


WORTH OF DATA USED IN DIGITAL-CCMPUTER
MODELS OF GROUND-WATER BASINS
by

Joseph Spencer Gates

Report No. 8
June, 1972

Reports on Natural Resource Systems
Collaborative effort between the
following Departments:

Hydrology and Water Resources
Systems and Industrial Engineering

University of Arizona
Tucson, Arizona 85721



PREFACE

This report constitutes the doctoral dissertation of the same title
completed by the author in April, 1972 and accepted by the Department of
Hydrology and Water Resources.

This report series constitutes an effort to communicate to practi-
tioners and researchers the complete research results, including economic
foundations and detailed theoretical development that cannot be repro-
duced in professional journals. These reports are not intended to serve as
a substitute for the review and referee process exerted by the scientific
and professional community in these journals. The author, of course, is
solely responsible for the validity of the statements contained herein.

A complete list of currently-available reports may be found in the back

of this report.
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ABSTRACT

Two digital-computer models of the ground-water reservoir of
the Tucson basin, in south-central Arizona, were constructed to study
errors in digital models and to evaluate the worth of additional basic
data to models. The two models differ primarily in degree of detail
-- the large-scale model consists of 1,890 nodes, at a 1/2-mile spacing;
and the small-scale model consists of 509 nodes, at a 1-mile spacing.

Potential errors in the Tucson basin models were classified as
errors associated with computation, errors associated with mathematical
assumptions, and errors in basic data: the model parameters of coef-
ficient of storage and transmissivity, initial water levels, and dis-
charge and recharge. The study focused on evaluating the worth of
additional basic data to the small-scale model.

A basic form of statistical decision theory was used to com-
pute expected error in predicted water levels and expected worth of
sample data (expected reduction in error) over the whole model associated
with uncertainty in a model variable at one given node. Discrete fre-
quency distributions with largely subjectively-determined parameters were
used to characterize tested variables. Ninety-one variables at sixty-
one different locations in the model were tested, using six separate
error criteria. Of the tested variables, 67 were chosen because their
expected errors were likely to be large and, for the purpose of com-
parison, 24 were chosen because their expected errors were not likely

to be particularly large.
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Of the uncertain variables, discharge/recharge and transmissiv-
ity have the largest expected errors (averaging 155 and 115 feet, re-
spectively, per 509 nodes for the criterion of absolute value of error)
and expected sample worths (averaging 29 and 14 feet, respectively, per
509 nodes). In contrast, initial water level and storage coefficient
have lesser values. Of the more certain variables, transmissivity and
initial water level generally have the largest expected errors (a maxi-
mum of 73 per feet per 509 nodes) and expected sample worths (a maximum
of 12 feet per 509 nodes); whereas storage coefficient and discharge/
recharge have smaller values. These results likely are not typical of
those from many ground-water basins, and may apply only to the Tucson
basin.

The largest expected errors are associated with nodes at which
values of discharge/recharge are large or at which prior estimates of
transmissivity are very uncertain. Large expected sample worths are
associated with variables which have large expected errors or which
could be sampled with relatively little uncertainty. Results are simi-
lar for all six of the error criteria used.

Tests were made of the sensitivity of the method to such simpli-
fications and assumptions as the type of distribution function assumed
for a variable, the values of the estimated standard deviations of the
distributions, and the number and spacing of the elements of each dis-
tribution. The results are sensitive to all of the assumptions and
therefore likely are correct only in order of magnitude. However, the
ranking of the types of variables in terms of magnitude of expected er-

ror and expected sample worth is not sensitive to the assumptions, and
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thus the general conclusions on relative effects of errors in different
variables likely are valid.

Limited studies of error propagation indicated that errors in
predicted water levels associated with extreme erroneous values of a
variable commonly are less than 4 feet per node at a distance of 1 mile
from the tested node. This suggests that in many cases, prediction er-
rors associated with errors in basic data are not a major problem in

digital modeling.



CHAPTER 1
INTRODUCTION

This study is an attempt to evaluate the worth of additional
hydrologic data on a grbundrwater system. The work focused on poten-
tial errors associated with digital-computer models of ground-water
basins and on the worth of data on aquifer parameters, initial condi-
tions (water levels), and output/input (discharge and recharge) to a
model of the Tucson basin, Arizona. As Bibby and Sumada (1971, p. 2)
pointed out, 'this [type of] deterministic model is frequently used in
situations in which nothing is known of the accuracy of the input data
to the model or how errors in the input data are related to the accu-
racy of the results."

Meteorologists also are interested in these problems as related
to models which predict weather conditions. Hammond (1971, p. 394)
noted that "numerical experiments are being done to answer questions
about the amount and type of data that are most useful, about the ef-
fect on predictability of observational errors in the data, and about
the methods by which data are to be incorporated into models."

The study consisted of two major parts: construction of the
model of the Tucson basin and evaluation of worth of additional data
to the model. A complex model of an actual basin was used for the
study instead of a small, idealized model, such as has been used in
other related studies (Bibby 1971, McMillan 1966), in order to gain

1



additional insight into actual modeling problems. To a considerable
extent, this goal was realized. During construction and calibration

of the model many actual and potential errors were discovered and stud-
ied. There are, however, marked disadvantages to using a large complex
model. In general, sophisticated mathematical techniques cannot be ap-
plied because they would use excessive amounts of computer time. How-
ever, the aim here was to develop a technique that could be utilized by
practicing field hydrologists (a category which includes the writer),
so relatively practical methods which could be used in actual modeling
efforts were developed, rather than methods for experimentation.

Worth of data was studied using basic concepts of statistical
decision theory. Statistical decision theory has been developed over
the past two decades to aid in making decisions with uncertain informa-
tion. An important basis of the theory, Bayes Theorem, is by no means
recent, however, as it was proposed by Thomas Bayes in the 1700's.

Use of statistical decision theory has been primarily confined to busi-
ness and industrial decisions, and it is just beginning to be used in
scientific problems. Folayan (1969), for example, used decision theory
to evaluate the reliability of predicted soil settlement. The full
power of this body of theory could not be applied in the study reported
here because of the complexity of the basin model; so a relatively
simple application of Bayes Theorem using subjectively-determined, dis-
crete frequency distributions was used.

The question addressed by this study is one commonly posed by

a field hydrologist -- 'What kinds of data on a ground-water basin
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should I collect and where should I collect them in order to most im-
prove my ability to predict the future behavior of the system?" This
question is usually answered, if answered at all, by applying experi-
ence and intuition rather than by using any quantitative or more formal
techniques. It is doubtful whether such approaches can be tolerated
in the future, as the demands made on the limited funds for hydrologic
studies likely will intensify. This study is one of a few beginning
attempts to provide objective methods for planning programs for col-
lecting hydrologic data.

Perhaps studies such as this and the work by Meyer (1971) also
will stimulate the use of preliminary models of ground-water basins to
guide basin investigations by pointing out which aspects of the ground-

water system are significant in predicting effects of development.

The Tucson Basin

The Tucson basin (fig. 1) includes an area of about 1,000 square
miles in south-central Arizona (see index map, fig. 9), and is traversed
by the Santa Cruz River and its principal tributaries, Rillito Creek,
Pantano Wash, and Canada del Oro. The most recent and comprehensive
evaluation of the water resources of the basin is the several chapters
of U. S. Geological Survey Water-Supply Paper 1939. Most of the mater-
ial in this summary section on the geography, geology, and water re-
sources of the basin was taken from a report which will be published as

one of these chapters (Davidson 1970).



Geography and Geology

The Tucson basin is an alluvial valley bounded primarily by the
Tortolita and Santa Catalina Mountains on the north and northeast, the
Rincon Mountains (which include Tanque Verde Ridge) on the east, the
Santa Rita Mountains on the southeast, and the Sierrita Mountains and
Tucson Mountains on the west. Parts of the boundary are low passes
between the Tucson basin and adjacent alluvial basins, such as San
Pedro Valley to the east and Avra-Altar Valley to the west. As de-
fined for this study, the basin extends about 50 miles from the town
of Rillito on the north, where the Santa Cruz River leaves the basin,
to the Pima County-Santa Cruz County line on the south, where the river
enters the basin. Along the Santa Cruz River, the altitude ranges
from about 2,000 feet at Rillito to about 3,000 feet at the county line.
Tucson, the only large city in the basin, is in its north-central part.

The climate of the basin is semiarid and warm. Precipitation
over the basin ranges from 11 to 12 inches per year in the vicinity of
Tucson to more than 25 inches in the adjacent Santa Catalina Mountains.
About 65 percent of the precipitation falls between May and October and
about 50 percent in thunderstorms in July and August (Davidson 1970,
p. 38). The annual potential evapotranspiration is several times the
annual precipitation.

Geologically, the basin is an elongated structural valley filled
with unconsolidated alluvial deposits and older semi-consolidated
and consolidated alluvial deposits. These deposits, which are more

than 2,000 feet thick in parts of the basin, include the Pantano Formation
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and Tinaja beds of Tertiary age and the Fort Lowell Formation and sur-
ficial deposits of Quaternary age. The mountains are composed primarily
of metamorphic, intrusive igneous, and volcanic rock and to a lesser
extent consolidated sedimentary rock. Structurally, the basin has been
downfaulted with respect to the mountain blocks, which was a necessary
condition for the accumulation of the basin fill. Faulting continued
during the deposition of the fill, as beds of Tertiary and Quaternary

age are offset.

Water Resources

The primary source of water in the Tucson basin is obtained
from its ground-water reservoir. Tucson is one of the largest cities
in the United States that is totally dependent on ground water, and
thus knowledge of the ground-water reservoir is extremely important to
the city and all residents of the basin. Realization of this fact has
led to virtually continuous study of the water resources of the basin
by the city of Tucson, The University of Arizona, the U. S. Geological
Survey, the U. S. Bureau of Reclamation, and the U. S. Army Corps of
Engineers, among others. The investigation reported here is a small
part of this continuing effort to understand and manage the basin's
ground-water reservoir.

The ground-water reservoir has been defined as a single, uncon-
fined aquifer which includes all of the unconsolidated and semi-
consolidated sediments which make up the basin fill. A vast amount of

water is stored in this reservoir -- estimated by Davidson (1970, p. 13)



to be about 52 million acre-feet to a depth of 1,000 feet below the
water table.

In 1965 about 160,000 acre-feet of water was pumped from the
basin.. More than 50 percent was used for irrigation, about 35 percent
for public supply, and about 15 percent for industrial purposes
(Davidson 1970, p. 14). Ground water in the aquifer is partly replen-
ished by infiltration of streamflow to the channel of the Santa Cruz
River and its tributaries and by subsurface inflow. Of the estimated
110,000 acre-feet per year of recharge to the basin during the 1960's,
about 51,000 acre-feet was supplied by streamflow infiltration
(Davidson 1970, p. 213).

Streamflow is not used directly for water supply in the basin
because it is too erratic in time, duration, and volume of flow. The
Santa Cruz River and Rillito Creek, for example, are dry on the average
of 320-335 days per year (Davidson 1970, p. 163). Flow in the streams
is mainly in response to summer thunderstorms or winter frontal storms,
and individual flow events rarely last more than a few days. The mean
annual streamflow past gaging stations on the major streams of the
basin is about 10,000 to 20,000 acre-feet; the mean annual streamflow

out of the basin is about 17,000 acre-feet (Davidson 1970, p. 10).

History of Modeling Fluid Reservoirs in Porous Media

Pinder and Bredehoeft (1968) presented a good summary of the
development of reservoir modeling. Electrical-analog computers made

up of resistor-capacitor networks were used originally in the early
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1940's to model the flow of heat but soon were adopted by the petroleum
industry to solve problems involving oil and gas reservoirs. In the
early 1960's analog computers were employed to study ground-water flow,
and since then the U. S. Geological Survey and the Illinois State Water
Survey, among others, have used these computers extensively.

Digital computers first were used to attack problems of oil and
gas reservoirs in the early 1950's. Digital models are very similar to
analog models in that they both solve the partial differential equations
of fluid flow by applying finite-difference approximations. When high-
speed computers with large memories became available they soon were
utilized to study reservoirs of fluids in porous media. Stallman
(1956) first discussed the application of numerical analysis to ground-
water problems, but the first large-scale use of digital computers to
study the dynamics of ground-water basins was by the California Department
of Water Resources (Tyson and Weber 1964). Tyson and Weber employed a
relaxation technique, essentially the Gauss-Seidel iteration method, to
solve the set of equations that represents a ground-water basin. Since
then, digital computers have been used increasingly to solve fluid-
reservoir problems. Many new solution techniques have been developed,
primarily by the petroleum industry, although the finite-element (as op-
posed to finite-difference) method was taken from structural engineer-
ing.

A method that is currently popular in the petroleum industry
(Peaceman and Rachford 1955) and in ground-water studies (Pinder and

Bredehoeft 1968) is the alternating-direction-implicit technique. This
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method is faster computationally than the Gauss-Seidel method and often
requires less computer memory.

Little has been published, however, on studies of errors in
digital and analog models and on the best methods of reducing errors,
although Landau (1963) studied the accuracy of analog models used in
heat-flow studies. Most investigators have been content to apply their
numerical or analog technique to a relatively uncomplicated problem for
which an analytical solution can be derived, and if the results match
reasonably well, they assume the technique also will give good solu-
tions to complex problems. This procedure shows that the particular
computer model is a valid way to approximate an analytical solution
which is itself an idealized model, but it tells less about the errors
in modeling a complex hydrogeologic system. A few studies have touched
on this problem but the writer knows of none that have dealt with it
in a comprehensive way. Another common check is to compare the results
from an analog and digital model, although this really only validates
the procedures used because the two methods are theoretically similar
and will have equivalent errors. Limited analyses of the sensitivity of
the results to variations in parameters also commonly are done in opera-
tional studies to estimate the possible variation from the ''true' re-
sults.

Another aspect of modeling on which little has been published
is model calibration. Calibration is the process in which initially
assumed model parameters, initial conditions, and input/output func-
tions are modified so that the model reproduces the known response of

the physical system being modeled over some historical time period.
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Calibration commonly is done by trial and error methods (Allison 1967,
p. 12) although the writer knows of no published accounts of specific
techniques used in trial and error calibration.

Some workers have attempted to devise automatic, ''objective'
calibration procedures using mathematical techniques and computers;
such as, for example, Coats, Dempsey and Henderson (1968); Haimes,
Perrine and Wismer (1968); Pliska (1968); and Y. Emsellem and G.
de Marsily (1971). Lovell (1971, pp. 13-16) evaluated these methods
and concluded that each of them depended on some mathematical assump-
tions or simplifying assumptions about the physical system that made

them of little use for the large, complex model of the Tucson basin.

Previous Studies

The only known previous work that is directly concerned with
the subject matter of this investigation was done by Bibby (1971) who
studied prediction errors in digital models of ground-water basins,
and by Meyer (1971) who investigated the use of digital models to guide
collection of ground-water data. In addition, McMillan (1966) studied
the effects of random variations in transmissivity in a digital model
on predicted water levels. None of these étudies focused on quantifi-
cation of the worth of additional data to such models.

Bibby (1971) assumed that the values of the variables of a digi-
tal model of a ground-water system -- in his study the variables were
hydraulic conductivity, aquifer thickness, initial water level, dis-
charge, and storage coefficient -- were random and, using statistical

techniques, related the accuracy of the variables to the accuracy
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of predicted water levels at a point in time. His method consisted of
a Monte Carlo technique to generate a random sample of the final water
level, computation of a tolerance-limit width and a coefficient of vari-
ation on the final water level which were used as indicators of water-
level accuracy, and a regression analysis to determine a relation
between the accuracy of the variables and accuracy of the final water
level. Bibby concluded (1971, pp. 71-72) that when only one variable
at a time over the whole model is considered erroneous (for a confined
aquifer), the error in the final water level is of the same order of
magnitude as the error in initial water level; but he found that for
all other variables, the errors in final water levels are one to two
orders of magnitude less. When all variables are considered erroneous
simultaneously (for both confined and inconfined aquifers), the error
in initial water level is the only significant cause of error in final
water levels at any one node.

There are a few similarities and several differences between
the approach of Bibby and that used in this study. Both studies as-
sumed errors at different nodes were independent, although as is pointed
out below in Chapter 4, "Use of Statistical Decision Theory to Evaluate
Worth of Ground-Water Data,' this is commonly a poor assumption. Bibby
used an idealized, 20-node rectangular model with a nodal spacing of
either 1,000 or 10,000 feet for his studies, possibly because use of
an actual basin model would have been too costly in terms of computer
time. Ile used only normal distributions for his variables because he

assumed that the only errors in the data were those associated with
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measurement; which, as is discussed in Chapter 3 in the section on
"Errors Associated with Basic Data,'' may not always be valid. Bibby
used relatively short periods of time for his studies, commonly less
than 120 days, although some simulations were as long as 440 days;
whereas this study used a 20-year simulation period.

Bibby assumed that errors in a variable occurred at all nodes
in the model, which is certainly a more realistic assumption than in-
troducing errors one node at a time, as was done for this study. How-
ever, it is then difficult to study how errors in various parts of the
model affect model results, or difficult to study error propagation.
Bibby did not describe any extensive effort to determine what typical
values of error would be, or in other words what typical values of the
standard deviation of variable distributions would be, although he
stated (p. 65) that data used were typical of aquifers in Colorado.

Bibby made no attempt to evaluate the worth of additional data,
although he pointed out (1971, pp. 67-69) how his methods might be used
to attack this problem.

Meyer (1971) observed that preliminary digital models could be
used to guide the collection of ground-water data for a more definitive
model, and developed a practical, qualitative approach to evaluating
worth of data. Essentially, Meyer generated errors in model variables
over an entire model of an actual basin using Monte Cario techniques
and triangular or log-triangular probability distributions for the
variables. He made little attempt, however, to determine how the param-

eters of the probability distributions would vary over space and for
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different variables, other than presenting a table of average error
ranges for hydrologic variables in California (Meyer 1971, table 1).

He did not develop a quantitative measure of the effect of errors, but
used hydrographs comparing ''true' and erroneous predicted water levels
and maps of errors over the model to evaluate uncertainty in data.

McMillan (1966) studied the effects of random variations in
transmissivity on resulting potential, i.e., water-level, distributions,
using two- and three-dimensional digital models with rectangular
boundaries and up to 576 nodes in two dimensions. He showed that a
random variation in transmissivity produced potential distributions
that did not vary significantly from those computed using constant
transmissivity. McMillan assumed, in his primary numerical experiments,
that transmissivity was log-normally distributed over the basin area
and varied the log of the mean of transmissivity from 0 to 3 and the log
of the standard deviation from 0.1 to 0.9. He also assumed that errors
are statistically independent at adjacent nodes. McMillan used a
steady-state system for his studies; his results, therefore, may not be
applicable to the transient-state system studied in this investigation.
He studied only transmissivity and not any other types of basic data,
although he investigated the effects of variations in hydraulic gradi-
ent and model-grid design on predicted potentials.

McMillan concluded (p. 103a) that ''for a wide range of ground-
water basin conditions, extensive areas may be considered to be homo-
geneous without serious error in predicted potential values.' He
stated (p. 102), however, that serious errors can arise if the poten-

tial gradient and the nodal spacing are large and transmissivity is
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highly uncertain. As an example, using a potential gradient of 1 foot
per 100 feet, a nodal spacing of 10,000 feet, and a log-normal distribu-
tion of transmissivity with a mean of 0 and a variance of 1, McMillan
computed the standard deviation of the differences between water levels
obtained under homogeneous and heterogeneous conditions of transmissiv-
ity to be 1,410 feet. This degree of uncertainty in water levels 1is

unacceptable for an operational study of a ground-water basin.



CHAPTER 2
THE DIGITAL MODELS OF THE TUCSON BASIN

The digital-computer models of the Tucson basin were developed,
primarily by the writer and A. F. Moench, to use in studies of the ap-
plication of operations-research techniques to management of ground-
water resources, in studies of modeling errors, and in studies of the
worth of ground-water data and efficiency of data-collection systems.
Two digital models were constructed: the original large-scale model
with 1,890 nodes of 1/4-square-mile area each and a small-scale model
with 509 nodes of 1 square mile each. The less-detailed model was
developed to reduce computation times during worth-of-data studies.

The large-scale model covers about 470 square miles over a length of
about 50 miles of the basin north of the Pima County-Santa Cruz County
line. Figure 1 shows the area included in the large-scale model as well
as the area of the electrical-analog model of the basin constructed by
the U. S. Geological Survey (Anderson 1968), from which much of the

data for the digital models were obtained. The small-scale model covers
a slightly larger area of 509 square miles.

Essentially another ''model'' was modeled, in that the starting
point for the digital models was the two-dimensional, quasi-linear, para-
bolic, time-invariant differential equation of incompressible flow

through saturated porous media:

14
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TR 2 TR = S0y S REGY) &
in which h = head or water level (PY + z), in units of length (L),
S = coefficient of storage (dimensionless),
T = transmissivity (th_l), and

QR = inflow or outflow (Lt_l).
The digital model ''models' this equation using a finite-difference ap-

proximation (after some rearrangement of terms):

n+1 n+l n+1 n+1 an+l  on+l
Ti‘%’j(hi'l,j i hl’J) * Ti+%’j( i+1,j 1’3) -'-T.i’j'_é-t i,j-1 1,3)
n+l n+l
" T30 e 7 Py
(ax)°
- n+tl _.n ..
=Sy - hy /8t RALD (2)

where the i,j notation is a standard matrix or grid reference system, n
refers to the time step, Ax(=Ay) = nodal spacing, and t = time-step size.
The model consists of a set of these implicit equations, one per node.
The set of simultaneous equations was solved using two separate methods:

the Gauss-Seidel iterative algorithm and the alternating-direction-

implicit algorithm.

Gauss-Seidel Algorithm

W. M. Little, at The University of Arizona, developed the first
version of the digital-computer model that was later applied to the

Tucson basin (written communication,1968). He used a finite-difference
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approximation of equation (1) similar to that given by Tyson and Weber
(1964, p. 72), and verified that the Gauss-Seidel iterative technique
would converge to a solution of such a set of simultaneous equations.

The Gauss-Seidel method solves a system of equations that can
be represented by a pentadiagonal matrix, or a matrix with five um-
knowns per equation. These five unknowns are the water level at a
given node and the four surrounding nodes, as can be seen in equations
(2) or (3). Solution of a system of equations represented by a penta-
diagonal matrix using a direct method, such as Gaussian elimination,
can involve a large amount of computer time. Therefore an iterative
technique, such as Gauss-Seidel is commonly used, even though Gauss-
Seidel commonly requires many iterations and uses a considerable amount
of computer time (Carnahan, Luther and Wilkes 1969, p. 452).

Little's finite-difference equation (including some minor nota-

tional changes by the writer) was:

=]

S
LBy et - B e

e~

1]

where B = the node for which water-level change is being computed,
i = number of an adjacent node,

A, = area of node B,

B
Yi,B = Ti,Bwi,B/Li,B is internodal conductance,
Wi B = width of flow path (width of boundary between nodes),
3
Li B = length of flow path (distance between nodal centers),
iR " transmissivity between nodes B and i,

S, = coefficient of storage of nodal area,
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m = nunmber of adjacent nodes,
n = number of time intervals,

net withdrawal or recharge,

~
o
=
w
1]

t = time interval over which state changes are being calculated,
h" = water-level elevation at the previous time interval, and
= the water-level elevation being computed (present time
interval).
Equation (3) is actually an alternate way to express equation. (2), as

the Yi terms in (3) are equivalent to the T terms in (2), and AB in
’

B
(3) is equivalent to (Ax)2 in (2).

For purposes of computation the basic equation can be rearranged

to give:
m m AS AS h
n+1 n+l BB B B B n+l
I hy T Yy pohy T Y gt T - A (@)
i=1 i=1
(4

Little and N. E. Baran (written communication, 1968) collabo-
rated in developing a computer program utilizing this equation. In ad-
dition, they prepared an alternate program that treated transmissivity
as a variable. After each time-step is solved, the change in water-
table elevation is used to recalculate transmissivity (assuming trans-
missivity is linearly related to saturated thickness of aquifer) and
the new value is used in the subsequent time-step. Little and Baran
also prepared modifications that could account for boundary nodes

with constant potential instead of the impermeable boundaries of the
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basic program. The programs finally developed for the Tucson basin,
however, assumed transmissivity constant with time (see below pp. 66-
67); and treated all physical boundaries as impermeable. The models
simulated recharge and discharge at boundaries as simple input or out-
put, identical to a simulated pumping or recharging well, at each
boundary node where subsurface flow occurs. This procedure involves
less programming than holding a potential gradient constant across a
boundary, although it is then more difficult to simulate variable sub-
surface flow in response to changes in water-table gradient. Because
such changes in flow at boundaries are conjectural, especially along
mountain-front boundaries, the simpler approach was used.

The program, like that of the California Department of Water
Resources, is readily adaptable to irregularly-shaped areas, and in-
dividual nodal areas can be polygons of various sizes with a variable
number of sides.

R. L. Knickerbocker (written communication, 1969) modified
the Gauss-Seidel method by adding an overrelaxation coefficient. The
Gauss-Seidel method for solving the set of m simultaneous linear equa-

tions generated at the m nodes of the model can be characterized by the

equation:
Ah = B ,
where A = matrix of coefficients (Ai,j)’ i=1tom, j=1tom,
h = vector of unknown head values (hi)Tp, i=1tom (Tp indi-
cates the transpose of the matrix), and
B = vector of constants (bi)Tp, i=1tom
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The system is solved iteratively by solving the ith equation for the

ith unknown as follows:

i-1
T L L1 B
1 ai,i 1 j=1 1,] ] j=i+1 1,) ]
where i indicates the unknown sought and k indicates the number of
iterations. The equation can be rewritten as:
m
T T b -z a h (6)
i,i j=1 )]
by adding and subtracting hi(k) to the right-hand side of the equation.
The Gauss-Seidel method can be modified by the use of an over-
relaxation coefficient (the method is then commonly referred to as the
successive-overrelaxation method or SOR). The ith equation is solved
for the ith unknown using:
m
p D) g (0 _w [b. “% a .h (k)} : )
i i i j=1

a. . i,i77
i,i »J ]

)

For overrelaxation w ranges from 1 to 2. An optimum value of g (wopt
can be calculated for the Tucson basin model but the method took more
computer time than was justified. An estimate of Wopt of 1.8 gave a

decrease in the number of iterations necessary for convergence that was

deemed sufficient.

Alternating-Direction-Implicit Algorithm

Knickerbocker (written communication, 1970) determined that for
a grid of square nodal areas, such as the Tucson basin digital model,

the alternating-direction-implicit algorithm would be computationally
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more efficient than the Gauss-Seidel algorithm. The alternating-
direction-implicit method was devised to solve a system of equations
represented by a pentadiagonal matrix by converting the system into two
systems of equations, each with a tridiagonal matrix. A tridiagonal
system can be solved directly, using a method such as Gaussian elimina-
tion, without resorting to time-consuming iterative procedures. The
method employs two finite-difference equations which are used in turn
over successive time-steps, each of duration At/2 (Carnahan, Luther and
Wilkes 1969, p. 452). The first equation includes 3 unknowns, the
water level at the given node and at the two adjacent nodes in the same
row (orycolumn), the second also includes 3 unknowns, the water level
at a given node and at the nodes in the same colum (or row). The
solution of the first equation furnishes values used in the second equa-
tion, the solution of which yields water levels at the end of the entire
time-step, At.

