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ABSTRACT 

 

The widespread adoption of embedded computing systems has resulted in the realization 

of numerous sensing, decision, and control applications with diverse application-specific 

requirements. However, such embedded systems applications are becoming increasingly 

difficult to design, simulate, and optimize due to the multitude of interdependent 

parameters that must be considered to achieve optimal, or near-optimal, performance that 

meets design constraints. This situation is further exacerbated for data-adaptable 

embedded systems (DAES) applications due to the dynamic characteristics of the 

deployment environment and the data streams on which these systems operate. As 

operating conditions change, these embedded systems must continue to adapt their 

configuration and composition at runtime in order to meet application requirements.  

 To assist platform developers and application domain experts, the research 

summarized by this dissertation presents design and optimization frameworks for the 

synthesis of runtime adaptable embedded systems. For sensor network platforms, we 

present an initial dynamic profiling and optimization platform that profiles network and 

sensor node activity to generate optimal node configurations based on designed-specified 

application requirements. To support a broader class of DAES applications, we present a 

modeling and optimization framework that supports the specification of application task 

flows, data types, and runtime estimation models for the runtime adaptation of task 

implementations and device mappings. 
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Experimental results for these design and optimization frameworks demonstrate the 

benefits of dynamic optimization compared to static optimization alternatives. For the 

presented sensor network and video-based collision avoidance applications, dynamic 

configurations exhibited improvements of up to 109% and 76%, respectively. Moreover, 

the performance of the heuristic design space exploration (DSE) algorithms utilized by 

the runtime optimization frameworks is compared to exhaustive DSE implementations, 

resulting in speedups of up to 1662X and 544X for the same two applications, 

respectively.  
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CHAPTER 1 

INTRODUCTION  

 

 

Embedded computing systems have found widespread adoption in numerous sensing, 

decision, and control applications by virtue of the increasing performance to price ratio of 

microcontrollers and other more complex processing devices [1]. Embedded systems 

comprise the computational backbone of applications in various domains including 

consumer electronics, automotive control, multimedia systems, and many others. Given 

the diversity of application possibilities, it is not surprising to see a wide range of high-

level application requirements that must be considered. For example, in safety-critical 

automotive applications, task execution latency constitutes a primary design concern to 

ensure real-time deadlines are met. On the other hand, energy consumption may be the 

dominant design concern for distributed applications deployed on wireless sensor 

networks (WSN), which consist of battery-powered networked microcontrollers called 

nodes. We refer to these high-level application requirements as design metrics, which 

include latency, lifetime, throughput, security, among many others.  

 To achieve the desired high-level application requirements, platform developers 

must carefully design, configure, and optimize the software application, supporting 

operating systems or middleware, and the underlying hardware platform. At the hardware 

level, designers may consider voltage levels and operating modes for the processor 

[1][98] and communication settings including baud rates, packet sizes, or encoding 

schemes for networked applications. At the application level, designers can utilize 
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alternative task implementations, data aggregation, communication methods for low-

power listening, sleep states [22], and network deployment strategies [35]. These 

configurable, or tunable, parameters span all levels of an embedded application, and 

platform developers must understand the complex interdependences between 

configurable parameters and high-level design metrics to ensure the deployed system 

meets the desired requirements. 

 Additionally, the dynamic characteristics of the physical environment in which 

the system is deployed can significantly impact the effectiveness of configuring and 

optimizing the embedded application. A static configuration determined at design time, 

i.e., a point solution, often cannot account for variability in data qualities, operational 

modes, etc. For example, a change in the quality or characteristic of sensed data may 

trigger a high-activity operational mode that consumes more energy across the entire 

system. If the increased energy consumption exceeds application requirements, runtime 

optimization and adaptation is required in order to mitigate overheads, meet performance 

requirements, or even restore proper functionality.  

 Ultimately, optimizing embedded systems applications can quickly become an 

overwhelming task due to the large number of design options and competing design 

metrics that must be considered ï a common challenge with many multi-objective design 

optimization problems. Furthermore, system design tasks are often split across platform 

developers and application experts. Whereas platform developers are typically engineers 

with the requisite understanding of hardware and software required to develop the 

embedded platform, application experts ï utilizing the terminology proposed in [9] ï are 
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often not engineers, but rather scientists, biologists, or teachers. For example, an 

application expert may be a biologist recording nocturnal animal activity at a watering 

hole, a structural engineer monitoring the structural integrity of a bridge, or a military 

technician tracking troop movements over a battlefield. Many of these application experts 

are not likely to have extensive programming or engineering experience and will 

assuredly face difficulty in constructing, configuring, and optimizing embedded 

applications to best meet their application-specific goals. 

 Consequently, the implementation of runtime adaptable embedded systems 

capable of dynamic reconfiguration in the face of competing design metrics requires new 

formalisms and tools to support design, simulation, and synthesis. This dissertation 

presents design and runtime optimization frameworks for two classes of embedded 

systems applications: sensor network platform applications and data-adaptable embedded 

systems applications. The contributions in this dissertation are: 1) a dynamic profiling 

and optimization platform (DPOP) for the runtime optimization of sensor network 

platforms; 2) a fuzzy logic based formalism for the specification of high-level design 

metrics and overall system fitness; 3) a modular transaction-level simulator for sensor 

network platform applications; 4) a modeling and optimization tool for the design and 

runtime optimization of DAES applications; and 5) a model-based fuzzy logic 

classification synthesizer for the runtime optimization of DAES applications. 

 Chapter 2 presents a framework for the dynamic profiling and optimization of 

sensor network platforms, including a generic fuzzy logic based formalism for the 

specification of competing high-level design metrics and overall system fitness. Chapter 
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3 then introduces a modular transaction-level simulator that enables design-time 

simulation of sensor network applications. This simulator supports event-based 

simulation of custom applications, sensor node hardware, wireless communication media, 

and sensed environmental media. Chapter 4 presents a modeling and runtime 

optimization tool for a growing class of distributed embedded applications known as 

DAES applications. Chapter 5 presents an extension to the DAES modeling and runtime 

optimization tool that enables both the specification of competing high-level metrics via a 

fuzzy logic based formalism and the specification of models that estimate fuzzy 

classifications for each high-level design metric at runtime. Chapter 6 and Chapter 7 

conclude and highlight future work, respectively. 
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CHAPTER 2 

DYNAMIC PROFILING AND FUZZY LOGIC BASED OPTIMIZATION OF 

SENSOR NETWORK PLATFORMS  

 

2.1 Overview 

Sensor networks are a class of distributed embedded systems consisting of networked 

sensing and computing nodes. Numerous sensor network platforms have appeared, with 

platforms targeting environmental and structural monitoring, medical-based applications, 

and wearable computing, among numerous others [19][38][59][98]. Application experts 

utilizing sensor network platforms aim to optimize configurable parameters to achieve 

the desired application-specific requirements. 

 Many studies have investigated the interdependency between these parameters 

and the impact on the resulting high-level design metrics. For example, [1] investigates 

the impact of protocol-level parameters such as a nodeôs shutdown scheme, network 

routing algorithms, and data compression schemes. In [102], researchers utilize design 

space exploration for node-level parameters, specifically microprocessor voltage and/or 

frequency scaling. Moreover, application-level parameters such as sensor capability, 

number of sensors deployed, sensor sampling rate, and deployment strategy ï e.g. grid, 

random, and biased deployment ï are shown to greatly affect high-level design metrics 

such as accuracy, latency, energy, throughput, and scalability [61][93].  

However, the interdependences between parameters and high-level design metrics 

are not isolated based on node-, protocol-, or application-level parameters. Rather, 
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parameters spanning various levels must be considered together. Parameters 

encompassed at all levels are surveyed in [35], outlining the energy impacts of various 

communication protocols, node circuitry, message size, distance between nodes, and 

number of intermediate nodes. Similarly, the impact of different protocols and algorithms 

on energy consumption are examined in [88], including the use of dynamic voltage 

scaling and sleep states. Numerous other studies similarly illustrate the need for 

developers to evaluate a wide variety of platform considerations 

[31][43][46][47][87][88][89].  

 Further complicating matters, the operating modes of sensor network applications 

are heavily dependent on the dynamic characteristics of the deployment environment. 

That is, a sensor nodeôs state is commonly driven by the characteristics of the sensed 

phenomena in the environment. Therefore, application experts must take into 

consideration the complex interdependences between configurable parameters, dynamic 

application activity, and the applicationôs high-level design metrics during the design and 

optimization phases. 
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As new applications for sensor network platforms emerge, providing new methods 

to enable application experts to efficiently utilize these platforms is increasingly 

important. Recently, researchers have started focusing on developing languages enabling 

application experts within specific domains to efficiently program sensor network 

platforms [10]. Complimentary to these efforts, others have also begun to investigate 

various optimization methodologies [66][67] to quickly and efficiently determine an 

appropriate system configuration considering competing design metrics. These earlier 

efforts utilized weighted piecewise linear equations to define the importance of the 

individual design metrics on the overall system fitness. However, such formalisms are 

often difficult to utilize efficiently for such multi-objective optimization [62] and may not 

be approachable by application experts. 

 

Actuator 

SENSOR-BASED APPLICATION 

Sensor 

é 

Sensor 

Actuator 

 Intermediate 
Nodes 

 

App. Expert Guided Design 
Metric Specification 
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Update Network 
Configuration 
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Online 
Optimizer 

Figure 1: Overview of the dynamic profiling and 

optimization platform (DPOP). 
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This chapter presents a dynamic profiling and optimization platform (DPOP) for 

sensor networks (Figure 1) enabling application experts ï as well as platform developers 

ï to optimize low-level configurable parameters for a particular application. This 

centralized optimization framework, typically implemented within a single basestation 

node, allows application experts to efficiently characterize application requirements 

through high-level design metrics and fuzzy logic optimization rules. The low-level 

configurable platform options are abstracted from the application experts, thereby 

providing a clear delineation between developing the sensor network platform and 

supporting tools, and programming/configuring that platform to implement the desired 

application functionality and application-specific goals. The DPOP framework 

specifically seeks to increase accessibility to non-engineer application experts. 

 

2.2 Previous Work 

Table 1: Overview of WSN design metrics, configurable parameters, and tradeoffs 

considered in related research projects. 

 Lifetime 
Packet Delivery 

Rate 
Coverage Area Latency Throughput 

Output Power [39][50]  [4]   

MAC protocol  [20][106] [106]  [20][50][106] [20] 

TX sleep states [83][90]   [50][83][90]  

Routing Protocol [3][39] [26]  [4][26] [50] 

Sensor duty cycle [16][103]  [16][103]   
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Table 1 presents a condensed view of high-level design metrics, configurable parameters, 

and systems tradeoffs described in wireless sensor network (WSN) optimization 

literature, representing a cross-section of the types of design metrics and tunable 

parameters application experts and developers consider in their optimization efforts. 

Network lifetime is by the far the most prominent design metric found in literature, with 

researchers often opting to mitigate power consumption by tuning radio output power 

[39][50], transceiver sleep/active states [83][90], routing protocols [3][39], or MAC 

protocol parameters [20][106].  

Optimizing lifetime, however, often involves carefully balancing tradeoffs 

between competing design metrics. In [106], MAC protocol parameters are tuned in order 

to optimize lifetime, latency ï the time necessary to deliver a packet over one hop ï and 

packet delivery rate. Similarly, in [20] competing high-level design metrics include 

lifetime, latency and throughput measured in bytes transmitted per node per second. [90] 

and [83] both utilize algorithms that modify transceiver sleep/active states in order to 

strike a balance between lifetime and latency, with the former defining latency as the 

time necessary to transition between power states and respond to an event. Finally, [16] 

and [103] seek to optimize coverage area given a constraint on lifetime, where coverage 

area is defined as the physical area monitored by sensors. 

We note that configurable parameters are typically specific to the individual 

optimization methodologies and the configuration options available to the platform 

developer or application expert. Thus, for the sake of brevity, tunable parameters specific 

to each of the aforementioned papers have been generalized into the categories shown in 
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Table 1. Based on these papers, we can begin to characterize design metrics of interest to 

application experts and developers. Although we only consider a particular subset of 

design metrics in this dissertation, namely lifetime, latency and packet delivery rate, it 

should be noted that our dynamic profiling and optimization platform is specifically 

designed to work with most, if not all, combinations of configurable parameters and 

design metrics. 

 

 2.3 Dynamic Profiling and Optimization Platform 

The underlying goal of the DPOP platform is to dynamically determine sensor node 

parameter configurations that best meet user-defined goals as internal and external 

stimuli alter the applicationôs behavior. A description of each component within the 

DPOP framework is provided below. 

