORMAT(4I5.10K.2F20.5) 
031556 14 CONTINUE 
001562 100 CONTINUE 
001562 RETURN 
001563 ENO 



200 

SUBROUTINE SIGNA(SS,NVT VMU ,SIG,SSFCT,NFLAG,IX,TIME,LFLAG) 
C SUBROUTINE TO COMPUTE A STANDARD DEVIATICN OF A LIKELIHOOD FUNCTION 
C 

005414 COMMON / MOOSIG/ SIGSTC(201, SIGSTU(20), SINT(10), NVSINT 
ß0J014 GO TO(1,2,3,4,5)NVT 

C 
C THIS SEQUENCE SELECTS THE PROPER SIGMA FOR STORAGE COEFFICIENT FROM 
C Two ARRAYS (EITHER FOR RELATIVELY CERTAIN OR UNCERTAIN S) 

000324 1 DO 16 I1,NVSINT 
000026 I2I 
000027 IF(VMU.LE.SINT(I1117,16 
000935 16 CONTINUE 
030:41 IF(VMU.GT.SINT(NVSINT)) IZ.NVSINT1 
0044:5 17 GO TO111,12)NFLAG 
00CLS3 11 SIG- SIGSTC(IZ) 
033C56 GO TO 15 
3:C055 12 SIG= SIGSTU(IZ1 
000061 15 PRINT 10, SIG 
006067 10 FORMAT(33X,SIGMA . ,F10.31 
0000e7 RETURN 

C 
C 
C 

THIS SEQUENCE COMPUTES A STANDARD SIGMA FOR TRANSMISSIVITY (LOG -NORMAL), 
ASSUMING SAMPLING TECHNIQUES THAT YIELD EITHER RELATIVELY CERTAIN OR 

C UNCERTAIN RESULTS, THEN COMPUTES THE RATIO (SF). OF THE SPECIFIED 
C LIKELIHOOD SIGMA (FOR MODEL VALUE MEAN) TO THE STANDARD VALUE. 
C IN SJDSEQUENT CALLS THE SUBROUTINE ADJUSTS EACH STANDARD SIGMA 
C CORRESPONDING TO EACH ASSUMED MEAN BY MULTIPLYING BY SF 
C VMU!! AND SSJ ARE UvSCALED VALUES OF VMU ANO SS 

00ßG70 2 VMUU =vMU7.48 
000075 SSJ= SS7.4E 
0000'7 IF(LFIAG.ED.1)6.7 
03C134 6 VMJLALOO101VMUU) 
330105 IF(Ix.EQ. 1)27,26 
0o1ß11á 27 Gri TO(21,22)NFLAG 

C TVIS EQUATION YIELDS AN APPROXIMATE STANDARD VALUE OF STANDARD DEVIATION 
C (LOGARITHMIC) FOR I DISTRIBUTION OF T, ASSUMING AN AQUIFER TEST OF 
C SEVERAL DAYS OURATION 

000124 21 SIGTLC0 .336- 0.232.((4LOG10(VMUU)- 3.0)0.333) 
000132 IFIIx.E0.1125,26 
000142 25 SF =SSU /(10.(VMULSIGTLCI -VMUU) 
000152 GO TO 29 

C THIS EQUATION ASSUMES AN AQUIFER TEST OF SEVERAL HOURS DURATION 
:33152 22 SI; TLJ= C.740- 0.506((ALOGI0(VMUU)- 3.01.0.333) 
931153 IF( Ix. E7.1165,66 
330173 65 SF =SSU /110.(VMUL.SIGTLJI -VMUU) 
0032)0 29 SIC.ALOJ10(SSJVMJU) -VNUL 
000212 GO TO 23 
0)7212 26 GO TO(21,221NFLAG 
310223 26 x.(13.(VMJLSIGTLC)- VMJU)SF 
0)0230 GO TO 67 
332230 56 x.(10.(vMJLSIGTLU)- VMJU)SF 
3332'.0 67 SIG= ALOS101xVMUU) - VMUL 
:3G252 23 PRINT 20, SIG 
003263 20 FORMAT(32X,SIGMA (LOG) ,F6.3) 
000260 RETURN 

C 
C THIS SEQUENCE COMPUTES A STANDARD SIGMA FOR T (NORMAL DISTRIBUTION) 
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C ANO THE SF RATIO 
300261 7 IFIIX.EQ.1)73,74 
000271 73 SIG =SS 
000272 GO TC(71,72)NFLAG 

C THIS EQUATION YIELDS AN APPROXIMATE STANDARD VALUE OF STANOARO DEVIATION 
C FOR A DISTRIBUTION OF T, ASSUMING AN AQUIFER TEST OF SEVERAL DAYS 
C DURATION 