Knickerbocker wrote a computer program, following the discus-
sion of the algorithm by Pinder and Bredehoeft (1968), that would solve
a ground-water flow problem in a rectangular basin composed of 400 nodes,

20 nodes by 20 nodes in size.

Comparison of the Algorithms

Moench (written communication, 1969) devised a ground-water
flow problem in a rectangular, homogeneous aquifer with three imperme-
able boundaries and one recharge boundary, and obtained an analytical

solution using heat-flow theory. Moench, Knickerbocker, and the writer
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utilized both the Gauss-Seidel (as modified by successive overrelaxa-
tion) and alternating-direction methods to solve this problem (using
one time-step) and compared the results with the analytical solution
(table 1). The area modeled in the problem is 10 square miles and was
approximated by 400 nodes, each of which represents 1/4 square mile.
Transmissivity was assumed constant over the model at 500,000 gpd/ft
(gallons per day per foot) and the storage coefficient was assumed to
be 0.15. The recharge was defined as 0.15 feet of water per day for
a simulation period of one year in a row of nodes along one boundary.
This totals to 0.15 ft/day x 43,560 sq ft/acre x 160 acres/quarter-
square mile x 20 quarter-square miles or 20,900,000 cu ft/day (2.06
gpm/ ft (gallons per minute foot) of boundary).

The alternating-direction method agreed best with the analyti-
cal solution overall, although the Gauss-Seidel method gave better re-
sults in the center of the model. Both methods gave poor results, in
terms of percent error, at the boundary opposite the recharge boundary,
although the alternating-direction method was much better there,
ylelding an absolute error of only 0.28 feet. 1In addition, the
alternating-direction method used about 1/6 as much central processor
time on the computer, although some of the difference was due to a
simpler form of data input and output in the alternating-direction
program.

The writer and R. L. Knickerbocker then experimented with the
Gauss-Seidel and alternating-direction techniques to see how to ap-

proximate more closely the analytical solution. Several approaches were
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tried using both the Gauss-Seidel and alternating-direction methods.
For Gauss-Seidel, experiments included dividing the one-year time period
into time-steps -- starting with a time interval of one minute and
doubling each subsequent interval for a total of 20 time-steps -- and
requiring a minimum of 10 iterations per time-step. In order to avoid
large computation times, the error tolerance was reduced from an average
of 0.001 to 0.01 foot per node. This reduced accuracy and thus partly
offset the increase in accuracy obtained by using time-steps and other
modifications. Therefore, the original solution of the problem by Gauss-
Seidel cannot be directly compared to the solution using modifications.

For the alternating-direction method, experiments included di-
viding the time period into nine time-steps (an initial time interval
of one day) and 20 time-steps (an initial interval of one minute) and
reducing the nodal spacing to 1/4 and 1/8 mile.

Comparison of results for these changes with analytical results
are shown in table 2 for Gauss-Seidel and table 3 for alternating-
direction. These very limited experiments on a simple, idealized prob-
lem suggest that: (1) the alternating-direction method is still
superior to the Gauss-Seidel with the time period divided into 20 time-
steps, although reducing the error tolerance had an unknown effect;

(2) checking the error at each node instead of the sum of the nodal
errors, or requiring a certain number of iterations for the early time-
steps (when the absolute value of water-level change is small) in the
Gauss-Seidel method makes little difference in the result; (3) dividing

the time period into steps gives better results for both the Gauss-Seidel



Table 2. Comparison between the Analytical Solution and Various Modifications of the Gauss-Seidel Algorithm.

Distance from Water-level Water-level Water-level Water-level
Recharge Rise, Analy- Rise, Gauss- Percent of Rise, Gauss- Percent of Rise, Ga s- Percent of
Boundary, tical Solution, Seide1P»€ Analytical S?ldelg’e Analytical Seide1®» Analytical
in miles in feet in feet in feet in feet
9.5 0.35 1.05 300 1.02 290 1.02 290
9.0 0.39 1.06 272 1.10 282 1.10 282
8.5 0.52 1.20 230 1.27 244 1.27 244
8.0 0.74 1.48 200 1.54 208 1.54 208
7.5 1.09 1.88 172 1.93 177 1.93 177
7.0 1.62 2.45 151 2.46 152 2.46 152
6.5 2.37 3.19 135 3.18 134 3.18 134
6.0 3.43 4.16 121 4.14 121 4.14 121
5.5 4.89 5.42 111 5.39 110 5.39 110
5.0 6.84 7.04 1038 7.01 102.58 7.01 102.58
4.5 9.43 9.14 96.9 9.10 96.5 9.10 96.5
4.0 12.78 11.82 92.6 11.78 92.1 11.78 92.1
3.5 17.05 15.22 89.4 15.18 89 15.18 89
3.0 22.40 19.51 87.2 19.47 81.9 19.47 81.9
2.5 28.99 24.86 85.8 24.83 85.7 24.83 85.7
2.0 36.97 31.48 85.2 31.46 85.1 31.46 85.1
1.5 46.48 39.59 85.2 39.56 85.1 39.56 85.1
1.0 57.64 49. 36 85.6 49.33 85.5 49.33 85.5
0.5 70.55 60.97 86.4 60.95 86.4 60.95 86.4
0.0 85.25 74 .59 87.5 74.53 87.5 74.53 87.5
Average Deviation 2.22 45.7 2.23 47.3 2.23 47.3

Modified by successive overrelaxation.

bError tolerance is an average of 0.01 foot per node.

©20 time-steps.

dError tolerance is 0.01 foot per node.

€20 time-steps, error tolerance checked at each node.

f20 time-steps, error tolerance checked at each node, at least 10 iterations per time-step required.

8value closest to analytical.



Table 3. Comparison between the Analytical Solution and Various Modifications of the Alternating-Direction Algorithm.

26

Distance from

Water-level

Water-level

Water-level

Water-level

Water-level

Recharge Rise, Analy- Rise, Alt. Percent of Rise, Alt. Percent of Rise, Alt. Percent of Rise, Alt. Percent of
Boundary, tical Solution, Direction? Analytical Direction} Analytical DirectionC, Analytical Directiond9, Analytical
in miles in feet in feet in feet in feet in feet
9.5 0.35 .28 80 .32 91.4 .31 88.5 .31 88.5
9.0 0.39 .33 84.5 .37 95€ .37 95 .38 97.4
8.5 0.52 .44 84.6 .47 90.4 .50 96.2€ .51 98
8.0 0.74 .63 85.2 .65 88 .69 93.2 .72 97.3
7.5 1.09 .91 83.5 .93 85.2 .99 90.8 1.03 94.5
7.0 1.62 1.33 82 1.33 82 1.43 88.2 1.49 92
6.5 2.37 1.94 81.8 1.93 81.5 2.07 87.4 2.16 91.2
6.0 3.43 2.81 82 2.77 80.7 2.99 87.1 3.11 90.6
5.5 4.89 4.02 82 3.95 80.7 4,26 87.1 4,44 90.8
5.0 6. 84 5.69 83.1 5.58 81.5 6.02 88 6.27 91.7
4.5 9.43 7.93 84 7.79 82.5 8.41 89.1 8.74 92.5
4.0 12.78 10.89 85.2 10.73 84.1 11.56 90.5 12.01 94.1
3.5 17.05 14.69 86 14.56 85.4 15.64 91.8 16.21 95.1
3.0 22.40 19.51 87.1 19.42 36.8 20.79 92.7 21.50 96
2.5 28.99 25.49 88 25.46 87.9 27.15 93.5 28.04 96.8
2.0 36.97 32.81 88.8 32.84 89 34. 89 94.4 35.96 97.2
1.5 46.48 41.60 89.5 41.69 89.7 44.14 95 45.40 97.6
1.0 57.64 51.98 90 52.13 90.5 54.99 95.4 56. 46 97.8
0.5 70.55 64.05 90.8 64.25 91 67.54 95.8 69.24 98
0.0 85.25 77.90 91.4° 78.11 91.6 81.85 96 83.76 08.2°
Average Deviation 2.23 14.5 2.23 13.3 1.18 8.2 0.60 5.7

%9 time-steps.

b20 time-steps.

€20 time-steps and 1/4-mile nodal spacing.

d

®Value closest to analytical.

20 time-steps and 1/8-mile nodal spacing.
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and the alternating-direction methods; (4) the greatest improvement
(shown experimentally only for alternating-direction) is made by de-
creasing the nodal spacing; and (5) alternating-direction takes less
central processor time than Gauss-Seidel.

At present the Gauss-Seidel method, as used for the Tucson basin
model, takes about 75 percent of the computer memory storage (exclusive
of storage used by the computer for control and other uses) required
for the alternating-direction method. This is largely because of the
irregular boundaries of the Tucson basin model. Gauss-Seidel needs
storage only for the interior nodes of the model whereas the alternating-
direction technique needs storage for nodes outside of the model, so
that the whole model has a rectangular shape. It may, however, be pos-
sible to modify this requirement so as to reduce required storage. For
a model for which all interior nodes form a rectangular shape, such as
the 20 by 20 grid used for the recharge problem, the alternating-
direction method requires only about half as much storage (exclusive
of computer needs) as Gauss-Seidel.

The writer adapted the basic alternating-direction program for
the Tucson basin model by modifying the program so that it could solve
models with non-rectangular outlines, such as the irregularly-shaped
Tucson basin. In addition the transmissivity data were modified so
that values could be read in directly for each node instead of reading
in values between each node and all its adjacent nodes, as required
for the Gauss-Seidel method. The data-input format also had to be

modified so that data for the interior of the model -- within the
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irregular boundaries of the model proper -- could be positioned ''inside"
the larger data arrays which include nodes outside the model proper.
Thus, it was not necessary to punch large numbers of zeros on cards to
represent nodes outside the model proper.

The computer program using the alternating-direction algorithm
was converted to a subroutine in the computer program prepared for the
worth-of-data studies (Appendix A). The essentials of the alternating-
direction algorithm and data output are included in subroutine ALDIRS,
while the essentials of data input are included in the main program

WODATA.

Data for the Models

In September 1968, A. F. Moench began collecting data, from var-
ious sources, for the specific model of the Tucson basin and compiling
them on computer punch cards. He divided the basin into 1,890 nodal
areas of 1/4 square miles each --. a grid of square nodes spaced 1/2 mile
apart. Moench decided not to use polygonal nodes because (written
communication, 1969):

(1) compilation was simplified, thereby making it possible for
persons with little experience in hydrology to assemble data easily;

(2) the nodal areas correspond with the nodal areas of the
electrical-analog model constructed by the U. S. Geological Survey, al-
though the University model covers only about two-thirds of the area
covered by the Survey model;

(3) the internodal conductance of equation (3) is equal to trans-

missivity since the distance between nodes (L) equals the length of the
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Ti Bwi B
i = ) ) = .
side of each node (W), or Yi,B ——TE—E——- i B
b

(4) nodal area is constant, saving computer storage and elimina-

T

ting the need to measure individual nodal areas; and

(5) computer print-out of data is simplified in that results
can be printed out directly in map form and computer storage is not
needed to record nodal locations.

Moench pointed out that using a grid of equal-sized nodes has
disadvantages, namely that the whole grid has to be fine enough to
give good results in areas where potential gradients are steepest and/
or much data are available. Thus many ''unnecessary'' nodes are included
in areas where gradients are flat or data are few, leading to extra com-
pilation and an impression of accuracy in these areas that really does
not exist.

The area of the large-scale digital model corresponds fairly
well to the area of the analog model of the U. S. Geological Survey
(figure 1) except that the digital model includes less of the Canada del
Oro valley, less of the area between the Tucson and Sierrita Mountains,
a narrower part of the Santa Cruz valley south of Continental, and omits
a large area on the eastern side of the basin between Pantano Wash and
the Santa Rita Mountains. The model boundaries are not smooth curves
but are irregular approximations using the sides of the 1/4 square-

mile nodal areas, as can be seen on figure 1.
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Data on Coefficient of Storage
and Transmissivity

The coefficient of storage of a ground-water basin model is
commonly assumed to be constant over the whole basin because few data
are available to assess its variability. Transmissivity can be obtained
from a test on a pumping well alone, but to obtain good values of stor-
age coefficient, one or more suitable observation wells should be
available. Consequently, there commonly are fewer values of S from
aquifer tests than values of T.

The storage coefficient for the Tucson basin, which is virtually
equivalent to specific yield because the aquifer in the basin is uncon-
fined, is commonly assumed to be between 0.05 and 0.20 by various workers,
depending upon their experience or predilections. The storage coeffi-
cient likely varies over the basin, depending on the lithology of that
part of the aquifer where the water table is declining. Initially the
coefficient of storage was assumed to be 0.15 for all nodes of the digi-
tal model, as was initially assumed for the electrical-analog model.

Aquifer tests in the basin commonly indicate that storage coef-
ficients are less than 0.01, probably because the tests have short
pumping periods, in the order of hours, and delayed drainage causes
water-level declines to be too great and thus calculated storage coef-
ficients to be too small (Clyma, Rebuck and Shaw 1968). Even when they
used methods of analysis which attempt to account for delayed drainage,
Clyma et al. (1968, table 2) computed values of storage coefficient

which ranged only from 0.01 to 0.07. Apparently no long-term tests have
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been run in the Tucson basin that have yielded realistic values of the
coefficient of storage.

Transmissivity data developed for the analog model were obtained
from the U. S. Geological Sﬁrvey. The Survey had compiled these data in
the form of a map showing areas of equal transmissivity, subdivided into
areas where transmissivity is (1) less than 10,000 gpd/ft, (2) 10,000 -
50,000, (3) 50,000 - 100,000, (4) 100,000 - 180,000, and (5) more than
180,000. From this map a value was read for the internodal transmis-
sivity between each node and every one of its adjacent nodes for the
Gauss-Seidel algorithm, and read at each node for the alternating-
direction algorithm. Values of 7,500 gpd/ft, 30,000, 75,000, 140,000,
and 250,000 were assigned to the map intervals for the purpose of spec-
ifying nodal or internodal transmissivities.

The Department of Agricultural Engineering of the University
of Arizona compiled the results of aquifer tests made during the period
1961-68. Figure 2 shows the distribution of tests over the basin.

This was the main source of data used by the U. S. Geological Survey

for their map.

Water-Level Data

Water-level and water-level-change data were obtained from the
Agricultural Fngineering Department. They have prepared contour maps
of the water-table surface for almost every year since 1947 and water-
level-change maps for selected periods, both commonly using 10-foot con-

tour intervals, although some change maps use 5-foot intervals. Initial
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conditions, in terms of water levels (h), for any period can be inter-
polated for each node using the water-table elevation maps, and values
of change at each node for selected periods can be interpolated from
the change maps for use in model calibration. In this dissertation,
H(i,j) refers to the initial water level at any point, whereas h(i,j)
refers to the predicted water level at a point at some future time.

Water levels in about 1,500 wells in the drainage basin of the
Santa Cruz River are measured annually by the Department of Agricul-
tural Engineering (Schwalen and Shaw 1961). Levels commonly are mea-
sured in the winter or spring when pumping in the basin is at a minimum,
and thus are the best approximation of the basin's annual static (non-
pumping) water levels. Many of the observation wells, however, are
outside that part of the Tucson basin included in the digitél model.

In addition, data from all of these wells are not available for specific
periods of water-level change, since every well was not measured both

at the beginning and end of every period. As an example of the dis-
tribution of data, figure 3 shows the locations of the approximately

500 observation wells over the basin for which 1947-66 water-level-
change data are available. Data are concentrated along the streams and
in the city of Tucson.

Values of historical water-level change rather than historical
water-table elevations were used for model calibration for several rea-
sons. The computer could print out values of change on one sheet of
paper because such values have a maximum of two digits while elevations

have four. Also contour maps of change were believed to be much






35
more reliable than elevation maps. Values of change are commonly re-
lated to factors such as pumping and recharge that can be evaluated
readily, and thus subjective interpretation of contour spacing and posi-
tion is simplified. Values of change also commonly decrease toward
boundaries of a basin, away from centers of pumping, and can be esti-

mated reasonably well from sparse data.

Discharge (Pumpage) Data

The pumpage (Q) data used in the electrical-analog model were
obtained from the U. S. Geological Survey and were used in the digital
model. The data were compiled for each 1/4 square-mile nodal area for
nine time periods: 1940, 1941, 1942-46, 1947-49, 1950, 1951-52, 1953-
57, 1958-61, and 1962-65. The pumpage was considered constant within
each of these time periods. The Survey made these estimates using field
measurements of pumpage from some of the wells in the basin, pumpage
records of the city of Tucson, and estimates of irrigated acreage.
Anderson (1968, p. 22) revised pumpage in a few areas during analog-model
calibration so that the model results corresponded better in a visual

sense with actual changes.

Recharge Data

Data on infiltration into stream channels were obtained from a
report by Burkham (1970, table 5). He studied channel losses for the
period 1936-63 and estimated the average annual infiltration per mile of

channel for various streams in the Tucson basin. These data were used
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in the digital model, assuming initially that infiltration equalled re-
charge (R) and that recharge was constant for any given period.

"Boundary'' or "mountain-front' recharge is defined here as that
water moving into the basin from bounding mountain ranges or from trib-
utary basins. In the digital model, this is the water moving into the
model from areas outside the model, including subsurface flow from the
Tortolita, Santa Catalina, Rincon, Empire (located northeast of the
Santa Rita Mountains), Santa Rita, Sierrita and Tucson Mountains; sub-
surface flow from the Canada del Oro and upper Santa Cruz valleys; and
any flow from the areas between the Rincon and Empire Mountains (San
Pedro Valley), between the Sierrita Mountains and the southern edge of
the model, and between the Sierrita and Tucson Mountains (Avra-Altar
Valley).

Data on boundary recharge were obtained from Anderson (1968, pp.
20-22), who used the electrical-analog model of the basin to estimate
subsurface inflow and outflow. He assumed that inflow to and outflow
from the basin were in balance in 1940 -- that is, no ground water was
being withdrawn from storage, or that the flow system was in a steady
state. He then adjusted values of transmissivity and subsurface inflow
and outflow until the model duplicated the 1940 water-level elevation
map. The resulting inflow and outflow values initially were assumed to
be the correct average quantities for the digital model.

Anderson (1968, fig. 4) estimated that there was no subsurface
inflow from the Tucson Mountains or from the area between the Tucson

and Sierrita Mountains, probably because annual precipitation over these
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areas is low. Preliminary results from the digital model indicate that
there may be some flow from these areas, although it is likely small.

The subsurface outflow at Rillito in the northwest corner of the Tucson
basin was also obtained from the analog model calibration. This quanti-
ty is actually a form of discharge, but data on subsurface outflow were
compiled with recharge data, and commonly will be discussed in conjunc-
tion with recharge data in this dissertation, because they were derived

from the same source.

Calibration of the Models

After initial estimates were made for parameters, initial con-
ditions, and input/output at each of the 1,890 nodes, the model was
calibrated by adjusting these estimates until the model reproduced his-
torical water-level changes fairly well for the period from the spring
of 1947 to the spring of 1966. This period was selected because it was
the longest period for which all types of data were available in signifi-
cant amounts. Prior to 1947, water-level data are sparse; and the U. S.
Geological Survey had not compiled pumpage data after 1965 for each node
of the analog model. A fairly long period is needed for calibration so
that historical water-level changes are at least 10's of feet. If
changes at each node over the time period used are only a few feet, the
model cannot be calibrated well because errors in the interpolated
values of historical change will be of the same order of magnitude
as the changes themselves. In this case, an analysis of differences
between computed and historical change to indicate what model adjust-

ments to make is not meaningful.
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Allison (1967, pp. 100-101) attempted to obtain, for a given
total budget for a digital model of the southern San Joaquin Valley,
California, the optimal combination of the number of time periods used
in calibration, the number of nodes, and the number of calibration rums.
He estimated that the optimal combination was 3-4 time periods, 440-480
nodes, and 260-280 calibration rums.

It would have been preferable to calibrate the Tucson basin
model over several separate time periods to obtain independent esti-
mates of parameters, initial conditions, and input/output. These inde-
pendent values could then be averaged to provide estimates that would
be representative of more than one set of basin conditions. However,
for calibrating over separate time periods, pumpage data specific to each
period should be available. If pumpage is lumped over a period, separate
calibration on parts of the period is not meaningful. For the Tucson
basin, the 1947-66 period could have been divided into subperiods be-
cause pumpage data were available for 1947-49, 1950, 1951-52, 1953-

57, 1958-61, and 1962-65. However, water-level changes for these sub-
periods are small, and errors in the data and in contour maps made from
the data likely would be a significant proportion of the change. For
this reason, calibration over subperiods of 1947-66 was not done. In
future work with the model it might be instructive to divide the 1947-
66 period into two subperiods and compare calibrations over them.

Some modelers prefer to calibrate using only measured values of
historical change or water-level elevation (Allison 1967, p. 12). In

this procedure, only the changes or elevations at nodes which include
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observation wells are matched. This method enables a modeler to cali-
brate over short time periods because there are no errors that are
associated with interpolating data to other nodes and that would compli-
cate the analysis. However, if the observation wells are poorly
distributed over the basin being modeled, adjustments made in areas of
few or no wells are likely unreliable. Another disadvantage to cali-
brating solely with measured changes is that information can be lost,
specifically the knowledge and experience of the hydrologist. It is
not clear how much information such knowledge represents in comparison
to measured data, but it likely is significant. Interpolating water
levels to all nodes in a model for use in calibration necessarily incor-
porates some of this knowledge because water levels are not interpolated
mechanically, but by exercising judgment.

In this study, calibration was done using water-level-change
data interpolated to all nodes in the model because observation wells
are not evenly distributed over the Tucson basin (figure 3), and be-
cause it was judged that a significant amount of added information is
obtained by using interpolated water-level data.

The calibration procedures used for the two Tucson basin models
were subjective and to a large extent trial and error. Subjective cali-
bration is defined here as adjusting model variables largely using indi-
vidual judgment; whereas objective calibration would involve setting
rigid criteria to control the adjustment process, which process probably

would be done automatically by computer.
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At present subjective trial and error methods most commonly are
used in calibration of ground-water models (Allison 1967, p. 12). Lovell
(1971), using the southern end of the Tucson model, developed a semi-
objective method of calibration which uses a computer to aid the hydrol-
ogist in selecting the nodes at which variables should be adjusted and
in determining the size of the adjustment. Lovell did his work during
and after the calibration discussed here, and thus his techniques were
not used.

When the data used to construct the electrical-analog model were
obtained fromthe U. S. Geological Survey, the Survey's calibration pro-
cess almost had been completed. This process was discussed by Anderson
(1968). He calibrated the analog model in two stages, a steady-state
analysis for the year 1940, and a transient-state analysis for the
period 1940-65. In the steady-state analysis, Anderson assumed that the
ground-water flow system was in equilibrium, in the sense that water
levels were constant over time and inflow equalled outflow from the basin.
In making initial estimates for recharge, he used the entire amount of
streamflow losses by infiltration as an estimate of recharge from streams.
Anderson then varied the analog-model recharge and subsurface outflow on
a trial and error basis until he obtained the best match between the
model potential field and the 1940 water-table contour map (Anderson
1968, figure 1). He later used the derived values of recharge and sub-
surface outflow as initial estimates in the transient-state analysis.
Anderson also adjusted some values of transmissivity in the steady-state

analysis.
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In the transient-state analysis, Anderson used the analog model
to simulate changes in water levels during 1940-65. He varied values
of pumpage, recharge, and storage coefficient until the best match was
obtained between changes in the analog-model potential field and mea-
sured changes in water levels during four subperiods of the period 1940-
1965.

Although many of the data used in the digital model were de-
rived from the calibrated analog model, the digital model did not com-
pute water-level changes for the 1947-66 period that matched, in some
sense, actual changes, and therefore it also had to be calibrated.
Because much of the data on recharge, subsurface outflow, and pumpage
were derived from analog calibration, no steady-state analysis was made
using the digital model.

The reasons for the lack of correspondence between the calibrated
analog model and the digital model are not entirely clear but are likely
related to the following factors: (1) the topographic areas encompassed
by the two models do not correspond exactly; (2) initial water-level
data and water-level-change data used in the digital model were obtained
from maps drawn by the Department of Agricultural Engineering, while the
Survey used their own data as well as University data and prepared their
own maps; (3) changes in the initially-assumed values of stream-channel
recharge and constant storage coefficient in the analog model were not
incorporated in the digital model; and (4) the two models likely would
not produce identical changes even if all other factors were equal be-

cause the digital-model results are affected by round-off error (see
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Chapter 3 below, "Errors in Digital Modeling,' p. 62), while analog model
results are affected by errors in electrical components. In addition,
the digital model uses a finite-difference approximation for the 3h/3t
term in equation 1, whi'e the analog model does not. These four factors
likely account for most of the lack of correspondence between results

of the analog and digital models.

Large-Scale Model

The writer calibrated the large-scale model of the Tucson basin
during the spring and summer of 1970. In initial test runs of the model,
the average of the absolute values of the nodal error -- calculated as
the difference between computed values and historical values of 1947-66
water-level change at each node -- was 24.4 feet and the maximum error
was 190.6 feet, located in the northwestern corner of the model. In
several large areas, all nodes had errors of more than 50 feet, and
along Pantano Wash errors were up to 110 feet. In comparison, maximum
historical changes in water level for the 1947-66 calibration period
were 80 feet. Only 26 percent of the 1,890 nodes had errors less than
10 feet, 48 percent had errors less than 20 feet, 65 percent had errors
less than 30 feet, and 82 percent had errors less than 40 feet. A sum-
mary of these errors for initial and final runs of both the large-scale
and small-scale models of the basin is given in table 4.

For each calibration run the computer printed maps of the value
of error at each node and of nodes where errors were more than 20 feet,
computed the average absolute error and average squared error over the

whole model, and counted the number of nodes with errors greater than
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10 feet, 20 feet, 30 feet, and 50 feet. These data were used to guide
the calibration process, and indicated whether adjustments made to model
parameters, initial water levels, and discharge/recharge were successful
in reducing errors. The computer also punched values of error for each
run on cards. These data were used as input to the following run so that
a map of differences in errors for successive runs could be printed.
These maps also were used to evaluate the effects of adjustments.

A total of 38 separate computer runs of the model were made,
reducing the average error from 24.4 to 5.3 feet, and the maximum error
from 190.6 to 28.6 feet. At the final run, 87 percent of the nodes were
in error by less than 10 feet, and 99.6 percent had less than 20 feet
of error. Figure 4 shows the average error and the principal type of
model adjustment for each run. Between two and three man-months of
time were spent on model calibration and the cost of computer time was
on the order of $100 - $150.

In more detail, the calibration process was started by cor-
recting errors in initial data. These were primarily card-punching
errors in recharge, pumpage, and transmissivity. During calibration
more such errors were found periodically and doubtless a few errors of
this type remain in the model.

After this, the calibration process attempted to eliminate large
(greater than 20 feet) errors in computed water-level change. These
errors seemed to be more ''deterministic'' than ''random' in that errors
were concentrated in specific areas rather than being scattered over

the model, and appeared to be related to specific causes, such as errors
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in input data in local areas. When model variables were adjusted to re-
duce errors, care was taken so that adjustments did not put variable
values outside a range judged to be reasonable.