2.3.1 Sensor-Based Platform 

The Sensor-Based Platform is the physical deployment of the application within the 

intended environment and consists of sensor nodes, intermediate processing and routing 

nodes, and actuator nodes, working together to achieve the desired application 

functionality. While a variety of sensor network platforms are available, we currently 

consider the IRIS motes [19]. We focus specifically on the microprocessor and radio 

subsystem, providing tunable node parameter options for the microcontroller and RF 

Transceiver. The sensor and flash data logger subsystems are included as part of the 

system estimation framework, but characterization of these components is currently left 

as future work. 
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Between the microcontroller and transceiver, we consider the following configurable 

platform parameters: 

Á Microprocessor Supply/Operating Voltage (V): 2.7 ï 5.5 V 

Á Microprocessor Operating Frequency (F): 0.4 to 16 MHz  

Á RF Output Power (RFP): -17.2 to 3.0 dB 

Á RF Frequency (RFF): 2405 to 2480 MHz 

Á Data Rate (DR): 15.625 to 250 kbits/s 

A specific node configuration corresponds to selecting a setting for each adjustable node 

parameter. As previously mentioned, these parameters are adjusted within our centralized 

DPOP framework in order to optimize the configuration based on the user specified 

design metrics of interest. We note that some combination of settings are not feasible and 

are not considered. Thus, while there are over 225,000 possible combinations of settings, 

of those only 189,440 configurations are feasible. 

2.3.2 Application Expert Design Metric Specification 

Ultimately, the application expert is interested in high-level system metrics such as the 

expected lifetime of a node or sensor network utilizing two AA batteries, the time 

required to process a single packet, or the time required to process and respond to a 

sensor event. The Application Expert Design Metric Specification allows the application 

expert to define which design metrics are of importance to a particular application, and of 

those design metrics, what are the acceptable or unacceptable values of each. Thus, users 

are able to define a method to interpret the resulting system achievement within the 
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context of a given application. We currently consider the following three system design 

metrics: 

Á Lifetime (L): The time in months a node is able to operate on a power source. In 

our case, we utilize a simple battery model assuming a battery capacity of 3000 

milliamp-hours (mAhr) ï roughly equivalent to a 2 AA batteries. 

Á Packet Delivery Rate (P): The probability that a packet is successfully 

transmitted.  

Á Latency (LA): The time in seconds necessary to successfully transmit a packet to a 

neighboring node over one hop. 

These design metrics by no means provide an exhaustive list, but rather provide a 

glimpse of the challenges faced by application experts in balancing various high-level 

design metrics. 

2.3.2.1 Fuzzy Design Metric Classification 

An application expert is familiar with the desired goals of the application, understands 

how the sensor network achieves these goals, and can determine acceptable design 

metrics values for the particular system of interest. The use of fuzzy logic allows 

application experts to more intuitively specify design tradeoffs, thus enabling them to 

easily customize the underlying platform for a particular application without requiring 

knowledge of the underlying hardware implementation or communication protocols. 

Weighted piecewise linear formalisms are often challenging to utilize because precisely 

defining acceptable design tradeoffs between competing design metrics is difficult. 

Notably, researchers compared the effectiveness of such mathematical and fuzzy logic 
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based evaluations, demonstrating that the fuzzy logic based evaluation can achieve 

superior results [62]. Further, note that this outcome matches our own experiences in 

utilizing weighted piecewise linear equations, in that such methods produced adequate 

results only after repeated experimentation and adjusting of the function parameters. The 

benefits of the fuzzy logic heuristic optimization are evident across a wide variety of 

applications, including hardware/software codesign [85], system-level design space 

exploration [17][30], and optimization of operational amplifiers [71]. 

The application expert is tasked with interpreting the resulting system 

achievement within the context of a given application. For each design metric, an 

application expert creates a fuzzy-logic inspired classification function that relates a raw 

design metric value ï i.e. lifetime of 2 months ï to a fuzzy classification term. Although 

the selection of which fuzzy terms are utilized for a given system could be arbitrarily 

defined by the application expert, we propose the following four classifications for 

specifying the fitness of individual design metrics: Insufficient, Fair, Good, and Superior. 

Insufficient 

ü IF L IS S, P IS G OR S, AND LA IS G OR S, THE DESIGN IS S 
ü IF L IS G, P IS G OR S, AND LA IS G OR S, THE DESIGN IS G 
ü IF L IS S, P IS G OR S, AND LA IS F, THE DESIGN IS G 
ü IF L IS F OR P IS F, AND LA IS F, G, OR S, THE DESIGN IS F  
ü IF L IS G, P IS G OR S, AND LA IS F, THE DESIGN IS F 
ü IF L IS I, P IS I, OR LA IS I, THE DESIGN IS I  

 

Fuzzy Design Fitness Rules Fuzzy Design Metric Classification 

Application Profile 

RX PACKETS/H OUR:  32 
TX PACKETS/H OUR:  360 
SENSOR EVENTS/H OUR:  12 
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(b) 

(c) 

UP INSTRUCTIONS:  1843 
PACKET SIZE (BYTES):  12 

Good 

 

Fair 

 

Superior 

Legend 

 

 

 

 

 

 
0

 

Lifetime (months) 
5

 

1
0
 

1
5
 

2
0
 

2
5
 

3
0

 

100% 
80% 
60% 
40% 

20% 
0% 

 
 
 
 
 
 

100% 
80% 
60% 
40% 

20% 
0% 

Latency (sec) 

9
6

 x
 1

0
0
 

 9
6

 x
 1

0
-2

 

  9
6

 x
 1

0
-3

 

  9
6

 x
 1

0
-4

 

  9
6

 x
 1

0
-5

 

  9
6

 x
 1

0
-6

 

  9
6

 x
 1

0
-1

 

  

 

 

 

 

 

 

Packed Delivery Rate (%) 

0
.3

8
1
  

9
9
.0

  

9
9
.9

9
 

 1
0
0
.0

  

100% 
80% 
60% 
40% 

20% 
0% 

Figure 2: Application expert tasks include (a) specifying fuzzy design metric 

classification functions that relate raw design metric values to a fuzzy 

classification, (b) specifying fuzzy design fitness rules to indicate the relative 

importance of each design metric, and (c) optionally specifying the anticipated 

application profile. 
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Using this classification mechanism, an application expert simply needs to specify the 

range of values that correspond to an Insufficient, Fair, Good, and Superior design for 

that given metric. As application experts are unlikely to be experts in optimization 

methods, this fuzzy classification scheme provides a relatable method for mapping design 

metric values to relative rankings using common terminology. Minimally, an application 

expert need only specify what range of values constitutes a Fair and Good design, above 

and below which the Superior and Insufficient designs can automatically be inferred. 

Figure 2 illustrates the fuzzy design metric classification functions for lifetime, 

packet delivery rate, and latency. Each raw design metric value is mapped to one of four 

discrete ranges: Insufficient, Fair, Good, or Superior. Within each discrete range, the raw 

metric value is mapped to a percentage. Thus, the y-axis denotes a raw metricôs percent 

membership within its corresponding classification. In other words, the y-axis quantifies 

how Insufficient, Fair, Good, or Superior a metric value is, and relates that value with a 

percentage to allow application experts a quick method of interpreting the raw values. For 

example, in Figure 2(a) a Fair lifetime is between 4 months to 12 months, a Good 

lifetime is between 12 and 16 months, a Superior lifetime is greater than 16 months, and 

anything below 4 months is deemed Insufficient. While not required, an application 

expert can also define a plateau for the Superior classification indicating that anything 

above this value does not provide any further benefit. In the example provided, all 

lifetime values greater than 20 months are consider to be 100% Superior. By the same 

token, application experts are free to define each of the four discrete ranges using any 

particular cost function ï i.e. quadratic or cubic ï that best suits their individual 
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application needs. In [56], the benefits of utilizing mean-squared error, penalty or barrier 

functions in order to constrain or emphasize a particular range of metric values. The only 

limitation we introduce, however, is that the each function should be differentiable in 

order to allow the utilization of the algorithms presented in Section 2.4.  

Lastly, we note that although overlap between fuzzy classifications can be specified, 

our tests do not show an improvement in configuration optimality, and hence we have 

chosen to forgo overlap in order to provide a simpler more intuitive framework for non-

technical application experts. Thus, the raw metric score defining the boundary between 

Fair and Good is considered to be 100% Fair such that the reported percentage will 

always be greater than 0% for a corresponding classification. A similar scheme is utilized 

for all other boundaries between Fuzzy classifications.  

2.3.2.2 Fuzzy Design Fitness Rules 

The fuzzy design metric classification functions specify how to interpret raw design 

metric values for a given application. However, we have yet to understand how the 

design metrics relate to one another. Is lifetime the critical design metric consideration 

within the application, where the application expert is willing to accept lower packet 

delivery rate and higher latency values to optimize the lifetime design metric? Or 

alternatively, is lifetime a secondary concern such that the application expert is willing to 

sacrifice lifetime to achieve low latency?  

To determine the relative importance of each design metric and how they relate to 

the overall design quality, the application expert specifies a set of fuzzy design fitness 

rules. These fuzzy design fitness rules are specified using English sentences that map the 
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fuzzy classifications of the design metrics to a fuzzy classification of the overall design. 

Figure 2(b) provides a condensed example of the fuzzy design fitness rules. The first rule 

defines that a Superior design must achieve a lifetime that is Superior, whereas the 

latency and packet delivery rate can both be Good or Superior. Minimally, the 

application expert should define at least one rule for a Superior design, one rule for a 

Good design, and one rule for a Fair design. Any combinations of design metrics not 

covered by the application expertôs fuzzy design fitness rules can be automatically 

inferred to correspond to an Insufficient design. If design metrics are covered by multiple 

fuzzy design fitness rules, the rule resulting in the highest fitness value is utilized. 

Given a specific fuzzy fitness rule, an overall design fitness value is calculated by 

normalizing and averaging the percent fitness values for each fuzzy membership function 

using the following equations:  
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As shown in Equation 2, each metricôs percent membership value is normalized to one by 

adding a fuzzy rule offset and dividing the sum by the number of fuzzy classifications, 
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|FC|, specified for that metric within a given fitness rule. The fuzzy rule offset is a 

positive integer ranging from 0 to |FC| ï 1 that maps a metricôs percent membership 

value to a normalized scale where zero and one respectively correspond to the lowest and 

highest fuzzy classifications of the metric in question for the current fitness rule. As an 

example, if we consider the first fuzzy design fitness rule specified in Figure 2(b) and 

assume a configuration resulting in a 10% S li fetime, a 30% G latency, and a 50% S 

packet delivery rate, then for each metric the corresponding |FC| values are one, two and 

two, and the corresponding fuzzy rule offset values are zero, zero and one. Using 

Equations 1 and 2, the previous values result in a Superior configuration with a fitness 

value of 33%. In summary, the fuzzy design rules correlate the design metric values to an 

overall design quality using the same fuzzy classifications. 

Note that an application expert does not need to know the impact of various 

underlying node parameters on the high-level design metrics, or how the aforementioned 

values are calculated. Instead, a single framework and terminology is provided for 

understanding the quality ï or fitness ï of individual metrics and overall designs without 

exposing any underlying mathematical formalism. 

2.3.3 Dynamic Profiling 
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The deployed environment can have a significant impact on the application behavior, 

thus part of the application characterization must also include specification of the 

communication and computation requirements. For example, an application that monitors 

temperature may only take a reading once a minute, resulting in a low communication 

requirement. Alternatively, an application tracking the movement of an object is likely to 

take multiple sensor samples in a second, resulting in a higher communication 

requirement. Computation requirements are similarly dependent on an application and 

can vary depending on factors such as the amount of aggregation performed within the 

network or the type of data that is processed ï e.g. processing images versus averaging 

temperature readings. 

While an application expert can provide this profile information at design time, 

precisely predicting the actual deployment environment at design time can be difficult. In 

the case of a periodic sampling rate, a developer may be able to calculate the underlying 

computation and communication requirements. However, if the application profile values 
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Figure 3: Average overhead of network traffic, energy consumption, code size, and 

computation time for profiling methodology utilized in the DPOP framework for the 

considered WSN applications. 
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are dependent on external events such as motion, determining this information can be 

difficult. Thus, as shown in Figure 1, we have also incorporated a dynamic profiling 

module within the framework that is responsible for monitoring the application behavior 

within the deployment environment. Being able to dynamically profile parameters that 

adequately capture changes in high-level design metrics is crucial in optimizing 

underlying configurable parameters. 

The following profile parameters have been defined to capture the communication and 

computation requirements of our targeted applications based on the aforementioned 

design metrics. 

Á Rx Packets/Hour (PktRx): Average number of packets received by an individual 

node per hour. 