130300 71 SISTC= 10.*( 3.1141.0.763.(ALOG10(VMUU) -3.3)) 
030312 IF(IX.EQ.1)75,76 
000322 75 SF =SSU /SIGTC 
000324 GO TO 77 

C THIS EQJATION ASSUMES AN AQUIFER TEST OF SEVERAL HOURS DURATION 
000:25 72 SIGTU= 10.( 3.792.0.667(ALOG10(VMUU) -3.0)) 
000337 IF(IX.EQ.1)76,79 
303347 76 SF =SSU /SIGTU 
003351 GO TO 77 
00:352 74 GO TO(71,72)NFLAG 
0_0360 76 SIG =SIGTCYSF /7.46 
000363 GO TO 77 
030363 79 SIG =SIGTUYSF /7.46 
O03366 77 SIGUSC=SIG7.46 
006370 PRINT 10, SIGUSC 
000375 RETURN 

C 
C THE SIGMA FOR EACH ASSUMED MEAN FOR INITIAL WATER LEVEL IS 
C ASSUMED CONSTANT 

0:0375 3 SIG =SS 
300403 PRINT 13, SIG 
330410 RETURN 

C 
C THIS SE3UENCE ASSUMES THE SIGMA FOR EACH ASSUMED MEAN DISCHARGE (OR 
C RECHARGE) IS PROPORTIONAL TO THE MAGNITUDE OF THE MEAN, AND THUS 
C SIGMA IS COMPUTED BY MJLTIPLYING BY THE RATIO OF THE SPECIFIED SIGMA 
C FCR THE MODEL VALUE DIVIDED BY THE MODEL VALUE (SIGFACT RATIO) 

000411 4 CONTINUE 
000411 5 SIG =VMU.SCFCT 
000416 SIGUSC =SIGTIME /43560. 
3304222 PRINT 13, SIGUSC 
060426 RETURN 
030427 ENO 
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SUBROUTINE PROBDN(NP,PROB,MA, PVAL, MO ,PMU,PSIG.LFLAG,NRT,LCALL,NVT) 
C SUBROUTINE TO COMPUTE A DISCRETE (EITHER NORMAL OR LOG -NORMAL) 
C PROBABILITY DISTRIBUTION 
C 

C00015 DIMENSION PROB(MAI, PVAL(MB), PVAL2(10:, PPOB2(10), AVAL(12) 
C PMU IS THE MEAN, NP IS THE NUM3ER OF VALUES, MVAL IS MIDDLE 
C VALUE ( MODEL VALUE), LFLAS IS THE FLAG FOR NORMAL (0) OR LOG -NORMAL 
C (1) UISIRIOUTION, PROF) IS THE PROBABILITY ARRAY, PVAL IS THE VALUE 
C ARRAY, PRO32 STORES PROBABILITIES OF THE SORTEO VARIABLE VALUES 

020016 GO TG(1,2)LCALL 
000024 1 NPMI=HP -1 
300025 NPPI =NP.1 
O00O26 MVAL-= (NP.1) /2 
070233 MVMI=MVAL -1 
220031 MVP1 =MVAL.1 

C 
C THIS SEQUENCE SORTS ALL VARIABLE VALUES (INCLUDING THE MODEL VALUE) 
C IN ASCENDING ORDER AND STORES THEM IN PVAL2 

000C32 L =2 
000233 PVAL2(MVAL)=PVALC1) 
GO @036 00 60 I =1,MVM1 
000037 PVAL2(I) =PVAL(L) 
000042 L =L.1 
600043 60 CONTINUE 
0000.5 DO 65 I =MVPI,NP 
000050 PVAL2(I) =PVAL(L) 
202053 L =L.1 
C20054 65 CONTINUE 
000255 IF(LFLA0.EQ.1)3G,10 
O2CC62 30 DO 35 I =1,NP 
00364 35 PVAL2(I) =ALOG10(PVAL2(I).7.46) 

C 

C THIS SEQUENCE COMPUTES THE LOWER AND UPPER BOUNDARIES OF THE INTERVAL 
C AROUND EACH VARIABLE VALUE. IF BOUNDARIES ARE COMPUTED LESS THAN 
C O (DR GREATER THAN 0 FOR RECHARGE, EXCLUDING SUBSURFACE OUTFLOW) THE 
C 30UNDARY IS SET ECUAL TO 0 (EXCEPT FOR INITIAL WATER LEVEL, WHERE 
C NESATIVE BDUNDARIES ARE ALLOWED) 