The first few calibration runs were aimed at €liminating the
several errors of large magnitude and extent (greater than 50 feet per
node and extended over more than 10 nodes). Some of the largest errors
were concentrated on the model boundaries and apparently were associated
with errors in boundary recharge. In addition, figure 4 shows that many
of the significant decreases in average error were achieved by adjusting
boundary recharge. This does not necessarily mean, however, that values
of recharge from the analog model are incorrect. At least an equivalent
source of error is in the values of initial water level around the
boundaries. There are two sources of error here. First, the individuals
who prepared the 1947 water-level map apparently discounted, or more
likely were not concerned with, the possibility of much inflow from the
mountain masses around the basin, and hence in many places where data
were scarce drew water-level contours perpendicular to the basin bounda-
ries, indicating no inflow. The digital model, in contrast, simulates
subsurface flow from mountain masses, and the model 'bends' the original
contours parallel to the boundaries to account for this flow. This pro-
duces apparent errors in water-level change which must be balanced by
modifying boundary recharge. This condition is shown in figure 5a. In
figure 5a, contours and gradients interpolated using historical water-
level data are termed ''actual' and contours and gradients simulated by

computer are termed ''computed.'
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A related problem occurs when the model boundaries do not coin-
cide with the physical boundaries of the basin. In such cases, when con-
tours are perpendicular to these assumed boundaries, and inflow is
simulated, errors occur for the same reasons illustrated in figure 5a.
However, in this case, the errors are not due to mistakes in water-level
contours but occur because boundaries are not realistic. ''Correcting'
these errors may involve changing the initial water-level contours from
their original interpolated positions in order to reflect the inflow.

The area in which errors were as large as 190 feet is in the
northwestern corner of the model at Rillito, where subsurface outflow
leaves the basin. The initial estimate of outflow of 17,500 acre-ft/
yr (acre-feet per year) was reduced to 12,700, which eliminated most of
the difference. Adjustment of boundary recharge also lessened the er-
ror in several other areas.

In a few locations, stream-channel recharge was modified. The
only location where such changes were very large was along Rillito
Creek between Pantano Wash and the Santa Cruz River, where recharge was
increased as much as 585 acre-ft/yr/mi (acre-feet per year per mile) to
raise water levels. This amounts to an increase of about 70 percent
over Burkham's estimate (1970, table 5) of 820 acre-ft/yr/mi of stream-
channel infiltration in this reach of Rillito Creek or a total of 1,405
acre-ft/yr/mi. Moench and Kisiel (1970, table 1), however, estimated re-
charge along Rillito Creek from one 10-day flow event, beginning in
December 1959, to be from 1,770 to 2,840 acre-ft/mi, so the new figures

may not be unreasonable.
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The other major type of adjustment that was made in the model
was in values of transmissivity. The most effective type of change was
in lowering values of T to increase the slope of the water table or in
raising values of T to decrease the slope. If computed water levels
down-gradient from a node were too high and levels above were too low,
lowering T at the node would help correct both problems. Conversely,
raising T at a node would raise water levels below and lower levels up-
gradient. These relations are shown in figures 5b and 5c.

In three areas, transmissivities were modified significantly
to help calibrate the model. In a large area south of Rillito Creek,
west of Pantano Wash, east of the Santa Cruz River and north of Davis-
Monthan Air Force Base (the Base is in the southeastern part of T.14S.,
R.14E.), initially-computed water levels were as much as 110 feset above
historical levels. The Geological Survey (Anderson 1968, p. 22) had a
similar discrepancy in this area, as they lowered its storage coeffi-
cient from 0.15 to 0.045 to lower computed water levels. Hydrologists
have long noted (Schwalen and Shaw 1957, p. 85-87) a steep water-table
gradient along Pantano Wash and in an arc, although at a lesser gradient,
to the south and then southeast, through the southern part of the Air
Force Base. The model could not simulate this gradient using the data
initially given; so the gradient was flattened during a run, resulting
in large water-level rises, and thus errors, west of Pantano Wash. In
order to maintain the gradients, minimum T values along the wash were
lowered from 7,500 to 3,000 gpd/ft. These changes along with changes

in recharge to the north, east, and south, changes in pumpage, and
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changes in the storage coefficient, eliminated much of the error. This
probably was the most difficult area in the basin to model. The maximum
nodal error at the final calibration run, 28.6 feet, was in this area,
indicating that the problem has not been resolved completely yet. The
geologic factors causing this steep gradient are not fully known. The
area east of the wash may be the upthrown side of a fault which lifted
less permeable material close to the land surface. Flow over such a
fault may cause the steep gradient, in effect, creating a ground-water
'""cascade.'" It is also possible that flow through material of low per-
meability or a small storage coefficient in the area of low water-level
causes the steep gradient.

Transmissivity was also significantly modified around and to
the north of the Tucson International Airport (which is in the west-
central part of T.15S., R.14E.). In this area, computed water levels
were as much as 60 feet below historical levels. Increases in trans-
missivity south of the airport and decreases in minimum transmissivities
to the north (from 7,500 to 4,000 gpd/ft), along with changes in the
storage coefficient, eliminated much of the error. In a third area, just
southeast of the confluence of the Santa Cruz River and Rillito Creek,
transmissivities were increased to the south and decreased to the north
to raise water levels in the area.

In addition, transmissivities were modified in an area around
and north of Sahuarita, and along Rillito Creek in T.13S., R.14E. 1In
most of the areas in which T was modified, cross-sections of the water

table were drawn between calibration runs by the writer to indicate
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where changes in T would be most effective. Transmissivities were also
changed at other nodes in the model to eliminate minor errors.

Coefficients of storage were changed in two ways. First, S was
modified to lessen errors in two specific localities. In the area west
of Pantano Wash discussed previously under changes in T, computed water
levels were too high. Values of S had to be reduced,from 0.15 to 0.075,
to lower computed water levels because pumpage predominates over re-
charge there. The Geological Survey made this same type of adjustment in
this location, lowering values of S to 0.045. There are no geologic or
hydrologic data that suggest such changes -- they were made solely to
calibrate the model.

In the area around the Tucson Airport discussed under changes in
T, values of S were raised to as much as 0.30 to raise computed water
levels. Again, no data indicated that such a change was justified. How-
ever, this is also an area of low T, and may be underlain by much fine-
grained material. Possibly over long periods of time, slow drainage
from these deposits may yield relatively large amounts of water, even
though T values are low. If this is the case, higher values of S may
be realistic.

Values of S over the rest of the model were adjusted slightly
(from 0.150 to 0.156) during the last few calibration runs to balance
the volume of water removed from the aquifer corresponding to computed
water-level declines (equal to the computed dewatered volume of aquifer),
with the volume removed according to historical declines (equal to the

historical dewatered volume). The model always balances the net of
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discharge from and recharge to the basin with the computed dewatered
volume, as this is essentially the way the set of simultaneous finite-
difference equations (one for each node) is solved. However, the his-
torical dewatered volume does not necessarily check with this quantity.
By raising or lowering S, the volume of water removed according to the
fixed historical decline can be increased or decreased to match the net
of discharge and recharge. Such a raising or lowering of S decreases
or increases, respectively, computed water-level declines. These changes
in computed declines generally reduce the average error slightly and
improve the model. This second type of change in S is equal over the
whole model, and is not varied according to area.

Values of initial water level were modified where analysis of
errors suggested that initial levels were incorrect. These areas mostly
were around the boundaries of the model, and commonly resulted from con-
touring that had not accounted for the possibility of boundary recharge,
as was previously illustrated (figure 5a). At one location in the Tucson
Mountains, however, an initially large water-table gradient resulted in
the simulation of a large quantity of recharge in an area that likely
furnishes little recharge. A check of the water-level data indicated
an alternate interpretation which lessened the gradient, resulting in
a more realistic quantity of recharge. In addition, initial water levels
at a few locations in the interior of the model were adjusted where
errors in computed change coincided with places where interpretation of
contours of the 1947 water table seemed questionable in relation to

observation-well data.
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Values of historical water-level change for 1947-66 also were
adjusted at a few locations in the model. Again, wherever significant
errors in computed change for 1947-66 coincided with places where the
contour map was questionable, historical contours were modified.

In the Tucson basin, much of the pumpage is not measured and
must be estimated. Therefore, amounts and assumed locations of pumpage
are subject to error and were adjusted during model calibration; although
such changes were commonly minor. Changes in pumpage were made when anal-
ysis indicated that an error in pumpage was the most likely cause of an er-
ror in computed water level. Three kinds of adjustment were made: one
involving only the amount at a given node; another involving location
of pumpage, and commonly involving amount as well; and a third involving
a change in amount of pumpage over a fairly large area.

The first type of change was made when there was pumpage at a
node which had a significant error in computed water-level change; Ad-
justments of as much as 90 percent in pumpage and as much as 1,050
acre- ft/yr (650 gpm) were made to lessen errors. The second type of
change was made when centers of significant water-level decline did not
correspond with concentrations of pumpage or vice versa, and when such
discrepancies were coincident with significant errors in computed water-
level change. Because pumpage is the main cause of long-term water-level
decline in the basin, centers of significant decline should correspond
with concentrations of pumpage; and conversely, concentrations of pumpage
should produce some water-level decline. The locations of a few pumpage

concentrations were shifted slightly, on the order of a mile, and the
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amounts were adjusted where such changes were warran.ed. The third type
of change was made in the area west of Pantano Wash, where pumpage over
the whole area was increased by 25 percent to increase computed water-
level declines. Davidson (1970, pp. 119-120A) discussed the difficulties
in simulating historical water-level declines in this area with the
electrical-analog model. He stated that the likely sources of error were
in pumpage data and in estimated values of the coefficient of storage.
The U. S. Geological Survey decided to adjust S only in this area, but
for the study reported here a combination of adjustments in pumpage and
S was made.

The number and size of the time-steps used in simulating the
1947-66 period were varied to see how model results would be affected.
In the early stages of calibration, use of 30 time-steps (initial step
of one minute and successive steps doubled) and three time-steps (ei-
ther an initial step of 2.72 years and successive steps doubled, or
three equal steps of 6.33 years) were compared. The 30-step runs used
about 100 seconds of computer time each while the three-step runs used
about 20 seconds each. The runs using different time-steps gave sig-
nificantly different results at some nodes but the overall model results
were very similar. During the rest of the calibration runs, three steps
with an initial size of 2.72 years were used in order to minimize costs.
At the end of calibration, a run using 30 equal steps of 231.3 days each
was made. The model results were not significantly different from those
of a three-step run, so the model was not calibrated further using

30-step runs.
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Few published accounts document calibration of digital ground-
water models, and the writer knows of no detailed accounts of calibrating
a complex model such as that of the Tucson basin. It therefore is dif-
ficult to evaluate the techniques used on this model. The writer had
no previous experience in calibrating models, so doubtless this slowed
progress. On the other hand, using data from the calibrated electrical-
analog model probably shortened the calibration effort significantly.
Allison (1967, figure 3.11) showed the relation between mean water-level
error and number of calibration runs for the Chino-Riverside basin model
constructed by the California Department of Water Resources. The initial
mean error was about 200 feet, and the mean error did not reach the
Tucson initial mean error of about 25 feet until about 30 runs had been
made. Subsequently it took about 25 additional runs to reduce the mean
error of the Chino-Riverside model to about 5 feet, the point at which
calibration of both models stopped. These data suggest that the avail-
ability of the electrical-analog data cut the number of calibration runs
of the Tucson model approximately in half.

Figure 4 suggests that the average error in the Tucson basin
model cannot be reduced much under 5 feet, since the curve of average
error versus number of runs approaches 5 feet asymptotically. This is
somewhat misleading, however, in that calibration involved attempts to
eliminate errors greater than 20 feet. If the emphasis was on eliminat-
ing errors greater than 10 or 5 feet, the mean error could doubtless be
reduced to less than 5 feet.

The parameters, initial conditions, and input/output of the model

likely could be manipulated until the difference between computed and
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historical water-level change was virtually zero at each node. Because
the model cannot exactly reproduce the physical ground-water system of
the Tucson basin, a model so calibrated would give a false impression
of accuracy. A model that matches a 50- to 100-foot historical change
within 10 feet at most nodes, as the Tucson model does, probably is
adequately calibrated.

It is difficult to assess how closely the calibrated model ap-
proximates the true parameters, initial conditions, and input/output of
the physical system. There is no guarantee that values of model vari-
ables adjusted during calibration are close to true values, or even
that adjusted values are improved relative to initial estimates. Many
combinations of various values of parameters, input and output functions,
and initial conditions can produce an identical water-level or water-
level change configuration, so in effect the true values are indeter-
minate. In other words, a set of values obtained during calibration are
non-unique. Adjusted values in the interior of the model, and especially
along the major streams and in the city of Tucson, probably are best be-
cause it is in these areas that most of the hydrogeologic data have been
collected. Estimated values around the boundaries of the model are less
reliable because there are few observation wells and few aquifer tests
have been made there. Simulated values of boundary recharge, for
example, could be greatly in error if the water-table gradients around
the boundaries are incorrect.

It probably should be stressed that the emphasis during construc-

tion of the Tucson basin model was on developing an experimental or
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research tool quickly, rather than a model which was the best possible
representation of the basin. In order to make the model more representa-
tive, every modification that has been made should be checked against

all available hydrologic and geologic data to insure that the changes

are valid. This was done in a general way during model calibration,

but should be done more thoroughly.

Small-Scale Model

During planning for studies of the worth of ground-water data for
the Tucson basin, it became apparent that the 1,890-node model was too
detailed because its use would consume too much computer time. It was
decided, therefore, to develop a model with a l-mile nodal spacing in-
stead of the 1/2-mile spacing of the original model. The computer time
needed for a run of the less-detailed model is 1/4 to 1/3 that of the
original, and made the worth-of-data studies less expensive.

Fortunately, R. E. Lovell (1971) had written a computer program
to réduce a model to a coarser nodal spacing so his program was used to
made the reduction automatic. The small-scale model was constructed by
combining 4-node groups of the large-scale model into single nodes of
one-square-mile area. Wherever there were 1, 2, or 3 nodes remaining
on a boundary these were made into one node. Thus, instead of a 472.5
node model (1/4 of 1,890) the reduced model has 509 nodes. Construc-
tion was begun by taking the northwestern-most two nodes of the original
large-scale model as the first node of the reduced model. In this way,
much of the western boundary of the reduced model coincides with that

of the original model, while muchof the eastern boundary is extended
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1/2 mile to the east. This was done because the boundaries of the
original model are fairly close to the physical boundaries of the basin
on its western side, but to the east, the model boundaries fall short
of reaching the physical boundaries.

The input data were transferred to the 509-node model by com-
bining values of each type of data for all the 1/4-mile-square nodes
included in a given one-square-mile node. For recharge and discharge,
the value for the new node was the sum of values for the included origi-
nal nodes. For other data (transmissivity, storage coefficient, initial
water level, and historical water-level change) the new value was ob-
tained by summing values from all included nodes and dividing by the
number of nodes included (essentially calculating the average and
applying the average to any extra area included).

The initial run of the small-scale model had errors larger than
the final run of the large-scale model -- 6.2 feet average error as
compared to 5.3 feet, and a maximum error of 34.4 feet as compared to
28.6 feet (table 4). About 80 percent of the nodes had less than 10
feet error, 89 percent had less than 20 feet error, and two nodes had
more than 30 feet error. One problem was that in combining groups of
four original nodes into one node, some of the original boundary nodes
were combined into nodes which were not on the boundary of the small-scale
model. This resulted in transferring some of the original boundary re-
charge into the interior of the new model, and was the major source of
the 34.4 foot error. All original boundary recharge then was moved into

adjacent boundary nodes of the reduced model. If more than one adjacent
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node was on the boundary, recharge was moved to the one with the largest
error in computed water-level change.

These changes, however, did not lessen the model error much, and
further adjustments in boundary recharge, transmissivity, and overall
coefficient of storage were made in the course of six calibration rums.
The model then had an average error of 5.7 feet, a maximum nodal error
of 24.7 feet, 82 percent of the nodes with less than 10 feet error, and
99.5 percent with less than 20 feet error. Changes in transmissivity
were necessary in two locations where averaging T over 4 nodes had ef-
fectively eliminated low values that were necessary to maintain steep
water-table gradients. The overall coefficient of storage was lowered
from 0.156 to 0.153 (or lowered 0.003 if the original S was larger than
0.156) in order to achieve water-volume balance.

The small-scale model can simulate the 19-year period, 1947-66,
using three time-steps, in a run of about six seconds at a cost of less

than $1.00.



CHAPTER 3
ERRORS IN DIGITAL MODELING

For this study, an error in digital modeling is defined as the
absolute difference, at a given time, between the water level computed
at a given model node and the true water level at the corresponding
point in the physical system being modeled. This definition is shown
in equation 8:

A

°t,i,i - M,i,i T Mti,g o, | (8)
where et,i,j = the modeling error at node (i,j) at time t,
ht,i,j = water level computed by the digital model at node (1i,j)
at time t,
and At,i,j = true water level at the corresponding point in the

physical system at time t.

Modeling errors can be classified as (1) errors associated with
computation, (2) errors associated with mathematical assumptions, and
(3) errors caused by errors in basic data. Errors in basic data are
defined as the difference between the estimated or measured value of
a model variable and the corresponding true value of the physical sys-
tem being modeled. The classification of modeling errors, as specifi-
cally applied to the Tucson basin, is shown in more detail in table 5.

Although all of these errors will be discussed in a general way, this
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Table 5. Errors Associated with the Digital-Computer Model
of the Tucson Basin.

I. Errors associated with computation and related effects
A. Roundoff
B. Truncation (discretization)
C. Algorithm

IT. Errors associated with major assumptions of the mathematical
mode 1

A. Two-dimensional representation
B. Constant transmissivity and coefficient of storage with
time
C. Confined aquifer
D. Miscellaneous
ITI. Errors associated with basic data
A. Parameters
1. Coefficient of storage
2. Transmissivity
Initial and final conditions (water levels)
C. Input and output functions
1. Discharge
a. Value
b. Location
c. Variation with time
2. Recharge
a. Value
b. Location
c. Variation with time

D. Boundary configuration and idealization
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study focused on errors in basic data, and specifically on the worth
of additional data in reducing the errors in computed water levels

caused by errors in existing basic data.

Errors Associated with Computation

Errors of computation result when a problem is solved by a
digital computer, and include roundoff errors, truncation or discretizé—
tion errors, and errors peculiar to the algorithm used. Roundoff er-
rors occur when the computer rounds numbers, due to finite word-size,
during arithmetic operations. The simplest method of evaluating round-
off would be to compute water levels in both single and double preci-
sion and to compare the results. Computing in double precision, instead
of the normal single precision, would add about twice the number of digits
to each computed number. Roundoff would affect mainly the added digits
in each number, so the original digits would be relatively accurate.

It was not possible to evaluate roundoff error for the Tucson basin

model because sufficient computer storage was not available. Round-

off, however, is not likely a major source of error. Carnahan, Luther,
and Wilkes (1969, p. 442) discussed roundoff error for the algorithm
used to solve the set of simultaneous flow equations for the Tucson basin
model, and concluded that for most choices of nodal spacing and time-step
size, roundoff error is small in comparison to truncation error.

Truncation, or discretization, error results from the approxima;
tion of a differential equation by a finite-difference equation, and

essentially results from approximation of derivatives by assuming linear
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changes in head between nodes and between time-steps. A mathematical
expression for an approximation of truncation error for the Gauss-
Seidel algorithm, as applied to the Tucson basin model, can be derived
using a Taylor series. If equation 1 is simplified by assuming T cor-

stant over space to yield:

3h ., 3°h _ S 3h _ QR
+ "Tat"'T’ (9)
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providing Ax = Ay is the nodal spacing. This can be derived easily
using methods given by D. W. Peaceman (written commumnication, 1969,
p. 34) in a set of notes for lectures at a NATO School on '"Hydrocarbon
Reservoir Simulation by Computers.' This equation shows that trunca-
tion error is proportional to the algebraic sum of the square of the
nodal spacing ((Ax)% and the time-step size (At). An approximation for
truncation error for the alternating-direction-implicit algorithm is
more complicated to derive, as the algorithm involves solution in two
steps. However, Carnahan et al. (1969, p. 453) stated that the dis-
cretization error for this method is proportional to the algebraic
sum of the square of the nodal spacing and the square of the time-step
size.

It might be possible to obtain a rough estimate of local trunca-

tion error at given nodes utilizing finite-difference expressions for
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4 2
3—%-+ é—%- and.EQ% . However, as Peaceman points out (written communi-
ot

cation, 1969, p. 35),

As a practical matter, for problems involving any complexity
at all, estimates of the [truncation] error are best obtained
by solving the difference equations with different mesh sizes
[nodal spacings], varying both Ax (and Ay and Az) as well

as At to determine their effects on the solution. In many
cases, practical values of Ax and At (wherein the computa-
tional work is not excessive) may be so large that the error
does not appear to decrease as rapidly as predicted by the
formulas for local truncation error. The reason for this is
that expressions for the order of the error describe the asymp-
totic behavior as ax and At approach zero and really say
nothing about the behavior of the error for large mesh sizes.
Consequently, we must content ourselves frequently with empir-
ical estimates for the errors obtained by running the same
problem with several different mesh sizes. We would then run
the remainder of the cases with that mesh size which balances
the risks associated with the apparent error against the cost
of running with a smaller grid size.

Tests of this type were not done for the Tucson basin model itself, but
were done, to a limited extent, on a 400-node model, as discussed in
Chapter 2 above in the section, 'Comparison of the Algorithms.'" Tables
1, 2 and 3 show that the error can be more than 10 feet out of a total
water-level change of 50-90 feet, near an input or output source.
Since in these experiments the mathematical model was assumed correct
and the basic data were assumed correct, the error was associated only
with computation, and likely was chiefly truncation error.

The third component of computational error is defined here as
algorithm error. This category includes errors that do not seem to
fit into the classification of roundoff or truncation error. For
example, in the Gauss-Seidel method, a solution is considered to be

adequate when the sum of the nodal errors is less than a set quantity
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or tolerance level. However, this tolerance level can be varied, and
the difference in solutions for various tolerances is here classified
as algorithm error.

In addition, there will be differences in solutions depending
on the method of computing the average or internodal transmissivities.
Bouwer (1969, pp. 394-396) estimated average values of K, hydraulic
conductivity (for a definition of K see p. 107 below), using the arith-
metic, harmonic, or geometric means. He showed that the arithmetic
mean is applicable when flow through porous media is parallel to re-
gions of different K, and the harmonic mean is applicable when flow
is across regions of different K, or series flow. Bouwer concluded
that the intermediate value given by the geometric mean might be the
best estimate of average K (or T) when flow is a combination of paral-
lel and series flow. Lovell (1971) decided that the harmonic mean was
most applicable to the Tucson basin model, but for this study the arith-
metic mean was used, as was used by Pinder and Bredehoeft (1968, p. 1075).
These differences in computing average K or T might also be classified
as algorithm errors, for lack of a better classification system.

During this investigation, the only study of algorithm errors
was in comparing results using different ways of computing tolerance
levels, as discussed in Chapter 2 above in the section on ''Comparison
of the Algorithms.'" Defining tolerance at each node instead of over
all nodes made little difference in results, but algorithm errors merit

more study.
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Errors Associated with the Assumptions
of the Mathematical Model

Using a relatively simple mathematical model, equation 1, to rep-
resent the complex ground-water flow system of the Tucson basin involves
many assumptions, some obvious and others more subtle. Equation 1 is a
quasi-linear, time-invariant, 2-dimensional equation, in that T and S
are constant over time and vertical components of flow are ignored. Some
implicit assumptions of the equation are that wells (or points of input/
output via the term QR) fully penetrate the aquifer, that water is re-
leased from storage instantaneously with decline in head (this also re-
fers to S being time-invariant), that the laws of Darcy and Hooke hold,
and that temperature is constant. In addition, the aquifer system in the
Tucson basin is unconfined, but strictly speaking, equation 1 applies
only to confined aquifers.

Some of the errors associated with these assumptions have been
studied by those who have worked with the Theis equation (equation 24,
below), a solution of a special case of the general flow equation. For
example, Jacob (1950, p. 384) concluded that if the total head change is
small relative to the total saturated thickness, equation 1 can be used
to describe an unconfined system. The total effective saturated thick-
ness over the Tucson basin is not well known, so this assumption is dif-
ficult to evaluate.

Two major assumptions that probably are vioiated for the Tucson
basin, at least at some locations for some time periods, are (1) that
components of vertical flow are not significant and (2) that transmis-

sivity is constant with time, based on the assumption that the saturated
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thickness of the unconfined aquifer is constant. At locations where re-
charge or discharge is large, vertical components of flow may be sig-
nificant, and a three-dimensional model would better describe the system.
However, in a large-scale model, vertical components of flow in local
areas might not be a significant source of error. Sufficient computer
storage was not available to construct a three-dimensional model of the
basin; and in addition, it is not likely that there are enough data on
variations in hydraulic conductivity with depth to make such a model
meaningful.

It would be possible to include an approximation to a time-
varying transmissivity in the Tucson basin model, at the cost of a rela-
tively small increase in computation time. The model could recalculate
transmissivity after each time-step, based on the change in saturated

thickness during that time-step. The relation involved is:

T=Kb ,

where K = hydraulic conductivity (defined more completely below, p. 107),
in ft/day or gpd/sq ft; and b = saturated thickness of aquifer, in feet.
However, K at each node might have to be considered constant over b
because, as mentioned above, there likely are few data on the actual
variations in K with depth. Therefore a comparison of results using a
constant T and time-varying T might not give a good approximation of the
actual error.

The coefficient of storage also may undergo an apparent change
with time because of the slow release of water from storage in relatively

fine-grained sediments. These changes have been observed in the Tucson
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basin (Clyma et al. 1968). However, after long periods of time (months
or years) such as are simulated with the model, the apparent S should ap-
proach the true S and little error should result from assuming it con-
stant with time.

Although there has been little attempt in this investigation to
study rigorously the errors associated with all the assumptions of the

mathematical model, it is an area that needs further study.

Errors Associated with Basic Data

Errors in the basic data used in models probably are one of the
major sources of error, and have been the focus of much of the work in
this study. Remson, Hornberger, and Molz (1971, p. 65) are of the opin-
ion that "'errors in approximation [truncation errors] are generally out-
weighed by the inaccuracies due to the uncertainties of the specifica-
tion of subsurface hydrologic parameters.'" Most errors in basic data are
well-recognized by modelers, although some, such as variations in dis-
charge and recharge over relatively short time periods and errors in
boundary configurations, commonly receive little attention.

In general, errors in data can be of several types, such as in-
strumental or measurement error, interpolation error, and errors due to
data not being representative of the aquifer. Instrumental or measure-
ment error probably is present always, although it likely is a minor
problem. Interpolation errors arise when field data are contoured to
yield estimates at all nodes, as is commonly done for the coefficient
of storage, transmissivity, and initial water levels. Some field data

may not be representative of or even may not be from the aquifer being
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modeled. Measurements of water levels in wells that are being affected
by local pumping, or in wells tapping perched water bodies, for example,
will not be representative of aquifer conditions. Errors due to inter-
polation and non-representative data are likely significant problems.
Even if measurement errors and errors due to interpolation and
non-representative data were not present, estimates of the parameters
and initial water levels at a model node still would be in error because
of imperfect sampling in space. Values of parameters and initial water
levels of the physical system being modeled will vary naturally over a
nodal area, and any sampling procedure can only approximate the true
value. The problems discussed above suggest a need for study of optimal

design of networks for collecting ground-water data.

Parameters

Errors in estimating the coefficient of storage over the Tucson
basin model are due mainly to a lack of data, as discussed in ''Data for
the Models'" (in Chapter 2 above). Even if data were available from
properly-designed aquifer tests, errors would be associated with measure-
ment of well-discharge and water levels during tests, interpretation of
test results, and interpolation of data from tested to untested nodes.