Á Tx Packets/Hour (PktTx): Average number of packets transmitted by an individual 

node per hour. 

Á Sensor Events/Hour (SenEvents): Average number of sensor events processed by an 

individual node per hour. 

Á Microprocessor Instructions (ɛpInstr): Average number of instructions executed by 

the microprocessor to process each packet reception or sensor event. 

Á Packet Size (PktSize): Average number of bytes transmitted within each packet. 

2.3.3.1 Dynamic Profiler Module 

Dynamically profiling a sensor-based application requires profiling methods to be 

incorporated within each node to monitor the execution behavior for individual sensor 
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nodes. Additionally, in order to optimize a sensor-based system, a global view of the 

entire system is needed. The resulting node-level profile data must be transmitted and 

analyzed by the system-level Dynamic Profiler Module. Numerous profiling strategies 

can be employed to collect the pertinent application level information.  

At each sensor node, various low-level execution details are monitored and 

transmitted to the profiler module in order to enable the optimization approach to 

accurately estimate the various high-level design metrics of interest. Overall, determining 

what low-level metrics to profile within a sensor-based platform is thus related to both 

the high-level design metrics of interest and the estimation method utilized to evaluate 

those design metrics. Within our current profiling implementation, the aforementioned 

profile parameters can be profiled for individual sensor nodes.  

Given the desired profiling information to be collected, the frequency at which 

profiling is performed directly impacts both the accuracy of the profile data as well as the 

intrusiveness of the profiling method. Our current profiling implementation provides 

support for three methods of controlling when profiling is performed for individual 

nodes. Specifically, periodic, event-driven, and profiler module directed strategies are 

employed. Additionally, our current dynamic profiler implementation provides support 

for either transmitting profile data as separate profile packets or appending ï i.e. 

piggybacking ï the profile data to existing packets already transmitted by the application. 

Finally, the dynamic profiler can be configured to select which nodes to profile and 

whether or not the profile data is aggregated at intermediate nodes.  We refer the 

interested reader to [86] for an in-depth analysis of our profiling methodologies. 
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Each of the aforementioned profiling metrics and methods are currently 

implemented within the DPOP framework. These options are implemented as a set of 

software functions that can be automatically integrated within a sensor application, as the 

required profiling methods are directly inserted within the underlying software 

infrastructure and operating system support. Thus, the application expert can seamlessly 

integrate the dynamic profiling within the target application without any effort.  

The dynamic profiling of sensor-based platforms enables an accurate view of an 

applicationôs execution behavior but at the expense of network traffic, energy, and code 

size overheads. We have developed various methods for controlling the profiling process 

and analyzed the corresponding overhead for a subset of profiling methods. In Figure 3, 

we summarize the overheads for the profiling methodology used in the DPOP 

framework, which utilizes piggybacking to periodically transmit information on all 

profile parameters for all nodes in the network without aggregation at intermediate nodes. 

The average network traffic, energy consumption, code size, and computation time 

overheads for this profiling methodology are 21.7%, 1.1%, 42.1%, and 20.4%, 

respectively. Importantly, the energy consumption overhead, which is defined as the ratio 

of the augmented applicationôs energy consumption to the original, remains modest 

across all applications, ranging from 0.5% to a maximum of 2.59%. 

2.3.4 Dynamic Optimization 

The Online Optimizer Module shown in Figure 1 and reproduced in more detail in Figure 

4 is responsible for evaluating various sensor node configurations within the design space 

to determine which configuration best meets the application expert specified fuzzy design 
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goals given the current system behavior characterized by the dynamic execution profile. 

As previously mentioned, both the Profiler and Optimizer modules are implemented in a 

centralized location, and are thus responsible for profiling and optimizing every node in 

the network. A distributed approach in which every node implements and utilizes its own 

DPOP framework is feasible. In such an environment, each node would be independently 

profiled and optimized. However, global parameters such as radio frequency would have 

to be optimized using a centralized approach in order to ensure correct communication 

between nodes. We leave further inquiry into the potential tradeoffs as future work. 

2.3.4.1 System Metric Estimator 

In order to determine the underlying node configuration, the system metric estimator 

must first evaluate the design metrics of interest based on the selection of configurable 
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Figure 4: Overview of the online optimization methodology implemented withing the 

Optimizer module. 
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parameters and feedback from the profiler module. For the examples considered in this 

chapter, lifetime, latency and packet delivery rate are defined as functions of our 

configurable parameters ï frequency, voltage, data rate, radio frequency, and output 

power ï and the aforementioned application profile parameters. This allows the 

framework to monitor changes in design metrics via the application profile, and more 

importantly, it allows for metric adjustment via configurable parameters.  

Latency is dependent upon three configurable parameters ï frequency, data rate 

and output power ï and two profile parameters ï packet size and microprocessor 

instructions.  
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Packet delivery rate, on the other hand, is a function of radio output power and packet 

size, and is defined as follows. 
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Finally, lifetime is a function of all configurable and profile parameters. For the sake of 

brevity, we merely provide the simplified equation shown below. 
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We note that the presented estimation framework is specific to the IRIS platform 

and the configurable parameters previously defined. However, the system metric 

estimator can be updated by a platform developer to reflect any sensor network platform 

and set of configurable parameters, and is an orthogonal concern to the overall dynamic 

profiling and optimization mechanisms.  

2.3.4.2 Online Greedy Fuzzy-Directed Dynamic Optimization 

Once the relationship between the design metrics, configurable parameters, and 

application profile is defined, the optimizer must explore a variety of node configurations 

to determine which configuration is best suited for a given application. The online 

optimizer explores the design space by evaluating feasible node configurations to 

determine which configuration yields the highest design fitness given the application 

expert specified fuzzy metric classification functions and fuzzy fitness rules. As the 

dynamic optimizer module is intended to execute as part of the deployed system, 

exhaustively searching all configurations to find the optimal configuration is infeasible as 

stringent time and energy constraints must be met. Instead, an efficient heuristic 

algorithm is needed for dynamic optimization. 



 

 

39 

Figure 4 summarizes the proposed online optimization methodology. The system 

metric estimator module estimates the raw values for each design metric of interest given 

the dynamic profile information and platform configuration being evaluated. These 

values are then evaluated based on the fuzzy fitness rules and individual requirements for 

the fuzzy metric classifications defined by the application expert. Based on this 

evaluation, the heuristic search procedure explores the design space to determine a near 

optimal configuration for the current system execution behavior and environmental 

conditions.  

Figure 5 presents an overview of the proposed online fuzzy-directed optimization 

algorithm. The algorithm begins by initializing each configurable parameter, specifically 

Vc, Fc, DRc, RFPc, and RFFc, to the minimum feasible configuration, where subscript c 

indicates the current best parameter setting and subscript i indicates the current 

Initialize Vc, Fc, DRc, RFPc, RFFc to minimum setting 

find Vi :  maximize(Fitness(Vi, Fc, DRc, RFPc, RFFc))  

find Fi :  maximize(Fitness(Vi, Fi, DRc, RFPc, RFFc))  

find DRi :  maximize(Fitness(Vi, Fi, DRi, RFPc, RFFc)) 

find RFPi :  maximize(Fitness(Vi, Fi, DRi, RFPi, RFFc)) 

find RFFi :  maximize(Fitness(Vi, Fi, DRi, RFPi, RFFi)) 

Fitnessc = Fitness(Vc, Fc, DRc, RFPc, RFFc) 

FitnessGoalc = S; 

while (FitnessGoalc ² F ) { 

    for all FRi  Í FitnessRules s.t. FitnessGoal(FRi) == FitnessGoalc  

        for all Mi Í : MetricGoal(FRi, Mi) > MetricGoal(FRi, Mi+1)  

            ŷ/Ź Vi : Mi ŷ AND  FRi (Vi, Fc, DRc, RFPc, RFFc) maximized  

            ŷ/Ź Fi : Mi ŷ AND FRi (Vc, Fi, DRc, RFPc, RFFc) maximized  

            ŷ/Ź DRi : Mi ŷ AND FRi (Vc, Fc, DRi, RFPc, RFFc)) maximized  

            ŷ/Ź RFPi : Mi ŷ AND  FRi (Vc, Fc, DRc, RFPi, RFFc) maximized  

            ŷ/Ź RFFi : Mi ŷ AND  FRi (Vc, Fc, DRc, RFPc, RFFi) maximized 

        } 

        if (Fitnessc == FitnessGoalc ) break; 

        FitnessGoalc--; 

} 

 

Figure 5: Pseudocode for Online Fuzzy-Directed 

Optimization Algorithm. 
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parameter setting being explored. An initial search phase is utilized to greedily optimize 

each configurable parameter by increasing the parameter setting as long as an increase in 

the current overall design fitness, Fitnessc, is achieved. Parameters are tuned in the 

following order: Vi, Fi, DRi, RFPi, and RFFi. While the order in which configurable 

parameters are explored may impact the initially selected node configuration, 

experiments have indicated that this effect is marginal ï only affecting the number of 

configurations searched within the following fuzzy-directed search phase, but not the 

final optimized node configuration. Additionally, this initial search phase is only 

necessary for the first node configuration. For subsequent dynamic optimizations, the 

current node configuration is utilized as the starting configuration. 

Following the initial search phase, a fuzzy-directed optimization phase is utilized 

to further refine the node configuration given the application expert specified fuzzy 

fitness rules and design metric classifications. The process starts by initializing the 

current fitness goal, FitnessGoalc, to the maximum fuzzy classification of S. Each 

individual fuzzy fitness rule, FRi, will be utilized to guide the optimization process 

provided that the fitness ruleôs overall fitness goal matches the current fitness goal. For 

each fuzzy fitness rule, the optimization method will further be guided by the fuzzy 

requirements for each individual design metric, Mi, where metrics are considered in 

decreasing order of fuzzy requirement. For example, a metric goal of S is prioritized over 

a metric goal of G and will be utilized first to guide the order in which configurable node 

parameters are evaluated.  
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Given the current fitness rule, FRi, and design metric, Mi, the optimization process 

will monotonically increase/decrease each configurable parameter based upon the 

statically determined relationship between the configurable node parameter and design 

metric, as long as both an improvement in the individual design metric and overall fitness 

rule are achieved. The aim of this procedure is to attain the highest possible fitness value 

by utilizing a metricôs relative rank within the current fuzzy rule as a guide to determine 

the order and direction ï increasing or decreasing ï in which configuration parameters 

are evaluated. 

Once all selected fitness rules and their respective metric goals have been 

considered, the algorithm checks if the fitness goal, FitnessGoalc, has been achieved. For 

example, if the first iteration finds a Superior node configuration, the optimization 

procedure will terminate and return the current configuration regardless of its actual 

fitness value. However, if the configurationôs fitness does not match the goal, then the 

fitness goal is reduced by one fuzzy classification level ï e.g. Superior to Good ï and the 

optimization algorithm will subsequently utilize the fitness rules matching the reduced 

fitness goal to guide the optimization process. This process will repeat until the overall 

fuzzy classification of the node configuration matches the current fitness goal ï in the 

worst case producing an Insufficient configuration.  

In the event that redundant or conflicting rules are defined such that a single 

parameter configuration can be evaluated using multiple fuzzy rules of the same or 

different fuzzy requirement, our fuzzy-directed optimization algorithm will utilize the 

fuzzy rule resulting in the highest design fitness value. The validity of the resulting 
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configuration is thus dependent on the validity of conflicting or redundant fuzzy rule with 

the highest fuzzy requirement. If, for example, an incorrectly specified Fair fitness rule 

conflicts with a Superior rule, the resulting optimized configuration would remain valid, 

as the Superior fitness rule will be evaluated first. 

An asymptotic upper bound on the execution time of this optimization algorithm 

is 

 

O( FRÖM ÖS) , where |FR| denotes the total number of fuzzy rules, |M| denotes the total 

number of metrics, and |S| denotes the total number of settings for all configurable 

parameters. Thus, for the application described in Figure 2, |FR| is equal to six, |M| is 

equal to three, and |S| is equal to sixty-seven, which is attained by adding the number of 

settings for all five configurable parameters. 

The success of this approach depends both on developing an estimation 

framework for efficiently evaluating the design metric values as well as profiling the 

required execution statistics to accurately estimate these values. The current framework 

utilizes a combination of physical measurements and analytical analysis to estimate the 

raw design metric values using the profile statistics highlighted earlier. Although we 

currently focus on a particular subset of design metrics, configurable parameters, and 

profiling information, it should be noted that these could be modified to support other 

application design metrics. 
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2.4 Re-optimization Evaluation Algorithms 

As previously mentioned, the DPOP framework profiles application behavior in order to 

reconfigure node-level hardware parameters in accordance with user-defined application 

goals. Although a nodeôs application profile is continuously changing, not every profile 

change warrants node re-optimization. Hence, re-optimizing the node configuration for 

every profile change would incur significant computational and energy overhead. In order 

to mitigate this re-optimization overhead, the DPOP framework utilizes a re-optimization 

evaluation algorithm to determine if a nodeôs current application profile merits re-

optimizing the node configuration.  

