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ABSTRACT

Thewidespread adoptioaf embedded computing systems has resulted in the realization
of numeroussensing, decision, and contegbplications with diverse applicatiapecific
requirements. However, such embedded systems applications are becoming increasingly
difficult to design, simulate, and optimize due to the multitude of interdependent
parameters that must be considered toeaxehoptimal, or neaoptimal, performance that
meets design constraints. This situation is further exacerbated foradigitable
embedded systems (DAES) applications due to the dynamic characteristics of the
deployment environment and the data streamswbith these systems operate. As
operating conditions change, these embedded systems contstue toadapt their
configuration and compositiomt runtime in order to meet application requirements.

To assist platform developers and application domain exxp the research
summarized by this dissertatiggresens design and optimization frameworks for the
synthesis of runtime adaptable embedded syst&ms.sensor network platforms, we
present a initial dynamic profiling and optimization platform that fites network and
sensor node activity to generate optimal node configurations based on desgigoiéied
application requirementd.o supporia broader class ®AES applications, we present a
modeling and optimization framework that supports the spatifin of application task
flows, data types, and runtime estimation modelstli@ runtime adaptation of task

implementations and device mappings.
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Experimantal results for theséesign and optimization frameworks demonstrate the
benefits of dynamic optimation compared to static optimization alternativiest the
presented sensor network and videsed collision avoidance applications, dynamic
configurations exhibited improvements of up to 109% and 76%, respectitetgover,
the performance of the hestic design space exploration (DSE) algorithms utilized by
the runtime optimization frameworks is compared to exhaustive DSE implementations
resulting in speedups of up to 1662X and 544X for the same two applications,

respectively
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CHAPTER 1

INTRODUCTION

Embedded computing systems have found widespread adoption in numerous sensing,
decision, and control applications by virtue of the increasing performance to price ratio of
microcontrollers and othemore complex processing devicd. Embedded systems
comprise the computational backbone of applications in various domains including
consumer electronics, automotive control, multimedia systems, and rtfgerg.dGiven

the diversity of application possibilities, it is not surprising to see a wide range of high
level application requirements that must be considered. For example, insdfety
automotive applications, task execution latency constituigsnaary design concern to
ensure realime deadlines are met. On the other hand, energy consumption may be the
dominant design concern for distributed applications deployed on wireless sensor
networks (WSN), which consist of battgppwered networked micecontrollerscalled

nodes We refer to these higlevel application requirements as design metrics, which
include latency, lifetime, throughput, security, among many others.

To achieve the desired higével application requirements, platform developers
must carefully design, configure, and optimize the software application, supporting
operating systems or middleware, and the underlying hardware platform. Adartheare
level, designeramay consider voltage levels and operating modes for the processor
[1][98] and communication settings including baud rates, packet sizesicodieg

schemesfor networked applicationsAt the application level, designers cailize
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alternative task implementatigngata aggregation, communication methods for-low
power listening, sleep statg22], and network deployment strategi¢35]. These
configurable, or tunable, parameters span all levels of an embedded application, and
platform developers must understand tlemplex interdependencesbetween
configurable parameters and higlvel design metrics to ensure the deployed system
meets he desired requirements.

Additionally, the dynamic characteristics of the physical environment in which
the system is deployed can significantly impact the effectiveness of configuring and
optimizing the embedded applicatiof.static configuration detenmed at design time,

i.e., a point solution, often cannot account for variability in data qualities, operational
modes,etc. For example, a change in the quality or characteristic of sensed data may
trigger a highactivity operational mode that consumesrenenergy across the entire
system. If the increased energy consumption exceeds application requirements, runtime
optimization and adaptation is required in order to mitigate overheads, meet performance
requirements, or even restore proper functionality.