For transmissivity, errors arise for the same reasons: from
erroneous aquifer-test data, errors in interpretation, and faulty inter-
polation of these data to all nodes of the model. In preparing the map
of transmissivity used to estimate T at each node, the U. S. Geological

Survey likely used sources of data other than aquifer tests, such as
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geologic data from test wells and general knowledge about patterns of
sedimentation in the basin. However, these sources of data and inter-
pretations made from them likewise are not free of error.

For the Tucson basin, transmissivities estimated using data from
short-term aquifer tests and using methods of analysis which do not ac-
count for delayed drainage likely will be larger than actual values.
Clyma et al. (1968, pp. 13-14) demonstrated that delayed drainage during
the first few hours of pumpage lessens the rate of water-level decline,
and that using these water-level data leads to unrealistically large

values for T.

Initial and Final Conditions

In order to compute water-level changes for any period, initial
water levels for each node must be estimated from a contour map. At this
point in the model construction, interpolation of data is always re-
quired, unless water-level data are available for every node. The maps
are contoured using measurements of water levels in observation wells.
The estimated values at each node may be in error because of errors in
measurement or because data are not representative of the aquifer. Con-
touring water-level data over the Tucson basin was a subjective process,
and errors certainly were introduced during contouring.

Digital models commonly are calibrated by adjusting model param-
eters and other data so that computed water levels match historicalliy-
measured levels, which could be termed ''final conditions,' at one or
more points in time. Errors also enter the model because historical

"final" water levels include measurement errors or are non-representative.
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In addition, if historical water-level data were interpolated to all nodes
in a model, such as was done for the Tucson basin model, interpolation or

contouring errors also are present.

Input and Output Functions

Errors in assumed values of discharge and recharge lead to er-
rors in the model. Such errors can be classified as errors in the quanti-
ty of or in the assumed location of discharge or recharge and errors
related to time-variations of discharge and recharge not accounted for
by the model.

In many basins pumpage is measured, so the major error is in
measurement with no error in location. In the Tucson basin, however,
pumpage, except for that by the city of Tucson, largely is estimated and
there are errors both in the quantity and assumed location of pumpage.

In addition, the model assumes pumpage constant over long periods of time.
The smallest time periods over which the U. S. Geological Survey esti-
mated pumpage is one year; thus, actual variations in pumpage within a
season, week or day cannot be included in the model and can lead to er-
rors in predicted water levels.

Another form of discharge, evapotranspiration from the water table,
is not included specifically in the model. Although such discharge is
small over most of the basin, it may be significant along some stream
channels. However, this discharge likely was at least partly accounted
for in the model by adjusting values of recharge along streams during

model calibration.
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The various categories of recharge are also in error with respect
to quantity, location, and variation with time. Recharge from streams
was estimated primarily using data from infiltration studies by the U. S.
Geological Survey, and any errors in the assumptions or in the measure-
ments made during those studies will lead to errors in the model. In
addition, the amounts of infiltration into stream channels are not equiv-
alent to recharge to the water table because some water is lost by
evapotranspiration and some is used to satisfy soil-moisture requirements.
Any method of estimating recharge from infiltration data necessarily will
include errors.

The model also assumes recharge constant for long reaches of
streams, when in fact recharge probably varies along a reach because of
variations in the hydraulic conductivity of sediments beneath the stream-
channels. Stream-channel recharge also varies with time, contrary to the
model assumptions. For ephemeral streams such as those in the Tucson
basin, significant recharge occurs during only a few months of the year
and commonly during only a few days of those months. Total stream-
recharge also varies from year to year and the proportion of recharge
contributed by a given channel reach also varies from year to year.

There is also some lag between the time of infiltration to the
stream-channel bed and the time when water actually reaches the water
table, for which the model does not account. This lag apparently is of
the order of a few days for the reach of Rillito Creek studied by Moench
and Kisiel (1970, figure 3). The lag, of course, would be greater if

the water table were deeper than the less than 50-foot depth at the time
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of the flow event studied by Moench and Kisiel. In predicting regional
water levels at the end of a long time period with a digital model, how-
ever, local space and time variations in recharge assumed constant may
not cause significant errors.

Boundary recharge, including recharge directly from mountain
masses or from stream-channel infiltration in the foothills, and subsur-
face inflow under stream-channels from tributary basins, can be estimated
roughly at best, as these quantities cannot be measured directly. Bound-
ary recharge and subsurface inflow chiefly were estimated as the quanti-
ties necessary to achieve model calibration, but as was previously
discussed in Chapter 2 (in "Calibration of the Models'), lack of data
around the boundaries makes such estimates unreliable with respect to
quantity and location. Subsurface outflow, actually a form of discharge,
also was estimated in this way and includes similar errors.

Boundary recharge, and especially recharge from mountain masses,
may not vary with time significantly because variations in precipitation
on the mountains may be largely damped as the water moves into the alluvi-
al basin. This is also true, although perhaps to a lesser extent, of
subsurface flow from tributary basins. The assumed nature of the boundary
probably also leads to error. The boundary is assumed to be impermeable
in the model and rates of recharge thus are not affected by changes in
hydraulic gradient at the boundary. In reality, an increase in hydraulic
gradient, such as is caused by water-level deciines in the basin, 1ikely
will increase recharge, mostly due to withdrawal of water from storage in

the bedrock of the mountains or in tributary basins.
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The Tucson basin model does not now simulate any recharge from
infiltration of excess irrigation water. The electrical-analog model
calibration process suggested that prior to 1958, about 25 percent of
pumpage was infiltrated to the water table in the southern part of the
basin, but that this percentage lessened after 1958 (Anderson 1968, p.
24). This same recharge, however, may have been at least partly ac-

counted for by adjusting pumpage during calibration of the digital model.

Boundary Configuration and Idealization

Model boundaries commonly are delineated along contacts between
permeable alluvium and rock of low hydraulic conductivity in the moun-
tains around a basin, or at water-table divides between adjacent hydrau-
lically connected alluvial basins. However, geologic data on effective
contacts between permeable and less permeable material, or on estimated
water-table divides, may be in error. Perhaps a larger source of error
is that model boundaries often cannot be placed exactly at geologic con-
tacts or water-table divides, either because of limitations on the total
size of the model or because smooth lines cannot be closely approximated
by the model grid.

In summary, all types of data used in a digital model of a
ground-water basin contain some error of which modelers should be well
aware. Additional errors are introduced by the process of computation
and because of the simplifying assumptions of the mathematical model.
During model calibration, when model parameters, initial conditions, and

input/output are adjusted so that the computed water-level change matches
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historical change, compensation is made for these various errors. In
other words, errors are ''eliminated'' by altering values of storage co-
efficient, transmissivity, initial water levels, pumpage, and recharge.
The calibration process initially may move estimated values of
basic data closer to true values, but eventually, if calibration pro-
ceeds until computed changes approach the exact historical changes, a
point will be reached where calibration yields adjusted values of basic
data that will move away from true values. This will happen, however,
only when computational errors and errors due to mathematical assump-
tions are significant. In addition, as stated previously, many combina-
tions of various values of parameters, initial conditions, and input/
output can produce identical water-level-change values, especially for
a single historical time period; so that the true basic-data values are
indeterminate, and a set of values derived from calibration is thus non-
unique. If many historical matching periods are available, the cali-
brated basic-data values may approach some mean values which adequately
predict water levels in the future, but these will not be identical to
the true values because they are in part still compensating for other
model errors and assumptions. If future conditions in the basin, such
as water levels, pumping and recharge patterns, etc., vary greatly from
those in the periods used for model calibration, the calibrated values
for model parameters may not predict future water levels accurately.
As Lovell (1971, p. 11) pointed out, '"continued withdrawal of water
from the aquifer below the level where data have previously been avail-
able would produce behavior not encountered at the time of calibration

and, therefore, not incorporated in the adjustment program.'
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After calibrating the Tucson basin model, it was observed that
calibrated values of transmissivity commonly were far from sample values
obtained from aquifer tests in corresponding nodal areas. The means
of sample values of T at the 57 nodes in which more than one aquifer
test had been made were compared to the calibrated values of T. The
mean ratio of the absolute value of the difference between the sample
mean and the calibrated value to the sample mean was 0.47. For example,
if the sample mean was 100,000 gpd/ft, the calibrated value tended
to be about 47,000 larger or smaller. At 8 of the 57 nodes compared, the
difference between the sample mean and the calibrated value was about the
same magnitude as the sample mean.

These relatively large differences, of course, may not be caused
primarily by compensation, during calibration, for errors in computation,
errors due to mathematical assumptions, and errors related to the al-
gorithm. As is pointed out in the present discussion (see pages 69 and
107), sample values of T may be in error for several reasons. Delayed
drainage during the aquifer-test period, for example, may result in
sample values of T being too large. This particular problem may be the
cause of a large part of the observed difference between sample means
and calibrated values, because 40 of the 57 sample means were larger

than the corresponding calibrated values.



(HAPTER 4

USE OF STATISTICAL DECISION THEORY TO EVALUATE
WORTH OF GROUND-WATER DATA

This study focused on a problem often faced by field hydrol-
ogists -- given that error exists in estimates of parameters, initial
conditions, and input/output for a ground-water basin, what additional
data collected at what locations in the field would add the most knowl-
edge about the basin? For this study the question was rephrased to
ask -- what new data collected in the Tucson basin would yield the most
improvement in the digital model? It probably would be necessary in any
case to evaluate improvement, or worth of new data, in terms of a digi-
tal or other type of model because these tools presently offer the best
method of estimating the response of a complex ground-water flow system
to development of water. Davis and Dvoranchik (1971) and Davis (1971)
evaluated the worth of additional surface-water data using statistical
decision theory, and their approach has been modified here to study the
worth of additional ground-water data to a digital model.

For the present worth-of-data studies values of parameters,
initial water levels, and discharge/recharge were assumed to be still far
enough from true values so that additional sampling of the actual physi-
cal system would tend to improve model data. Although this assumption
likely would be good during the early stages of studies of a basin, later
it would be difficult to be sure that it was valid. If this assumption

77
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were invalid, of course, worth-of-data studies such as these would be of
little value, because additional sampling might yield variable values
that would result in a poorer model, in the sense that predicted water
levels would be less accurate, even though the variable values would be
more representative of the physical system being modeled.

Statistical decision theory was used in this study because some
more or less objective method was needed to compare the effects of er-
rors in different kinds of variables. Sensitivity analyses, such as
those proposed by Meyer (1971), can be used to evaluate the sensitivity
of the model to an error introduced in a variable at a given node, but
this sensitivity camnot be compared directly with sensitivities of dif-
ferent variables because there is no way to choose exactly equivalent
errors, representing the same degree of uncertainty, in two variables
at the same or different nodes. Statistical decision theory provides
a relatively objective method of choosing equivalent errors, in that
errors located at the same number of standard deviations from the mean
can be considered equivalent.

In this study, errors in one variable at one node at a time
were evaluated, and data at all other nodes were assumed correct. Thus
errors in a given variable at different nodes were considered indepen-
dent of one another. Where variable values at each node are measured
separately, such as is commonly done for pumpage, sometimes done for
initial water levels, and which theoretically could be done for all
other variables, the assumption that errors are independent may be

reasonable. However, if data on a variable are not available at each
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node, such as is common for storage coefficient, transmissivity, initial
water levels, and recharge; estimates commonly are made at nodes without
data. These estimates can be interpolated from a map showing contoured
values of a variable, such as is common for transmissivity and water
levels, or by using point measurements to estimate values over wide areas
or along zones, such as is common for coefficient of storage and recharge.
In these cases, errors at one node are not independent of one another.
For this study, data on variables were judged to be insufficient to
estimate joint probabilities of dependent errors, and all errors were
considered independent even though this was somewhat unrealistic. In
addition, use of dependent errors and use of the technique described

in this report would consume a prohibitive amount of computer time

(see p. 147). However, study of the dependence of errors at adjacent
nodes resulting from the contouring process merits more work.

Errors in different variables at the same or different nodes
were also assumed independent. This assumption is reasonable because
variables commonly are measured independently. Even though trans-
missivity and storage coefficient can be obtained from a single aquifer
test, values of S from aquifer tests in the Tucson basin are unreliable
and were not used (see p. 30). Errors in recharge are the only errors
that might be dependent on errors in other variables. Recharge for the
Tucson digital model was derived largely from calibration of the analog
and digital models, and thus values of, and errors in, R depend on
values of, and errors in, initial water levels, transmissivity, and

storage coefficient along model boundaries and stream channels.
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Loss Functions

In order to use statistical decision theory, a loss or objective
function must be specified. As used in this study, this function is an
attempt to quantify the cost of an error in predicted water levels.

The basic loss function (L) was defined:

o TT I J
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“e,p,q™ t=1  i=1 ;‘:1 ®1,371,5 ®t,4,5,%p.a5 (11)
where Vﬁ p,q = the nth (n=1,2,...N) possible value of the kth (k=1,2,...K)

variable V (in the Tucson model K was assumed to be 4
and the K variables are storage coefficient, transmissiv-
ity, 1initial water level, and discharge/recharge) at a
given single node (p,q) in a digital model;

m = mth value of V’k (m can be any of the N values of Vk),

assumed to be its true value;

t = time-step;
TT = total number of time-steps in the simulation period;
i1 = row location in grid (north-south coordinate);
I = total number of rows in model grid;
j = colum location;

J = total number of columns;

and C(e.

i j) = cost per foot of water-level error at node (i,j) as a
b

i,]
function of the magnitude of that error.

The magnitude of water-level error at node (i,j) for time t caused by an
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error in the kth variable (Vk) at a given node (p,q) was further defined
as:

~

. =ht . . . L 12
°t,1,j,kp,a Pt 1,5,kp,a - 't,1,5.kp.q) (12)

n
where ht,i,j,k,p,q

predicted water level (head or potential) at node
(1,j) for time t computed by a digital model using
the nth possible value of the kth variable at node

(P>@s (Vg )

and hT . = water level at node (i,j) for time t computed
i,j,k,p,q

~

assuming that the mth value of V. is the true

k,p,q
value.

Thus L is the loss over all nodes (i, i = 1,2,..., I; j, j =1,2,..., J)
associated with using the nth value of Vk at node (p,q) instead of
the ""true'" mth value. This equation implies that the errors at each
node (i,j) at each time t have independent effects and that they can
be summed to yield a total effect. If the ground-water basin is
operated as a single unit, these assumptions are reasonable. If this is
not the case, the cost coefficient Ci,' can be set equal to zero for
any node at which an error does not affect a given water user.

Although the basic loss function probably gives the most infor-
mation about loss, other functions were judged to be necessary to give
a more complete evaluation. For example, the basic function, equation

11, yields the same results if (1) all nodes have a moderate error or (2)

most nodes have a small error while a few nodes have a very large error.
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Therefore in addition to the basic loss function, five alternate loss
functions were derived and used in the worth-of-data studies. The first

is a quadratic loss function:

2

) )73 (13)

o). . e ..
i=1 J=l el’J 1,] (t’l)J’k’paq

the second is the loss associated with the maximum nodal error in the

model:

L = Max C( (14)

t,i,]

)

®i,j71,j°%,1,j,k,p,q’

and the last three are losses associated with numbers of nodes in

error by specified quantities:

TT I J
L(u = ¢ z z Cle., .). .*NN(w, . . ; 15
( ) t=1 1=1 j:l ( 1’3)1’3 ( )t)I,J ( )
1 ife, . . .
where NN(U) .o.o= | t,1,) ak)p’q z2u; 6
t1,] 0 otherwise (16)
u = 5, 10, 25.

Equation 13 defines the loss associated with an error in Vk, , as the
sum of the squares of the errors in water levels over all nodes and
time-steps; equation 14 defines the loss as the maximum water-level error
over all nodes and time-steps; and equation 15 defines the loss (for u=25,
for example) as the number of nodes over the model, for all time-steps,

at which the error in water levels was equal to or greater than 25 feet.
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If the variable value Vﬁ, , that would minimize the loss as
expressed by equation 14 were chosen, it could be viewed as an appli-
cation of the minimax decision criterion. This procedure consists of
minimizing the maximum possible error (in this case it would be the
maximum expected error). Minimax is commonly a more conservative
decision criterion because, for example, a higher overall level of error
over a digital model might be accepted in return for a lower maximum
error.

These loss functions are all symmetrical, in that positive and
negative errors of equal size are considered equivalent. For specific
management problems this may not always be true. For example, suppose
the problem was to forecast when the water level would fall below the
bottom of a well, necessitating its deepening or replacement. The cost
of predicting the water level too low, so that the well was replaced
prematurely, would be different than the cost of predicting the level
too high, so that the well went out of production before it could be
replaced. However, specific management problems of this type were not
considered in this study, so asymmetric loss functions were not derived.

In the basic worth-of-data studies, losses were computed or evalu-
ated only at the end of the simulation period, and were summed over time
only for a sensitivity test, primarily because summing or evaluating loss
over all time-steps used too much computer time (see Appendix A).

In addition, the cost coefficient C(e. .). .
1,J°1,]

nodes and was not made a function of e; . In order to define a mean-

’

was set equal to 1.0 at all

ingful cost-coefficient function, a specific management problem would
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have to be considered. Except for an idealized management problem,
for which a simple cost coefficient was assumed, management problems
were not defined for the worth-of-data studies, and the cost
coefficients were set to unity for simplicity.

Normally loss functions are defined as the economic loss
pertaining to a given decision in light of the unknown true state of
nature. However, the determination of true economic loss was judged
to be beyond the scope of this study, and loss was defined in terms

of feet of error in predicted water levels, e A loss or objective

t,i,j’
function in true economic terms might be expressed as the difference
between all benefits derived from the use of a bit of additional data
and all costs expended in obtaining it. Costs could be determined
relatively easily, but determining all the future primary economic
benefits, let alone secondary benefits, from an added bit of data would
be very difficult. This subject, however, deserves a detailed formal
study.

If the ground-water resources of a basin were controlled by
one organization or manager, and this manager could assign an economic
cost per foot of prediction error at each node of a digital model, then
the loss functions defined previously would yield true economic loss.
However, to the writer's knowledge there has been little research in
determining costs of prediction errors. In fact, it is not’entirely
clear what level of accuracy is necessary in model studies of ground-

water basins. A modeler may require that the model reproduce historical

water-level elevations or change within 10 feet, but such results may be
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more (or less) accurate than those needed by water-resource administra-

tors. The cost of pumping ground water for irrigation in central Arizona
is about $0.03 per acre-foot per foot of lift (Nelson and Busch 1967,

p. 36). If predicted water levels were in error by 10 feet, the
resulting error in estimated pumping costs would be $0.30 per acre-foot.
This error is only three percent of the value of $10.00 per acre-foot
for water used to irrigate low-value crops, and even a lesser percentage
if the water were applied to high-value uses. This suggests that models
do not need to be particularly accurate, especially if constructing

and operating accurate models is costly.

However, such a conclusion may ignore other aspects of ground-
water basin operation. Fairly accurate knowledge of water levels may be
necessary for scheduling well-deepening or replacement, for plamning
artificial recharge operations, for prediction of the migration of
poor-quality water or of land subsidence, and other activities.

The simple cost coefficient, C(ei,j)i,j
functions, can be used in a general way to approximate economic loss.

, as defined in the loss

If water-level errors in one part of the model are judged to cause more
harmm than in other parts, the cost coefficient can be used to weight the
losses accordingly.

In larger perspective, it is possible that errors in knowledge
of non-hydrologic aspects of ground-water basin development and opera-
tion, such as economic, legal, political, or institutional factors,
may be more significant than errors in hydrologic data. Generally

similar conclusions were drawn by James, Bower and Matalas (1969) in
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relation to use of the water resources of the Potomac River, and

tentatively drawn by Thomas Maddock III in relation to a problem

involving irrigation with pumped ground water (oral communication, 1970).

Risk

Loss cannot be computed directly, however, because the true value

of the variable is not known. Risk (RK) is the expected value of loss

given any choice of a value of a variable, and is a more useful con-

cept:

RK(VI]Z

where

,P»q’

vl

P

pTr

E(L)
m
TT N I J |
Cle. .). .-e, . . -P
t2=1 Iif:l ]_Z=1 JZ=1 (el’J 1,] talyJ’k’p’q pr

vy (17)

the expectation operator;

the total number of possible values of V; and

th

the probability of occurrence of the m~ value of

Vwhich is distributed Ny, OIZJI‘) (normally with
. 2 2
mean pr and variance o pr) or IN(wm pr’ Opr )

(log-normally), a prior probability in Bayesian terms

where pr signifies prior.

The risk given any choice of a value of a variable is computed

by summing the losses over all possible true values of the variable
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weighted by the prior probabilities of the true values. This defi-
nition requires the variable to be a random variable that can be
described by a probability distribution, in this example a discrete
distribution. The above definition means that risk is evaluated using
an expected-value criterion. Benjamin and Cornell (1970, p. 531-541)
concluded that expected value is a logical basis for choosing among
alternatives in engineering decisions.

The use of continuous distributions for the variables was
considered, but the expected costs of computation were judged to be
too great. For each point on a distribution of a variable, a complete
set of water levels must be computed by the digital model. Although
continuous distributions are more representative, many more points are
needed to define them adequately, and computing sets of water levels
for these extra points would be costly. In addition, data on the
variables likely are insufficient to define adequately their distri-
butions.

Admittedly, the use of discretized and truncated distributions
requires careful evaluation in the context of Bayesian statistical
decision theory. Little work was done on these problems in this study,
although some of the results of the sensitivity tests (see p. 151)
indicated that discretization did not well approximate the frequency

distributions of the model variables.
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Expected Opportunity Loss

Opportunity loss was defined by Benjamin and Cornell (1970,
p. 528) as the loss associated with not making the best possible choice
of action in light of the true state of nature. Opportunity loss is
then the difference in benefit (or cost) of the choice actually made
and the benefit (or cost) of the choice that would have been made if
the true state of nature had been known.

Because the true state of nature is not known, expected
opportunity loss (EOL) is a more useful concept. EOL was defined for

this study as:

EOL = Mfl“ (RK) , (18)

where Mﬁn = the minimum value of risk over the N values of Vk 2,q’
5 b

EOL is thus the expected loss associated with the value of Vk D,q
"0

*
yields the minimum risk, or Vk P.q (under the assumption that there
bl ]

is no loss if knowledge of the variable is perfect). This, under

that

normal conditions, is the value of Vk D,q

of occurrence and would be the logical choice for the variable value

with the highest probability

if no further sampling were possible. EOL also can be characterized
as the expected error over the model associated with the uncertainty

in a given variable at a given node Vk p.q’
bl i d

Expected Worth of Sample Data

The goal of this analysis was to estimate the improvement that
could be made in a model by sampling for more data. This improvement

was defined as the difference between EOL (or expected error) before
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sampling and EOL after sampling. However, the so-called expected
value of the expected opportunity loss after sampling (EEOL) can be
estimated, without doing any actual sampling, by computing EOL for
every possible sample result. First, for every possible result of
sampling an unknown Vk,p,q’ a new probability distribution, called
a posterior probability distribution, can be computed for the variable
by means of Bayes Theorem (Benjamin and Cornell 1970, p. 556; Schmitt

1969, p. 62-65). This theorem, put in the context of our example is:

PV P (VY
P (VX M
ps V1V p,et * B2 , (19)
P (V)
where Vi = the xth possible result of sampling V.
k,p,q k,p,q
(x=1, 2, ... N);
PQ{VXIVm} = the probability of sampling VX given that V" is
the true value of Vk p,q’ distributed N or LN(Vm,oz)
where o 2 is the variance of a sample (Pz is a
likelihood function in Bayesian terms where % sig-
nifies likelihood); and
X _ N X
P {V*} e Por v e, (VVh (20)

the total probability of observing a sample VX,
P {V} acts as a normalizing factor in equation 19. Therefore PpS
is the probability of a value v being the true value given
that a sample yields a result Vx, a posterior probability in
Bayesian terms, where ps signifies posterior. Equation 19 ex-

presses the idea that posterior probability is proportional
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to the product of prior probability and likelihood. In general, if

Vs really the true value of V, successive sampling increases the

posterior probability that V' is the true value given the available
X

data V© on Vk,p,q'

Using these distributions, EEOL can be computed as defined in

equation (21):

N . TT N I J
EEOL = © (EOL) = I [Mrlln o R C S
x=1 t=1 m=1 1i=1 j:l 1,]°1,) »1,],K,p,q
s vMVE ) P v (21)

EEOL is detemmined using equation 21 by (a) computing the risk for
each choice of a variable value V' assuming a given sample result, (b)
determining the value with the minimum risk for each possible sample
result (V*), and (c) weighting the sum of these minimum risks by the
probability of observing each sample result.
The expected worth of sample data (EWSD) was defined as:
EWSD = EOL - EEOL. (22)
This is the difference between expected opportunity loss before and
after sampling. The optimum bit of data to collect for the model is

*
the bit with the largest EWSD (EWSD ), defined as:

% Max
EWSD = EWSD
K,p,q > (23)
where ﬁa; q = the maximum EWSD over all k variables (k = 1,2,....K) at
b b

each node (p,q) (p=1, 2, ....I), (q =1, 2, ...J). Altemnately,
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the variables at various locations could be ranked in order of the
worth of additional samples of data on V for improving model results.

The equations given in this chapter were incorporated in a com-
puter program (Appendix A) and used to estimate worth of additional data
to the Tucson basin model. This technique includes basin dynamics in
estimating worth of additional data, by means of using the digital model
to compute all values of predicted and ''true' water levels included in
the loss function.

In actual practice, evaluating worth of data might proceed in
stages. A preliminary or initially-calibrated digital model could be
used to choose the data that would most improve the model. This data
would be collected, if possible, and used to modify the model, which
then would have to be recalibrated to some extent. The process could
be repeated until model improvement was judged, by some objective
criterion, to be of less value than the cost of collecting additional
data. However, the techniques developed in this study likely are
adequate only to indicate, in the initial stages of model building,

which data are most critical to the model.



CHAPTER 5

WORTH OF DATA FOR THE TUCSON BASIN MODEL

As an example in using statistical decision theory to approxi-
mate the worth of collecting additional hydrogeologic data to improve a
digital model of a ground-water basin, variables of the small-scale Tucson
basin model were tested to determine their associated expected error and

expected worth of sample data.

Major Assumptions of the Worth-of-Data Studies

The major assumptions made in the worth-of-data studies include
the assumptions inherent in the digital model and the assumptions of the
method used to compute worth of data. The main assumptions in the digi-
tal model are discussed briefly in Chapter 3 in the section on "Errors
Associated with the Assumptions of the Mathematical Model.' This sec-
tion summarizes the assumptions of the method, although specific assump-
tions also have been discussed in the text where they are made.

First, only the worth of additional data to a digital model is
evaluated, and not the worth of data to any other kind of evaluative
tool. Secondly, worth of added data is evaluated only in terms of feet
of reduction in error in predicted water levels over the model, and not
in terms of economic benefits resulting from reduced error. In addition,
only the worth of added hydrologic data is considered; the worth of added
data on legal, political, or institutional factors was not studied.

92
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Thirdly, the statistical criterion used to evaluate error and reduction
in error is expected value, and not the maximum likelihood, the minimiza-
tion of the maximum error, or some other criterion (see pp. 83 and 87).
Fourthly, this study assumes that a digital model is in a relatively
early state of calibration, so that collection of added data will tend
to improve the model, rather than yield values which will result in a
poorer model.