As illustrated in Figure 6, the re-optimization evaluation algorithm is invoked 

prior to the online optimization algorithm presented in the previous sections. If the re-

optimization evaluation algorithm determines that the current node parameter 

configuration is suboptimal ï or that it could be improved ï based on the current 
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application profile, the online optimization algorithm is executed to determine the 

optimal configuration. Otherwise, the online optimization algorithm is bypassed and the 

current configuration remains unchanged. We consider three alternative re-optimization 

evaluation algorithms. The performance of each algorithm is evaluated based on the 

number of correct re-optimization detections, the number of unnecessary re-

optimizations, the number missed re-optimization opportunities, and the decrease in 

fuzzy fitness score for missed re-optimizations. 

2.4.1 Simple Metric Change Algorithm 

First, a simple metric change (SMC) evaluation algorithm is considered. This algorithm 

recalculates the high-level metrics given the new application profile and compares them 

with the previous metrics. As shown within the pseudocode for the SMC algorithm in 

Figure 7, if the difference is greater than an experimentally determined threshold, then 

the online optimization algorithm is launched. This threshold was statically determined 

by executing our fuzzy-directed optimization algorithm using four applications and 

various application profiles considered within this dissertation, as discussed in Section 

2.6. 

Initialize FuzzyMetricsold = { %MembershipLold,%MembershipPold,  

   %MembershipLAold } 

Initialize Configuration = { V, F, DR, RFP, RFF }  

Initialize Profileincoming = { PktSize, RxPkt, TxPkt, ɛpInstr, SenEvents } 

{Lnew, Pnew, LAnew } = MetricEstimationFramework(Configuration, Profileincoming) 

%MembershipLnew = LifetimeFuzzyClassification(Lnew) 

%MembershipPnew = PacketDeliveryFuzzyClassification (Pnew) 

%MembershipLAnew = LatencyFuzzyClassification(LAnew) 

FuzzyMetricsnew = {%MembershipLnew,%MembershipPnew,%MembershipLAnew} 

for all FuzzyMetricsi  :  

    if ( |FuzzyMetricsnew ïFuzzyMetricsold| > %Threshhold) Reoptimize(); 

 

 

Figure 7: Pseudocode for Simple Metric (SMC) Re-

optimization Evaluation Algorithm. 
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 While this algorithm is not anticipated to achieve near optimal results, it has the 

advantage of an extremely fast execution time and serves as an effective basis for 

evaluating the other algorithms. However, there is no direct correlation between a percent 

change in an individual metric score and the optimality of the current configuration, thus 

limiting the algorithmôs ability to correctly detect re-optimization opportunities. For 

example, we have encountered scenarios in which an incoming application profile 

decreased a configurationôs design fitness value by more than 50%, yet it still achieved 

the best fitness among all configurations. On the other extreme, we have encountered 

scenarios in which an incoming application profile improved the fitness value of the 

previously optimal configuration, which was later found to be sub-optimal. 

2.4.2 Neighboring Configuration Evaluation Algorithm 

A neighboring configuration evaluation (NCE) algorithm is also considered. Given an 

updated application profile, this algorithm evaluates the adequacy of the current 

configuration by evaluating the fitness value of neighboring configurations for each 

configurable parameter. This re-optimization evaluation algorithm essentially performs a 

reduced greedy search similar to the fuzzy-directed optimization algorithm. If any of the 

neighboring configurations produce a higher fitness value, it is clear that the current 

Fitnessi+1 
 

 F
it
n

e
s
s
 S

c
o

re 

Fi+1 

Frequency 

Fi Fi-1 

 Fitnessi-1 

Fitnessi 
 

Figure 8: Illustrative plot of design fitness score as a function of processor frequency. 



 

 

46 

configuration is non-optimal and re-optimization is necessary. Otherwise, the algorithm 

assumes the current configuration is either optimal or near optimal, and the current 

parameter configuration is kept. Figure 8 presents an example plot of overall fitness and 

processor frequency that illustrates a case in which an increased frequency setting, Fi+1, 

results in an improved fitness score. This neighboring configuration by itself is a 

sufficient indication of the current configurationôs non-optimality and the need to re-

optimize the configuration.   

 Figure 9(a) presents the pseudocode for the neighboring configuration evaluation 

algorithm. As soon as a new application profile is received, our metric estimation 

framework evaluates all metrics at neighboring configurable parameter values ï i.e. the 

(a) (b) 

Initialize Configurationi = { Vi, Fi, DRi, RFPi, RFFi }  
Initialize Profileincoming = { PktSize, RxPkt, TxPkt, ɛpInstr, SenEvents } 
 
{ Li, Pi, LAi } = MetricEstimation (Configurationi, Profileincoming) 
{%MembershipLi,%MembershipPi ,%MembershipLAi }= FuzzyClassification(Li, Pi, 
LAi ) 
Fitnessi = Fitness(%MembershipLi, %MembershipPi, %MembershipLAi) 
 
for each configurable parameters CP { 
 
     { Li+1, Pi+1, LAi+1 } = MetricEstimation (CPi+1, Profileincoming) 
    
    { %MembershipLi+1,%MembershipPi+1,%MembershipLAi+1 }=   
                                                                   = FuzzyClassification(Li+1, Pi+1, LAi+1 ) 
    Fitnessi+1 = Fitness(%MembershipLi+1,%MembershipPi+1,%MembershipLAi+1) 
    if ( Fitnessi+1 > Fitnessi ) { 
         Reoptimize() 

     } 
 
 
 
     { Li-1, Pi-1, LAi-1 } = MetricEstimation (CPi-1, Profileincoming) 
    
    { %MembershipLi-1,%MembershipPi-1,%MembershipLAi-1 } =   
                                                                   = FuzzyClassification(Li-1, Pi-1, LAi-1 ) 
    Fitnessi-1 = Fitness(%MembershipLi-1,%MembershipPi-1,%MembershipLAi-1) 
    if ( Fitnessi-1 > Fitnessi ) { 
         Reoptimize(); 
     } 

} 

  Li+1 = LifetimeTaylor(CPi-1, Profileincoming) 

  Pi+1 = PacketDeliveryTaylor(CPi-1, Profileincoming) 

  LAi+1 = LatencyTaylor(CPi-1, Profileincoming) 

 

  Li+1 = LifetimeTaylor(CPi+1, Profileincoming) 

  Pi+1 = PacketDeliveryTaylor(CPi+1, Profileincoming) 

  LAi+1 = LatencyTaylor(CPi+1, Profileincoming) 

Figure 9: Pseudocode for the (a) Neighboring Configuration Evaluation (NCE) 

re-optimization evaluation algorithm, and (b) Taylor Series based Neighboring 

Configuration Approximation (TSNCA) re-optimization evaluation algorithm. 
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next frequency or radio output power values ï in order to determine if increasing or 

decreasing each parameter will  potentially result in an increase in the overall fitness 

value. The algorithm terminates immediately after detecting a better configuration, or 

after all neighboring configurable parameters have been considered.  

2.4.3 Taylor Series Based Neighboring Configuration Approximation Algorithm 

The Taylor series based neighboring configuration approximation (TSNCA) algorithm is 

a variation on the aforementioned neighboring configuration evaluation algorithm, 

differing only in the underlying implementation details. Specifically, the raw metric 

values for neighboring configurations are approximated using Taylor series 

approximation functions rather than using the system metric estimation framework, 

which, as demonstrated later, can lead to improved re-optimizations. 

 A Taylor series, shown below, is a representation of a particular function as an 

infini te sum, where n! denotes the factorial of n and f(n)(a) denotes the nth derivative of 

the function f evaluated at the point x = a.  
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As computing an infinite sum is infeasible, the Taylor series is commonly converted into 

an approximation by utilizing only a finite number of terms, where each additional term 

provides better accuracy. Shown below are equations for 1st, 2nd, and 3rd order Taylor 

series approximations respectively. 
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A first-order Taylor series approximation yields a straight line, whereas a second 

order approximation corresponds to a parabola, a third order approximation corresponds 

to a cubic, and so on. Figure 10(a) presents an example plot of lifetime as function as a 

function of processor frequency and illustrates several approximation functions ï 

evaluated at an initial frequency of 2 MHz ï superimposed on an actual lifetime curve. 

Clearly, as the number of terms, or order, of the approximation function increases, the 

better we are able to approximate function values as we deviate further from the initial 

independent variable value, which in this case corresponds to the initial frequency of 2 

MHz.  
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Utilizing these concepts, the Taylor series based neighboring configuration 

approximation algorithm replaces the metric estimation framework with single variable 

approximate functions for all design metrics. The equations below illustrate how these 

functions are used to evaluate metric values at neighboring parameter configurations, 

where the subscript i indicates the current value, the subscript i ± 1 indicates neighboring 

configuration, ConfigParam can be any one of our configurable parameters, and 

ÖMetric/ÖConfigParam is an alternative notation for a metricôs derivate with respect to 

the configurable parameter.  
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(a) (b) 

Figure 10: Plots of (a) lifetime as a function of processor frequency and (b) packet 

delivery rate as a function of radio output power with 1st, 2nd, 3rd, and 4th order Taylor 

series approximation functions. Circular markers denote neighboring parameter 

configurations. 



 

 

50 

KimConfigParaimConfigPara
mConfigPara

veryPacketDeli

i
veryPacketDeli

i
veryPacketDeli

+-°

+=
°

)1(

1

µ

µ  

(12) 

With these approximation equations, the algorithm in Figure 9(a) can be modified 

with the changes seen in Figure 9(b). Replacing the metric estimation framework with 

these Taylor-based approximation functions can improve the re-optimization decisions by 

selecting the number of Taylor series terms appropriately for each metric approximation 

function. Specifically, the order or the Taylor series is chosen such that the 

approximation functions closely approximate, yet slightly overestimate, the actual 

function within the region of interest ï i.e. neighboring parameter configurations. In order 

to limit computation time, however, we also aim to select the fewest number of terms 

possible. The plot of lifetime versus frequency shown in Figure 10(a), for example, 

indicates that a third order approximation for lifetime as a function of frequency best 

meets the aforementioned criteria as it closely approximates, yet slightly overestimates, 

the actual lifetime curve for the neighboring frequency settings. On the other hand, 

Figure 10(b) indicates that both first and third order approximations for packet delivery 

rate as a function of radio output power are suitable, yet the first order is chosen as it is 

less computationally complex. In a similar fashion, we can statically determine the form 

of the approximation functions for all metrics as functions of each configurable 

parameter.  

By allowing the approximation to slightly overestimate the neighboring 

configurations values ï and thereby overestimate the benefit of re-optimization ï the 
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resulting re-optimization evaluation algorithm will determine if the neighboring 

configuration is likely to lead to a better overall fitness value. This methodology has been 

shown to decrease the number of missed re-optimization opportunities, although with a 

tradeoff of a slightly increased number of unnecessary re-optimizations. Based on our 

data, however, this tradeoff is both acceptable and preferable as the Taylor series based 

neighboring configuration approximation algorithm was able to detect the need to re-

optimize in several critical instances in which the original neighboring configurations 

algorithm missed re-optimization opportunities that lead to significant decreases in 

overall design fitness. 

2.4.4 Uni-directional Neighboring Configuration Evaluation for Reduced Computational 

Runtime 

As the re-optimization evaluation algorithm will be executed within the deployed systems 

for which runtime performance and energy overheads must remain minimal, a modified 

implementation of the re-optimization evaluation algorithms can support this goal by 

evaluating only one neighboring configuration for each configurable parameter rather 

than two. For each configurable parameter, we can predict which neighboring setting ï 

either higher or lower ï should be evaluated or approximated by computing the derivate 

ÖFitness/ÖConfigParam. This derivative indicates how the configurationôs fitness value 

fluctuates at this initial configurable parameter setting given the new application profile. 