Ultimately, optimizingembedded systems applicatiocan quickly become an
overwhelming task due to the large number of design options and competing design
metrics that must be considered common challenge with many mutibjective design
optimizationproblems. Furthermore, system design tasks are often split across platform
developers and application experts. Whereas platform developers are typically engineers
with the requisite understanding of hardware and software required to develop the

embeddedlatform, application experis utilizing the terminology proposed [9] i are
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often not engineers, but rather scientists, biologists, or teachers. For example, an
application expert may be a biologist recording nocturnal animal activity at a watering
hole, a structural engineer monitoring the structural integrity of a bridge, or a military
technician tracking troop movements over a battlefidlany of thesepplicaion experts
are not likely to have extensive programming or engineering experience and will
assuredly face difficulty inconstructing, configuring, and optimizing embedded
applicationgo best meet their applicatiespecificgoals

Consequently, the imeimentation of runtime adaptable embedded systems
capable of dynamic reconfiguratiamthe face otompeting design metrics requires new
formalisms and tooldo support design, simulation, and synthedikis dissertation
presend design and runtime optiation frameworks for two classes of embedded
systems applications: sensor network platform applicationslataéhdaptable embedded
systemsapplications. The contributions in this dissertation area @iynamic pofiling
and optimization platform (DPOP) or the runtime optimization of sensor network
platforms; 2) a fuzzy logic based formalism for the specification of-tagél design
metrics and overall system fitness; 3) a modular transalghi@t simulator for sensor
network platform applications; 4) modeling and optimization tool for the design and
runtime optimization of DAES applications; and 5) a mdueded fuzzy logic
classification synthesizer for the runtime optimization of DAES applications.

Chapter 2 presents a framework for the dynamidilprg and optimization of
sensor network platforms, including a generic fuzzy logic based formalism for the

specification of competing higlevel design metrics and overall system fitness. Chapter
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3 then introduces a modular transacievel simulator tht enables desigiime
simulation of sensor network applications. This simulator supports dvased
simulation of custom applications, sensor node hardware, wireless communication media,
and sensed environmental media. Chapter 4 presents a modelinguatite r
optimization tool for a growing class of distributed embedded applications known as
DAES applications. Chapter 5 presents an extension to the DAES modeling and runtime
optimization tool thaenables both the specification of competing Hegrel metricsvia a

fuzzy logic based formalism and the specification of models that estimate fuzzy
classifications for each higlevel design metric at runtimé&hapter 6 and Chapter 7

conclude and highligHuture work, respectively.
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CHAPTER 2
DYNAMIC PROFILING AND FUZZY LOGIC BASED OPTIMIZATION OF

SENSOR NETWORK PLATFORMS

2.1 Overview
Sensor networkare a class of distributed embedded systems consisting of networked
sensing and computing nodéumerous sensor network platforms have appeared, with
platforms targeting environmental and structural monitoring, mebtaséd applications,
and wearable computing, among numerous otf3538][59][98]. Application experts
utilizing sensor network platforms aim aptimize configurable parameters @chieve
the desired@pplicationspecificrequirements.
Many studies have investigated the@erdependency between these parameters

and the impact on the resulting hitgvel design metrics. For examp|&] investigates
the impact of protocelevel paralet er s such as a nodeds shut
routing algorithms, and data compression schemeflLOB], researchers utilize design
space exploration for nodevel parameters, specifically microprocessor voltage and/or
frequency scaling. Moreover, applicatitavel parameters such as sensor capability,
number of sensors deployed, sensor sampling rate, and deployment stratgggrid,
random, and biased deplognti are shown to greatly affect higlvel design metrics
such as accuracy, latency, energy, throughput, and scal#ll}f93].

However, the interdependences between parameters anteWgldesign metrics

are not isolated based on nederotocot, or applicatiodevel parameters. Rather,
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parameters spanning variouevéls must be considered together. Parameters
encompassed at all levels are surveyeB&}, outlining the energy impacts of various
communication protocols, nodgrcuitry, message size, distance between nodes, and
number of intermediate nodes. Similarly, the impact of different protocols and algorithms
on energy consumption are examined[88], including the use of dynamic voltage
scaling and sleep states. Numerous other studies similarly illustrate the need for
developers to evaluate a wide variety of platform  considerations
[31][43][46][47][87][88][89].