Some additional detailed assumptions of the method are listed
below. (1) Errors at individual nodes are assumed to be statistically
independent, or not related to each other. (2) Only one variable at one
node at a time is considered in error; all other model variables are as-
sumed to be correct. (3) Functions of loss due to error are assumed to
be symmetrical -- in other words, positive and negative errors are given
equal weight. (4) Errors are assumed to be additive in that the model
error over all nodes is an algebraic sum of errors at individual nodes.
The computer program, however, has the capability of weighting errors at
individual nodes if such weighting is justified. (5) Functions of loss
due to error are computed only at one point in time, although the program
has the capability of approximating the integration of loss functions over
time. (6) The frequency distributions of the model variables are as-
suned to be either normal or log-normal, and to be adequately represented
by discrete and truncated distributions. Parameters of the distributions
had to be subjectively estimated because few sample data are available

at individual nodes.
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Time Period Used

In order to make the worth-of-data studies as realistic as pos-
sible, a time period in the future was used. A hydrologist interested
in determining which types of additional data at what locations would
most improve the predictive capability of his model would have to select
a time period to use for his worth-of-data studies. He probably would
select the future time period over which he wished to predict for his
studies. The period selected for this study was the 20 years from the
spring of 1970, assumed to be the ''present,' to the spring of 1990.

In order to use this period, additional basic data had to be compiled
for the Tucson basin model. The coefficients of storage and trans-
missivity over the model were assumed to be the same as for the 1947-66
calibration period. Recharge to the model was likewise assumed equal
to that previously determined, and constant over the 1970-89 period.
Initial water levels and discharge, however, had to be recompiled.

A map of the contours of water-table elevations for the spring
of 1970 was obtained from the Department of Agricultural Engineering
and used to estimate representative water levels at each node of the
509-node model. These initial levels were used to predict water-level
change for an arbitrary 19-year period in order to check their compati-
bility with the computer model. A 19-year period was assumed because
the already compiled 1947-66 pumpage and recharge data were used in the
test simulation. Predicted changes were unrealistic at several places
around the model boundary, due to the same problems discussed in Chapter

2 in the section on '"'Calibration of the Models.' All measurement data
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used in preparing the contour map were then plotted on the map of 1970
water levels and used to make reasonable adjustments of the contours
around the model boundaries.

Estimating pumpage for the 1970-89 period was not as straight-
forward, primarily because nobody has made comprehensive estimates of
future pumpage from the Tucson basin. The U. S. Geological Survey made
an estimate of 1962-65 pumpage over the basin and assigned values to
each node of their electrical-analog model. In addition, they made
lumped estimates of pumpage from the basin as a whole for the years
1965 through 1969. J. F. Rauscher, Chief Engineer of the city of Tucson
Department of Water and Sewers, has made the only basin-wide predictions
of water use in a chart entitled '"Table of Water Requirements in Acre-
Feet, period 1970-2030," dated May 16, 1968. In addition, the Depart-
ment of Agricultural Engineering supplied their available, although
incomplete, data on locations of the wells owned by the mining com-
panies in the southern part of the basin, and the city of Tucson fur-
nished data on well locations and current and projected pumpage for the
mines.

All these data were used in making a rough estimate of pumpage
for 1970-89. A better estimate could have been made but would have
taken considerable time and effort. Since the purpose of this study
was primarily to test the method using realistic data rather than to
obtain the best possible worth-of-data values for the Tucson basin, the

rough estimates of pumpage were deemed sufficient.
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The estimates were made using the following procedure. First,
the 1962-65 values at each node in the 1,890-node model (distributed
values) were summed and compared with the lumped 1965 estimate. The
1965 total was about 10 percent greater, so 1962-65 distributed values
were increased to match by first adding any pumpage for the mines that
did not appear to have been included in the Geological Survey analog
model, and then increasing each node by the remaining seven percent
difference.

The 1965 distributed values were then adjusted to match the 1969
lumped value. The Geological Survey subdivided their lumped values into
irrigation, municipal, and industrial uses. From 1965 through 1969
irrigation use declined slightly, municipal use increased by about 30
percent, and industrial use almost doubled, primarily due to increased
pumpage for the mines. The 1965 values were adjusted to 1969 by (1)
adding the pumpage by the mining companies, (2) assuming that all the
irrigation decrease was accounted for by wells taken out of production
on irrigated farm land retired by the mining companies, and (3) in-
creasing pumpage over the area in and around Tucson in which the city
has production wells. In addition, some pumpage was added to account
for new wells drilled by the city in their Santa Cruz well-field be-
tween Tucson International Airport and Sahuarita. The 1970 values of
pumpage were assumed to be equal to 1969 values, except for wells of
the mining companies, for which actual 1970 estimates were available.

The 1970 distributed values then were adjusted to give an es-

timate of 1989 values of pumpage. This was probably the poorest of the
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estimates, as the only projections available node by node were those
for wells of the mining companies. Even the estimates by the mining
companies are likely too high because the companies apparently assumed
they would do no recycling of water. The adjustment to 1989 was made
by increasing the total pumpage for the mines from 35,000 to 43,000
acre-ft/yr -- this corresponds with the city of Tucson's estimate of
pumpage for the mines rather than the mining companies' own estimate
of 53,000 acre-ft/yr. In addition, some wells drilled in the city's
Santa Cruz field and presently held in reserve were assigned some pump-
age. Pumpage over the rest of the basin was assumed equal to 1970
values. This may seem a poor assumption in view of the general belief
that population in the Tucson basin will continue to grow over the next
20 years. However, J. F. Rauscher of the city's Department of Water
and Sewers (orél commmication, 1971) claimed that basin pumpage will
likely be declining by 1980 because of availability of alternate sup-
p'ies outside the basin, such as water from the Central Arizona Project
and Avra Valley. However, because some degree of doubt exists about
when and whether either of these supplies will be available, the basin
discharge for 1989 was not decreased from the 1970 values. The assump-
tion that it will be about the same is perhaps as reasonable an
assumption as could be made currently.

The average pumpage for 1970-89 used for the worth-of-data
studies with the 509-node model was derived by averaging the annual
values for 1970 and 1989, multiplying by 20 years and converting the

data from the 1,890-node grid to the 509-node grid.
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Basic Worth-of-Data Studies

Estimation of Parameters for the Prior Distributions
and the Likelihood Functions

In order to use statistical decision theory to estimate worth
of data to the Tucson basin model, parameters (y, o of the assumed nor-
mal frequency distributions -- or log-normal for transmissivity --
for the variables studied had to be determined or estimated for both
prior distributions and likelihood functions. Unfortunately, few sample
data commonly are available within given nodal areas for the four var-
iable types studied, so the parameters had to be estimated, and to a
large extent, subjectively estimated. This was true even though the
Tucson basin is typical, or even well-endowed, in the amount of hydro-
geologic data available. For problems of this type, therefore, such
subjective estimates invariably will be necessary.

Subjective estimates of parameters are those made primarily on
the basis of the experience, judgment, and intuition of the estimator;
whereas objective estimates are based only on sample data. Subjective
estimates of probability are especially useful where repetitive sampling
to obtain objective estimates of relative frequency is not possible.
Benjamin and Cornell (1970, pp. 40-41) contrasted estimating the proba-
bilities associated with tossing coins, which can be done by experiment,
with estimating the probability that the material at a depth of 30 feet
beneath a bridge footing is clay. This probability must be estimated

subjectively prior to drilling, which will settle the question once and
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for all. In this case the probability is not a relative frequency
but expresses an individual measure of the relative likelihood of an
outcome.

The process of subjective estimation can be made more ''objec-
tive'" by employing standard techniques, such as those discussed briefly
by Benjamin and Cornell (1970, pp. 538-539; pp. 541-544). Folayan
(1969, pp. 26-33) obtained subjective estimates of parameters for the
distribution of the in-situ compressibility of a soil by questioning
engineers familiar with the soil. Such techniques were not used in
this study because the writer made all necessary subjective estimates.
Subjective estimates were needed for parameters of distributions of
variables at each node of the digital model. Making the approximately
2,000 necessary estimates was considered to be too formidable a request
to make of local practicing hydrologists, and unnecessary for a study
which was primarily to develop a general approach for evaluating worth
of ground-water data.

A prior distribution, Ppr’ for a given variable at a given node
represents the best estimate on the distribution of possible true or
representative values of the variable, based on available sample data
and/or the experience and intuition of the hydrologist making the esti-
mate. A likelihood, Pg, is the probability of observing a given sample
assuming the mean of its distribution has a given value. For the dis-
crete distributions used in the worth-of-data studies, a likelihood is
the probability of observing, or sampling, one of the discrete values

of the variable being tested, assuming that one of these possible
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values is the true value, or PQ{VX|Vm}. Each likelihood was estimated
by using the assumed true value as the mean of a normal, or log-normal,
distribution. However, estimating the standard deviation of this dis-
tribution, or likelihood function is more complicated.

Initially a "sampling' standard deviation (olms’ see p. 125)
was estimated for each variable to be tested. This is the standard
deviation of the likelihood function associated with collecting one more
sample, assuming that the model value of the variable, or the value as-
sumed true in the model, is the true mean. The first set of likeli-
hoods, then, is the probability of observing each of the possible values
of the variable, including the model value, if the model value is the
true mean. Subsequently, each of the other possible values is assumed
to be the true mean and a likelihood function is derived. The method
used here to estimate the standard deviations of these likelihood fumnc-
tions was different for each variable type.

As an example, assume that the value of T at a node in the model
is 50,000 gpd/ft, and six alternate, or erroneous, values are assumed
to be 5,000, 15,000, 30,000, 75,000, 125,000, and 200,000 gpd/ft. The
first likelihood function consists of the probability of obtaining each
of the seven values of T from an aquifer test if the mean, or expected
or true, value of T for the node is 50,000. These probabilities are
determined from a standard normal probability table, using up = 50,000
and the assumed value of oTlms. In this study, however, the logarithms
of the values of T were used as T was assumed to be log-nomally distri-

buted. The next set of likelihoods is determined by assuming that the
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mean or expected nodal value is 5,000 gpd/ft and again computing the
probability of obtaining each of the seven values of T from an aquifer
test. This process 1s repeated for each of the other five values of
T to obtain the complete set of likelihood functions.

One difficulty in discretization is associated with the discreti-
zation of likelihood functions. If the extreme lower (or upper) value
of V.

k,p,q
(or below) the mean. In fact, for only the model value as mean are

is assumed to be the mean, all the alternate values like above

there equal numbers of alternate values above and below the mean.
Therefore, almost 50 percent of the area under the probability curve

is not assigned initially to any value of Vk’ Q' Normalization dis-
tributes this '"unused'' probability to each variable value, but the re-
sulting probabilities are not equivalent to probabilities computed when
the mean is centrally located. Because of the asymmetry, the assumed
mean and its two closest values have a higher probability, and the

four values farthest from the mean have a lower probability, than if
values were symmetrically distributed around the mean. Additional al-
ternate values could be selected so that each assumed mean were cen-
trally located, but then the total number of variable values would be
43 -- six extra alternate values for each of the six original alternate
values plus the original seven values. This would require computing

43 sets of water 1eve}s over the model instead of 7, and would be much

more costly.
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Coefficient of Storage

The '"true'" value of storage coefficient that is uncertain at
a given node is not a physical entity that could be measured if means
were available, but it is the representative storage coefficient for
the node. The coefficient of storage is defined as the volume of water
an aquifer releases from or takes into storage per unit surface area
of the aquifer per unit change in head (Lohman and others 1970, p. 38).
The value is already somewhat of an average, representing an integra-
tion of the specific storage -- defined by Lohman and others (1970,

p. 37) as the volume of water released from or taken into storage per
unit volume of the aquifer per unit change in head -- over the satu-
rated thickness of the aquifer. The representative S for a node might
be defined as that value which when used as the nodal value, results
in correct water-level changes corresponding to given water-volume
changes in the node. Providing that the digital model of the aquifer
is a good approximation of the physical system, this representative S
should be close to an average of S values measured over the node. If
an aquifer test were made in a node so that the cone of depression ex-
tended over the entire node, the derived value of S also might be a
good approximation of the representative S.

Unfortunately, as previously discussed in Chapter 2 in the
section on ''Data on Coefficient of Storage and Transmissivity,' there
are few reliable samples of S in the Tucson basin. Therefore the prior
mean and standard deviation and the standard deviations of the likeli-

hood functions had to be estimated for each node in the model. The
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estimation of means was discussed under ''Data on Coefficient of Storage
and Transmissivity," and the standard deviations were estimated sub-
jectively.

Frequency Distribution. There has been little research on what

type of frequency distribution samples of S might follow. Transmis-
sivity is commonly assumed to be distributed log-normally, as will be
discussed subsequently, and it might be argued that S also is distrib-
uted log-normally over nodal and basin areas because many of the fea-
tures of sediments that affect transmissivity affect S in the same way.
For example, well- rounded, well-sorted, coarse, uncemented sediments
tend to have both high S (Johnson 1967, table 17) and high transmis-
sivity. However, the relation between the two, if any direct relation
exists, 1s complex because the highest S values are commonly observed
in medium or coarse sand and slightly lower values are observed in
gravel (Johnson 1967, table 29), which presumably have higher values
of transmissivity. In addition, fine-grained sediments which are being
compacted may, over long periods of time, yield significant quantities
of water, and thus have a relatively high value of S along with a low
transmissivity.

The writer knows of no study in which measurements were made
of S at random over an aquifer and then plotted to obtain a frequency
distribution. Johnson (1967, table 11) reproduced a table of specific
yields (for the unconfined aquifer of the Tucson basin, specific yield
is virtually equivalent to storage coefficient) of core samples from

California. The distribution around the mean specific yield of each
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textural classification -- sand, silt, etc. -- apparently is symmetrical
because the mean and median of each class are virtually the same. These
data suggest that S is not log-nommally distributed; however, the sta-
tistics are not computed for data from random samples so no conclusion
is warranted.

The distribution of S over nodal areas was assumed to be normal
for lack of data suggesting any other distribution. Because normal dis-
tributions extend from values of minus infinity to plus infinity, trun-
cated normal distributions commonly are used to avoid negative values
when they are physically impossible, unreasonably low values, or un-
reasonably high values. In this study discrete distributions were used
for all model variables, and the computer program automatically elim-
inated any alternate variable values that were infeasible. For this
reason, truncated normal distributions were not needed.

Estimation of Parameters. For the purpose of this study,

standard deviations of both prior distributions and likelihood functions
of S were estimated to be constant over given intervals of S, as shown
in table 6. Estimates were made for two classes, nodes in the interior
of the basin and nodes near the boundaries. Uncertainty about given
values of S was assumed to be somewhat less in the interior of the basin,
where hydrogeologic data are more plentiful -- because of more wells,

and thus more geologic data, aquifer tests, water-level measurements,

and pumpage data -- than near the basin boundaries, where data are
sparse. Presumably judgment and experience would be mere effective in

estimating S in areas of much hydrogeologic data. Therefore, standard



Table 6.

Estimated Standard Deviations around Mean Values of the
Coefficient of Storage.
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Interval of
Storage Coefficient
in which Mean Occurs

Standard Deviation,
for Nodes in the In-
terior of the Basin

Standard Deviation,
for Nodes near the
Boundaries of the Basin

[ New]

[N e]

o O

.0-
.0375

.0375-
L1125

.1125-
. 1875

.1875-
. 2625

.2625

0.05

0.06

0.07

0.08

0.09

0.07

0.08

0.09

0.10

0.11
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deviations in the interior of the model were assumed to be uniformly
0.02 less than those on the boundaries.

Standard deviations also were assumed to be proportional to
the magnitude of the mean S, although there were no data to use in ob-
taining an objective estimate of such a relationship. If S was in the
artesian range, for example, the standard deviation around a value of
0.0001 would certainly be less than that around a value in the water-
table range of 0.01.

The standard deviations of the prior distribution and the like-
lihood function were assumed equal for a given value of S. This implies
that the amount of information, or number of samples or aquifer tests,
used to estimate the prior probability distribution is equal to the
amount collected in an additional sample. For example, this could be
interpreted as assuming that the equivalent of one sample of S in pro-
fessional judgment and experience was used to estimate its value in a
nodal area. Sampling to modify this prior estimate to obtain a new,
or posterior, probability then is assumed to involve collecting the
equivalent of one additional sample.

The assumptions made in estimating parameters for frequency dis-
tributions of S, or for that matter, any of the variables studied, are
inadequately justified and represent very subjective judgment. They
are, however, the kinds of assumptions that will have to be made in
using this type of technique to estimate worth of additional data to
a digital model of a ground-water basin; and they were believed adequate

to illustrate the technique. If the goal of this study had been to
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obtain the best worth-of-data estimates possible, the parameters could
have been defined better by utilizing such methods as interviewing
hydrologists familiar with the basin and eliciting their opinion on
the distributions of S, or other variables, at various points in the
basin. Folayan (1969) used questionnaires to obtain similar opinions
from engineers about soil properties. Research to determine the type
of frequency distribution followed by the coefficient of storage also

would be useful.

Transmissivity

The "true' value of transmissivity desired at a node of a model
is the value that best represents T over the whole nodal area. Similar
to storage coefficient, T is already somewhat of an averaged quantity
in that it is defined as the rate at which water of the prevailing kin-
ematic viscosity is transmitted through a unit width of aquifer under
a unit hydraulic gradient (Lohman and others 1970, p. 41). Transmis-
sivity thus refers to the entire thickness of aquifer whereas hydraulic
conductivity, K, refers to a specific volume of aquifer. A medium has
a hydraulic conductivity of unit length per unit time if it will trans-
mit in unit time a unit volume of water, at the prevailing kinematic
viscosity, through a cross-section of unit area, measured at right angles
to the direction of flow, under a hydraulic gradient of unit change in
head over unit length of flow path (Lohman and others 1970, p. 9).
Therefore, T might be considered as representing an integration of K
over the aquifer thickness, although T also depends on the degree of

interconnection of beds with high (or low) hydraulic conductivity.
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If point measurements of T could be made over a nodal area, the
representative value of T probably could be estimated by averaging these
measurements; providing, of course, that the digital model of the aqui-
fer was a reasonably good representation of the physical aquifer system.
Estimates of T commonly are obtained by aquifer tests, and an equivalent
to sampling T over the nodal area might be an aquifer test for which
the cone of depression extended over the whole nodal area. The length
of test required can be roughly estimated using a variant of the Theis

equation (Ferris and others 1962, pp. 92-94):

s = g3 (@) (24)

where u = rZS/4Tt,

r = radius, in feet,

s = drawdown, in feet, at a radius r,

S = coefficient of storage,

T = transmissivity, in cubic feet per day per foot (cu ft/day/ft),

t = time, in days,

Q = pumpage, in cu ft/day,

and  W(u) =u7(e'“/u) du.

If a well is pumped at the center of a node, it can be computed that
the cone of depression will take on the order of nine days to reach the
boundaries of the node -- assuming values typical of the Tucson basin
such as T = 10,000 cu ft/day/ft or 75,000 gpd/ft,

S

0.15,

and Q = 192,000 cu ft/day or 1,000 gpm,

and that r = 3,190 ft or 0.6 miles and a significant s = 0.005 ft.
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Choosing 0.005 as a significant value for drawdown is somewhat arbi-
trary, but 0.005 is about the limit of precision for the wetted-
tape method of measurement.

However, few aquifer tests of this length have been made in the
Tucson basin. Most of the available tests were several hours in length,
and the cone of depression for a 6-hour test, using the assumed values
in the previous computation, would have a radius of about 525 feet --
which includes only about three percent of a nodal area. Therefore,
even with several aquifer tests per node, considerable uncertainty re-
mains about the representative value.

There are only 168 nodes in the digital model in which aquifer
tests have been made, and 341 without tests. Of the sampled nodes, 45
have two aquifer tests, and only 12 have more than two tests, the maxi-
mum being five. For only a handful of nodes, then, are data adequate
for even a rough estimate of the natural variability of T. The indi-
vidual test results are, of course, subject to error, primarily due to
errors in measurement of discharge and in the subjective interpretation
of test results by the hydrologist, mainly in the curve-fitting pro-
cedures.

Figure 2 shows the distribution of aquifer tests over the basin.
The numbers on the map indicate the tests per land section or square
mile, which is not equivalent to the tests per nodal area because the
nodal areas are not exactly equivalent to sections. For this figure,
only the aquifer tests analyzed by the U. S. Geological Survey were used,

which include 94 percent of the total number of tests. The map
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illustrates that most of the aquifer tests have been made in the city

of Tucson and in the irrigated areas along the Santa Cruz River.

Frequency Distribution. McMillan (1966, pp. 8-17) summarized

available research on the frequency distribution of permeability
(hydraulic conductivity, K) and transmissivity. He pointed out that
the variation in K depends on the volume of material considered. On

a microscopic scale K could vary from zero to infinity depending on
whether the volume considered was impermeable rock or a pore space. As
sample volume increases, the possible limits of the variation in the
average K for the volume lessen, which is a result predicted by the cen-
tral 1limit theorem of statistics. However, when the sampling procedure,
such as an aquifer test, obtains information from more than one geolog-
ic unit, the variation may well increase. In the Tucson basin, where
the aquifer material consists of basin-fill deposits which are made up
of small (measured in tens of feet) individual units largely of alluvial
origin, the cone of depression of even a short-term aquifer test inev-
itably will extend across several units.

McMillan (1966, pp. 10-15) discussed research by several workers
in petroleum reservoir engineering which indicated a log-normal dis-
tribution for K. He also plotted data (pp. 15-17 and figures 2.3-2,
2.3-3, and 2.3-5) on transmissivity from ground-water basins in
California and concluded that T was approximately log-normally dis-
tributed. McMillan did not speculate on why K and T are log-normally
distributed, although he mentioned that explanations for the natural

occurrence of the distribution have been based on the assumption that
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the effects of an underlying random variate are multiplicative (p. 11).
Benjamin and Cornell (1970, pp. 262-263) further discussed how the log-
normal distribution represents aspects of a breakage process, such as
the transport of sediment in streams. The final size of a particle
depends on collisions with particles of many sizes traveling at various
velocities. This multiplicative process may produce a particle-size
distribution that is log-normal. Since hydraulic conductivity is related
to particle size, (Todd 1959, p. 51), the log-normal distribution of K
may result from a log-normal distribution of particle sizes. Although
this relation seems logical for K for small volumes of aquifer, it does
not necessarily explain a log-normal distribution of K or T over a

large ground-water basin. A log-normal distribution for values of T
representing large subareas of a basin implies that there is more coarse
than fine sediment in an aquifer than there would be if sediment size
was normally distributed around some mean.

Data on T from aquifer tests over the entire Tucson basin were
compiled (table 7) and the cumulative percentages of T values were
plotted against T on log-normal probability paper (figure 6). The data
fall on a straight line over most of their range, indicating the values
are log-nommally distributed. The line is curved, however, at its ex-
tremes. At its upper end, the curve indicates fewer very high values
of T than if T were distributed purely log-nommally. For example, the
curve shows that 99.5 percent of the T values are less than 700,000
gpd/ft; whereas if the straight-line portion of the curve were extended,

97 percent would be less than 700,000. At the lower end of the line,
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there is a slight indication of more low values of T than if T were
distributed log-normally.

These data from the entire basin, however, likely have not been
sampled randomly. Water-supply wells are drilled where conditions are
known or predicted to be most favorable, and the major ''favorable' con-
dition is high T. After completion, only the wells with an acceptably
high specific capacity are equipped with pumps, so that very low T val-
ues are not sampled often. The specific capacity of a well is defined
as its rate of discharge divided by the drawdown of water level at a
given time after pumping, and specific capacity is directly propor-
tional to T (Lohman and others 1970, p. 32). Such wells are almost the
only wells available to use in aquifer tests because only a few wells
have been drilled in the basin specifically for the purpose of hydro-
logic testing. Therefore, aquifer-test data probably are biased towards
high values of T. Such a bias might result in a log-normal distribu-
tion of T values when in fact the true distribution was of another type.

An attempt was made, using the available data, to avoid the
potential bias in sampling. The Tucson basin was divided into subareas
corresponding to the areas of equal T on the Geological Survey map, and
the aquifer tests from each of these areas were compiled and plotted
separately (table 7 and figure 7). This procedure partially removed
bias because data from more favorable (and less favorable) areas were
studied separately. However, wells still have been drilled in the best
parts of the subareas and any poor wells in a ''favorable' subarea

probably are abandoned, so some bias remains. The plots of figure 7
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show generally linear trends, suggesting log-normal distributions, but
the linearity is not as evident as it was in the plot of data from the
entire basin. The curves also indicate that there are more high values
and more low values of T than if T were distributed log-normally.

One of McMillan's figures (1966, figure 2.3-2) is a frequency
plot of T values which were randomly ''sampled' from a contour map of T
values for the Los Angeles Coastal basin. He concluded (p. 15) that
these data showed an irregular tendency to follow a log-normal distri-
bution. However, the field data used to construct the contour map
likely were biased towards high values of T, so even with such random
"sampling' methods, bias is possible.

In summary, although the evidence is not absolutely conclusive,
values of T over a basin, and specifically over the Tucson basin, proba-
bly are distributed more nearly log-normal than normal. During the
worth-of-data studies the distribution of values of T in a one-square-
mile nodal area also was assumed to be log-normal.

Estimation of Parameters. The available aquifer-test data were

used in an attempt to devise methods of estimating standard deviations
for transmissivity (oT) at all nodes in the basin. Unfortunately, 341
of the 509 nodes have no test data and 111 of the 168 nodes with data
have only one aquifer-test per node. Thus not even a crude estimate
of the standard deviation can be made for 453 of the 509 model nodes.
Test results for each node were compiled, including two fic-
titious samples per node in addition to actual aquifer-test values

in order to increase sample sizes. These ''pseudo-samples' were added
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only to nodes with some actual data, and were added primarily so that o

—

at the 111 nodes with only one test could be estimated crudely. The
pseudo-samples were (1) the nodal value shown on the map of T compiled
by the U. S. Geological Survey and (2) the nodal value after calibra-
tion of the digital model -- at 71 nodes these two values were equal.
Addition of these pseudo-samples was believed to be justified somewhat
because (1) considerable geologic knowledge and professional judgment
were used in preparing the T map and (2) the value after calibration
was one that improved the model's ability to match historical water-
level changes and thus may represent additional information.

An attempt was made to estimate op at unsampled nodes by relat-
ing op to some factor which could be measured at all nodes. It was hy-

pothesized (1) that o.. was proportional to the magnitude of T, and (2)

T
that op was proportional to the local variability in T. It was believed
reasonable, for example, that if o around a mean value of 10,000 gpd/
1

ft (uT ) were 5,000, then o, around a mean value of 100,000 (uT )
1 2

T,

would be nearer to 50,000, which assumes Op = Oop X up /uT , than it

2 1 2 1
would be to 5,000, which assumes o, = constant. It was also believed rea-

T
sonable that O would be greater in an area where values of T varied
greatly over short distances, because results from short-term pumping
tests likewise would be variable. Such a marked variability in T might
be encountered in areas where deposition was controlled by several dif-
ferent processes, or deposits came from several source areas, such as
along a stream channel or near a mountain front.

Assuming the above hypotheses were true, an attempt was made to

relate o to (1) the magnitude of the nodal T from the U. S. Geological
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Survey map, TM’ as this was the only available prior estimate of T at
all nodes; (2) the maximum difference between TM and values at the four
adjacent nodes -- essentially, the local maximum T ''gradient," and an es-

timate of local variability; and (3) both of these factors combined.