0001.. 10 UU 63 1= 1,1, ?M1 
000172 XVAL (I.I)=IPVAL2(I).PVAL2(I.111 /2. 
030137 6O CONTINUE 
000111 XVAL (1i =PVAL2(1)- (XVAL(21- PVAL2(111 
000114 XVAL(NPP1)= PVAL2(NP).(PVAL2(NP)- XVAL(NP)) 
00 ?i ?2 If( LFLAS. EO. 0.ANO.N.T.EQ.0.0R.NRT.EQ.4)25,27 
7_7135 25 IF(HVT.EQ.31 CO TO 27 
040140 GO 26 I- 1,MVAL 
0021.1 IF(XVAL(I).LT.0.0) XVAL(I)=0.0 
0701:5 26 CCHTINUE 
:C.1150 27 IF(NRT.NE.O.AND.NRT.NE.4)26,2 
004157 26 DO 29 I =MVP1,NPP1 
122161 IF(XVAL(I).GT.0.0) XV4L(I)=0.0 
332155 29 CONTINUE 
020170 2 IF(LFLAG.EQ.1)21,22 
000175 21 PMU =ALCG10(PMU.7.48) 

C 

C TMIS SEDUENCE COMPOTES THE STANDARD NORMAL DEVIATES (SW)) FOR THE TWO 
C BOUNDARIES OF AN INTERVAL, CALLS THE SUBROUTINE THAT GIVES THE 
C PROBABILITY ABOVE EACH BOUNDARY, ANO THEN COMPUTES THE PROBABILITY 
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C OF THE INTERVAL 
003204 22 00 20 I =1,NP 
030236 NFLAG =0 
003207 SNOL =(XVAL(I) -PMU) /PSIG 
000212 SNQ2= 1XVAL(I.11 -PAU) /PSIG 
030215 IF(S(:01.GE.0.3. AN0. SN32. GE. 0. 0. 0R.SNDI.LE.0.0.AND.SND2.LE.0.0) 

2 NFLAG =1 
000235 SNOT =ABSISNOL) 
000237 SNO2 =ABSISNO2) 
000243 CALL TBLKUP(S401.SN02.ALPHI.ALPH2) 
000243 IFINFLAG.E0.1)3.4 
000253 3 PR082(I) =ABS(ALPHL- ALPH2) 
000260 GO TO 20 
000267 4 PRO82(I) =ABS(ALPH1- (1.0- ALPH2)) 
033266 20 CONTINUE 

C 
C THIS SEQUENCE NORMALIZES EACH PROBABILITY BY DIVIDING BY THE SUM OF 
C ALL THE PROBABILITIES. THEN REFERS EACH PROBABILITY TO ITS RESPECTIVE 
C VARIA3LE VALUE 

000271 50 PROBT=0.0 
000272 00 7 I =1.NP 
000774 7 PR08T= PROBT.PROB2(I) 
033333 PRINT 93, PROBT 
000336 90 FORMAT(15X,.THE TOTAL PROBABILITY BEFORE NORMALIZING IS.,F7.41 
033306 00 8 I =1.NP 
030313 8 PRO32(I) =PROB2(I) /PROBT 
:00317 PROB(11 =PROB2OMV AL) 
033322 L =2 
000323 DO 70 I =1.MVM1 
370325 PRO9(L) =PR092(I) 
002330 L =L.1 
000331 70 COVTINJE 
000334 00 75 I =MVPI.NP 
003336 PROB(L1 =PRO82(I) 
00334E L =L.1 
000342 75 CONTINUE 
300344 40 RETURN 
000345 END 
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C 
C 

C 
C 

C 
C 
C 

C 

SUBROUTINE TBLKUPIXA.XB.ALPHI.ALPH2) 
SUBROUTINE TO APPROXIMATE THE CUMULATIVE PROBABILITY THAT A VALUE 
WILL BE ABOVE A SPECIFIED STANDARD NORMAL DEVIATE IK ALPHA). THE 
APPROXIMATION IS MACE BY INTERPOLATING WITHIN AN ABRIDGED TABLE OF 
AREAS UNDER THE NORMAL PROBABILITY CURVE FROM Y ALPHA TO INFINITY), 
USING VALUES OF ALPHA CORRESPONDING TO EVERY 0.05 INCREMENT IN 
K ALPHA FROM K ALPHA =0.50 TO 3.00 ANO CORRESPONDING TO EVERY 0.5 
INCREMENT FROM K ALPHA =3.0 TO 5.0 

000007 COMMON /WODTLU/ TKALPH(651, TALPH(65) 
C xA ANO XB ARE COMPUTED STANDARD NORMAL DEVIATES TKALPH IS THE TABLE 
C 

C 

OF STANDARD NORMAL DEVIATES. ALPH1 ANO ALPH2 ARE COMPUTED PROBABILITIES, 
TALPH IS THE TABLE OF PROBABILITIES, MXA AND MXB ARE THE LOCATIONS 