Further complicating matters, the operating modes of sensor network applications
are heavily dependent on the dynamic characteristics of the deployment environment.
That s, a sensor n o d e 6 e chardctaristies of the sensechmo n |
phenomena in theenvironment. Therefore, application experts must take into
consideration the complex interdependences between configurable parameters, dynamic
application acti vi t-leveldesgrdmigicshderingathe pldsigncaadt i o n 6

optimization phases.
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As new applications for sensor network platforms emerge, providing new methods

to enable application experts to efficientiytilize these platforms is increasingly

important. Recently, researchers have sthfocusing on developing languages enabling

application experts with specific domains to efficiently program sensor network

platforms [10]. Complimentary tohHese efforts, otherBave also begun tmvestigate

various optimization methodologig66][67] to quickly and efficiently determine an

appropriate system configuratiaronsidering competing design metrics. These earlier

efforts utilized weighted piecewise linear equations to defineirtimortance of the

individual design metrics on the overall system fitness. However, such formalisms are

often difficult to utilize efficiently for such mukbbjective optimizatiorf62] and may not

be approachable by application experts.
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Tablel: Overview of WSN design metrics, configurable parameters, and tradeo
considered in related research projects.

Packet Delivery

Lifetime Rate Coverage Area Latency Throughput
Output Power [39][50] [4]
MAC protocol [20][106] [106] [20][50][106] [20]
TX sleep states [83][90] [50][83][90]
Routing Protocol [3][39] [26] [4][26] (50]
Sensor duty cycle [16][103] [16][103]

This chaptempresend a dynamic profiling and optimization platfor(@POP)for
sensor network@~igure 1) enabling application experisas well as platform developers
T to optimize lowlevel configurable parameters for a particular application. This
centralizedoptimization frameworktypically implemented within a single basd&ia
node, allows application expertgo efficiently characterize application requirements
through highlevel design metrics and fuzzy logaptimization rules The lowlevel
configurable platform options are abstracted from the application experts, thereby
providing a clear delineation between developing #ensor network platform and
supporting tools, and programming/configuring that platform to implement the desired
application functionality and applicati@pecific goals. The DPOP framework

specifically seeks to increase accessibility to-eagineer appcation experts.

2.2 Previous Work
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Tablel presents a condensed view of higliel design metrics, configurable parameters,
and systems tradeoffs described in wireless sensor network (WSN) optimization
literature, representing a cressction of the types of design metrics and tunable
parameters application experts and developers consider in their optimization efforts.
Network lifetime is by the far the most prominent design metric found in literature, with
researchers often opting toitigate power consumption by tuning radio output power
[39][50], transeiver sleep/active statd83][90], routing protocols[3][39], or MAC
protocol parametef20][106].

Optimizing lifetime, however, often involves carefully balancing tradeoffs
between competing design metrics[106], MAC protoml parameters are tuned in order
to optimize lifetime, latency the time necessary to deliver a packet over onei henpd
packet delivery rate. Similarly, ifl20] competing higHevel design metrics include
lifetime, latency and throughput measured in bytes transmitted per node per §@@pnd.
and [83] both utilize algorithms that modify transceiver sleep/active states in order to
strike a balance between lifetime and latency, with the former defining latency as the
time necessaryottransition between power states and respond to an event. Hihé]ly,
and[103] seek to optimize coverage area given a constraint on lifetime, where coverage
area is defined as the physical area monitored by sensors.

We note that configurable parameters are typically specific to the individual
optimization methodologies and the configuration options available to the platform
developer or application expert. Thus, for the sake of brevity, tunable parameters specific

to each of the aforementioned papers have been generalized into the categories shown in
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Tablel. Based on these papers, we can begin to characterigm desirics of interest to
application experts and developers. Although we only consider a particular subset of
design metrics in thislissertation namely lifetime, latency and packet delivery rate, it
should be noted that our dynamic profiling and optatian platform is specifically
designed to work with most, if not all, combinations of configurable parameters and

design metrics.

2.3 Dynamic Profiling and Optimization Platform

The underlyinggoal of the DPOP platform is to dynamically determine sensme
parameterconfigurations that best meet usksfined goals as internal and external
stimul i al ter t h eA degerption of aaéach comporent hvithmahe i o r

DPOP framework is provided below.