If ÖFitness/ÖConfigParam is positive, then fitness is increasing as the parameter setting 

increases, and thus the algorithm should evaluate or approximate the configuration at the 

next higher configurable parameter setting. Otherwise, if the derivative is negative, the 
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algorithm should look at the next lower setting. Equations 13 and 14 below show how 

these derivatives are computed for two of our five configurable parameters. ÖFitness/ÖF 

is the derivative of fitness with respect to frequency and ÖFitness/ÖRFP is the derivative 

of fitness with respect to radio output power.  
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The derivatives ÖLifetimeraw/(ÖConfigParam), ÖLatencyraw/(ÖConfigParam), and 

ÖPacketDeliveryRateraw/(ConfigParam) are themselves functions and are derived by 

differentiating the metric estimation framework equations given in Section 2.3.4.1 using a 

mathematical tool such as MATLAB. The derivatives Ö%MembershipL/(ÖLifetimeraw), 

Ö%MembershipLA/(ÖLatencyraw), and Ö%MembershipP/(ÖPacketDeliveryRateraw) are 

simply constants that represent the slopes of the fuzzy design metric classification 

functions shown in Figure 2(a). The derivatives ÖFitness/(Ö%MembershipL), 

ÖFitness/(Ö%MembershipLA), and ÖFitness/(Ö%MembershipP) are constants that 
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represent the weight assigned to each metric in evaluating the current fuzzy fitness rule, 

and are derived by differentiating the fitness value equation presented in Section 2.3.2.2. 

 

2.5 Sensor Network Applications 

To analyze the benefits of dynamic profiling, online fuzzy-directed optimization 

algorithm, and re-optimization evaluation algorithms, we consider four different sensor 

network based applications.  

2.5.1 Forest Fire Detection and Propagation Tracking 

First, a Forest Fire Detection and Propagation Tracking (FF) application intended to 

monitor remote regions of wilderness is considered. During normal fire detection 

operation, the sensor nodes within the system will periodically monitor temperatures and 

transmit the temperature readings every five minutes to the base station. In the event that 

a node detects an elevated temperature for the previous two temperature samples, that 

node issues an alert to nearby nodes and transitions to a fire-tracking mode. Whenever a 

node receives an alert message from a nearby node, the former will also enter the fire-

tracking mode to ensure that the fireôs propagation can be efficiently tracked with 

reduced latency. In the fire-tracking mode, each node will sample and report the 

temperature every ten seconds. The base station node aggregates the reported temperature 

sensor readings, displays the reported data with appropriate timestamps, and issues alerts 

whenever a node enters the fire-tracking mode or a sensor node suffers an abrupt node 

failure.  



 

 

54 

 Figure 11 provides the fuzzy metric classification functions and design fitness 

rules for the Forest Fire Detection and Propagation Tracking application, noting that this 

is the only application for which we consider the Insufficient metric classification. For 

this application, lifetime is a critical design metric given the often inaccessible nature of 

the terrain in which the nodes are deployed. Thus, a long lifetime that minimizes the need 

to replace batteries is desired. A lifetime of 12 to 16 months is considered Good and a 

lifetime between 4 and 12 months is considered Fair, above and below which is 

considered Superior and Insufficient, respectively. Packet delivery rate is also an 

important metric because fire tracking and prevention necessitates accurate data. A Good 

range for the packet delivery rate is selected as 99.9% to 100% and packet delivery rates 

between 60% and 99.9% are deemed Fair. As nodes only transmit small amounts of data 

ï even when in tracking mode ï the latency requirements for the application are 

marginal, corresponding to a Fair range of 15 seconds to 960 ms and a Good range of 

960 ms to 2.4 seconds. 
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 The importance of each metric and how it relates to the fitness of the overall 

system design is specified by the fuzzy design fitness rules. For the Forest Fire Detection 

and Propagation Tracking application, lifetime is the most important design metric. 

Therefore, if the lifetime is Superior and all other metrics are at least Good, the overall 

design is considered Superior. If lifetime is Good, and all other metrics are at least Good, 

Fuzzy Design Fitness Rules 
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Figure 11: Application expert specified fuzzy design metric classification functions 

and fuzzy design fitness rules for several sensor-based applications. 
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the overall design is Good. As latency is not considered a critical metric, if the latency is 

Fair, the overall design is still acceptable only if the lifetime is Superior and the packet 

delivery rate is at least Good. Otherwise the design is Fair. Finally, if either lifetime or 

packet delivery rate are Fair, the overall design is considered Fair. An application expert 

need only explicitly define the fitness rules for Superior, Good, and Fair, as any 

remaining metric evaluations are considered Insufficient. 

2.5.2 Building Monitoring 

The second application, referred to as Building Monitoring (BM), is designed to monitor 

activity within a building using periodic sampling of motion and vibration sensors. 

Depending on the userôs request, this data can be used for a number of purposes. During 

the daytime, employees may be able to determine which conference rooms are free, or an 

automated system may turn lights off if a room is not in use for an extended period of 

time. During non-business hours, security professionals can utilize this information to 

ensure there are no personnel or unauthorized individuals are left in restricted areas.  

Compared to the Forest Fire Detection and Propagation Tracking, the lifetime 

requirement for the Building Monitoring application is more lenient with a lifetime of 5 

to 12 months considered Good. For packet delivery, a rate of 99.0% to 99.9% is 

considered Good as multiple packets will likely be transmitted to indicate activity 

occurring within a room and a single erroneous packet will not significantly impact the 

resulting system operation. However, as any detection of motion will be reported to the 

base station, a lower latency will be necessary, such that a latency of 0.2 ms to 9.6 ms is 



 

 

57 

considered Good. We note that without an Insufficient classification, the application 

expert need only specify the Good range. 

Again, lifetime is the dominant design metric for this application, followed by 

latency and packet delivery rate. Thus, a Fair lifetime or latency automatically results in 

a Fair design. However, if the lifetime is Superior and all other metrics are at least Good, 

the overall design is considered Superior. Alternatively, if the lifetime is Superior and the 

latency is at least Good, the design is still considered Good even if the packet delivery 

rate is only Fair. If the lifetime is Good, and all other metrics are at least Good, the 

overall design is considered Good. 

2.5.3 Environmental Wildlife Monitoring 

The third application considered, referred to as Environmental Wildlife Monitoring (EM), 

is used to send time stamped thumbnail images of pictures obtained by cameras placed 

next to watering holes and frequently used wildlife trails for monitoring and recording 

wildlife activity. The sensor nodes activate digital cameras whenever motion is detected. 

While the full resolution images are stored locally within the digital camera, the sensor 

nodes are responsible for logging and tracking activity along with transmitting low-

resolution thumbnail images ï e.g. 20x20 gray scale images ï to the base station to 

provide biologists or environmentalists quick access to detected activity without requiring 

physical access to the digital camera that may be located in a remote wilderness location.  

Unlike the previous two application scenarios, long lifetimes are not required for 

the Environmental Wildlife Monitoring application, as researchers must frequently 

venture into the field to collect the digital camera data. Consequently, replacing batteries 
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at the same time will not be particularly burdensome. Thus, a lifetime of just 0.5 to 1 

month is considered Good. However, the transmission of the thumbnail images using the 

wireless network will require low latency, with a latency of 0.9 ms to 3.5 ms considered 

Good. As the thumbnail images transmitted through the network are only meant to 

provide quick updates on activity and the full image data is stored within the digital 

camera, slight aberrations in the transmitted data will only result in degraded thumbnails. 

Hence, packet delivery requirements are not as stringent, with a Good rate ranging from 

96.5% to 99.7%. 

Overall, latency is more important than packet delivery rate, which in turn is 

much more important than lifetime. If latency is Superior and all other metrics are at least 

Good, the overall design fitness is Superior. On the other hand, a Fair latency or packet 

delivery rate corresponds to a Fair design. Since lifetime is not critical, if latency is 

Superior, packet delivery rate is at least Good, and lifetime is only Fair, then the design 

is still Good. If, however, lifetime is Fair and the latter requirements on latency and 

lifetime are not met, the overall design fitness is Fair. All other design alternatives are 

considered Insufficient. 

2.5.4 Climate Controlled Greenhouse Monitoring 

Finally, we consider a Climate Controlled Greenhouse (GH) application consisting of 

sensor nodes spatially distributed throughout an automated greenhouse. Every five 

seconds, each node sends the current temperature and humidity to the base station for 

monitoring purposes. Additionally, if the temperature exceeds a user defined threshold or 
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the humidity drops below a defined threshold, the sensor nodes will activate a misting 

system until the greenhouse climate has returned to an acceptable level.  

A moderately long lifetime is desired in order to minimize human presence and 

maintenance within the automated greenhouse environment. However, the desired 

lifetime would ideally encompass the elapsed time required to plant and harvest the 

specific crop being grown. Hence, a lifetime of 3 to 6 months is considered Good. 

Reliable data is crucial in monitoring the greenhouse environment, as properly 

controlling the misting systems is essential for good plant health and minimizing water 

costs. Thus, a Good packet delivery metric corresponds to a rate of 99.95% to 100%. The 

importance of latency is inversely proportional to the sampling rate. While the amount of 

data being processed and transmitted by individual nodes may be small, a larger number 

of sensors may be present within the greenhouse. Thus, a latency of 0.48 ms to 48 ms is 

Good. 

For the Climate Controlled Greenhouse application, lifetime and packet delivery 

are more important design metrics than latency. Thus, a Fair lifetime or packet delivery 

rate results in a Fair overall design fitness. A Superior design must have a Superior 

lifetime, a Good or Superior packet delivery rate, and a Good or Superior latency. If a 

Good lifetime is achieved along with a Good or Superior packet delivery rate, and a 

Good or Superior latency, the overall design is considered Good. As latency is not critical 

for this application, a Fair latency can still lead to a Good overall design only if lifetime 

is Superior and the packet delivery rate is Good or Superior. Otherwise, the design is 

considered Fair. 
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2.6 Experimental Results 

Each of the aforementioned applications was written for the TinyOS operating system 

using the NesC programming language, and implemented on the IRIS motes sensor 

network platform with each incorporating our dynamic profiling framework. Using a 

small scale ï on the order of 10 nodes ï deployment of sensor nodes, we profiled two 

dynamic execution scenarios per application corresponding to a low activity environment 

and a high activity environment which subjected the deployed sensor network system 

with manually created environmental stimuli for the two execution scenarios. For 

example, considering the Forest Fire Detection and Propagation Tracking application, a 

low activity scenario corresponds to the normal detection mode in the absence of fire. On 

the other hand, a high activity scenario is one in which the nodes have already detected 

fire, during which the temperature sensor is more frequently read and alert messages are 

transmitted within the network. Similar low and high activity scenarios are considered for 

the remaining applications. 

 For each application, profile information for all sensor nodes was collected and 

averaged under both dynamic execution scenarios. This averaged profile data was 

Table 2: Comparison of optimal static and dynamic node configurations for (a) 

low activity and (b) high activity dynamic scenarios showing breakdown of 

individual fuzzy design metric classifications for lifetime (L), packet delivery 

rate (P), and latency (LA), and the overall fuzzy design fitness (F). 

 
Optimal Dynamic 

Config. 
Optimal Static Config. 

  Optimal Dynamic 
Config. 

Optimal Static 
Config. 

App L % P % LA % F % L % P % LA % F %  App L % P % LA % F % L % P % LA % F % 

FF 100 S 100 S 98 S 100 S 100 S 100 S 54 S 92 S  FF 100 S 100 S 98 S 100 S 100 S 100 S 54 S 92 S 

BM 15 G 100 S 0.3 G 39 G 39 S 100 S 15 F 65 F  BM 35 G 100 S .03 G 45 G 29 G 100 S 20 F 54 F 

EM 0.8 S 100 S 58 F 75 F 0.8 S 100 S 58 F 75 F  EM 0.7 S 100 S 34 G 62 G 0.7 S 100 S 34 G 62 G 

GH 12 S 100 S 83 F 65 G 23 S 100 S 38 F 54 G  GH 76 F 100 S 97 F 74 F 69 F 100 S 13 F 45 F 

 (a) low activity scenario    (b) high activity scenario 
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subsequently utilized by the optimizer module in order to produce a single optimal 

configuration for each combination of application and dynamic execution scenario ï 

noting that such an optimal configuration remains valid as long as the execution 

environment remains constant. To evaluate to the benefits of dynamically optimizing a 

sensor nodeôs configuration instead of utilizing a single optimized configuration, we first 

compare the optimal static configuration to the dynamic node configurations produced by 

the online optimizer for low activity and high activity execution scenarios. Given our 

extensive experience with the IRIS platform and having completed the development of 

each application, we determined a static profile including the average packet reception 

rate, packet transmission rate, packet size, and number of microprocessor instructions 

required to process each packet reception and sensor event. Given this statically 

determined application profile, for each application, we determined an optimal static 

node configuration by exhaustively searching all feasible configurations given the 

application expert specified fuzzy classification functions and fitness rules. Additionally, 

the dynamic application profile for each execution scenario was utilized to determine the 

optimal dynamic node configuration. Table 2 presents the breakdown of individual fuzzy 

design metric classifications for lifetime, packet delivery rate, and latency, and the 

overall fuzzy design evaluation for the optimal static and dynamic node configuration for 

each application execution scenario. 