In addition, the uncertainty in T, and therefore o, was assumed pro-

T)
portional to the distance to the nearest sample of T, as the farther a

node was from a sampled node, the more uncertain its value likely would

be. Although this attempt to estimate o_at unsampled nodes was unsuc-

T

cessful, as discussed below, the estimated values of o_ at sampled nodes

T
were used as a general guide to standard deviations and therefore the

procedure will be discussed here.

A computer program was written to compute the information re-
quired to analyze the T data. The program first computed the two sta-
tistics, the ''prior' sample mean R& , based on both actual and pseudo-

T

. 1%
samples; and the prior sample standard deviation, St of T at each
pr
node, in arithmetic units. The program also computed the standard de-

viation of the likelihood function for the model value as mean, the

"sampling'' standard deviation or s This represents the standard

T
2
deviation associated with collecting one additional sample, and was

computed using the equation:

Sy = Sp Mmoo, (25)
% pr

where n = the number of samples per node. Equation 25 is an adaptation

of the standard statistical formula:
X = O)—(' /[-'l— N (26)

where o = the population standard deviation, and

)

ox = standard deviation of a group of n samples.
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Here sy 1is assumed equivalent to o—, as it represents a standard

X
pr
deviation from prior sampling or equivalent information; and ST is
%
equivalent to Oy in that St is related to the uncertainty in collec-

2
ting one more sample. The computer program also calculated the dis-

tance between each unsampled node and the nearest sampled node.
Equation 26 is applicable only if the samples of T obtained by aquifer
tests are statistically independent. If the hydraulic properties of
the aquifer vary significantly over distances as small as tens of feet,
as is likely in the Tucson basin, then values of T from short-term
aquifer tests spaced more than a few hundred feet apart likely are in-
dependent.

After these initial computations, the program computed the
mean and standard deviation of the 168 values of St (ig and s ).

pr  Tpr STpr
The maximum sp  at an individual node was 706,000 gpd/ft, ng was

pr
pr
56,000 and SST was 75,000. These results showed that about two-thirds

T

of the values %f st varied between 0 and 130,000 gpd/ft, and indicated
pr

significant variability in the results.

In order to determine whether o; was related to the magnitude
of T and/or the local variability in T, all T data at a node were trans-
formed by dividing them by (1) TM, (2) the local maximum T gradient,
and (3) both of these factors. Then the program recomputed values of
QT and ST for each node, and X and s over all nodes. If

pr pr ST

. C o pr PT.

the magnitude and variability of T were hypothesized to be related to

standard deviation, then the value of S, would be proportionally
T

pr
less for the transformed T data than for the original data. For



121

example, if a perfect relation were found between o, and TM’ and all

T
sample values of T were divided by T,,, then Orp would be constant over
all sampled nodes and o would equal zero. The standard statistical
T
relation:
02 = a202 or alternately o = ao (27)
ax x 2 Y Cax X

shows that transforming individual sample data, where a = 1/T,,, will
modify the standard deviation of the samples by the same ratio. If
this statistic were less for transformed than for original data, o
might be estimated at unsampled nodes using derived relations between
or and the magnitude and local variability of T.

Unfortunately, the values of Sq obtained from the transformed

T
pr

data on T were all proportionally larger than Sq computed using the

pr
original data, using both arithmetic and logarithmic units for T. This

may have been due to factors such. as (1) the small sample sizes; (2)
inadequate justification for using the two ''pseudo-samples' per node;
(3) the values of Ty were significantly different from the mean nodal
values of the samples -- this was checked at several nodes and found

to be the case; and (4) the maximum T gradients were not well approxi-
mated, because eithe the values of Ty were not representative of the
physical system or the real maximum gradients were over smaller dis-
tances than the nodal spacing. Although this attempt was unsuccessful,
the results (primarily s ) were used as a general guide in estimating
op at both sampled and uﬂigmpled nodes. The results also suggested

that the values of T from the short-term aquifer tests were not
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representative samples of the values of Ty, or that the values of Ty
did not represent well the physical system.

The prior mean, or model, values of T used in the worth-of-data
studies were the final values at each node after model calibration.

The prior standard deviation of T (oTpr) at each sampled node was es-
timated subjectively after taking into account (1) the computed statis-
tic Sy at each node, (2) the local variability in T, and (3) the
inter&gi around the model value in which about two-thirds of the samples
were included. Of the three components used in estimation, (3) was
given the most weight.

The standard deviation of the likelihood function for the model
value as mean (op ) was estimated using (1) the computed s; at each
node, (2) the 1oc§1 variability in T, and (3) an interval aéout /N times
the interval around the model value in which about two-thirds of the
samples were included. For nodes in which no aquifer tests had been
made, the values of oy and op were set equal, which implied that the
amount of data involvé%?in esti;ating the prior was equivalent to the

data obtained from one more sample (see above, p. 106). In estimating

or and.OT at unsampled nodes the following factors were considered:
pr 4

(1) estimates of O N and.OT2 for sampled nodes, (2) the distance to
the nearest sampled?node, and (3) the local variability in T.

The technique used to estimate the standard deviation of a
likelihood function for an alternate, or erroneous, value of T as the

mean for a node was more complex. It was recognized that the value

of 0p for the model value as the mean might not be appropriate for
L
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extreme erroneous values. For example, if the model value of T is
200,000 gpd/ft, and op for the model value is also 200,000, op for
the likelihood for whiih an erroneous value of 50,000 was the mian
likely is less than 200,000. For this reason, a relatively objective
method of estimating alternate values of oy was devised.

The writer estimated standard deviaiions subjectively for a
series of 16 values of T ranging from 2,000 to 500,000 gpd/ft. These
were judged to be values typical of the aquifer in the Tucson basin,
assuming that the sampling procedure was an aquifer test of several
hours duration, similar to the actual tests in the basin. A second
set of 16 estimates was made under the assumption that the test was of
several days duration, or close to the time required to obtain a
reasonably good test of T for a nodal area. These estimates were 'edu-
cated guesses' by the writer. The values, in logarithmic units, of
the first set of standard deviations are about double the values of
the second set. The two sets of estimates then were plotted against
the logarithm of T (figure 8) and equations derived for the assumed
linear relationships. These relations are equations for straight lines
on semi-logarithmic paper, for which the first temm is the intercept
of the line on the vertical axis, the coefficient of the second term
is the slope, in logarithmic units, per the three log cycles, and the
part in brackets is the fraction of the three log cycles over which the

interpolation of or is made. For any given value of T, then, these

equations can be used to estimate a ''typical" standard deviation
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around the value, given that sampling is done by short-temrm or longer-
term aquifer tests.

The derived typical values then were used, together with o

2
for the model value as the mean, to estimate O for alternate values

as means. First the typical value of OT2 for tﬁe model value 2s mean
was computed using one of the two equations. Then the ratio of the
GTQ’ which was estimated using actual sample data and other factors,
to the typical OTQ was computed. Finally, to obtain OT2 for any
alternate value as the mean, the typical value corresponding to this
mean was multiplied by the ratio. In this way, if T at a given node
was more uncertain than was typically expected, this additional uncer-

tainty was included in standard deviations for all the likelihood func-

tions for the node. This procedure can be summarized by the relation:

(9]
ag TQ g
T, = ns T, (28)
a OT at
2
mt
where o, = standard deviation of the likelihood function (oT ) for
a 2
an alternate value of T as mean;
OTQ = Op for the model value of T as mean, estimated using
ms 2
sample data, etc. -- the "'sampling' standard deviation;
or = op for the model value of T as mean, estimated from the
L '3
mt . . .
equation that yields typical values of o
and or = Op for an altemate value of T as mean, estimated from
L 2
at

the equation that yields typical values of or-
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These methods of estimating parameters of the distribution of
T at model nodes are not, of course, the only or are they necessarily
the best possible methods that could have been used. They likely are,
however, typical of the techniques that will have to be employed in
this type of study, considering the quantity and reliability of the
data on T that are commonly available. More research on the frequency

distribution of T would be useful.

Initial Water Level

Initial water level (H) was assumed to be in 1970 for the 1970-
90 simulation period. The representative value of H for a nodal area
is not a quantity that can be measured directly, but it likely could
be approximated best, providing the digital model is a good representa-
tion of the physical system, by averaging water levels over the node.

The frequency distribution of values of H around a nodal mean
was assumed to be nommal, primarily because data were insufficient to
identify any other distribution. However, if only measurement errors
influenced estimates of H, the distribution probably would be normal,
as this distribution commonly is used to describe the distribution of
measured ''erroneous' values around a true value. The major sources of
error in estimating H likely are interpolation error and non-
representative data; and although it is not obvious that these types
of error also would be normally distributed, a normal distribution is

probably a sufficient description.
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Although more data on H are available than on any other vari-
able in the Tucson basin, commonly few data are within individual nodal
areas. There are 311 nodes in the model in which H was sampled, or
measured, in 1970, and 198 nodes with no samples. Of the sampled nodes,
109 had two samples, 45 had three samples, and 19 had more than three,
the maximum being six samples at a node.

Using the same approach and computer program that was prepared
to analyze the data on T, the data on H at individual nodes were studied.
For H, one pseudo-sample per node was added to increase sample sizes.
This added '"'sample'' was the water level estimated to be the representa-
tive value at each node from the 1970 water-level contour map prepared
by the Department of Agricultural Engineering. Values of iﬁpr’ SHpr, and

sy were computed for each sampled node, and the shortest distance to a
2

sampled node was computed for each unsampled node. The maximum water-

table gradient between each node, both sampled and unsampled, and its

four surrounding nodes was also computed. The maximum value of SHpr

was 115 feet but E;H was only 9.5 feet and S¢ was 8.3 feet. Thus
pr Hpr

about two-thirds of the values of SHpr were between 1 and 18 feet.

As for T, an attempt was made to devise a method of estimating
standard deviations of H at unsampled nodes by seeking a relation be-
tween standard deviations and (1) the magnitude of the model value of H
at each node, (2) the maximum water-table gradient at each node, and (3)
both of these factors taken together. Similar to T, the transformed val-
ues of H had values of S¢ that were proportionally larger than S

Hpr Hpr
for the untransformed value. Thus, it was not possible to obtain a
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relation between standard deviation and some measurable factor to use

in estimating o and o;; at unsampled nodes. The values of s for
fipr HJL SHpr
transformed H, however, were closer to the original Sq than were cor-
Hpr

responding values for T. This result may reflect the additional sample
data on H and the greater certainty associated with the model value of
H assigned to each node. The factors that may have prevented the def-
inition of a usable relation between standard deviation and the other
quantities were likely (1) the small sample sizes, (2) insufficient
justification for the added pseudo-sample at each node, and (3) an in-
adequate method of estimating the maximum nodal water-table gradient.
The prior mean, or model value,of H at each node was estimated
from the 1970 water-table contour map prepared by the Department of
Agricultural Engineering. Values of oHpr at each sampled node were

estimated using (1) the computed values of s (2) the local variabil-
b

Hpr
ity in H and (3) the interval around the model value that includes about
two-thirds of the samples. For unsampled nodes, estimates were made

i 1) the o
using (1) the oy
iability in H, and (3) the distance to the nearest sampled node. Values

restima‘ces at similar sampled nodes, (2) the local var-

of oy were estimated in a similar way. If no sample data were avail-
2

able for a node, o,, was set equal to ¢

H, Hpr’

The standard deviations for the likelihood functions that as-
sumed alternate nodal values of H as the mean values were assumed to be
constant and equal to the '"sampling'" standard deviation, oy - This pro-
cedure was equivalent to assuming that errors in H would bezindependent

of the magnitude of H and that uncertainty would be the same for any of

the alternate values.
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Discharge and Recharge

Discharge -- primarily pumpage in the Tucson basin -- and re-
charge were tested together or considered as one variable in the worth-
of-data studies. This is possible because the model treats them
identically in solving the flow equations, the only difference being
that pumpage and subsurface outflow are defined as positive quantities
and recharge as negative. The only difference in the way discharge and
recharge were treated in the worth-of-data studies is that values of
recharge and subsurface outflow were assumed to be more uncertain than
pumpage. Estimates of discharge and recharge were assumed to be
normally distributed, as the main reason why nodal values differ from
true values is the presence of measurement and estimation errors.

Discharge cannot be measured, of course, for the future period
1970-89. In many model studies the future discharge is considered to
be the variable under the manager's control and is manipulated to pro-
vide the optimal combination of benefits. In this study discharge
was considered only as an unknown to be estimated.

Future pumpage can be estimated based on current rates and
projections of future demands derived from estimated population
growth, industrial use -- which in the Tucson basin is primarily use
by the mining companies in the southern half of the basin, and agricul-
tural use. Estimation of the prior mean values of discharge was dis-
cussed in the section '"Time Period Used.' The prior standard deviations
ter each nod2! value of discharge are directly proportional to the un-

certainty of the estimate, and had to be estimated subjectively.
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The uncertainty in pumpage is related to several factors. These
factors include uncertainties in the estimates of current pumpage and
in projections of population growth. Another factor is errors in es-
timates of industrial use, which further depend on uncertainties in
future copper prices or perhaps in future environmental legislation
which could reduce ore production. An additional factor is uncertainty
in estimates of future agricultural demand, which is further related
to uncertainty in crop and water prices and governmental subsidies.
Finally, uncertainty in'future pumpage also is related to uncertain-
ties in future quantities of water available from proposed supplemental
water sources such as the Central Arizona Project.

For the purposes of this study, pumpage was divided into two
classes: (1) pumpage within the greater city of Tucson area and (2)
pumpage in the remainder of the basin. Pumpage within the city is
better known currently because most of it is metered, and it likely can
be projected better into the future. Therefore, the prior standard
deviations of pumpage at nodes in the city were assumed to be 25 per-
cent of the estimated mean values, and prior standard deviations at
nodes outside the city were assumed 35 percent of the means.

So little is known of current values of recharge and subsurface
outflow that in the model they were considered constant with time, and
future values were also assumed constant and equal to current rates.
Recharge can be classified as: (1) infiltration from stream channels,
(2) recharge across model boundaries, and (3) subsurface inflow through

the alluviumn under stream channels where channels cross the boundaries
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of the model. Recharge in each of these classes generally was esti-
mated in slightly different ways, so the uncertainty associated with
each will also differ. Subsurface outflow was estimated in the same
way as subsurface inflow, so they are discussed together, even though
outflow is a form of discharge.

Stream-channel recharge was estimated largely from channel-
infiltration studies made by the U. S. Geological Survey, and was modi-
fied during calibration of the digital model. Uncertainties in
stream-channel recharge thus are related to the assumptions and mea-
surement errors associated with the infiltration studies, including
errors in estimating how much of the infiltration reaches the water
table; and on the quality of model data, and especially historical
water-level data, along the streams. Boundary recharge was estimated
during calibration of the electrical-analog and digital models, so
its uncertainties will be related to uncertainties in model data along
the boundaries. Subsurface inflow and outflow largely were estimated
during model calibration, although values were checked roughly by the
Geological Survey (Davidson 1970, pp. 182-184) using estimates of satu-
rated cross-section, permeability of alluvium, and hydraulic gradient
at the points where channels cross boundaries. Of the three categories
of recharge, stream-channel recharge likely is the least uncertain, sub-
surface inflow (and outflow) is intemmediate, and boundary recharge is
likely the most uncertain. For the purposes of this study the prior

standard deviations of stream-channel recharge, subsurface inflow and
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outflow, and boundary recharge were assumed to be 40, 50, and 60 per-
cent, respectively, of the estimated nodal values. If a node had more
than one class of recharge, the standard deviation corresponding to
the largest component was used.

The method used to estimate the standard deviations of the
likelihood functions was straightforward. First, the standard devia-
tion of the likelihood function for the model value -- the "'sampling'
standard deviation -- was assumed equal to the prior standard deviation,
primarily because actual sample data on discharge and recharge were not
available. Then errors in estimates of discharge and recharge were
assumed to be directly proportional to the quantity estimated. This
assumption probably is good for measured pumpage, as errors commonly
are expressed as a percentage of estimates, and the assumption is rea-
sonable for estimated pumpage and recharge. Standard deviations of
likelihood functions associated with alternate mean values of discharge/
recharge were estimated by computing the ratio of the alternate value
to the model value and multiplying this by the ''sampling'' standard

deviation.

Results of Selecting and Testing Variables

The worth-of-data studies for the Tucson basin consisted of
testing 91 variables -- 24 coefficients of storage, 22 transmissivities,
23 initial water levels, and 22 values of discharge or recharge -- from
61 different nodes of the small-scale digital-computer model of the
Tucson basin. Variables for testing were selected from all parts of

the basin, both from areas where there are relatively much
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hydrogeologic data, mainly in the areas of pumpage for irrigation along
the Santa Cruz River and within the city of Tucson, and from areas with
few data, generally on the margins of the basin. The variables were
tested for expected opportunity loss, which could be defined as expected
error in predicted water levels at the end of a simulation period ex-
tending from 1970 to 1990, and expected worth of sample data, which
could be defined as expected reduction in error. Values were computed
in temms of feet, or other units depending on the error criterion used,
over the 509 nodes of the model.

The studies were divided into two parts, 67 variables chosen
because their expected errors were likely to be large and, for the pur-
pose of comparison, 24 variables chosen because their expected errors
were not likely to be large. Each of the two categories, however, in-
cludes a few nodes at whiéh all variables were tested in order to com-
pare expected errors associated with each variable at a single node.
A1l of the variables at these few nodes did not fall always into either
the '"'large-error' or ''small-error' categories. Figure 9 shows the lo-
cations of the tests, and tables 8 and 9 and 10 and 11 include results
of testing variables in the large- and small-error categories, respec-
tively.

Nodes at which errors in the coefficient of storage were
thought likely to produce large expected errors were not chosen on the
basis of large uncertainty in the true values of S because, as previ-
ously discussed, uncertainty in S is about the same over the entire

basin. During calibration of the Tucson basin model, however, changes
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in S were observed to cause the most change in predicted water levels
at nodes where discharge and/or recharge were large or where water-level
change itself was large over the simulation period. Nodes were selected
for the large-error category of test, then, if discharge or recharge
was large or if water-level change was large. Conversely, nodes at
which prediction errors were expected to be less were chosen where dis-
charge or recharge or water-level change was less. Comparison of mean
values of expected error, Mg 5 computed for each of the six error cri-
teria and for each category (tables 9 and 11) generally shows that val-
ues are slightly higher for the large-error category, so that the above
assumptions have some validity.

For transmissivity and initial water levels, it was assumed
that if the standard deviation of the prior distribution was relatively
large, the expected error would be large, and that if the standard de-
viation was relatively less, the error would be less. The mean expected
errors for transmissivity are in fact considerably more, and for ini-
tial water levels generally are slightly more for the large-error
category than for the small-error category (tables 9 and 11).

For discharge/recharge, standard deviations were assumed to be
directly proportional to the magnitude of the value of discharge or
recharge, as previously discussed. Values chosen because they were
likely to have large expected errors were thus at nodes where discharge
or recharge was relatively large, and values expected to have smaller

errors were at nodes where discharge or recharge was relatively smaller.
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Comparison of results in tables 9 and 11 shows that these choices were
correct.

Table 8 gives results of testing variables in the large-error
category. The table lists results for four of the six error criteria
used -- omitting numbers of nodes in error by more than 5 feet and 25
feet, as results were similar to those from the criterion of numbers
of nodes in error by more than 10 feet -- arranged in order of descend-
ing worth of sample data for absolute value of error. The data indi-
cate that for the error criteria tabulated, discharge/recharge and
transmissivity generally have the largest expected errors and sanple
worths, while initial water levels and storage coefficients generally
have smaller values. The maximum expected error and sample worth for
the absolute error criterion are 504 and 98 feet, respectively, over
the 509 nodes of the model, associated with discharge (subsurface out-
flow) at node (3,2).

Mean values and standard deviations of expected error, expected
worth of sample data, and percent improvement, the latter defined as
(sample worth/expected error) x 100, were computed for each variable
for each of the six error criteria, and are given in table 9. Although
these means and standard deviations may be misleading because they are
based on only about three percent of the possible 509 values of each
variable, they are helpful in comparing the results.

Discharge/recharge has the largest mean expected error, mean
expected sample worth, and mean percent improvement for four of the

error criteria. For absolute value of error, for example, mean expected



137

Table 8. Results of Tests on Variables, Cost of Which Were Expected to Show Large Expected Errors. -- Data arranged in order of descending worth of sample data for
absolute value of error; S - coefficient of storage, T - transmissivity, H - initial water level, Q - discharge (so - subsurface outflow, otherwise pumpage);
R - recharge (sc - stream channel, b - boundary, si - subsurface inflow); T in gallons per day per foot; H in feet above mean sea level; and Q and R in acre-
feet per 20 years.
Location Standard Absolute Value of Error, Square of Error, in feet Maximum Nodal Error, Number of Nodes in Error by
in Model Deviation in feet per 509 Nodes squared per 509 nodes in feet More than 10 feet
of the ] Expected Expected Expected
Model Prior Expected Expected Worth Expected Worth of Expected Worth of Expected Worth of
Variable Row Colum Value Distribution Error of Sample Data Error Sample Data Error Sample Data Error Sample Data
Qso 2 147,400 73,700 504.1 98.4 10,311.9 2,929.3 35.1 6.9 14.7 3.5
RSC b.si 4 13 102,105 61,500 420.2 84.2 9,544.5 2,746.2 45.5 9.1 10.1 1.9
H ™™ 34 10 2,610 160 105.8 73.0 179.7 150.5 3.4 2.4 0.0 0.0
Q 40 11 124,100 43,400 295.4 52.9 1,891.3 518.5 14.3 2.6 4.1 1.5
Q 37 13 115,300 40,300 273.9 49.1 1,319.8 361.8 9.7 1.7 1.8 0.92
T 45 11 135,000 540, 900 232.9 44.0 1,375.5 408. 3 9.3 1.6 2.7 1.1
Q 5 4 69,800 24,500 169.8 30.4 619.8 170.0 4.5 0.80 0.14 0.04
RSC si 50 8 44,200 22,100 150.5 29.4 1,419.3 403.1 10.9 2.1 4.6 1.9
Q 32 13 101,500 25,250 169.0 28.9 503.8 133.6 7.1 1.2 0.41 0.07
T 40 11 30,000 170,000 157.9 27.6 852.9 282.6 9.3 1.5 1.8 0.67
T 16 22 3,800 100,000 258.1 22.44 2,662.8 368.2 14.6 1.3 4.5 0.36
Rb 29 17 25,800 15,500 99.3 19.9 264.0 76.0 7.3 1.5 0.40 0.13
R.SC 13 16 29,500 11,800 103.4 19.1 159.8 44.4 3.6 0.67 0.0 0.0
RSC b.si 12 22 21,100 12,650 90.5 18.2 444.3 127.9 10.2 2.1 0.81 0.35
=" 11 17 12,500 80,000 96.4 17.8 943.7 303.3 15.7 2.9 1.6 0.38
T 15 27 11,300 1,000,000 310.6 17.5 20,716.5 3,161.8 27.5 2.6 5.7 0.33
T 44 11 222,500 150,000 97.0 16.3 200.9 50.6 3.0 0.50 0.0 0.0
Q 18 12 51,400 12,750 94.4 16.1 193.1 51.2 4.0 0.69 0.0 0.0
H 42 16 2,806 50 33.3 16.1 18.4 12.4 0.91 0.44 0.0 0.0
Q 17 19 43,200 10, 700 94.0 16.1 126.5 33.5 2.1 0.37 0.0 0.0
R 11 17 16,800 10,100 77.8 15.6 126.6 116.6 12.1 2.4 0.67 0.30
T 4 3 178,700 175,000 170.7 14.5 1,532.2 214.4 20.2 1.8 2.6 0.19
T 18 12 85,000 200,000 127.6 14.2 280.9 56.3 5.2 0.58 0.071 0.0016
T 32 13 52,500 50,000 60.3 10.0 101.9 27.9 3.7 0.62 0.0 0.0
T 2 6 13,100 80,000 50.9 7.7 342.3 116.9 10.2 1.8 0.54 0.09
T 20 14 4,500 49,000 60,8 9.7 309.8 101.7 8.1 1.3 0.54 0.22
T 13 22 85,000 175,000 87.9 9.4 361.1 57.2 9.0 0.85 0.95 0.16
S 32 13 0.153 0.07 50.9 7.7 36.9 8.9 1.4 0.22 0.0 0.0
H 16 22 2,459 60 43.7 7.2 25.9 6.4 0.91 0.15 0.0 0.0
T 12 9 222,500 225,000 42.7 7.0 34.0 9.4 1.7 Q.25 0.0 0.0
H 31 11 2,540 60 42.6 7.0 25.8 6.4 1.5 0.24 0.0 0.0
S 27 16 0. 30 0.11 35.1 6.9 32.8 9.8 2.3 0.46 0.0 0.0
H 3 11 2,277 60 41.1 6.8 33.3 8.3 1.4 0.23 0.0 0.0
S 40 11 0.153 0.09 40.6 6.2 45.2 9.6 2.1 0.19 0.0 0.0
R 25 12 12,600 5,040 32.0 5.9 17.9 5.0 1.1 0.21 0.0 0.0
s°¢ 12 19 0.153 0.09 34.6 5.7 42.7 10.6 2.9 0.45 0.0 0.0
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Table 8--continued

Location Standard Absolute Value of Error Square of Error, in feet Maximum Nodal Error, Number of Nodes in Error by
in Model Deviation in feet per 509 Nodes squared per 509 nodes in feet More than 10 feet
of the Expected Expected Expected
Model Prior Expected Expected Worth  Expected Worth of Expected Worth of Expected Worth of

Variable Row Columm  Value Distribution Error of Sample Data Error Sample Data Error Sample Data Error Sample Data
R 8 6 10,600 4,240 30.2 5.6 13.1 3.6 0.71 0.13 0.0 0.0
H°¢ 11 17 2,430 40 32.5 5.4 16.0 4.0 1.1 0.19 0.0 0.0
H 40 11 2,688 25 30.1 5.0 22.8 5.6 .6 0.26 0.0 0.0
S 5 4 0.153 0.07 28.9 4.6 55.9 14.1 3.2 0.50 0.0 0.0
S 22 14 0.30 0.09 22.6 4.4 13.4 3.9 1.6 0.32 0.0 0.0
H 8 5 2,063 50 67.6 4.3 142.5 13.3 .4 0.28 0.0 0.0
R 46 10 8,350 3,320 22.6 4.2 15.0 4.2 0.81 0.15 0.0 0.0
s°¢ 11 17 0.153 0.09 24.9 4.1 40.5 10.1 3.8 0.62 0.0 0.0
S 13 18 0.153 0.07 26.1 4.0 10.3 2.5 0.87 0.13 0.0 0.0
S 24 16 0.25 0.10 24.7 4.0 17.6 4.5 1.8 0.29 0.0 0.0
S 23 14 0.26 0.08 25.9 3.9 12.4 3.0 0.99 0.15 0.0 0.0
H 42 12 2,755 20 41.8 3.8 66.9 9.6 3.3 0.30 0.0 0.0
H 15 21 2,430 55 49.5 3.5 37.5 3.9 1.7 0.12 0.0 0.0
T 5 4 250,000 150,000 61.2 3.3 115.8 10.0 2.8 0.15 0.0 0.0
S 19 13 0.153 0.07 21.3 3.2 9.1 2.2 0.85 0.13 0.0 0.0
S 22 21 0.153 0.09 19.4 3.2 18.7 4.6 1.4 0.22 0.0 0.0
H 18 12 2,318 20 18.4 3.0 5.5 1.4 0.84 0.14 0.0 0.0
S 46 10 0.153 0.07 19.2 2.9 16.5 4.0 1.4 0.20 0.0 0.0
S 13 8 0.075 0.08 25.7 2.9 54.7 7.2 3.9 . 0.45 0.0 0.0
H 32 13 2,550 36 30.1 2.8 12.7 1.8 1.0 0.09 0.0 0.0
S 18 12 0.153 0.07 16.8 2.6 11.6 2.9 1.5 0.23 0.0 0.0
S 13 22 0.153 0.09 15.8 2.6 11.9 3.0 1.4 0.23 0.0 0.0
H 21 18 2,402 50 36.5 2.3 16.7 1.6 0.85 0.05 0.0 0.0
S 5 12 0.153 0.09 16.1 2.3 8.5 1.7 1.1 0.13 0.0 0.0
H 13 22 2,503 15 13.5 2.2 5.1 1.3 0.67 0.11 0.0 0.0
T 29 14 250,000 250,000 15.1 2.0 7.1 1.6 0.88 0.12 0.0 0.0
S 16 20 0.075 0.06 18.1 2.0 5.5 0.88 0.56 0.05 0.0 0.0
H 5 4 1,990 15 58.2 1.6 204.3 6.5 7.5 0.20 0.55 0.04
H 17 22 2,430 45 33.0 1.3 14.3 0.71 0.78 0.03 0.0 0.0
Q 13 22 3,840 950 7.0 1.2 1.8 0.48 0.43 0.07 0.0 0.0
T 23 22 75,000 55,000 1.70 0.27 0.24 0.06 0.29 0.05 0.0 0.0
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Table 9. Means and Standard Deviations of Results from the ''Large-Error'' Category of Tests.
Absolute Value Maximum Nodal Number of Nodes with Er- Number of Nodes with Er- Number of Nodes with Er-
of Error Square of Error Error rors More than 5 feet rors More than 10 feet rors More than 25 feet
Variable EOL EWSD PCIMP EOL EWSD  PCIMP EOL EWSD  PCIMP EOL EWSD PCIMP EOL EWSD PCIMP EOL EWSD PCIMP
Ug 25.9 4.1 15.6 24.7 5.7 23.6 1.8 0.28 14.9 0.10 0.03 11.4 0.0 0.0 0.0 0.0 0.0 0.0
og 9.3 1.6 2.2 17.0 3.9 4.0 1.0 0.16 2.8 0.16 0.058 21.6 0.0 0.0 0.0 0.0 0.0 0.0
Br 114.9 14.1 13.6 1,862.3 323.1 23.5 8.8 1.1 13.7 4.0 0.79 22.1 1.3 0.22 12.6 0.26 0.043 7.9
O 89.2 10.8 4.6 5,078.7 769.4 8.1 7.6 0.88 4.0 4.5 0.96 16.9 1.8 0.31 15.4 0.63 0.080 14.2
My 42.4 9.1 17.4 51.7 14.6 24.4 2.0 0.33 17.4 0.27 0.074 9.1 0.034 0.003 0.49 0.0 0.0 0.0
oy 21.6 17.4 17.3 64.1 36.5 21.7 1.8 0.55 17.3 0.56 0.21 25.1 0.14 0.011 2.0 0.0 0.0 0.0
”QR 154.9 29.1 18.5 1,603.0 454.4 27.7 10.0 1.9 18.5 6.4 1.5 20.4 2.2 0.62 19.8 0.44 0.15 12.0
OQR 141.4 27.5 1.1 3,184.3 910.4 0.86 12.4 2.5 1.1 8.1 1.7 15.7 4.2 1.00 19.0 1.2 0.39 24.3

18 samples of S, 16 samples of T, 17 samples of H, and 16 samples of QR  (discharge or recharge).
EOL - expected opportunity loss (expected error).