2.3.1 SenseBased Platform

The SensoiBased Patform is the physical deployment of the application within the
intended environment and consists of sensor nodes, intermediate processing and routing
nodes, and actuator nodes, working together to achieve the desired application
functionality. While a vaety of sensor network platforms are available, we currently
consider the IRIS moted9]. We focus specifically on the microprocessor and radio
subsystem, providg tunable node parameter options for the microcontroller and RF
Transceiver. The sensor and flash data logger subsystems are included as part of the
system estimation framework, but characterization of these components is currently left

as future work.
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Between the microcontroller and transceiver, we consider the following configurable

platform parameters:

Microprocessor Supply/Operating Voltage (2)71 5.5V

>N

Microprocessor Operating Frequency (F):4 to 16 MHz

>

RF Output Power (RFP)17.2 to 3.0 dB

=N

>

RF Frequency (RFF)2405 to 2480 MHz

Data Rate (DR)15.625 to 250 kbits/s

>

A specific node configuration corresponds to selecting a setting for each adjustable node
parameter. As previously mentioned, these parameters are adjusted within our centralized
DPOP framework in order to optimize the configuration based on the user specified
design metrics of interest. We note that some combination of settings are not feasible and
are not considered. Thus, while there are over 225,000 possible combinations of,setting

of those only 189,440 configurations are feasible.

2.3.2 Application Expert Design Metric Specification

Ultimately, the application expert is interested in Highel system metrics such as the
expected lifetime of a node or sensor network utilizing #WWd batteries, the time
required to process a single packet, or the time required to process and respond to a
sensor event. The Application Expert Design Metric Specification allows the application
expert to define which design metrics are of importan@epgarticular application, and of

those design metrics, what are the acceptable or unacceptable values of each. Thus, users

are able to define a method to interpret the resulting system achievement within the
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context of a given application. We currentlynsaler the following three system design
metrics:

A Lifetime (L): The time in months a node is able to operate on a power source. In
our case, we utilize a simple battery model assuming a battery capacity of 3000
milliamp-hours (mAhr)i roughly equivalent ta 2 AA batteries.

A Packet Delivery Rate (P)The probability that a packet is successfully
transmitted.

A Latency (LA)The time in seconds necessary to successfully transmit a packet to a
neighboring node over one hop.

These design metrics by no megm®vide an exhaustive list, but rather provide a
glimpse of the challenges faced by application experts in balancing varioutevegh

design metrics.

2.3.2.1 Fuzzy Design Metric Classification

An application expert is familiar with the desired goalshe aipplication, understands

how the sensor network achieves these goals, and can determine acceptable design
metrics values for the particular system of interd$te use of fuzzy logic allows
application experts to more intuitively specify design tradedfius enabling therto

easily customize the underlying platform for a particular application without requiring
knowledge of the underlying hardware implementationcommunication protocols.
Weighted piecewise linear formalisms are often challengingdiliaeubecause precisely
defining acceptable design tradeoffs between competing design metrics is difficult.

Notably, researchers compared the effectiveness of such mathematical and fuzzy logic
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Figure2: Application expert tasks include (a) specifying fuzzy design me

classification functions that relate raw design metric values to a fuzz

classification, (b) specifying fuzzy design fitness rules to indicate the rel

importance of each design metric, and (c) optionally specifying the antici
application profile.

based evaluations, demonstrating that the fuzzy logic based evaluation can achieve
superior result§62]. Further, note that this outcome matches our own experiences in
utilizing weighted piecewise linear equations, in that such methods produced adequate
results only after repeated experimemtatand adjusting of the function parameters. The
benefits of the fuzzy logic heuristic optimization are evident across a wide variety of
applications, including hardware/software codes[8b], systerAlevel design space
exploration[17][30], and optimization of operational amplifig&l].

The application expert is tasked with interpreting the resulting system
achievement within the context of given application. &r each design mettian
application expertreates a fuzzogic inspired classification function thatlatesa raw
design metric valué i.e. lifetime of 2 month$ to a fuzzyclassification term. Although
the selection of which fuz terms are utilized for a given system could be arbitrarily
defined by theapplication expertwe propose the followindour classifications for

specifying the fitness of individual design metribssufficient,Fair, Good andSuperiort
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Using this clagfication mechanism, a@application expersimply needs to specify the
range of values that correspond tolasufficient,Fair, Good and Superiordesign for
that given metric. As application experts are unlikely to be experts in optimization
methods, the fuzzy classification scheme provides a relatable method for mapping design
metric values to relative rankings using common terminology. Minimally, an application
expert need only specify what range of values constitukesraand Gooddesign, above
and below which th&uperiorandinsufficientdesigns can automatically be inferred.