 For the low activity scenario presented in Table 2(a), the dynamically optimized 

node configurations either equal or exceed the performance of the statically optimized 

configurations. In the Forest Fire Detection and Propagation Tracking application, the 
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dynamically optimized node configuration showed a 46% increase in the latency fuzzy 

classification compared to the statically determined configuration. This improved latency 

results in an increase in the final fuzzy fitness score from 92% S to 100% S, where S 

indicates a Superior rating, G indicates a Good rating, and F indicates a Fair rating. For 

the Building Monitoring application, the dynamically optimized node configuration 

showed a similar improvement in lifetime but at the expense of latency. Specifically, this 

lifetime fuzzy score increase from 15% G to 39% S corresponds to raw lifetime increase 

of 6.05 months to 21.9 months; and the latency fuzzy score decrease from 0.03% G to 

15% F corresponds to a raw latency increase of 9.5 ms to 64 ms. This tradeoff is 

beneficial as it improves the overall design fitness from 65% F to 39% G. For the 

Environmental Monitoring application, the dynamic and static node configurations were 

both identical, thus dynamic optimization produced no discernable improvement for this 

one particular scenario. The Greenhouse Monitoring application is analogous to the 

Building Monitoring application in that overall improvement was attained using dynamic 

profiling, but resulted in an improvement in latency at the expense of lifetime, achieving 

a modest improvement in overall design fitness from 54% G to 65% G.  
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 Importantly, given the focus on application experts ï with limited engineering 

expertise ï by presenting the improvements using fuzzy metric classifications, an 

application expert can quickly evaluate the improvements in individual metrics and 

overall design fitness without needing to analyze the raw metric values. For example, in 

the case of the Forest Fire Detection and Propagation Tracking application, rather than 

presenting the improvement in latency as a raw improvement of 9.4 ms, the fuzzy metric 

classification presents the improvement as an increase from 54% S to 98% S. We believe 

that such an approach is more readily approachable and understandable by non-engineers.  

For the high activity scenario presented in Table 2(b), all dynamically determined 

node configurations outperformed their statically optimized counterparts. Additionally, 

improvements in individual design metrics were achieved without trading off decreases 

in other design metrics. The largest improvement was achieved for the Building 

Monitoring application, for which the dynamically optimized node configuration 

achieved an overall design fitness of 45% G compared to 54% F for the statically 

optimized configuration. 

Table 3: Comparison of exhaustive search and online fuzzy directed optimization 

algorithms for low activity and high activity dynamic scenarios showing 

breakdown of individual fuzzy design metric classifications for lifetime (L), 

packet delivery rate (P), and latency (LA), the overall fuzzy design fitness, and 

percentage of configurations searched (%CS) for the online fuzzy directed 

optimization algorithm. 

 
 

Low Activity Scenario High Activity Scenario 

Exhaustive Online Fuzzy Directed Alg. Exhaustive Online Fuzzy Directed Alg. 

App L % P % LA % F % L % P % LA % F % % CS L % P % LA % F % L % P % LA % F % % CS 

FF 100 S 100 S 98 S 100 S 100 S 100 S 98 S 100 S 0.06 100 S 100 S 98 S 100 S 100 S 100 S 98 S 100 S 0.06 

BM 15 G 100 S 0.3 G 39 G 15 G 100 S 0.3 G 39 G 0.06 35 G 100 S .03 G 45 G 35 G 100 S .03 G 45 G 0.05 

EM 0.8 S 100 S 58 F 75 F 0.8 S 100 S 58 F 75 F 0.10 0.7 S 100 S 34 G 62 G 0.7 S 100 S 34 G 62 G 0.05 

GH 12 S 100 S 83 F 65 G 12 S 100 S 83 F 65 G 0.05 76 F 100 S 97 F 74 F 76 F 100 S 97 F 74 F 0.06 
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For both the high activity and low activity scenarios, despite our experience with 

the underlying platform, a statically determined profile cannot reliably account for the 

inherent variability in performance demands due to dynamic execution requirements. 

Instead, dynamic optimization of sensor node configurations provides significant 

advantages in being able to adapt to these environmental changes and re-optimize the 

configuration. 

We further evaluated the performance and efficiency of our online fuzzy-directed 

optimization algorithm. Table 3 presents a comparison of the optimal dynamic node 

configuration determined by exhaustively evaluating all feasible node configurations and 

the dynamic node configuration determined using our online fuzzy-directed algorithm. A 

breakdown of the individual fuzzy design metric classifications and the overall fuzzy 

design evaluations for both low and high activity scenarios is presented along with the 

percentage of feasible configurations evaluated by our online fuzzy-directed optimization 

algorithm. For all applications and execution scenarios, our online fuzzy-directed 

optimization algorithm finds the optimal dynamic node configuration, while evaluating 

an average of only 0.06% of the entire set of feasible node configurations. This equates to 

evaluating only 114 node configurations, of which 65 evaluations are utilized for the 

initial search phase. On an 8 MHz processor, a single node configuration is evaluated in 

approximately 4 milliseconds, leading to a total execution time of 0.456 seconds for the 

fuzzy-directed optimization algorithm, compared to an execution time of 758 seconds 

using an exhaustive search. We note that for subsequent dynamic optimization, the 

current node configuration would be utilized as the initial configuration, further reducing 
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both the number of node configuration evaluated by the online optimization algorithm 

and its execution time.  

We evaluate the effectiveness of the various re-optimization evaluation 

algorithms based on the number of correct re-optimization detections, the number of 

unnecessary re-optimizations, and the number of missed re-optimization opportunities 

considering an initial configuration of {F, V, RFP, DR, RFF} = {2 MHz, 2.7 V, 3 dB, 

250 Kbits/s, 2405 MHz}. To evaluate the effectiveness of these algorithms, we further 

consider over 19,000 different application profiles based on data delineating meaningful 

ranges for each profile parameter. These application profiles corresponds to all possible 

combinations of the following profile parameters: six SenEvent values ranging from 0 to 

2500, six PktRx and PktTx values ranging from 0 to 500, eight PktSize values ranging 

from 0 to 21, and eleven ɛpInstr values ranging from 0 to 425,000. 

Table 4 compares the simple metric chance (SMC), neighboring configuration 

evaluation (NCE), Taylor series neighboring configuration approximation (TSNCA), and 

uni-directional variants of the neighboring configuration evaluation (U-NCE), and Taylor 

Table 4: Comparison of the simple metric chance (SMC), neighboring 

configuration evaluation (NCE), Taylor series neighboring configuration 

approximation (TSNCA), and uni-directional variants (U-) re-optimization 

algorithms for all applications (averaged) using over 19,000 different application 

profiles considering an initial configuration of {F, V, RFP, DR, RFF} = {2 MHz, 

2.7 V, 3 dB, 250 Kbits/s, 2405 MHz}.  

Re-optimization 
Evaluation 
Algorithm 

Correct  
Re-optimization 

Detections 

Unnecessary  
Re-

optimizations 

Missed  
Re-optimization 
Opportunities 

Avg. Fuzzy 
Fitness 

Decrease 

Max Fuzzy 
Fitness 

Decrease 

Execution Time 
(ms) 

SMC 12.20% 27.38% 60.42% 2.19% 47.86% 4.01 

NCE 95.63% 0.00% 4.41% 22.26% 45.63% 20.01 

U-NCE 94.98% 0.00% 5.02% 22.97% 94.78% 16.74 

TSNCA 95.90% 1.18% 2.92% 21.39% 24.00% 42.82 

U-TSNCA 95.36% 1.18% 3.46% 23.65% 94.29% 36.50 
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series neighboring configuration approximation (U-TSNCA) by averaging the data for 

each of the applications considered. Whenever the algorithm misses an opportunity to re-

optimize, a fuzzy fitness decrease value is calculated. This value relates the fuzzy score 

difference between the current suboptimal configuration and the optimal configuration. 

Additionally, the execution time using an 8 MHz processor is reported for all re-

optimization evaluation algorithms.  

The SMC algorithm achieves the fastest average execution time of 4 ms, yet on 

average, it achieved the lowest correct re-optimization detections, the highest 

unnecessary re-optimizations, and the highest missed re-optimization opportunities with 

values of 12.20%, 27.38%, and 60.42%, respectively. Although the average and 

maximum fuzzy fitness decrease values due to missed re-optimization opportunities are 

surprisingly modest, these values alone do not negate the algorithmôs subpar detection 

performance, and thus do not warrant its use. We note that while these results will vary 

depending on the selected metric change threshold, we do not expect any significant 

improvements, as no direct correlation exists between a change in metric values and the 

adequacy of the current hardware configuration. 

As expected, both the NCE and TSNCA re-optimization evaluation algorithms 

achieved comparable results and significantly outperformed the SMC algorithm. On 

average, the TSNCA algorithm incurs a small 1.18% increase in unnecessary re-

optimizations in exchange for a 0.27% improvement in correct re-optimization 

detections, and a 1.49% decrease in missed re-optimization opportunities over the NCE 

algorithm. Most notably, the TSNCA algorithm achieves the lowest average fitness 
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decrease value at 24%, which corresponds to an improvement of 21.63% over the NCE 

algorithm. The TSNCA algorithm overestimates the neighboring configuration 

specifically to reduce the number of missed re-optimizations and aids in detecting re-

optimization opportunities that the NCE algorithm dismisses. The potentially significant 

difference in behavior for these two optimization algorithms is best exhibited for the 

Environmental Monitoring application. For this application, the TSNCA algorithm incurs 

a maximum fitness decrease value of only 5.33% compared to the NCE algorithmôs 

maximum fuzzy fitness decrease value of 91.26%. Whereas the NCE algorithm keeps a 

suboptimal configuration with a latency of 22.3 ms, the TSNCA algorithm determines 

that re-optimization is needed and finds a configuration with a latency of 3 ms. 

As any re-optimization evaluation algorithm should be considerably faster than 

the online fuzzy directed optimization algorithm, the execution time for the re-

optimization evaluation algorithms is critical. The original NCE algorithm is faster to 

compute, requiring 20 milliseconds, or roughly one half the time required for the TSNCA 

algorithm. This constraint served as the primary impetus for developing the U-NCE and 

U-TSNCA algorithms, which achieved a slightly decreased, yet comparable, performance 

over their original counterparts in exchange for a 4 ms decrease in computation time. The 

main drawback, however, is that the slight increase in missed re-optimization 

opportunities of 0.61% and 0.54% for the U-NCE and U-TSNCA algorithms, 

respectively, leads to a maximum fitness decrease greater than 94%.   

The viability of these re-optimization evaluation algorithms hinges on both 

detection performance and execution time. Based on the presented data, all algorithms, 
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with the exception of the SMC algorithm, achieve a satisfactory detection performance. 

On the other hand, an execution time is only satisfactory if itôs a small fraction of the 

total optimization time. Given that our online fuzzy-directed optimization algorithm has 

an average execution time of 0.456 seconds, the NCE, U-NCE, TSNCA, and U-TSNCA 

re-optimization evaluation algorithms spend respectively 4.4%, 3.7%, 9.4%, and 8%, of 

the average optimization time determining whether re-optimization is necessary.  
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CHAPTER 3 

ATLES-SN: A MODULAR SIMULATOR FOR SENSOR NETWORKS  

 

3.1 Overview 

The accuracy of the aforementioned profiling and optimization frameworks depends 

critically on the accuracy of the estimation models used for the high-level design metrics 

at runtime. However, assessing the e ect of configurable and profile parameters on high-

level design metrics can be a daunting task due to the complex interdependences between 

parameters. Unless the parameter relationships can be determined using known 

mathematical models, application experts and platform developers must typically derive 

such models via experimentation.  

Physically deploying a sensor network test-bed and relying on empirical 

measurements to assess the e ect of parameter and design decisions can be impractical, 

time consuming, and costly. Thus, computer simulations are an attractive means of 

assessing the performance of sensor network platforms. These WSN simulators give 

application developers the ability to rapidly and accurately simulate an application for 

design space exploration or performance assessment. The speed, accuracy, and suitability 

of these simulations are largely dependent on the structure and features of a particular 

simulator [23]. In this chapter, we present the Arizona Transaction-level Simulator for 

Sensor Networks (ATLeS-SN), which allows developers to specify components at 

di erent levels of abstraction ï from cycle-accurate to high-level algorithms ï thus 
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providing a greater degree of control over simulation speed and accuracy in comparison 

to other o erings. 

3.2 Previous Work 

Various sensor network simulators have been introduced. The NS-2 simulator [24] is an 

early pioneer that began as a general network simulator. Its functionality has been greatly 

expanded since inception and it has become arguably one of the most popular discrete-

event sensor network simulators in use [49]. NS-2 o ers advanced models for several 

MAC, transceiver, and routing protocols as well as a simple energy consumption model. 