C OF THE COMPUTED STANDARD NORMAL DEVIATES IN THE TABLE 
C 

000007 IFIXA.Gi.5.00)1.2 
030014 1 AL=H1=iALPH(65) 
070C:S "GO TO 3 

000016 2 IFIXA.GT.3.00142.41 ' 

000023 41 XINT=0.05 
001024 MXA=(XA20.01.1.0 
030037 GO TO 43 
000030 42 XINTs0.50 
OCG071 MXA=IXA2.0).55.0 
930135 43 ALPH1=1lxA-TKALPHIMXA))/XINT1(TALPHIMXA.1)-TALPM(MXA1).TALPM(MXA) 
077745 3 IFIXB.:T.5.00)4.5 
00:052 4 ALPH2=TALPH(651 
000053 GO TO 60 
037854 S IF(XB.GT.3.00)52.51 
030UG1 51 XINT=0.05 
030062 MXB=(XB20.0).1.0 
033055 GO TO 53 
000166 52 XINT=0.50 
a:C7á7 MxO=(x82.0).55.0 
070:73 53 ALPH2=((XB-TKALPH/MX8))/XINT)(TALPHIMXB.1)-TALPM(MXB1).TALPHINXB) 
000133 60 RETURN 
000:34 END 
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SUBROUTINE A LDIRS(KCALLI,KCALL2) 
C SUBROUTINE TO COMPUTE WATER LEVELS OVER A DIGITAL MOCEL OF A GROUND - 
C WATER BASIN OVER A GIVEN SIMULATION PERIOD. SOLUTION OF THE FLOH 

C EQUATIONS FDR POTENTIALS (WATER LEVELS) IS ?Y THE ALTERNATING - 
C DIRECTION IMPLICIT METHOD. BASIC PROGRAM BY R.L. KNICKERBOCKER, 
C MODIFIED MT J.S. GATES, UNIV. OF ARIZONA, DEPT. OF HYDROLOGY AND 
C WATER RESOURCES 
C BASIC UNITS ARE FEET, CUBIC FEET, ANO DAYS. 
C DERIVED FROM METHODS OF PEACEMAN AND RACHFOSD (PINE/ER ANC BREDEHOEFT, 
C WATER RES. RESEARCH, 8.4. NO.5, OCT. 1968) 
C 

009605 DIMENSION HTEM(51), ACI511, OC1511, CC(51), DC(51), W(51), 
2 G(51), TINTEM(1,1,8), OIfF(131 

000005 DIMENSION OELHC(51,30). OIFM(51,33) 
0CCC35 EQUIVALENCE (DELHC,DIFM) 
O0C0G5 COMMON /WBA /IR, JC, NVT, VAL(1)1, NUMVAL, IS, IE, NSTART(51), 

2 NEN0(511, (PASS. LTSF 
000005 COMMON /WODAOS /FHEAO(8), TIME, T(51,30), S(51.301, JS. JE, 

2 IEM1, JEM1, A, MAPS, TIN(51,3C,4), 0(51,3)1, IEFI, JEF1, 
3 HJ(51,301, 9(51.30), TSTEPI 

090005 COMMON /BGWAOS/ H151,3C,7) 
C M IS WATER LEVEL AT EACH NODE, USED INSIDE THE ALTEPNATING- DIRECTICN 
C ALGORITHM, HTEM IS WATER LEVEL AFTER EACH COLUMN SWEEP OR POW SWEEP 
C THROUGH THE NODAL ARRAY (TEMPORARY STORAGE), DELHC IS COMPUTED CHANGE 
C IN WATER LEVEL AND IS POSITIVE FOR DECLINE, RIFF IS DIFFERENCE BETWEEN 
C WATER LEVELS COMPUTED USING THE MODEL VALUE OF THE VAPIAPLE AND THOSE 
C COMPUTED USING ALTERNATE VALUES (AROUND THE TESTED NODE ONLY), DIFM 
C IS THE ARRAY OF DIFFERENCES OVER THE WHOLE MODEL 
C AC IS AVERAGE T (OR INTERNODAL T) BETWEEN A GIVEN NODE ANC THE NODE ABOVE 
C (COLUMN SWEEP) OR TO ITS LEFT (POW SWEEP), ANO IS COEFFICIENT OF 
C UNKNOWN WATER LEVEL ABOVE OR TO LEFT, CC IS AVERAGE T BETWEEN A GIVEN 
C NODE AND THE NODE BELOW (COLUMN SWEEP) OR TO ITS RIGHT (ROW SWEEP), 
C ANO IS COEFFICIENT OF UNKNOWN WATER LEVEL BELCW OR TO RIGHT, BC IS 