Figure 2 illustratesthe fuzzy design metriclassfication functionsfor lifetime,
packet delivery rateandlatency.Each raw design metric value is mapped to one of four
discrete rangesnsufficient Fair, Good or Superior Within each discrete range, the raw
metric value is mapped to a percentageus] the yaxisd enot es a pereem met r i
membershipwithin its corresponding classificatiom other words, the-gxis quantifies
how Insufficient Fair, Good or Superiora metric value is, and relates that value with a
percentage to allow application experts a quick method of interpreting the raw values. For
example, inFigure 2(a) a Fair lifetime is between 4months to 12 monthsa Good
lifetime is betweenl2 and16 monthsa Superiorlifetime is greater that6 months, and
anything below 4 months is deeméusufficient While not required, an application
expert can @lo define a plateau for tiguperiorclassification indicating that anything
above this value does not provide any further benefit. In the example provided, all
lifetime values greater than 20 months are consider to be Bi@#rior By the same
token, appcation experts are free to define each of the four discrete ranges using any

particular cost functiori i.e. quadratic or cubid that best suits their individual
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application needs. If56], the benefits of utilizing measquared error, penalty or barrier
functions in order to constrain or emphasize a particular range of metric values. The only
limitation we introduce, however, is that the each function shouldifferentiable in
order to allow the utilization of the algorithms presenteddactisn 2.4

Lastly, we note that although overlap between fuzzy classifications can be specified,
our tests do not show an improvement in configuration optimality, and hence we have
chosen to forgo overlap in order to provide a simpler more intuitive framework fer non
technical application experts. Thus, the raw metric score defining the boundary between
Fair and Good is considered to be 100%air such that the reported percentage will
always be greater than 0% for a corresponding classification. A similar scheme is utilized

for all other boundaries betwe€nzzy classifications

2.3.2.2 Fuzzy Design Fitness Rules
The fuzzy design metric classifiton functions specify how to interpret raw design
metric values for a given application. However, we have yet to understand how the
design metrics relate to one another. Is lifetime the critical design metric consideration
within the application, wherehé application expert is willing to accept lower packet
delivery rate and higher latency values to optimize the lifetime design metric? Or
alternatively, is lifetime a secondary concern such that the application expert is willing to
sacrifice lifetime to ehieve low latency?

To determine the relative importance of each design neatddhow they relate to
the overall design qualifythe application expert specifies a set of fuzzy design fithness

rules. These fuzzy design fitness rules are specified usigiiskrsentences that map the
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fuzzy classifications of the design metrics to a fuzzy classification of the overall design.
Figure2(b) provides a conaesed example of the fuzzy design fitness rules. The first rule
defines that aSuperior design must achieve a lifetime that Ssiperior whereas the
latency and packet delivery rate can both Geod or Superior Minimally, the
application expert should da@é at least one rule for Superiordesign, one rule for a
Good design, and one rule for feair design.Any combinations of design metrics not
covered by the application expertodos fuzzy
inferred to correspond to dnsufficientdesign. If design metrics are covered by multiple
fuzzy design fitness rules, the rule resulting in the highest fithess value is utilized.

Given a specific fuzzy fitness rule, an overall design fitness value is calculated by
normalizing and aeraging the percent fithess values for each fuzzy membership function

using the following equations:

YoMembershipnorm + %MembershipAngrm + %MembershiBorm , 1004
0

Fitness= 2 1)
%Membership + FuzzyRuIe(DseL
%Membershibngrm = ‘ ‘ ,
FC
L
%MembershipA + FuzzyRuIeﬂ)se}_A
%MembershibAngrm = ‘ ‘ , (2)
FC
LA
%Membership + FuzzyRuIe@seb
%MembershiB,orm = ‘ ‘
FC
P
As shown in Equation 2, each metricbs perc

adding a fuzzy rule offset and dividing the sum by the number of fuzzy classifications,
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IFC|, specified for that metric within a given fitness rule. The fuzzy rule toffse
positive integer ranging from O 4¢C| 7 1t h a't maps a metricbs pe
value to a normalized scale where zero and one respectively correspond to the lowest and
highest fuzzy classifications of the metric in question for the curremsBtnule. As an
example, if we consider the first fuzzy design fitness rule specifiddgure 2(b) and
assume a configuration resulting in a 1@®4ifetime, a 30%G latency, and a 50%

packet delivery rate, then for each metric the corresporji@gvalues are one, two and

two, and the corresponding fuzzy rule offset values are zero, zero and one. Using
Equations 1 and 2, the previous values resuli Superiorconfiguration with a fitness

value of 33%In summary, the fuzzy design rules correlate the design metric values to an
overall design quality using the same fuzzy classifications.