The MAC protocols integrated within NS-2, however, are not necessarily suitable for 

low-power wireless sensor networks [79]. Moreover, application and environmental 

sensing models are limited or non-existent [41]. Similarly, Castalia [14] is discrete-event 

simulator built on the OMNeT++ platform. Castalia o ers several advanced wireless 

transmission medium, radio, and MAC models that are suitable for wireless sensor 

networks [49][41][40]. The simulation platform is also extensible and reasonably 

modular, yet the lack of rigidly deýned component interfaces often limits the 

compatibility of third-party developed components [23]. While developers are free to 

create custom components at di ering levels of abstraction, Castalia lacks the 

infrastructure necessary to easily model concurrent hardware down to the bit-level, thus 

prompting some to extend OMNeTôs capabilities with SystemC [65].  

TOSSIM and its extension PowerTOSSIM [53][89] accurately model the 

networking and energy consumption of TinyOS based sensor nodes. The TOSSIM 

simulators achieve excellent scalability and accuracy by emulating actual application 
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code and simulating networking hardware devices down to the bit level. However, the 

main drawback to these simulators is that models to incorporate the sensed environmental 

phenomena are not available, and all nodes must execute the same source code. Most 

importantly, TOSSIM is not suitable for all sensor networks as it is strictly designed for 

MICA motes running the TinyOS operating system.  

Finally, SENS [92] is an event-driven simulator that allows interchangeable 

models for the application, network, transmission medium, and environment components. 

The provided environment model is arguably one of the most sophisticated as it 

accurately models both sensed phenomena and the radio transmission medium [40]. 

However, the main limitation to the SENS platform is the lack of accurate models for 

routing and medium-access control.  

Although numerous other simulation platforms exist, these platforms are similarly 

e ective for their respective purposes, but do not provide a holistic environment for 

application experts to design, evaluate, and optimize their respective applications. Thus, 

we aim to consolidate the strengths of the aforementioned simulation platforms through 

the introduction of the Arizona Transaction Level Simulator for Sensor Networks 

(ATLeS-SN) ï a modular and conýgurable simulator implemented in the SystemC 

language. 

 We ýrst introduced the ATLeS-SN simulator in [37] and described basic 

component functionality via two application case studies. This research extends upon this 

previous e ort by presenting a signiýcantly revised and improved simulator structure 

along with revised component models that more precisely and e ciently model real 
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sensor network implementations and applications. Speciýcally, the network stack now 

includes subcomponents for the physical layer, medium-access control layer, and the 

networking layer; the implementation and accuracy of the transmission medium model 

has been improved; the interfaces and ports of the application component have been 

restructured; a system monitoring component has been added; and a new sound 

application and its corresponding environment and sensor components has been created. 

 

3.3 SystemC and Transaction-level Modeling Overview 

Transaction-level modeling (TLM) is a programming methodology that facilitates the 

implementation of various elements within a design at di erent levels of abstraction by 

decoupling communication from computation. Developers are provided with the freedom 

to work on a speciýc aspect of a design without having to implement all other 

components in detail. Such a model is of great beneýt for developers, as developers are 

able to concurrently develop and reýne di erent components within the same system 

without having to wait for the previous phase to be completed.  

 

Figure 12: Transaction-level model example consisting of several components (P, Mem, 

PE1, PE2,é, PEn) connected through a communication channel (Bus) with two interfaces. 
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Figure 12 provides an example of a transaction-level implementation. In this 

conýguration, a processor, memory, and several processing elements ï all called 

components ï are connected through a common bus. This bus is a channel through which 

all communication between components takes place and implements two interfaces that 

deýne the types of methods ï or transactions ï that the connected components can use to 

interact with the channel. The processor, memory, and processing element components 

contain ports, which additionally deýne the type of interfaces to which they can be 

connected.  

As long as these interfaces and their respective transactions remain ýxed, a 

developer is free to modify or reýne the underlying channel, processor, memory, or 

processing elements without compromising system compatibility. Thus, these interfaces 

and ports are the constructs through which TLM manages to separate the details of 

communication from the underlying implementation. A developer, for example, could 

ýrst implement the processor as a basic C/C++ algorithm and then progressively increase 

its level of detail in order to implement a cycle accurate instruction-set simulator without 

having to change any other component or a ecting compatibility. The SystemC language 

ï which is actually a class library to C++ ï enables developers to easily take advantage of 

TLM. Additionally, it provides support for discrete-event, time-based, and cycle-accurate 

simulations. 

 

3.4 ATLeS-SN Simulator Structure 
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The Arizona Transaction-Level Simulator for Sensor Networks is a simulation platform 

built using the SystemC extension to the C++ language. Through the principles of 

transaction-level modeling, ATLeS-SN emphasizes a modular design that allows 

developers the ability to iteratively reýne and replace individual components with 

minimal e ect to system compatibility. Such modularity facilitates the design process by 

giving developers the freedom to focus primarily on components of interest while others 

are speciýed only to the necessary level of detail. Moreover, developers can easily take 

advantage of third-party developed components to extend the application of interest or 

evaluate various design options. Indeed, through the case study presented in this chapter, 

 

Figure 13: Overview of the components, ports, and interfaces for the Arizona 

Transaction-Level Simulator for Sensor Networks (ATLeS-SN) 2.0. 
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we aim to demonstrate the beneýts of integrating a diverse set of components from 

di erent simulators into a single simulation environment. 

 In designing the structure of this simulation framework, special attention was 

given to the issue of modeling the overall functionality of a sensor network using an 

adequate and realistic set of components. This task involved determining both the number 

of components and their individual functionalities. Specifying an insu cient number of 

components makes it di cult for the developer to reýne a speciýc aspect of the simulator 

as multiple di ering functionalities are lumped together. On the other hand, too many 

components can overwhelm the developer and impede high-level thinking and design. In 

order to achieve the appropriate balance in component composition and granularity, a 

survey of sensor node modeling was conducted and it revealed that the essential 

considerations in sensor network design and optimization are power consumption, 

communication, application functionality, and the sensed environment [53][14][92]. 

Consequentially, these are the categories that guided the selection of components for 

ATLeS-SN. If, however, a developer ýnds that the subdivision of components within 

ATLeS-SN is too coarse a granularity for a particular application, transaction-level 

modeling additionally allows the implementation of subcomponents within an existing 

component, thus e ectively making the latter a wrapper through which all 

communication with external components takes place. 

 Figure 13 presents an overview of the components, interfaces, ports, and 

connections that compose the underlying structure of the ATLeS-SN framework. Each 

individual Sensor Node is speciýed as a collection of subcomponents. Speciýcally, the 
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App component encapsulates the core functionality of the sensor node; the Sensor 

component models the sensors found within each node; the NetworkLayer, MACLayer, 

and PhysicalLayer components within the Network Stack component model the software 

and hardware necessary for wireless communication; and the SystemMonitor component 

enables a developer to monitor activity in the Network Stack, App, and Sensor 

components for later estimation and optimization of node power consumption, lifetime, 

or other metrics of interest [66][67][86]. The Environment and Transmission Medium 

components are external to the sensor nodes and model the sensed phenomena and the 

wireless communication medium, respectively. 

 Figure 13 additionally speciýes the interfaces implemented by each component as 

well as the corresponding ports and connections. These elements are critical in deýning 

all potential interactions ï or transactions ï between components and are further 

explained in the following sections. 

3.4.1 Application Component 

The App component models the functionality of the software executed in a sensor nodeôs 

processor. This, however, does not include the drivers utilized to interface with the 

sensors or physical layer components such as the transceiver. Instead, App simulates the 

algorithms necessary to implement the high-level functionality of the wireless sensor 

network at large. Examples include the code necessary to detect and respond to elevated 

temperatures in the case of a forest ýre application, or the algorithms necessary to 

calculate speed and direction in an accelerometer based application.  
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As speciýed by Figure 13 (d) and (g), the App component implements two 

interfaces: packet_receive_if and sensor_interrupt_if. The packet_receive_if interface 

speciýes a ñreceiveò transaction that allows the application component to receive data 

packets from elsewhere in the network. The application typically receives these packets 

from the nodeôs networking components, which as explained in Section 3.4.3, are 

responsible for controlling inter-node communication. Finally, the sensor_interrupt_if 

interface speciýes an ñonSensorInterruptò transaction that allows a Sensor component to 

interrupt the application in order to deliver a sensor reading asynchronously.  

The App component additionally contains ports that allow it to initiate 

transactions with other components ï again via interface deýnitions. The upper port 

connects to an interface for transmitting packets (Figure 13(c)); the lower connects to an 

interface for actively demanding sensor data or actuating the environment (Figure 13(f)); 

and the rightmost port connects to an interface for tracking power states (Figure 13(e)). 

The provided models for the App component simulate high-level C/C++ algorithms using 

an approximate-timed model in which operation delays are approximated using SystemC 

wait statements. Under an approximate-timed model, these wait statements ï written as 

wait(time, time unit) or wait(event) ï are utilized to instruct the simulation engine to halt 

program execution until an event, such as the expiration of time, is triggered in order to 

approximate delays inherent of a particular algorithm or calculation. However, di erent 

levels of abstraction can be implemented in order to meet the goals of a particular 

simulation. For example, a cycle-accurate instruction-set simulator that executes 

assembly instructions can be implemented within the App component in order to model 



 

 

78 

performance, instruction delay, and energy consumption more accurately. However, a 

low-level implementation such as this may be inadequate if simulation time and 

scalability are primary concerns. In these situations, the aforementioned approximate-

timed model or an untimed model that only utilizes event counters to calculate the energy 

consumed may be more suitable. Nonetheless, within the TLM implementation the 

developer is free to specify the required level of abstraction with the assurance of system 

compatibility as long as the custom application component implements the 

aforementioned interfaces. 

3.4.2 Sensor Component 

The Sensor component models the functionality of a physical sensor within a sensor node. 

Examples include light sensors, temperature sensors, or accelerometers. As shown in 

Figure 13(f), the Sensor component must implement a sensor if interface that speciýes 

ñReadò and ñActuateò transactions. The former allows other components, typically the 

App, to read data values from the sensor, and the latter is used to actuate the environment. 

Because the data returned to a physical processor consists of bits, the ñReadò transaction 

adheres to this abstraction by returning unsigned integer values which the App component 

must decipher according to the type of sensor being used.  

The Sensor component additionally contains three ports that allow the sensor to 

initiate transactions with other components. One port connects to a component 

implementing the sensor_interrupt_if interface ï typically the App ï and allows the 

sensor to interrupt its execution in order to deliver a new sensor value asynchronously. 

Another port connects to the environment_if interface, described in Section 3.4.6, and 
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enables the sensor to interact with the environment. The last port connects to an interface 

in the System Monitor component for tracking the sensorôs power states.  

The provided models for the Sensor component are approximate-timed and 

consequently use SystemC wait statements to simulate delays. In fact, both the ñActuateò 

and ñReadò transactions block ï or delay the execution of ï the calling components with 

these wait statements in order to more accurately simulate the time necessary for sensor 

reading and communication. Again, the developer is free to modify or implement his or 

her own Sensor component using the desired level of abstraction. 

3.4.3 Network Stack and Subcomponents 

The PhysicalLayer, MACLayer, and NetworkLayer components, collectively called the 

Network Stack, implement the sensor nodeôs networking functionality. The 

PhysicalLayer models the capabilities of wired or wireless transceivers and the 

controlling circuitry, thus allowing the node to receive and transmit data in the form of 

bits. The MACLayer component implements the medium-access control functionality 

which, depending on the actual implementation, controls aspects such as when packets 

are transmitted and the states of the transceiver. The NetworkLayer component 

implements the high-level networking functionality, and depending on the speciýc 

routing protocol employed, determines the appropriate recipients of transmitted packets 

and whether a received packet should be retransmitted or given to the application 

software for processing.  

When a node ýrst receives a packet, the packet traverses the entire network stack 

from the PhysicalLayer to the NetworkLayer before being delivered to the App 
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component. If the App needs to transmit a packet to another node, then this order is 

reversed. The PhysicalLayer implements a physical_if interface that speciýes three 

possible transactions. The ñTransmitPacketò transaction allows other components ï 

typically the MACLayer ï to give the PhysicalLayer a packet for transmission, the 

ñConýgureò transaction is used to change the its state or conýguration, and the 

ñisChannelClearò transaction is utilized to determine if the transmission medium around 

the sensor node is clear. These three transactions are typically utilized by the MACLayer 

component. The PhysicalLayer additionally contains three ports. The upper port allows it 

to send and receive packets from the transmission medium via a medium_if interface 

(Figure 13(a)); the lower connects to a packet_receive_if interface and allows it to pass 

along received packets to components such as the MACLayer (Figure 13(d)); and the 

rightmost port connects to an interface in the System Monitor component for tracking 

power states (Figure 13(e)).  