EWSD - expected worth of sample data.

PCIMP - percent improvement.

Mean - u.

Standard deviation - o.
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error is 155 feet and mean expected sample worth is 29 feet. For the
squared error criterion, discharge/recharge has the second largest
expected error; and for nodes with errors more than five feet, it has
the second largest percent improvement.

Transmissivity has the second largest mean expected error and
mean expected sample worth for all criteria except squared error, where
it has the largest mean expected error. For absolute value of error,
mean expected error and sample worth for T are 115 and 14 feet, respec-
tively. However, transmissivity also has the lowest mean percent im-
provement for absolute error (13.6%), squared error and maximum nodal
error, which is because of the relatively large uncertainties, re-
flected in the large standard deviations of the likelihood functions,
associated with transmissivity.

Together, discharge/recharge and transmissivity dominated the
results in tables 8 and 9. Mean expected errors and sample worths for
these two variables are as much as or more than an order of magnitude
higher than for initial water level and storage coefficient for the
criteria of squared error and numbers of nodes with errors more than
5, 10, and 25 feet.

Initial water level ranks third in both mean expected error
and mean expected worth of sample data for all error criteria except
nodes in error more than 25 feet, where results are zero for both
initial water level and storage coefficient. For absolute value of

error, for example, mean expected error and sample worth are 42 and 9
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feet, respectively. Initial water level also has the second highest
mean percent improvement for the first three error criteria.

Storage coefficient has the lowest mean expected error and
sample worth and next-to-lowest percent improvement for all of the er-
ror criteria for which results were non-zero. For absolute value of
error, mean expected error and sample worth for S are 26 and 4 feet,
respectively.

Results of testing variables in the small-error category are
given in table 10. The make-up of this table is the same as for table
8. The data show that for the error criteria tabulated, transmissivity
and initial water level generally have the largest expected errors and,
to a lesser extent, the largest expected sample worths; while storage
coefficient and discharge/recharge have smaller values. For the small-
error category the maximum expected error and sample worth for absolute
value of error are 73 and 12 feet, respectively, over the 509 nodes
of the model, associated with the initial water level at node (11,10).
However, for this category all the expected errors and sample worths
are of the same order of magnitude. Means and standard deviations for
results under five error criteria (all results for the sixth, nodes in
error more than 25 feet, are zero) were computed for each variable type
(table 11). For these computations, however, there were only six tests
per variable, so the computed statistics may not be applicable to other

than the data used to compute them.
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Table 10. Results of Tests on Variables Which Were Not Expected to Show
Large Expected Errors. -- Data arranged in order of descend-
ing worth of sample data for absolute value of error; S -
coefficient of storage, T - transmissivity, H - initial water
level, Q - discharge, and R - recharge (sc - stream-channel,
b - boundary, si - subsurface inflow). T in gallons per day
per foot, H in feet above mean sea level, and Q and R in acre-
feet per 20 years.

Location Standard Absolute Value of Error,
in Model Deviation in feet per 509 nodes
of the
Model Prior Expected Expected Worth

Variable Row Column Value Distribution Error of Sample Data

H 11 10 2,165 15 73.0 12.0
R 11 10 13,100 5,240 42.1 7.8
T 46 10 195,000 50,000 40.1 6.6
H 4 3 1,960 10 40.2 6.6
S 6 8 0.153 0.09  38.5 6.4
T 19 21 15,000 20,000 65.5 5.4
R 2 9 6,320 3,780 25.7 5.2
T 5 10 41, 300 30,000 50.5 4.8
H 19 16 2,340 30 28.2 4.6
T 11 10 250,000 100,000 27.4 4.5
R 29 13 7,680 3,080 20.0 3.7
S 11 10 0.153 0.07  20.7 3.3
S 19 16 - 0.112 0.07  17.2 3.3
S 38 17 0.156 0.09  18.2 3.0
Q 48 10 6,420 2,240 15.3 2.7
T 35 14 63,800 35,000 32.9 2.6
T 19 16 52,500 50,000 47.4 2.5
H 29 14 2,530 12 47.9 2.3
Q 15 23 6,780 1,700 12.2 2.1
Q 19 16 5,270 1,326 11.1 1.9
S 48 11 0.153 0.09  10.6 1.5
S 16 24 0.153 0.09 3.3 0.41
H 15 23 2,510 15 11.6 0.31
H 39 13 2,674 6 9.3 0.25
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Table 11. Means and Standard Deviations of Results from the ''Small-Error' Category of Tests.
Absolute Value Maximum Nodal Number of Nodes with Er- Number of Nodes with Er- Number of Nodes w@th Er-
of Error Square of Error Error rors More than 5 feet rors More than 10 feet rors More than 25 feet
Variable EOL  EWSD PCIMP EOL EWSD PCIMP  EOL  EWSD PCIMP  EOL EWSD  PCIMP EOL EWSD  PCIMP EOL EWSD  PCIMP
Mg 18.1 3.0 15.6 21.5 5.5 23.3 1.6 0.24 15.2  0.10 0.058 23.6 0.0 0.0 0.0 (all zero)
og 11.8 2.0 2.3 25.5 6.7 5.4 0.87 0.13 2.5 0.18 0.12 36.8 0.0 0.0 0.0
up 44.0 4.40 10.6 64.5 10.2 17.2 2.7 0.24 10.7 0.32 0.043 9.6 0.046 0.008 5.3
O 13.6 1.6 4.7 53.6 9.1 7.0 2.0 0.13 4.7 0.46 0.058 16.8 0.082 0.016 8.6
Hy 35.0 4.36 9.9 46.5 10.0 14.5 2.2 0.29 9.9 0.23 0.081 13.9 0.024 0.012 8.6
oy 24.0 4.5 7.2 56.2 14.5 11.3 1.9 0.35 7.2 0.50 0.17 22.1 0.058 0.030 21.0
QR 21.1 3.9 18.2 18.5 5.2 27.5 1.4 0.27 18.2 0.067 0.021 5.2 0.023 0.018 13.0
%R 11.6 2.2 1.1 23.8 6.9 0.88 1.8 0.37 1.1 0.16 0.051 12.8 0.055 0.043  31.7

6 samples per variable type.

EOL - expected opportunity loss

EWSD - expected worth of sample

PCIMP - percent improvement.

Mean - u.

Standard deviation - o.

(expected error).

data.
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Transmissivity has the largest mean expected error for all er-
ror criteria and the largest mean expected worth of sample data for
the first two error criteria. For example, the mean expected error
and sample worth for T for absolute error are 44 and 4 feet, respec-
tively. Similar to results in table 9, transmissivity has a low mean
percent improvement, ranking third for all error criteria.

Initial water level has the second largest mean expected er-
ror and either the second largest or largest mean expected sample worth
over all error criteria. The mean expected error and sample worth for
absolute error are 35 and 4 feet, respectively. However, initial water
level ranks lowest in mean percent improvement for the first three
criteria.

Storage coefficient ranks lowest in mean expected error and
sample worth under the criterion of absolute value of error, and next
to lawest for the criterion of squared error. For example, for ab-
solute error, S has a mean expected error of 18 feet and a mean ex-
pected sample worth of 3 feet. However, it ranks second or first in
mean percent improvement for all error criteria under which its results
were non-zero. This reflects the fact that although storage coef-
ficient generally has a small expected error, its expected sample worth
is generally intermediate in magnitude.

Discharge/recharge has the next-lowest mean expected error and
sample worth for the absolute error criterion and the lowest values

for the criteria squared error and number of nodes in error more than

10 feet. Mean expected error and sample worth for the absolute error



146
criterion are 21 and 4 feet, respectively. Discharge/recharge, how-
ever, also has a high mean percent improvement, ranking first under
four of the five error criteria. This is also a result of combining
a small expected error with a moderately large sample worth.

The above conclusions on the results of both categories of
tests probably are applicable only to the Tucson basin model, and may
apply only to the specific nodes tested.

In summary, when discharge or recharge at a node is estimated
to be large, more than about 1,000 -2,000 acre-ft/yr, the expected er-
ror and expected reduction in error with sampling are larger than for
any other variable. However, for smaller values of discharge/recharge,
expected errors and sample worths can be the lowest of any variable.
Transmissivity commonly yields a large expected error, especially if
the prior standard deviation is larger than the variable value. Trans-
missivity also yields fairly large values of expected reduction in
error with sampling; especially if the standard deviations of the like-
lihood functions are less than the values of the variable, which in-
dicates that T can be sampled with relatively little uncertainty. Ini-
tial water level has intermediate values of expected error and sample
worth, which can be large if the prior standard deviation is large --
more than 50 feet -- and the standard deviation of the likelihood
function is smaller. However, results also seem to depend on basin
dynamics or other factors, as several values of initial water level

with low -- less than 20 feet -- prior standard deviations have
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relatively large expected errors. Storage coefficients commonly have
low expected errors and expected reductions in error.

An analysis of expected errors and expected worth of sample
data such as this, however, is somewhat misleading in at least two
respects. First, it evaluates expected errors in predicted water
levels over the entire model due to an error in one variable at one
node, with all other variables assumed true. This analysis, then, does
not indicate what prediction errors might be due to errors in all var-
iables at all nodes, which would be more realistic. At present, a
study of errors in all variables using the identical approach described
here would use a prohibitive amount of computer time because of the in-
numerable combinations of possible errors that would have to be inves-
tigated. For example, if all five variables were considered in error
at each of the 509 model nodes, and seven variable values were assumed

2,545 possible combina-

for each discrete distribution, there would be 7
tions of errors.

Secondly, extreme errors in predicted water levels, such as
are simulated using the end members of the discrete distribution of
each tested variable, likely would not be present in the model except
during the early stages of calibration. Calibration would reduce these
extreme errors through adjustment of model parameters, initial condi-
tions, and input/output. Prediction errors then would be much smaller
at the node which contained the data error, but might be larger at

other nodes due to the effect of the adjustments. If the model had not

been calibrated, however, or if it had been calibrated over only one
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time period, errors in variable values as large as those represented
by the end members of the frequency distributions would still remain
in the model. In addition, the extreme values of the distribution are
to a large extent discounted because they are assumed to have a low
probability, commonly less than 0.10.

The results of this study are not in agreement with the con-
clusions of Bibby (1971), who made a statistical study of the effects
of errors in model variables on errors in predicted water levels. The
chief difference is that Bibby found that errors in initial water levels
were the major cause of errors in predicted levels, while this study
indicated that errors in initial water levels commonly were less sig-
nificant than errors in transmissivity and discharge/recharge. Sev-
eral factors may cause the difference in results, specifically, (1) the
difference in the length of time simulated, (2) differences in assumed
ranges in error for the variables, and (3) differences in the methods
used and their assumptions.

Bibby simulated time periods on the order of months, while the
writer simulated a 20-year period. The short time periods may have
influenced Bibby's results markedly, because it seems intuitive that
errors in initial water levels would have a great effect during the
early part of a simulation period, but that the effect would be damped
over long times. Bibby pointed out (1971, p. 60) that his results may
not hold for longer time periods. Some of the results of this study

(see the section which follows, ''Sensitivity of Results to Modification
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of the Assumptions of the Method'') suggest that errors in initial
water levels are more significant during early times.

Differences in assumed ranges in error may also be a signi-
ficant source of the difference in results. For example, Bibby (1971,
table A.1.1a) assumed, in one of his tests, a maximum standard devia-
tion for hydraulic conductivity of 35 ft/day in relation to a mean
value of 100 ft/day; and a maximum standard deviation for aquifer thick-
ness of 6.25 feet in relation to a mean value of 75 feet. These assump-
tions are approximately equivalent to a maximum standard deviation for
transmissivity (as T = hydraulic conductivity times aquifer thickness)
of about 220 sq ft/day in relation to a mean value of 7,500 sq ft/day.
The standard deviation of T is thus an order of magnitude less than its
mean. In contrast, in this study standard deviations of T are commonly
of the same order of magnitude as the means. For initial water level,
however, the standard deviations used by Bibby are comparable to those
used in this study. These differences might be much of the reason why
errors in variables other than initial water level were more significant
in the study reported here. Bibby (1971, p. 64) was careful to point
out, however, that his results are applicable only to the range of er-
rors he considered. This is of course true for this study as well.

The results of this study may be atypical because of the rela-
tively large uncertainty in values of T for the Tucson basin. Trans-
missivity likely is uncertain there because T values were obtained from
short-temm aquifer tests in an unconfined aquifer in which delayed

drainage is significant. However, this illustrates the fact that results
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obtained from generalized or idealized models may not apply to every

ground-water basin.

Sensitivity of Results to Modification of
the Assumptions of the Method

Many gross assumptions and simplifications were made in order
to estimate worth of data, chiefly in discretizing the distribution of
each variable; in choosing the type of distribution function; and in
estimating the parameters, primarily the standard deviations, of the
distributions. In an attempt to evaluate the effects of these assump-
tions, several sensitivity tests of limited extent were made. These
tests included: (a) computing expected errors and sample worths at the
end of each time-step and summing over all steps, instead of computing
results only at the end of the simulation period, or essentially ap-
proximating integration over time; (b) computing results using a vari-
able distribution made up of five elements instead of the standard seven;
(c and d) computing the seven elements of the variable distribution
more closely spaced and less closely spaced than those of the original
distribution; (e) computing results using prior standard deviations and
standard deviations of the likelihood functions that were an arbitrary
80 percent as large as the original values; (f) computing results for
transmissivities using likelihood standard deviations that represented
sampling by aquifer tests of several days duration instead of the ori-
ginal several hours duration, the latter of which is equivalent to the
tests that have been made in the Tucson basin; and (g) computing results

for transmissivities assuming they are normally distributed instead
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of log-normally. Results of these sensitivity tests, for the first
three error criteria only, are given in tables 12a through 12g, and
nodes at which these tests were made are identified on figure 9. The
same eight variables, of which four were selected from the large-error
category of tests and four from the small-error category, were used in
sensitivity tests A, C, D, and E. Some different variables, when neces-
sary, were substituted in tests B, F, and G.

Results fromthe sensitivity tests indicate that the method is
quite sensitive to such assumptions as the type of distribution func-
tion, the number of elements in the function, the spacing of the ele-
ments, and the differences in assumed standard deviations for prior
distributions and likelihood functions. In addition, the expected
errors and sample worths are much different if results are computed over
all-time steps, as was anticipated. A summary of mean values of dif-
ferences between original test data and sensitivity-test data is given
in table 13.

For test A, mean expected errors and sample worths obtained by
suming over all three time-steps are more than twice the values com-
puted at the end of the period for the absolute error criterion, and
almost six times the original values for the squared error criterion.
For individual variable types, mean expected errors and sample worths
(these means were computed, however, from only two samples per vari-
able) for the absolute error criterion range from about 1.6 (discharge/
recharge) to about 3.1 (initial water level) times the original means,

and mean expected errors and sample worths for the squared error
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Table 12. Results of Sensitivity Tests
Location Number Standard Absolute Value of Error, Square of Error, in feet Maximum Nodal Error, Number of Nodes in Error
in Model of Table Deviation in feet per 509 Nodes Squared per 509 Nodes in feet by more than 10 feet
Containing of the
Standard Likelihood Expected Expected Worth Expected Expected Worth  Expected Expected Worth Expected Expected Worth
Variable Row  Column Results Function Error of Sample Data Error of Sample Data Error of Sample Data Error of Sample Data
A. Tests done by computing expected errors and sample worths at the end of each time-step
S 32 13 8 99.14 15.2 85.3 20.5
T 16 22 8 491.5 38.3 5,883.0 755.8
H 34 10 8 319.1 220.1 4,925.8 4,125.7
Rb 4 13 8 657.2 131.8 14,914.7 4,291.3  ------ Not computed ------ ~  ----- Not computed -----
S 19 16 10 25.8 4.90 7.80 2.17
T 19 16 10 94.5 4.97 171.8 13.3
H 19 16 10 88.0 14.5 126.0 31.3
Q 19 16 10 17.8 3.06 3.43 0.91
B. Tests done using 5 alternate variable values
T 11 17 8 83.4 8.94 713.3 143.0 13.6 1.44 1.32 0.14
T 12 9 8 35.9 3.48 23.1 3.30 1.39 0.12 0.0 0.0
T 18 12 8 110.1 5.83 207.3 13.2 4.52 0.24 0.15 0.065
S 5 4 8 24.7 2.19 40.6 4,82 2.72 0.24 0.0 0.0
H 8 5 8 57.3 0.91 102.1 0.0 3.75 0.060 0.0 0.0
Q 5 4 8 144.0 16.5 444.1 66.4 3.79 0.43 0.0 0.0
R 11 17 8 66.8 9.3 295.6 61.4 10.4 1.44 0.74 0.014
RCS 3 2 8 427.8 54.7 7,388.2 1,336.1 29.8 3.81 11.3 1.98
C. Tests done by multiplying the model value by n x 0.40 xo__(n = 1,2,3) to obtain alternate variable values (o is the prior standard deviation) (the factor 0.40
is 80% of the original) pr pr
26.9 4.47 1.18 0.14 0.0 0.0
S 32 13 8 44.6 4.90 1,579.3 114.8 12.5 0.77 2.45 0.15
T 16 22 8 207.6 11.7 132.4 106.0 3.00 1.91 0.0 0.0
H 34 10 8 92.6 58.8 7,186.1 1,682.8 40.3 6.46 9.21 1.59
Rb 4 13 8 371.9 59.6 4.08 0.84 0.63 0.087 0.0 0.0
S 19 16 10 15.3 2.13 57.0 1.38 4.21 0.10 0.0 0.0
T 19 16 10 41.7 1.00 13.3 2.18 1.22 0.13 0.0 0.0
H 19 16 10 24.6 2.63 1.62 0.29 0.42 0.049 0.0 0.0
Q 19 16 10 9.71 1.12
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Table 12. Results of Sensitivity Tests--continued

Location Number Standard Absolute Value of Error, Square of Error, in feet Maximum Nodal Error, Number of Nodes in Error
in Model of Table Deviation in feet per 509 Nodes Squared per 509 Nodes in feet by more than 10 feet
Containing of the
Standard Likelihood Expected Expected Worth Expected Expected Worth Expected Expected Worth Expected Expected Worth

Variable Row  Column Results Function Error of Sample Data Error of Sample Data Error of Sample Data Error of Sample Data
D. Tests done by multiplying the model value by n x 0.60 x:gpr(n =1,2,3) to obtain alternate variable values (the factor 0.60 is 120% of original)

S 32 13 8 55.3 11.2 46.1 14.3 1.54 0.29 0.0 0.0

T 16 22 8 303.2 31.2 4,508.0 815.0 16.6 2.01 5.37 0.52

H 34 10 8 114.5 83.4 219.0 187.2 3.71 2.70 0.0 0.0

R 4 13 8 438.4 93.6 10,806.4 3,398.9 47.5 10.1 10.9 2.29

S 19 16 10 17.8 3.78 5.96 1.91 0.73 0.15 0.0 0.0

T 19 16 10 51.0 3.98 90.9 11.2 5.11 0.40 0.10 0.033

H 19 16 10 30.5 6.31 21.9 6.95 1.51 0.31 0.0 0.0

Q 19 16 10 12.0 2.51 2.68 0.87 0.52 0.11 0.0 0.0
E. Tests performed using standard deviations (for both prior distributions and likelihood functions) that were 80% of original estimates

S 32 13 8 40.8 6.74 23.3 5.86 1.07 0.18 0.0 0.0

T 16 22 8 233.3 19.9 2,132.9 299.9 13.5 1.24 4.01 0.64

H 34 10 8 84.7 58.4 115.0 96.3 2.74 1.89 0.0 0.0

R 4 13 8 340.1 65.7 6,241.6 1,761.5 36.8 7.12 8.41 1.72

S 19 16 10 13.9 2.8 3.53 1.08 0.57 0.12 0.0 0.0

T 19 16 10 40.4 1.91 55.4 3.54 4.07 0.19 0.0 0.0

H 19 16 10 22.5 3.71 11.5 2.86 1.12 0.18 0.0 0.0

Q 19 16 10 8.87 1.49 1.41 0.37 0.39 0.065 0.0 0.0
F. Tests on transmissivities using an estimated likelihood function corresponding to an aquifer test of several days duration

T 4 3 8 81,000 Same 74.3 Same 955.6 Same 8.97 Same 1.47

T 16 22 8 3,800 234.8 2,494.0 13.2 4.25

T 18 12 8 46,500 as 84.4 as 228.9 as 3.46 as 0.071

T 29 14 8 104,000 7.30 4.8 0.43 0.0

T 5 10 10 26,000 Original 11.0 Original 25.2 Original 0.59 Original 0.0

T 19 16 10 32,000 15.6 37.0 1.57 0.058

T 15 27 8 8,900 308.0 20,696.8 27.2 5.69

T 45 11 8 66,000 190.3 1,253.7 7.53 2.70



Table 12. Results of Sensitivity Tests--continued

154

Location Number Standard Absolute Value of Error, Square of Error, in feet Maximum Nodal Error, Number of Nodes in Error
in Model of Table Deviation in feet per 509 Nodes Squared per 509 Nodes in feet by more than 10 feet
Containing of the
Standard Likelihood Expected Expected Worth Expected Expected Worth Expected Expected Worth Expected Expected Worth
Variable Row Colum  Results Function Error of Sample Data Error of Sample Data Error of Sample Data Error of Sample Data
G. Tests on transmissivities using a normal distribution
T 11 10 10 33.0 5.91 12.8 3.68 0.81 0.14 0.0 0.0
T 35 14 10 42.1 3.89 35.0 6.44 1.75 0.16 0.0 0.0
T 46 10 10 45.8 7.80 64.8 17.1 1.73 0.30 0.0 0.0
T 5 4 8 79.3 5.37 200.2 31.0 3.80 0.26 0.0 0.0
T 5 10 10 60.3 6.00 99.8 16.6 3.20 0.32 0.0 0.0
T 19 16 10 58.3 4.61 126.7 21.8 5.96 0.47 0.18 0.0025
T 44 11 8 123.9 21.0 349.9 99.5 3.76 0.64 0.0 0.0
T 23 22 8 2.0 0.34 0.41 0.11 0.38 0.06 0.0 0.0
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criterion range from about 1.6 (discharge/recharge) to as much as 17.2
(initial water levels) times original means. Initial water levels
probably have much higher expected errors because during early time-
steps the errors in water levels are not damped as much as they are at
the end of the simulation period.

For test B, mean expected errors computed using five elements
per discrete distribution range from 15 to 28 percent below original
values for the three error criteria tabulated; and mean expected worths
of sample data range from 53 to 65 percent below original values.

These different results suggest that five elements are not sufficient
to describe the distributions. Additional tests should be run to see
how many elements are necessary to stabilize the results.

For results computed using seven elements spaced more closely
than the original (test C), mean expected errors are from 12 to 28 per-
cent below, and mean expected sample worths are from 37 to 51 percent
below original values. Results computed using less closely-spaced
elements (test D), yielded mean expected errors from 8 to 26 percent
above, and mean expected sample worths from 32 to 58 percent above
original values. The probabilities for the more widely-spaced elements
in the outer parts of the distribution are lower, or for more closely-
spaced elements are higher, than for the original elements. These dif-
ferences in probabilities should counter-balance the effects of
differences in the element values and yield expected errors and sample

worths that are about the same as the originals. The fact that
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significant differences exist shows that the discretization did not
approximate the distributions well.

For test E, mean expected errors computed with smaller stan-
dard deviations for likelihood functions for transmissivities -- the
modified standard deviations averaged about a quarter as large in
arithmetic units or a third as large in logarithmic units, as original
estimates -- are much higher than the original results (test F),
ranging from more than 4 to about 7 times original values for the three
error criteria tabulated. If future sampling for transmissivity were
to be done by aquifer tests of several days duration, providing assumed
standard deviations were reasonably correct, the worth of additional
data on transmissivity would be significantly higher than for the other
three variables.