Note that anapplication experdoes not need to know the impaaf various
underlying node parameters on the kighel design metricsor how the aforementioned
values are calculatednstead, a single framework and terminology is provided for
understanding the qualiiyor fitnessi of individual metrics anaverall designs without

exposing any underlying mathematical formalism.

2.3.3 Dynamic Profiling
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Figure3: Average overhead of network traffic, energy consumption, code size,
computation time for profiling methodology utiliden the DPOP framework for th
considered WSN applications.

The deployed environment can have a significant impact on the application behavior,
thus part of the application characterization must also include specificatidhe
communication and computah requirementsFor example, an application that monitors
temperature may only take a reading once a minute, resulting in a low communication
requirement. Alternatively, an application tracking the movement of an object is likely to
take multiple sensorsamples in a second, resulting in a higher communication
requirement. Computation requirements are similarly dependent on an application and
can vary depending on factors such as the amount of aggregation performed within the
network or the type of dat&dt is processed e.g. processing images versus averaging
temperature readings.

While an application expert can provide this profile informatbrdesign time,
precisely predicting the actual deployment environment at design time can be difficult. In
the case of a periodic sampling rate, a developer may be able to calculate the underlying

computation and communication requirements. However, if the application profile values
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are dependent on external events such as motion, determining this informatioa can
difficult. Thus, as shown idrigure 1, we have also incorporated a dynamic profiling
module within the framework that is responsible for monitotimg application behavior
within the deployment environment. Being able to dynamically profile parameters that
adequately capture changes in highel design metrics is crucial in optimizing
underlying configurable parameters.

The following profile paranters have been defined to capture the communication and
computation requirements of our targeted applications based on the aforementioned

design metrics.

A Rx Packets/Hour (PktRxAverage number of packets received by an individual

node per hour.

A Tx Packets/Hour (PktTx)Average number of packets transmitted by an individual

node per hour.

A Sensor Events/Hour (SenEven&yerage number of sensor events processed by an

individual node per hour.

AMi croprocessor | Average numbeof msiractiofscepetuted byr ) :

the microprocessor to process each packet reception or sensor event.
A Packet Size (PktSize)verage number of bytes transmitted within each packet.

2.3.3.1 Dynamic Profiler Module

Dynamically profiling a sensdvased applicatiorrequires profiling methods to be

incorporated within each node to monitor the execution behavior for individual sensor
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nodes. Additionally, in order to optimize a senbased system, a global view of the
entire system is neededhe resulting nodéevel profile data must be transmitted and
analyzed by the systetavel DynamicProfiler Module Numerous profiling strategies
can be employed to collect the pertinent application level information.

At each sensor node, various kevel execution details are anitored and
transmitted to the profiler module in order to enable the optimization approach to
accurately estimate the various highlrel design metrics of interest. Overall, determining
what lowlevel metrics to profile within a sensbased platform ishus related to both
the highlevel design metrics of interest and the estimation method utilized to evaluate
those design metrics. Within our current profiling implementation, the aforementioned
profile parameters can be profiled for individual sensoesod

Given the desired profiling information to be collected, the frequency at which
profiling is performed directly impacts both the accuracy of the profile data as well as the
intrusiveness of the profiling method. Our current profiling implementati@viges
support for three methods of controlling when profiling is performed for individual
nodes. Specifically, periodic, evedtiven, and profiler module directed strategies are
employed. Additionally, our current dynamic profiler implementation provsigsport
for either transmitting profile data as separate profile packets or appendirgy
piggybackingi the profile data to existing packets already transmitted by the application.
Finally, the dynamic profiler can be configured to select which neolgzrofile and
whether or not the profile data is aggregated at intermediate nodes. We refer the

interested reader {86] for an indepth analysis of our profilg methodologies.
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Each of the aforementionedprofiling metrics and methodsare currently
implemented within the DPOP frameworkhese options are implementad a set of
software functions that can l@tomaticallyintegrated within a sensor applicati@s the
required profiling methods aredirectly inserted within the underlying software
infrastructureand operating system support. Thus, the application expert can seamlessly
integrate the dynamic profiling within the target application without any effort.