The MACLayer component implements the packet_receive_if and packet_send_if 

interfaces to enable components such as the PhysicalLayer to supply the MACLayer 

component with received packets, and components such as the NetworkLayer component 

to send packets meant for transmission. The NetworkLayer component similarly 

implements the same packet_receive_if and packet_send_if interfaces. The MACLayer 

component has two ports that are simply utilized to deliver packets to the PhysicalLayer 

and NetworkLayer components. Similarly, the NetworkLayer ports are used to deliver 

packets to the App and MACLayer components.  
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The provided models for the network stack components are also approximate-

timed. The ñTransmitPacketò transaction implemented by the PhysicalLayer and used by 

the MACLayer is blocking and utilizes SystemC wait statements to model the 

communication time between processor and transceiver.  

We note that although all of the provided MACLayer and NetworkLayer 

components ï see Section 3.5.2 ï are currently modeled as software routines running in 

the sensor nodeôs processor, the user is free to develop custom components that are 

modeled as hardware implementations or some mixture of software and hardware. 

3.4.4 System Monitor Component 

The SystemMonitor is a general monitoring component used to improve the accuracy of 

simulation; however, it may also represent an actual software component used in 

profiling and optimization efforts. It can be used to model a variety of node parameters 

including the energy consumption of an individual sensor node. As illustrated in Figure 

13(e), the System Monitor component implements a system_monitor_if interface that 

specifies an ñUpdateStateò transaction that other components use in order to inform the 

PowerTracker of component state changes. Based on these states, this component can 

keep track of parameters such as the remaining battery energy or voltage. While the use 

of this component is optional, the System Monitor component can provide developers 

with deeper insight into the execution of the application and evaluation of platform 

design choices. The provided model is presented in more detail in Section 3.5.3. 
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3.4.5 Transmission Medium Component 

The TransmissionMedium component models the physical medium through which signals 

propagate. After transmission, data packets traverse this physical medium as encoded 

information in the form of electromagnetic radiation and are eventually received by a 

sensor nodeôs PhysicalLayer as seen in Figure 13(a). The TransmissionMedium 

component simulates aspects such as packet delay and signal degradation as information 

propagates through the environment. However, in order to properly simulate this 

degradation, this component must have access to information regarding each nodeôs 

location. Thus, it is initialized with an array of objects containing identification and 

location information for all sensor nodes.  

The TransmissionMedium component, shown in Figure 13(a), implements a 

single medium_if interface to which all sensor nodes in the network are connected via the 

PhysicalLayerôs port. This interface specifies the ñTransmitò and ñListenò transactions. 

The ñTransmitò transaction is utilized by a PhysicalLayer component when sending a 

packet and the ñListenò transaction is similarly used by the PhysicalLayer when listening 

for remote packets.  

Because signal degradation and packet losses are of significant concern in the 

realm of networking, a broad number of signal propagation models have been introduced 

in literature. These include advanced models such as the Radio Irregularity Model [104], 

the log-normal shadowing path loss model [107], as well as other simpler models that 

discard packets based on probabilities or assume an ideal environment in which every 
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node can receive all packet transmissions without error. Our implementation of the log-

normal shadowing path loss model is introduced in Section 3.5.1. 

3.4.6 Environment Component 

The Environment component is analogous to the aforementioned TransmissionMedium 

component, however, it instead models the physical medium through which sensed 

phenomena originate and propagate. In a forest fire monitoring and tracking application, 

for example, the sensed phenomena is temperature and the Environment component could 

model the propagation of fire through the landscape and the conduction of heat to 

individual nodes.  

The Environment component, depicted in Figure 13 (b), implements an 

environment_if interface which specifies ñSenseò and ñActuateò transactions. The 

ñSenseò transaction allows individual Sensor components to sense the environment and 

returns the appropriate reading typically based on the calling nodeôs position and sensor 

type. The ñActuateò transaction allows sensors to actively influence and alter the 

environment. In a greenhouse monitoring application, for example, a sensor detecting 

elevated temperatures could actuate the environment by turning on misters to reduce the 

ambient temperature. 

 Because the correct environment implementation is strictly dependent on the type 

of application, a wide variety of models ï such as the sound propagation environment 

presented in Section 3.6.2 ï can be used. Some developers might choose to forgo 

modeling the mathematical complexities of propagation and simply read values from a 

file, and others may not have the need to use the Environment component. 
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3.5 Implementation and Verification  of ATLeS-SN Components for Target Sensor 

Platform 

The component models included in ATLeS-SN were selected based on our survey of 

WSN simulator literature and are highlighted in Figure 14. Although a variety of sensor 

network platforms are available, the sensor node components within ATLeS-SN have 

been configured to closely approximate IRIS motes [19] running the TinyOS operating 

system. Specifically, the SystemMonitor component has been designed to simulate an 

 

Figure 14: Overview of the simulator structure for the IRIS mote platform highlighting 

the utilized component models in parenthesis. 
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IRIS moteôs energy consumption and the MAC component models the B-MAC protocol 

developed for TinyOS. The App, Sensor, and Environment components were designed to 

model the target acoustic ranging application discussed in Section 3.6. The remaining 

components were selected from various other simulators and our implementations closely 

approximate their original functionalities. The following sections highlight each of the 

provided models. 

3.5.1 Transmission Medium: Path Loss Lognormal Shadowing Model Implementation 

The TransmissionMedium component models the physical medium through which signals 

ï which encapsulate packets ï propagate before reaching their destination. Due to the 

popularity of the Castalia simulator [14] and the maturity of their models, the 

Transmission Medium component integrates the signal degradation and propagation 

model found in Castalia. We note that this model assumes node locations are static and 

 

Figure 15: StateChart detailing the interactions between concurrent super-states in the 

Transmission Medium Component. 
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that nodes cannot be dynamically added to the network during runtime. However, the 

simulatorôs extensibility certainly allows developers to add this functionality by 

developing their own custom implementation of the Transmission Medium.  

The functionality of our Path Loss Lognormal Shadowing model for wireless 

transmission is illustrated by the StateChart shown in Figure 15. In accordance to 

StateChart automata, dashed lines indicate parallel execution of concurrent states. Thus, 

any component described by such a StateChart is simultaneously operating in all 

concurrent super-states at once. Transitions between states occur upon the activation of 

events, and these transitions may be guarded using conditional statements enclosed in 

parenthesis. The timeout(event, delay) expression represents an event that is activated 

when a specified time delay has elapsed after the occurrence of some event. Additionally, 

the expression /x indicates the generation of event x upon transition. Importantly, this 

method of mixed event-driven and time-based simulation is efficiently supported in 

SystemC. We refer the interested reader to [34] for a more detailed description of 

StateCharts. 

This particular model has three concurrent super-states: the Listen State (L), 

Transmit Signals State (TS), and Track Active Signals State (TAS). Although not 

explicitly shown in Figure 15, a new instance of the TS super-state is launched whenever 

a node utilizes its physical if port to transmit a new packet. When this event occurs, sub-

state E(Wait for Node Transmit) within the newly created TS super-state transitions to 

sub-state F (Store Signal and Calculate Expiration Time), where the medium component 

stores the incoming signal, calculates its expiration time ï or the amount of time the 
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signal will be in transmission ï and finally notifies other concurrent states that a new 

signal has been received before returning to sub-state E.  

Similar to the Castalia framework, the wireless signals used in our model have a 

non-zero transmission time that is calculated based on the packetôs size and the 

transmitting radioôs data rate. Consequentially, the TAS super-state is responsible for 

keeping track of any active signals being transmitted and removes those that have 

ñexpiredò in sub-state H (Remove Expired Signal).  

The L super-state essentially models the functionality of the ñListenò transaction. 

A new instance of the L super-state is launched whenever a node uses its medium_if port 

to listen for wireless signals. When this occurs, the medium first checks the number of 

currently active signals in sub-state B (Check # of Active Signals). If any active signals 

are present, a transition to sub-state D (Return Active Signals to Node) occurs and the 

medium delivers any signals the listening node has not yet received. Otherwise, if no 

active signals are being transmitted, a transition to sub-state C (Wait for New Signal 

Notification) occurs and the transmission medium component blocks the nodeôs 

execution until a new signal has been received.  

In order to determine which signals a particular node can receive, the medium 

utilizes a signal propagation function to model the power loss of a signal as it propagates 

a certain distance. If the signalôs power is calculated to be below a certain configurable 

threshold upon reaching a receiving node, then the packet is simply not delivered. The 

threshold utilized in the model is 10dB below the Transceiverôs sensitivity or noise floor, 

and the propagation model is called the ñPath Loss Lognormal Shadowing Modelò [107]. 
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The following equation, (15), is used to approximate the path loss ï or loss in 

power ï of a signal as it propagates through a medium. 

ὖὒὨ ὖὒὨ ρπϽ–ϽÌÏÇ
Ὠ

Ὠ
ὢ  

(15) 

ὖὒὨ is the path loss at distance Ὠ from its source, ὖὒὨ  is a known path loss 

value at a reference distance Ὠ, ɖ is the path loss exponent, and Xů is a Gaussian zero-

mean random variable with a standard deviation of ů. Using equation (15), a signalôs 

strength after propagating a distance d can be calculated as shown in (16). 

ὖὨ ὖ ὖὒὨ (16) 

ὖὨ is the received signal strength at distance Ὠ, ὖ is the original transmitter output 

power in decibels and ὖὒὨ is the path loss at a distance Ὠ. With these formulas, the 

 

Figure 16: StateChart detailing the interactions between four concurrent super-states in the 

Castalia Transceiver model for the PhysicalLayer Component. 
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medium component can determine if a node will receive a certain signal by comparing 

the result of equation (16) with the predefined noise floor threshold. 

3.5.2 Network Stack 

The following sections within this chapter describe our implementations of several 

existing networking protocols. The selected protocols are well-known and suitable for 

WSNs. We emphasize that our goal is not to provide improved implementations of these 

established protocols, but rather to demonstrate the versatility of our simulator by 

showing examples of the types of protocols that can be developed for ATLeS-SN. 

3.5.2.1 PhysicalLayer: Castalia Transceiver Model Implementation 

We constructed the MACLayer and PhysicalLayer component models based on their 

corresponding Castalia counterparts. As illustrated in Figure 16, our custom 

implementation of Castaliaôs wireless transceiver model for the PhysicalLayer contains 

four concurrent super-states: the Transmit State (T), the Listen for Commencing Signals 

State (LCS), the Listen for Ending Signals State (LES) and the RSSI State (R). Together, 

these concurrent super-states enable the transceiver to receive packets, transmit packets, 

and check if the medium around the node is clear by using a received signal strength 

indicator ï or RSSI.  

The transceiver model is designed to continuously listen to the transmission 

medium for the duration of the simulation, enabling the transceiver to accurately 

calculate the signal-to-noise ratio and signal interference at all times. The reception of a 

signal/packet is determined by calculating the number of bit errors that occurred during 

its reception and checking if this number is less than the appropriate threshold given by 
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the packetôs encoding. The number of bit errors is a function of the incoming signalôs 

signal-to-noise ratio (SNR), the modulation scheme, data rate and the length of the 

packet. The interference of multiple signals is accounted by summing the signal strengths 

of all interfering signals and calculating a new SNR. We refer the interested reader to the 

Castalia Userôs Manual [14] for a more detailed explanation of signal reception. 

 The LCS super-state shown in Figure 16 is responsible for detecting all incoming 

signals by first calling the medium_if interfaceôs ñListenò transaction in sub-state A 

(Begin Listening). This transaction will block the transceiverôs execution until the node 

receives a signal. Once the medium delivers these signals, sub-state B (Process Signal) 

will 1) discard new signals whose carrier frequency does not match the transceiver, 2) 

mark those signals received while the transceiver is not in the RX state, 3) update the 

interference and bit errors of all previously received signals due to the arrival of the new 

ones, 4) calculate the interference and bit errors of the newly received signals, and 5) 

calculate the total power ï or interference ï at the radio. Once this processing is 

completed, the transceiver stores the remaining signals in sub-state C (Store Signals in 

Buffer) and then returns to the initial state. We note that signals received while the 

transceiver is not in the RX state are not immediately discarded, but are instead kept in 

order to accurately calculate interferences and bit errors. Also, a single iteration of the 

super-state (LSC) completes without consuming simulation time in order to process every 

possible signal.  

The LES super-state is analogous to the transmission mediumôs Active Signal 

Tracking super-state. It is responsible for detecting when active signals meant for 


































































































































