For results computed using a normal distribution for trans-
missivity (test G) mean expected errors are from 23 to 55 percent
higher, and mean expected sample worths are from 41 to 115 percent
higher, than original values. A log-normal distribution is asymmetric,
towards high values of the variable, compared to a normal distribution
with an equivalent mean and standard deviation. Elements of a discrete
set of alternate values based on the normal distribution, then, will
be of much smaller magnitude below the mean and of slightly larger mag-
nitude above the mean. This larger spread of alternate, or erroneous,
values associated with the normal distribution results in larger ex-

pected errors and sample worths.
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The sensitivity tests indicate that computed values of expected
error, and especially of expected worth of sample data, depend on the
assumptions and techniques of the method. Therefore these values likely
are correct only within an order of magnitude. As used in this disser-
tation, the term '"within an order of magnitude' implies that the true
value lies within a range from a tenth to ten times the estimated val-
ue. However, the sensitivity tests also suggest that the relative
rankings of the magnitude of expected errors and sample worths remain
fairly constant. Table 14 shows a comparison of the rankings, for ab-
solute value of error only, for expected error and sample worth of
original results against sensitivity-test results. Seven sensitiv-
ity tests of eight variables each were conducted; for 48 of these tests
both an expected error and sample worth were computed; whereas for
eight tests only expected sample worth was computed. Thus 104 pos-
sible rankings could change. Of these 104 rankings 86 stayed the same,
16 changed only one position, and 2 changed two positions.

Worth-of-Data Computations for an
Idealized Management Problem

As an illustration of the potential application of worth-of-
data studies, an idealized management problem was formulated for the
Tucson basin. Two of the major users of ground water in the basin are
the city of Tucson and the mining companies -- Pima Mining Co.,
American Smelting and Refining Co., Duval Corp., and the Anaconda Co. --
who pump water for mining operations in the southern part of the basin.

Predictions are that the mining companies will increase their pumping



159

88 88 TIT TIT 9. %% $¢€ $€ SS 227 727 SS L9 99 v+v LU/
(zz‘s)lL (TTv¥)L (9T‘6T).L (0T‘S)L (ts)L (0T9%) L (F1°sS)L (o1tDl

adueyp d3uep a3ueyd a3ue P adueyd ad3ueyd aduep aduep

¢ 1 ON T¢ ON 9L ON L9 ON 8 8 ON V¥ § ON ¢ ¢ ON S ¥ ON

(T1°sv)l  (Lz°ST) L (9T°6T) L (01‘s9)L (161 (Z1°ST)L (2Z91) 1L VYL
IT TT1 $v SS 7227 27 88 99 [LL.L 88 SS €€ 99 L[ vS v+

(2¢s)°%M) Q11D ™ (+5)0 (s‘8) H (bs)s (Z1°8T) L (6 ‘2T)L (LTTT)L
88 88 SS 99 L. SS 99 LL. IT 11 227 €S €SS 727 vtv vt
88 88 SS 99 9. SS L9 LL TIT TITI 27 S$S €S 27 vv v
L8 88 SS 99 8. SS 99 L/ TIT 11 27 €€ $S 727 v+v tvv¥
8¢ 88 SS 99 9/ SS L9 L. 7T TITI 127 €S S 727 vv vt

271

471

4zt

R

azt
Al
Vil

¢t <21 <¢1 ¢1 ¢1 ¢1t ¢1 ¢1 <¢1 ¢t ¢t1 <21 Z¢1 21 271 ¢CT1
asmd 104 asmd 104 dsmd  I0d dSMd 104 dsMd 104 dsMd 104 gsmd 109 dsmd 109

(91‘61)0 (9T ‘6T)H (9T‘6T)L (9T°61)S 1) N (0T‘v$IH (zz91)L (€1°2¢)S

BJEp OTdWES JO Y3IOM PaIdadxa-qSmi
¢ (ssor £A31unjaoddo peidadxs) Joxxs pojdadxa-T0q ‘Blep 3S93-AITATITSUSS JO SFUINUBRL - 7
‘ejep TeUISTIO JO SSUIuel - [ ¢(wNTo) ‘MOY) PTIH [OPOW UT SUOTIBIOT PUB Palsa] SSTJeTIep

ele( 3S9] TBUI3TI) 9yl JO sSuruey

UITM SS9 AJTATITSUSS 9Y] WOIJ JOXIg JO Sanep 9InJosqy Jo sJuryuey jo suostaedwo) -y 9IqeL



160
sharply during the period 1970-1975 (J. F. Rauscher, written communi-
cation, city of Tucson Department of Water and Sewers 1968; Mark Wilmer,
written commmication to the city of Tucson Department of Water and
Sewers 1970; and Clausen 1970, p. 85).

The city of Tucson has a large well-field, the Santa Cruz well-
field south of the city, from which it pumped about 30 percent of its
total supply in fiscal year 1970. The city should be interested in how
much the predicted increase in pumping by the mines during 1970-1989
will affect water levels in the Santa Cruz field in 1990. However,
estimates of future pumping for the mines are uncertain because of fac-
tors such as uncertain estimates of future ore production, due to un-
expected changes in copper prices or environmental legislation result-
ing in curtailing production, etc.; or the amount of water that will
be recycled. The simplified management problem posed here is: what
is the worth of additional data on pumpage -- actually the worth of
additional studies made to estimate future pumpage, as actual data
cannot be collected -- to the city of Tucson in terms of reducing er-
rors in predicted water levels?

Figure 10 shows the approximate location of pumping for mining
and the nodes in which the Santa Cruz well-field is located. Pumping
for mining occurs in three general areas, one northwest of Sahuarita,
one southwest of Sahuarita, and one southwest of Continental. Table
15A lists the 17 nodes in which pumping for mining occurs and gives the
total estimated 1970-89 pumpage for each node. More than half of the

pumpage will occur northwest of Sahuarita, the area closest to the Santa
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Cruz field. Table 15B shows the nodes in which wells of the Santa
Cruz field are located and the number of wells per node.

The basic computer program for the worth-of-data studies was
modified so that six alternate, or erroneous, values of pumpage were
assumed at each pumping node. The criteria used to estimate the prior
standard deviations and the standard deviations of the likelihood func-
tions were the same as for the basic worth-of-data studies. The pro-
gram put all the smallest alternate values of pumpage into the model,
then all the next smallest values, etc., and thus tested seven separate
lumped values of pumpage over all nodes. The program could have been
modified to put various combinations of erroneous pumpage into the
model, such as negative errors at some nodes and positive errors at
others, provided the errors were assumed independent, but this would
have resulted in many more than seven lumped values with an enormous
increase in computer time. Specifically, 717 values are possible if
every combination is used. The resulting expected error and expected
worth-of-sample-data computations would have been more accurate, but
not enough to justify the large increase in cost.

Table 15B also shows the maximum prediction errors, using the
most erroneous values of pumpage, at each node for the year 1990.
These errors range from 3.2 feet at the northern end of the Santa
Cruz field to 38.4 feet at the southern end.: Table 15C gives the
results of the worth-of-data tests. For these computations, the cost
coefficient in the loss function was set equal to the number of city

wells per node for the criteria of absolute error and squared error,
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and set equal to 1.0 or 0.0 if city wells were in a node or not for
the other criteria. The results show, for example, that the sum of
expected absolute errors over the 16 nodes, including 23 wells,

of the Santa Cruz field is about 108 feet-wells, or less than 10 feet-
wells per node. If additional studies were made to estimate future
pumpage, which were roughly equivalent in extent to studies already
made, the error could be reduced by about 18 percent. As a further
example, if it were judged desirable to reduce the maximum nodal
error, analogous to using a minimax decision criterion, further data
might reduce this error by about 18 percent.

Such studies indicate to a manager, in a qualitative sense, how
much he can improve model predictions with further collection of data.
The basic worth-of-data results (tables 8 and 10) also indicate,
qualitatively, the worth of collecting additional data on a given
variable at a given node. If a manager could assign a cost to each
foot of prediction error through the cost coefficient, or cost co-
efficient function, if one were derived, an actual economic worth of

collecting additonal data could be computed.



(CHAPTER 6

STUDIES OF ERROR PROPAGATION

Some very limited studies were made of the propagation of error
over the model. These consisted of printing maps of the differences
between water levels, at the end of the simulation period, computed
using the model value of a variable and water levels computed using
selected alternate values of the variable. The eight variables used
in sensitivity tests A, C, D, and E were used to obtain these maps,
and table 16 summarizes the results.

Of the six possible alternate values of storage coefficient and
transmissivity, data from the two variable values farthest from and
the two closest to the model value are tabulated. For initial water
level and discharge/recharge, data from only one outer value and one
inner value are tabulated because errors for the other two values are
identical to the first two, differing only in that they were opposite
in sign. For all tests, the two outer values had probabilities of
occurrence of either 0.06 or 0.07 and the two inner values had
probabilities of 0.19, as opposed to the model or central value
which had a probability of either 0.21 or 0.22.

Table 16 shows the alternate values, the associated errors
at the tested nodes, the maximum errors at 1 mile, 5 miles, and 10 miles,

166



167

Table 16. Data on Error Propagation over the Model. -- A minus (-) indicates water levels computed using alternate values were above those computed using the model
value; a plus (+) indicates they were below.

Location in

Model Grid Error at Maximum Error Maximum Error Maximum Error Maximum Radius
a Selected Alternate Node, in at 1 milg, at 5 miles, at 10 miles, at 1 foot of error.
Variable Row Colum Model Value (Erroneous) Values feet in feet in feet in feetb in miles
S 32 13 0.153 0.048 -0.4 +3.3 +0.8 +0.5 4
0.118 +0.7 +0.9 +0.2 +0.1 0
0.188 -1.0 -0.7 -0.2 -0.1 <1
0.258 -3.5 -2.3 -0.7 -0.3 4
T 16 22 3,800 26.6 -2.4 -3.9 +0.5 +0.1 2
727 -1.9 -3.1 +0.4 +0.1 2
19,860 +5.0 +13.4 -1.6 -0.4 7
542,500 +10.1 -68.4 -14.4 -4.9 14
H 34 10 2,610 2,370 +7.7 +6.7 +2.4 +0.2 7
2,690 ~2.6 -2.2 -0.8 -0.1 3
Rb 4 13 102,105 194, 355 -103.6 -62.4 -5.3 -0.9 11
71,355 +34.5 +20.8 +1.8 +0.3 8
S 19 16 0.112 0.007 -0.8 +1.9 +0.4 +0.0 1
0.077 +0.0 +0.5 +0.1 0.0 0
0.147 -0.2 -0.5 -0.1 0.0 0
0.217 -0.7 -1.5 -0.3 -0.0 1
T 19 16 52,500 19,240 +1.5 -9.4 +0.4 +0.1 3
37,570 +0.4 -3.5 +0.2 0.0 2
73,360 -0.3 +3.8 -0.2 0.0 2
143,220 -0.4 +11.5 -0.5 -0.1 3
H 19 16 2,340 2,295 +1.0 +2.4 +0.7 -0.2 2
2,355 -0.3 -0.8 -0.2 0.0 0
Q 19 16 5,270 3,281 -1:1 -0.7 -0.2 0.0 <1
5,933 +0.4 +0.2 +0.1 0.0 0

nits as in Tables 8 and 10.

bDirectly north, south, east, or west only.
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and the maximum radii of 1 foot of error. The first four variabies in
the table are from the large-error category, and the second four are
from the small-error category and are all at the same node.

For the first set of four tests, the largest errors and extent
of error are associated with discharge/recharge and transmissivity;
and for the second set are associated with transmissivity and initial
water level. These results match the results from the basic worth-of-
data computations. The largest error at a tested node is about 104 feet
associated with an extreme alternate recharge value at node (4,13).
The 1largest error at 1 mile is 68 feet, at 5 miles is 14 feet, and at
10 miles is about 5 feet, and the maximum radius of 1 foot of error
is 14 miles; all associated with an extreme alternate transmissivity
value at node (16,22).

Of perhaps more interest, however, is that for the six tests
other than on R at (4,13) and T at (16,22), errors in predicted water
levels were relatively small, even for the extreme erroneous variable
values. For these tests, eight of nine maximum errors at the tested
node and six of nine maximum errors at 1 mile are less than 4 feet;
eight of nine maximum errors at 5 miles are less than 1 foot; and all
nine maximum errors at 10 miles are less than 0.5 feet. These
limited results suggest that in many cases, prediction errors asso-
ciated with errors in basic data are not a major problem in modeling.

Lovell (1971, p. 26-27 and Appendix B) also studied error
propagation in the southern part of the Tucson basin digital model,

using slightly different methods in that he observed propagation with
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time. He concluded that maximum errors in predicted levels tended

to stay at the tested node for storage coefficient, transmissivity,

and discharge/recharge, provided the error in discharge/recharge
continued over the whole simulation period; and stayed within a radius
of a few nodes for initial water level. The data in table 16 generally
support Lovell's conclusions, although they show that maximum errors
associated with storage coefficients do not necessarily remain at the
tested node.

In addition, errors in computed water levels associated with
erroneous values of initial water level produced some unexpected results.
A test on the initial water level at node (19,16), using an extreme
erroneous value of 2,295 feet instead of the model value of 2,340 feet,
yielded a computed water level at the end of the simulation period
at (19,16) that was 1.0 feet below that computed with the model value.
The maximum error was at node (21, 17) and represented a computed
level 3.1 feet below the standard value. Eight miles directly to the
north on the model boundary, however, was a secondary maximum error
representing a computed water level 2.2 feet above the standard
value. Errors between this node and the tested node were as little
as 0.1 feet. This secondary maximum appeared at the same location in
other tests at this node, although values were smaller.

Tests of errors in transmissivity at node (19, 16) produced
similar, although less striking, results. Errors decreased steadily
in size to a point five miles directly north of the tested node, then

increased a maximum of 0.5 feet at a point seven miles to the north.
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The reason for these irregularities in error propagation is not known,

although it may be related to boundary effects.



CHAPTER 7

FUTURE WORK

Potential Extensions of the Method

This initial attempt to evaluate worth of ground-water data could
be extended in several ways while retaining the basic approach as used
here. Three types of errors in basic data: (1) in the location of dis-
charge/recharge, (2) in the variation in discharge/recharge with time,
and (3) in the position of the model boundaries, were not included in
this investigation because the methods used here were not easily adap-
table to their study. Conceivably, however, these types of errors could
be studied without major modification of the basic approach. For var-
iation in the location of discharge/recharge, for example, quantities
of discharge or recharge could be assigned to the most likely node and
to 4 or more adjacent nodes. Probabilities of discharge or recharge
being at a given node could be assumed to be proportional to the dis-
tance from the most likely node. Probabilities also could be associ-
ated with various boundary configurations at a given location and to
various plausible patterns of time variation of discharge/recharge. It
should be pointed out, however, that to model daily or even seasonal
variations in discharge/recharge over a simulation period of several

years would involve using many time-steps and would be costly.
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The basic approach could be modified by using continuous in-
stead of discrete probability distributions for the variables. This
procedure would involve extensive changes in the computer program and
numerical integration might be necessary to compute probabilities.
Also, as discussed in Chapter 4 (''Use of Statistical Decision Theory
to Evaluate Worth of Ground-Water Data''), using continuous distribu-
tions would necessitate using much more computer time. If discrete
probabilities are retained, however, an attempt should be made to
improve the procedures used in discretizing and truncating the proba-
bility distributions.

Further Research Suggested by the
Results of this Study

This section summarizes the recommendations for future research
that are scattered through the text, as well as some research for which
need is implied in the text by discussion of deficiencies in the digi-
tal model and in the method of computing worth of data.

During this study, areas of possible research on digital model-
ing became evident. More work should be done on model calibration,
both to develop better objective and semi-objective calibration methods
and to develop efficient techniques for trial and error calibration.
Calibration based on inclusion of all model nodes should be compared to
calibration based only on nodes with historical data to see which is
most efficient under given conditions of areal distribution of data.
More research is needed on how many time periods are necessary for the
calibration process to approach a unique set of calibrated parameters,

and to determine how closely the true parameter values are approximated.
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The errors in a model that are caused by computation, by mathe-
matical assumptions, and by the particular algorithm used merit more
study. It would be of especial interest to determine how far the var-
iable values of the final calibrated model are from true values because
of errors caused by computation, model assumptions, and the algorithm.
This will be difficult, of course, for actual ground-water basins be-
cause it normally isn't possible to determine the true variable values.

Research on whether boundary effects in a digital model are
equivalent to boundary effects in a real physical system would be use-
ful. More work also is needed on methods of determining the optimum
number of time-steps for simulating the historical record for various
areal distributions of aquifer parameters, initial water levels, and
recharge/discharge.

Additional research could improve the method for computing worth
of data that was developed in this study. The types and parameters of
probability distributions of hydrogeologic variables need better defi-
nition. This should include definition of both the natural variability
of hydrogeologic parameters and the variability caused by measurement
errors and errors due to interpolation and non-representative data. It
also would be important to determine if probability distributions are
dependent or independent of the area or volume of aquifer being consid-
ered. More work could be done on using the subjective knowledge of a
hydrologist to estimate parameters of probability distributions.

Another subject that needs study is the economic benefit of

digital models of ground-water systems. A closely-related subject for
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research is the cost of errors in water-level predictions obtained from
such models. Such research would help to define more realistic loss
functions, for example by specifying whether the functions are symmetric
or asymmetric, and by better defining the function for cost per foot of
prediction error. Costs of collecting ground-water data also need bet-
ter definition.

A major improvement in the method would be to extend it to
model and evaluate the effects of errors concurrently at more than one
node or at all nodes in a model. Formulation of the probability distri-
butions of variables would be difficult if variable values were not as-
suned independent. Research thus would be needed on joint probability
distributions of variables, especially joint distributions related to
errors resulting from contouring, interpolation, and non-representative
data. The basic approach in evaluating worth of data would have to be
modified if many or all nodes were considered in error simultaneously,
so that the amount of computer time would not be prohibitive.

The studies reported here also suggest that research on the op-
timal design of networks for sampling ground-water data would be useful.
Networks to optimally collect data for digital models and for other

uses could be developed and compared.



CHAPTER 8
SUMMARY

Potential errors in the digital models of the Tucson basin were
classified as errors associated with computation, errors associated
with the model's mathematical assumptions, and errors associated with
basic data -- the model parameters S and T, initial water levels, and
values of discharge and recharge. This study focused on estimating the
worth of additional pasic data on a simulation period 1970-90 to the
digital model. The method is most applicable in the early stages of
collecting data for a basin model, prior to the time when additional
field data might result in a poorer model.

Statistical decision theory was used, in a basic form, to com-
pute expected error and expected worth of sample data over the whole
model associated with uncertainty in one variable at one location.
Tests were made on 91 variables at 61 different locations in the model.
At 30 nodes, more than one variable was tested. Of the tests, 67 were
on variables whose prior estimates generally were considered to be un-
certain; the other 24 were on variables whose prior estimates were
considered to be less uncertain.

Of the uncertain variables, discharge/recharge and transmis-
sivity have the largest expected errors and worth of sample data,

while initial water levels and storage coefficients have lesser values.
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However, transmissivity has a low percent reduction in error because
of the large uncertainty commonly associated with sampling for T.

Of the variables whose prior estimates were more certain, transmis-
sivity and initial water level generally have the largest expected
errors and worth of data, while storage coefficient and discharge/
recharge have smaller values. The large expected errors and worth of
data associated with transmissivity may be peculiar to the Tucson
basin because T's for this basin commonly are uncertain.

In general, the largest expected errors are associated with
nodes at which values of discharge/recharge are large or at which
prior estimates of transmissivity are very uncertain. Large worth of
sample data is associated with variables which have large expected er-
rors or which could be sampled with relatively little uncertainty.

The results are generally the same for all six of the separate cri-
teria used.

The size of the Tucson basin model necessitated the use of
probability distributions composed of only seven discrete values of a
given variable. In addition, most of the parameters of the distribu-
tions had to be estimated, largely on a subjective basis, because of
the fact that sample data within individual nodal areas commonly were
lacking.

Tests of the sensitivity of the results to the various assump-
tions inherent in the approach indicated that results are sensitive to
all of the assumptions. For these reasons, individual values of

expected error and sample worth likely are accurate only to an order
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of magnitude. For example, if the expected error were computed to be
100 feet over the 509 nodes of the model, the true expected error might
range from 1less than 50 to several hundred feet. However, the sensi-
tivity tests indicated that the ranking of types of variables, in terms
of the magnitude of expected errors and sample worths, are not sensitive
to the assumptions of the approach. The general conclusions on compa-
rison of the effects of errors in the four variable types therefore
should be reasonably reliable.

The results of this study do not agree well with those of
Bibby (1971), who concluded that errors in predicted water levels are
largely a result of errors in initial water levels. This lack of agree-
ment may be partly a result of the differences in the degree of uncer-
tainty assigned to the variables, and also may be related to the
different methods and assumptions of the two studies.

The approach used in this study can be applied to idealized
management problems. An example application addressed the question:
what is the worth of additional data on pumpage in a local area in
terms of reducing errors in predicted water levels in a nearby area?

In general, the method can be used by a ground-water-basin manager to
indicate qualitatively how much he can improve model predictions by the
collection of additional data.

Limited studies of error propagation indicated that expected
errors in predicted water levels were fairly small outside of a
radius of a mile around the tested node, except for those errors asso-

ciated with very large values of discharge/recharge or very uncertain
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values of transmissivity. This result suggests that in many cases,
prediction errors associated with errors in basic data are not a
major problem in digital modeling. However, this conclusion is only
for errors taken one node at a time, and does not say anything about the
actual condition in which all model data have some degree of uncertainty.

A drawback of the approach is that most of the required
statistical parameters had to be estimated subjectively. Subjective
estimation of parameters likely will be necessary for most basins,
because no more hydrogeologic data are available for the Tucson basin
than are available for most other basins. Therefore, worth of data
evaluated by one person will not be exactly the same as that evaluated
by another. However this disadvantage is in one sense somewhat of
an advantage. By means of subjective estimation of the parameters of
distributions, a hydrologist can enter his judgment and intuition about
the uncertainty associated with basic data directly into the process

of evaluating the worth of model predictions.



APPENDIX A

COMPUTER PROGRAM

The writer prepared the computer program used for the worth-of-
data studies, which consists of a main program, WODATA, and seven sub-
routines, CYCLER, AVAL, BAYESGW, SIGMA, PROBDN, TBLKUP, and ALDIRS.
Figure 11 is a simplified flow chart of the entire program. The pro-
gram contains several options to control how extensive a set of worth-
of-data studies will be, such as whether worth of data is computed
over all time-steps or at the end of the simulation period, whether
maps of errors are printed, the number of error criteria used, and the
number of discrete values in each probability distribution of a tested
variable. The computer time for a test will vary markedly depending
on the options chosen. For example, if a test of a single variable
does not involve summing worth of data over time-steps or printing
maps, and uses one of the six error criteria and five discrete values
for the distribution, the test takes about 13 seconds of time,
exclusive of the computer time taken to compile the program, on the
University of Arizona's CDC-6400 computer, at a cost of about $1.50.
If, however, the program calls for maps of errors and uses seven
values per distribution, the time per test increases to about 25 seconds;

and if the program uses all six error criteria and seven values per
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distribution, the time is about 30 seconds. If the program sums worth
of data over three time-steps, and uses two error criteria and seven
values per distribution, the time rises to about 55 seconds per test
at a cost of about $6.00.

In brief, WODATA reads in all data and processes it for use
by the subroutines. These data include the number of tests to be
made; which operational options are selected; the type of probability
distribution; the length of the simulation period; the size of the
initial time-step; the size of the model grid; and data specific to
each test, such as nodal location, variable type, and standard
deviations of the prior distribution and initial likelihood function
(% ms)- WODATA also converts data to proper units, computes inter-
nodal transmissivities, and, at the end of a test, sorts all results
in order of magnitude and prints them in tabular form.

CYCLER is an input subroutine that reads data for the variables
S, T, H, Q, and R and the coefficient for cost per foot of error,
converts them to proper units, and fills the rest of each data array
outside the model boundary with the necessary values--O for T, Q, and
R and 1 for S and H.

AVAL takes the model value, or mean, of each variable to be
tested and computes four or more alternate values, at least two larger
and two smaller than the mean. These alternate values are spaced from
the mean + 1, 2, 3, 4, etc. times a specified spacing factor times the

standard deviation of the prior distribution. The spacing factor for
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the basic worth-of-data studies was 0.50. AVAL puts all values in
ascending order, except that the mean is the first value in the array.

BAYESGW is the subroutine that actually computes expected
error, or expected opportunity loss, and expected worth of sample data.
First, the subroutine computes all necessary statistical data--
probabilities for the discrete prior distribution of the variable, for
the likelihood functions, for observing sample results, and for the
posterior distributions--by using subroutines SIGMA, PROBIN, and TBLKUP.
Subroutine BAYESGW then obtains water-level elevations over the model,
computed using each possible variable value, by calling subroutine
ALDIRS. Then BAYESGN computes risks for each variable value and selects
the minimum risk for each error criteria as the expected opportunity
loss (EOL). EOL can be considered the minimum expected error summed
over all 509 nodes of the Tucson basin model. Then the subroutine com-
putes risks and EOL for each possible sample result, and computes the
expected value of expected opportunity loss (EEOL) over all possible
samples, for each error criteria. BAYESGW finally computes expected
worth of sample data (EWSD) and the percent improvement with sampling,
or percent reduction in error (PCIMP) and punches all results for all
error criteria on cards for future reference.

SIGMA is the subroutine that computes the standard deviations
for the likelihood functions. In the first call to SIGMA the program
assumes the model value is the mean of the distribution and uses it and

the "sampling' standard deviation, ¢ , to compute the probabilities

Lms
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of the first likelihood function. In subsequent calls to SIGMA
alternate variable values are assumed to be means, and the subroutine
derives standard deviations associated with each alternate value.

Subroutine PROBIN computes probabilities for all possible
values of the variable, using one specified value as the mean and a
specified standard deviation. This subroutine can campute probabilities
using either arithmetic or logarithmic units. PROBDN sorts all
variable values in ascending order and computes the midpoints between
adjacent values. These midpoints are used to compute standard normal
deviates, defined as (Midpoint value - u )/oc . Adjacent standard
normal deviates then are passed in pairs to TBLKUP which interpolates
the probability of the included interval. Subroutine PROBDN then
normalizes each of the probabilities by dividing by their sum, to form
a discrete probability distribution.

Subroutine TBLKUP estimates the probability of the interval
between two adjacent standard normal deviates by approximating the
corresponding area under the standard normal probability curve. The
approximation utilizes an array which contains a condensed table,
including 65 values, of areas under the curve. The 65 values are spaced
at intervals of 0.05 standard units from 0.00 to 3.00 units, and at
intervals of 0.5 units from 3.0 to 5.0 units.

Subroutine ALDIRS is the alternating-direction-implicit algorithm
which computes water-level elevations over the model at the end of a

specified time period. The core of this subroutine is essentially the
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Tucson basin model. ALDIRS takes each variable value, inserts it in
the model, and recomputes internodal transmissivities around the tested
node, if necessary. The subroutine then computes a set of water levels
using each variable value. If worth of data is to be summed over all
time-steps, the sets of water levels are passed to BAYESGW at the end
of each step; if not, ALDIRS completes computations of water levels for
the whole simulation period. ALDIRS then prints differences, in the
vicinity of the tested node only, between water levels computed using
the model value and using alternate values, or prints maps of the differ-
ences in water levels over the whole model.

The following pages are a complete listing of the computer

program WODATA and subroutines.
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