C A DUMMY VARIABLE (THE COEFFICIENT OF UNKNOWN WATER LEVEL AT THE 
C GIVEN NODE ANO IS SUM OF AC, CC, ANC GAM), CC IS A DUMMY VARIABLE (ALL 
C THE KNOWN TERNS IN THE FINITE -DIFFERENCE EOGATION), W ANC G ARE 
C DUMMY VARIABLES USED IN THE THOMAS ALGORITHM FOR SIMULTANEOUS SOLUTION 
C OF THE TRIIIAGONAL SYSTEM OF EQUATIONS 
C 

C 

C 

C THIS SUPER -SEQUENCE COMPUTES ONE SET OF WATER LEVELS FOR EACH 
C POSSIBLE VALUE OF TH6 VARIABLE PEING TESTED 

OCC:.75 KCALL2.KGALL2,1 
O2CC7E 00 1770 L= 1.NUMVAL 
976010 IFIL. E0. 1.ANB.NVT.E0.2.AND.KCALL2.E0.1) GO TO 7 

020022 IFIL.E3.1.ANO.KCALL2.E0.1) GO TO 6 
C 

THIS SUBSEIUENCE PUTS EACH ALTERNATE VALUE CF THE VARIABLE INTC THE 
C MODEL IN TURN 

006;31 GO T3(1.2.7...5)NVT 
J:; :.2 1 S(IR,JC)=VAL(L) 
a cCSC GO TO 6 
017C5C 2 T(IR,JCI =VALtL) 

C 

THIS iUBSETUENCE RECONPUTES INTE ,NODAL TRANSMISSIVITIES (A4OJND THE 
C TESTEJ NCOEI COR4ESPONCING TJ AN ALTERNATE VALUE (IF VARIABLE IS TI 
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3O056 RASET=T(I2.JC) 
GG JC6l K =1 
700067 IFIT(IR,JC-11.EO.G.)51,52 

:_7C 51 TIN(IR,JC.KI =9. 
J70076 K =K,1 
J:7C77 GO TO 53 
90 :190 52 TIN(IR,JC,K)=(0ASET,T(IR,JC111/2. 
GC:112 TIN(IR.JC 1,2)=TIN(IR.JC,K) 
00:117 K =10.1 
13012o 53 IFIT(IR,JC,11.EQ.C.)54,55 
:00127 54 TIN(IR,JC,K1 =C. 
0:(136 K-K,1 
030136 GO TO 56 
CC0137 55 TIN (IR,JC,K).(RASET,T(IR.JC,11112. 
0:4151 TIN(IR,JC,1,1)=TIN(IR,JC,K) 
009156 K =K,1 
13^157 56 IF(TIIR- 1,JC).E0.4.157,58 
000166 57 TIN(IR.JC,KI =G. 
3.7174 K =0(,1 
['9175 GO TO 59 
C70176 50 TIN (IR,JC,0=I9ASETTIIR1,JC1112. 
)7:214 TIN(IR- 1,JC.4)=TINIIR,JC,K) 
433215 K =K,1 
04:216 59 IFITIIR,I,JC).E0.0.)6C,49 
441225 69 TIN(IR.JC,K1 =G. 
:39233 GO TO 50 
:40234 49 TIN(IR,JC,K1 =(BASET,T(IR,1,JC) 1/2. 
G :0246 TIN(IR,I.JC,3I =TIN(IR,JC,K) 
:77253 50 GO TO 6 

C 
005254 3 HJ(Iñ,JCI =VALID 
00(262 GO TO 6 
0)7262 4 0(IR,JC) =VAL(L) 
030270 GO TO 6 
3C3271 5 R(IR,JC) =VALILI 
:40276 GO TO 6 

C 

C THIS SU9SEOUENCE TEMPORARILY (DURING A TEST) STORES THE ORIGINAL 
C INTERNOOAL TRANSMISSIVITIES AROUND THE TESTED NODE IN ARRAY TINTEN 

100276 7 DO ! K =1.4 
J13330 8 TINTEM11,1,K1 =TIN(IR,JC,K) 
010313 TINTEN(1.115) =T IN(IR, JC -1.2) 
G.15317 TINTEM(1,1,61 =TIN(IR,JC,1, 1) 
303322 TINTEM(1,1,7)=TIN(IR1,74,4) 
C0(325 TINTEM(1,1,61 =TIN(IR,1,JC,31 

C 

C 

C THIS SEQUENCE SOLVES THE GROUND WATER FLOM EOUATICNS 
173330 6 IF(. RASS .GT.I.AND.L.E0.1.AND.LTSF.E0.1) GO TO 1000 
070343 IF(0(CALL2.EC.1) 21,117 

C SET H EQUAL TO INITIAL WATER LEVEL 
3.0347 21 DO 2: I =1,IEP1 
7:0351 00 2' J =1.JE'1 
977752 20 H(I,J,LI =HJ(I.J) 
0:0171 IF(LTSF.E0.2.ANO.L.GT.11 GO TO 117 