The dynamic profiling of sensebased platforms enables an accurate view of an
applicationds execution behavior but at th
size overheads. We have developed various methods for controlling the profilingsproces
and analyzed the corresponding overheadfeubset oprofiling method. In Figure3,
we summarize the overheads for the profiling methodologed in the DPOP
framework, which utilizes piggybacking to periodically transmit information on all
profile parameters for all nodes in the network without aggregation at intermediate nodes.

The average network traffic, energy consumption, code size, amgputation time

overheads for this profiling methodology are 21.7%, 1.1%, 42.1%, and 20.4%,
respectively. Importantly, the energy consumption overhead, which is defined as the ratio

of the augmented applicationds emedesgy con

across all applications, ranging from 0.5% to a maximum of 2.59%.

2.3.4 Dynamic Optimization
The Online Optimizer Modulshown inFigurel andreproduced in more detail Figure
4 is responsible for evaluating various sensor node configurations within the design space

to determine which cdiguration best meets the application expert specified fuzzy design
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Figure4: Overview of theonline optimization methodology implemented withing 1
Optimizer module.

goals given the current system behavior characterized by the dynamic execution profile.
As previously mentioned, both tiRrofiler and Optimizermodules are implemented in a
centraized location, and are thus responsible for profiling and optimizing every node in
the network. A distributed approach in which every node implements and utilizes its own
DPOP framework is feasible. In such an environment, each node would be independently
profiled and optimized. However, global parameters such as radio frequency would have
to be optimized using a centralized approach in order to ensure correct communication

between nodes. We leave further inquiry into the potential tradeoffs as future work.

2.3.4.1 System Metric Estimator

In order to determine the underlying node configuration, the system metric estimator

must first evaluate the design metrics of interest based on the selection of configurable
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parameters and feedback from the profiler modEte the examples considered in this
chapter lifetime, latency and packet delivery rate are defined as functions of our
configurable parameters frequency, voltage, data rate, radio frequency, and output
power i and the aforementioned application profile parameters. This allows the
framework to maitor changes in design metrics via the application profile, and more
importantly, it allows for metric adjustment via configurable parameters.

Latency is dependent upon three configurable paramitEexjuency, data rate

and output poweii and two profie parameters packet size and microprocessor

instructions.
8(PktSizer 4) . nplinstr (3)
Latency= _DR F 3 PktSizé 8
8(PktSizer 4)(1- dataRateDop)
where

dataRateDop = function(RFP)

Packet delivery rate, on the other tars a function of radio output power and packet

size, and is defined as follows.

PacketDelieryRate [1- ber](PKISZ88) (4)
=[1- (10 0.2985 RFP- 7.405, (1+ dataRateDop)] PktSize8

Finally, lifetime is a function of all configurable and profile parameters. For the sake of

brevity, we merely provide the simplified equat&mown below.



38

BatteryCapcity3 12 (5)
243 369(1 __ +
(243 365(1

Lifetime=

Iradio * Isensor%
where
I m = functiorfF,V, DR, PktSizePktRxPktTx SenEveniaplnstr)

Iradio = functiofRFF, RFP, DR, PktSizePktRxPktTx

Isensors: functiorfF,V,SenEvenjs

We note that the presented estimation framework is specific to the IRIS platform
and the configurable parameters previously defined. However, the system metric
estimator can be updated by a platform developer to reflect any sensor network platform
and sebf configurable parameters, and is an orthogonal concern to the overall dynamic

profiling and optimization mechanisms.