L DELI IS TINE STEP SIZE. IN DAYS 
4: ?471 DELT =TSTEP1'365.25 

C TOT IS SUM OF TIME -STEPS, NTSTEPS IS THE NUM9ER OF TIME STEPS 
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CC0433 
0[3434 

TOT =JELT 
NTSTEPS =1 

r 

C START THE ALTERNATING- CIRLCTION ALGORITHM, SWFER CY COLUMNS FIRST 
003405 117 DO 113 J =JS,JE 
0304)7 DO 115 I =IS.IE 

C GAM IS DUMMY VA+IA2LE (COEFFICIENT :F UNKNCwN MATER LEVEL AT SIVcS 
( NODE - RIGHT SIDE OF ECUATIO4 

70.411 GAM =2.A.S(I,J) /DELT 
CC0417 IF(T(I,JI.EC.C.)31.32 
00042E 31 ACID =C. 
33343C CC(I) =C. 
JG0432 ?C(I). -GAY 
000434 OC(I)= -GAS 
039435 GO TO 115 
99943E 32 AC(I) =TIN(IJ.3) 
039443 CC(I).TIN(I,J.4) 
GOO44P 4CII) =- CCII1ACIIP -GAP 

C EC IS AVERAGE T DETWEEN GIVES NODE AND NOTE TO ITS LEFT (CCLJ'N SWEER) 

C OR BELOW (2OW SWEEP) 
300453 EC =TIN(I,J,1) 

C FC IS AVERAGE T ME TWEEN GIVEN NCOE ANC NODE Tr. ITS RIG .,T (COLUMN S.__°) 

C OR A3OVE CROW SWEEP) 
000457 FC =TIN(I,J.2) 
003462 00(11=- ECH(I,J -1.L) (ECFC- GAM)MII,.,L) - FCH(I,J1.0 

? 0(I,J) RII,J) 
030513 115 CONTINUE 

C 
C START THOMAS ALGORITHM FOR SUCCESSIVE SOLUTION OF UNKNCwN wATEk LEV_LS 

003516 )0121 =9[(21 
000517 G12).00(21/W(21 
C33521 DO 120 K =3,IE 
3C3522 W(K)= NC(K1- ACIK)CC(K -11 /4IK -1) 
033532 12C GIK).(0C(K)- AC(KIG(K- 1)1 /w(K) 
310542 IF(J.EO.JS) GO TO 121 
O3O54r HIIE,J- 1.lI =HTE)0(IE) 
000552 121 HTEN(IE)=G(TE1 
300555 IF(J.E0.Jr) M(IE,J,LI =HTEM(IE) 
010566 no 130 K =IS,IEM1 
000571 K9w =IEM1K2 
300572 IF(J.EOJS) GO TO 122 
OC 0574 HIK9w,J- 1,11 =14TEM(KUW) 
000633 122 HTEM( K9W)= C.( K8W)- CC(KBw) =HTEM(KBw1) /w(K8WI 
:00613 IF(J.EO.JE) H(KBW.J.L) =HTEM(KBw) 
006623 130 CONTINUE 
0[0626 110 CONTINUE 

C 
C START ROM SWEEP 

000631 00 83 I =IS,IE 
0:3632 00 65 J =JS.JE 
J00614 GAM =2..AS(IJ) /DELI 
043642 IF(T(I.J).EC.0.)41,42 
000651 41 AC(J).0. 
000653 CC(J) =0. 
090655 8C(J1= -GAM 
030657 DC(J)= -GAM 
010660 GO TO 65 

CC0661 42 AC IJI =TIN(I.J1) 
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000666 CC(JI =T1N(I,J,21 
O09672 PCIJ1 =- Cl,IJI -AC(J1 -GAM 
003677 EC =i IN II,J.4) 
000703 FC =T IN(I,J,31 
OG0796 DC(J1 =- HIII.J.LIEC H(I.J,L10(EC.FC -GAM) - HII- 1,J,L)FC 

2 OII,J1 a11,11 
000716 85 CONTINUE 

C 

000741 M121 =90121 
001742 G(2)=0C(21/M(2) 
000744 00 9S Kr,,JE 
099745 WOO. !Cf <)- 4CIK)CC(K -11 /M(K -1) 
000755 90 OIK1 =(0CIK1- ACIK)G1K- 1)1 /MIK) 
000765 IF(I.É9.I31 :0 TO 86 
903767 H(1- 1.JE,LI= HTEMIJE) 
000776 56 HT04(JE1=4(JEI 
OGIC01 IF(I.E0. IE) HI T.JE.LIHTENCJEI 
091012 J0 1 :3 K=1S,JEM1 
001314 KOM =JEM1 -K.2 
001016 IF(I. =0.Ií) :0 TO 07 

001020 H(I- 1. <0+W.1)=MTEMIK9M) 
301:27 67 MTEM(K 9M)=,,(01- CC(KBM)MTEMIKBN11 /NIKON) 
J01C37 IF(I.c3.TE) H(I,KOM,L)><HTEM(KBW) 
O(iC47 1G0 CONTINUE 
001352 50 CONTINUE 

C 

C THIS SURS_9 U1NFE CHECKS FOR THE ENO OF THE SIMULATION PERIOD. 
C IF IT HAS 'í EM PEACHED, OUTPUT RESULTS, IF NOT IT PROCEEDS TO THE 
L NEAT TIM: ,TER 

O01 :54 IFIL .t3.1,ANI.LPASS.E0.1)901,902 
001064 901 PRINT 9.C, í.ELT,TOT 

001C74 9C: FORMAT (/,i;A,TINE STEP SIZE IS ,F12.4,2K,DATS.10K,T0TAL ELA 
2PSE9 TIJt 

C IF SUM JF TIM_ INCREMENTS EQUALS TOTAL TIME, OUTPUT RESULTS, IF NOT, 
C 0OU9LE Tim.: INCREMENT 

041574 957 IFIT7T.E).TIME)GO TO 18 

001130 IF(LT;F.L).2.AND.L.NE.NUMVALI GO TO 17 

OC1137 OELT= 2.OELT 
C SUM TIME INCREMENTS 

0,,1115 TOT= TOT.1'LT 
001112 NTST_P;= NTSTEPS.1 

C IF SUM OF TIME INCREMENTS IS NON LESS THAN TOTAL TIME, CALCULATE WATER 
C LEVELS FIR NEM TINE STEP 

001117 IF(TIT.LT.TIMEIGO TO 17 

C IF SUM IF TINE INCREMENTS IS NOW GREATER THAN TOTAL TINE, REDUCE NEU TIME 
C STEP SO THAT WHEN ITS ADDED TO SUN OF TIME INCREMENTS THE NEW SUM 
l EXACTLY EQUALS TIME 

001115 OELT=OELTTINE -TOT 
001117 TOT =TIME 
001120 17 GO T0(117,1030)LTSF 
901126 10 KCALL1 =2 
001127 IF(L.EO.I.AND.LFASS.E0.11 PRINT SOS, NTSTEPS 
3,1146 585 FORMATI/,TeV, THE NLNREP OF TINE STEPS IS,T3, //1 
031146 GO TOC111I,10111NAPS 
5C1154 ICI- IFIL.GT.111023.1000 

C 
C THIS SU9SEQUENCE PRINTS DIFFERENCES SETNEEN MATER LEVELS COMPUTED 
c USIN: THE NOnEL VALUE ANO ST USING AN ALTERNATE VALUE (AT THE TESTED 
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C NODE ANO 12 SURROUNDING NODES) 
031161 1021 OIFF(1)= HIIR,JC,11 - H(IR,JC,L) 
001172 OIFF(2)= M(IR,JC1,1) - MIIP,JC1,L) 
001200 DIFF(3)= HIIR1,JC,11 
001207 OIFF(4)= H(I(2.JC -1,1) )1(IR,JC -I,L) 
001215 OIFF(5)= H(IR1.JC,1) - H(IR+1,JC,L) 
001222 DIFF(6)= H(IR1,JC1,1) - H(IR1,JC1,L) 
001227 DIFF(7)= H(IR- 1.JC1,1) - H(IR- 1,JC111) 
001235 DIFF(E) =H(IR -S,JC -1,1) - H(IR1,JC 1,L) 
001242 DIFF(9)= M1IR1,JC -1,1) - H(IR1,JC 1,L) 
001250 OIFF(10)= H(IR,JC4.2,1) - M(IR,JC2,L) 
001254 OIFF(11)= H(IR2,JC,1) - M(IQ- 2,JC,L) 
001262 OIFF(12)= H(IR,JC -2,1) H(IR,JC 2,L) 
001267 OIFF(13)= H(IR2,JC.1) - H(IQ20JC,L) 
001275 PRINT 201, OIFF(1), DIFF(2), OIFF(3), DIFF(4), OIFF(5). OIFF(6). 

2 OIFF(7), OIFF(0), OIFF(9), OIFF(10), OIFF(11), OIFF(12), DIFF(13) 
001332 201 FORMAT( / /,20X,THE DIFFERENCE BETWEEN H(IR,JC,1) ANO H(IR,JC,L 

2) = .F7.2, /,43X,H(IR,JC101) ANO H(IR,JC1,L) = ,F7.2, /, 
3 43X.HIIR1.JC.1) AND H(IR- S,JC,L) = .F7.2, /,43x,H(IR,JC1,1 
4) AND H(IR,JC-1,L) = ,F7.2, /,43X,H(IR+1,JC,1) ANO H(IR1.JC 
5,L) = ,F7.2, 1,43X,H(IRs1.JC1,1) ANO M(IR1,JC+1.L) =.F7.2. /r 
6 43X,H(IR1rJC(1.1,1) ANO H(IR- 1,JC1,L) = ,F7.20/.43x,H(IP- 1,JC -1 
7,1) ANO H(IR- I,JC -1,L) = ,F7.2, /,43X,H(IR1,JC -1,1) ANO 111IR1,JC 
$-1,L) =,F7.2, /,43X,H(IR,JC,2,1) ANC H(IR,JC2,L) = ,F7.2./. 
9 43X0.14(IR2,JC,1) ANO H(IR2,JC,L) = ,F7,2, /,43xrM(IP,JC -2,1 
A) ANO H(IR.JC -2,L) = ,F7.2, /,43x,H(IR42,JC,1) AND H(IR2,JC 
Bel.) = ,F7.2) 

001332 GO TO 1000 
001334 1011 IF(L.E0. 1)1002,1001 

C 
C THIS SUBSEQUENCE PRINTS A NAP OF WATER LEVEL CHANGES OVER THE SIMULATION 
C RERIOD (USING MODEL VALUE) ANO A MAP OF THE DIFFERENCE BETWEEN THE 
C FIRST MAP ANO A MAP COMPUTED USING AN ALTERNATE VARIABLE VALUE 

001341 1002 co 170 I =IS,IE 
001343 00 170 J =JS,JE 
001345 17G DELHC(I.J)= HJII,J) - H(I,J.L) 
OO1367 PRINT 740 
001372 700 FORMATI1H1,5x,MAP OF GRIO -COMPUTED WATER LEVEL CHANGES, IN FEET ( 

2FOR MEAN VALUE).,//) 
001372 GO TO 1003 
001374 1001 DO 140 I =IS,IE 
001376 00 140 J =JS,JE 
001400 140 OIFMII,JI= H(I,J,1) - H(I,J,L) 
001422 PRINT 701, L 

061427 701 FORMAT(1,5X.NAF OF GRID - COMPUTED DIFFERENCES IN WATER LEVELS, 
2 IN FEET, BETWEEN H(IsJr1) AND H(I,J,L). /,14)x,(FOR VALUE(,I2. 
3 ))r //) 

4)01427 1003 PRINT 61,(J,J= JS,15) 
001440 61 FORMAT( /,60X,14I5, / //) 
001440 PRINT 66,(I,(OELHC(I,J), J =JS,15), I= IS,IE) 
001462 66 FORMAT(47X, I3,10X,14F5.1, //) 
031462 PRINT 61,.(J.J= JS.15) 
001473 PRINT FHEAO 
001477 IF(L.EQ.1) 1004,1005 
001505 1004 PRINT 700 
0C1511 GO TO 1006 
001513 1005 PRINT 701. L 

001521 1006 PRINT 63,(J,J= 16,JE1 
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101533 
001533 

63 FORMAT/ /.5/1.1415.//1 
PRINT 66,110ELNCII,J1, J =16,JE), I. IIS,IE1 

J01555 66 FORMAT(5K,19F5.1,107,I3. //1 
001555 PRINT 63, IJ.J =16,JE) 
001567 PRINT FNEAO 
OC1573 1030 CONTINUE 
031577 I FIKCALL1.E0.2)317.217 

C 

C 

C 

C THIS SEQUENCE RE °LACES THE ORIGINAL MODEL( VALUE OF THE VARIABLE ANO 
C THE INTERNOOAL TRANSNISSIVITIES (IF THE VARIABLE WAS T) IN THE MODEL 

101613 717 GO T0(11,12,13.1.,151NVT 
371619 11 S(IR,JCI =VAL(1) 
301621 GO TO 16 

001621 12 T(IR,JCI =V4L111 
001626 00 19 K.1.9 
101627 19 TIN(IR.JC.KI =TINTEM11,1,K) 
001692 TINIIR.JC- 1.21 =TINTEN(1,1,5) 
3016.6 TIN(IR.JC1.11=TINTEN(1,1,6) 
011651 TINIIR/.JC,b) =TINTEM11.1,7) 
031654 TIN(IR.1,JC.31 =TINTEM(1,1.61 
001657 GO TO 16 
001660 11 HJIIR,JCI =VAL111 
001665 GO TO 16 
311665 10 O1IR,JC / =VALIII 
0C1672 GO TO 16 
IC1672 15 RIIR,JCI= VAL(11 
001677 16 CONTINUE 
031677 217 RETURN 
031700 ENO 
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