2.3.4.2 Online Greedy FuzBjrected Dynamic Optimization

Once the relationship between the design metrics, configurable parameters, and
application profile is defined, the optimizer must explore a variety of node configurations
to determine which configuration is best suited for a given application. The online
optimizer explores the design space by evaluating feasible node configuragions
determine whichconfiguration yield the highest design fitness given the application
expert specified fuzzy metric classification functions and fuzzy fitness. rAaeshe
dynamic optimizer module is intended to execute as part of the deployed system,
exhaustively searching all configurations to find the optimal configuration is infeasible as
stringent time and energy constraints must be met. Instead, an efficient heuristic

algorithm is needed for dynamic optimization.
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Initialize V¢, Fe, DRc, RFP¢, RFFc to minimum setting

find Vi: maximize(Fitness(Vi, F¢, DRc, RFPc, RFFc))
find Fi: maximize(Fitness(Vi, Fi, DRc, RFP¢, RFFc))
find DRi:  maximize(Fitness(Vi, Fi, DRi, RFP¢, RFFc))
find RFPi: maximize(Fitness(Vi, Fi, DRi, RFP;, RFFc))
find RFFi: maximize(Fitness(Vi, Fi, DRi, RFP;, RFF))

Fitnessc = Fitness(Vc, Fc, DRc, RFPc, RFFc)
FitnessGoalc = S;

while (FitnessGoalc 2 F) {
for all FR; | FitnessRules s.t. FitnessGoal(FRj) == FitnessGoalc

for all Mi I : MetricGoal(FRi, M) > MetricGoal(FRi, Mi+1)
§ /VZ: Mi§ AND FR;(Vi, Fe, DRc, RFPc, RFFc) maximized
9 | FZ: Mi§ AND FR; (V, Fi, DRc, RFPc, RFFc) maximized
¢ / DRi: Mi § AND FR; (V, Fe, DRi, RFPc, RFFc)) maximized
9 | REPi: Mi§ AND FRi (V¢, Fe, DRc, RFP;, RFFc) maximized
§ | REFi: Mi§ AND FR; (V¢, Fe, DRc, RFP¢, RFF;) maximized

}

if (Fitness. == FitnessGoalc ) break;

FitnessGoalc--;
} Z

Figure5: Pseudocode for Online FuzBbjrectec
Optimization Algorithm.

Figure4 summarizes the proposed online optimization methodolblyg.system
metric estimator modulestimats the raw values for each design metric of integbstn
the dynamic profile information and platform configuratidreing evaluated These
values are then evaluated based on the fuzzy fitness rules and indigmluietments for
the fuzzy metric classifications defined by the application expert. Based on this
evaluation, he heuristic search procedweplores the design space to determine a near
optimal configuration for the current system execution behavior eandronmental
conditions.

Figure5 presents an overview of the proposed online fidirgctedoptimization
algorithm. The algorithm begins by initizihg each configurable parameter, specifically
Ve, Fe, DR, RFP., andRFF, to the minimum feasible configuration, where subsaript

indicates thecurrent best parameter setting andubscripti indicates thecurrent
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parameter setting being explored. #itial search phase is utilized to greedily optimize
each configurable parameter by increasirggghrameter setting as long asiacrease in
the current overall design fitnessFitness, is achieved Parameters are tuned in the
following order:V;, Fi, DR, RFR, and RFF. While the orderin which configurable
parametersare explored may impact the initially selected node configuration,
experimentshave indicated that thisffect is marginali only affecting the number of
configuratiors searched withinhe following fuzzydirected search phase, but not the
final optimized node configuration. Additionally, this initial search phase is only
necessary for the first node configuration. For subsequent dynamic optimizations, the
current node configuratias utilized as the starting configuration.

Following the initial search phase, a fuzhiyected optimization phase is utilized
to further refine the node configuration given the application expert specified fuzzy
fitness rules and design metric classificatiomBe process starts by initializing the
current fitness goalFitnessGoal, to the maximum fuzzy classification & Each
individual fuzzy fitness ruleFR;, will be utilized to guide the optimization process
provi ded t hat ovdrdil 6tnest goal matshss the autrentdfi;iess goal. For
each fuzzy fitness rule, the optimization method will further be guided by the fuzzy
requirements for each individual design meth&, where metrics are considered in
decreasing order of fuzzy requirement. For exanglagtric goal oSis prioritized over
a metric goal of5 and will be utilized first to guide the order in which configurable node

parameters are evaluated.
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Given the cuent fitness rulef-R;, and design metridyli, the optimization process
will monotonically increase/decrease each configurable parameter based upon the
statically determined relationship between the configurable node parameter and design
metric, as long akoth an improvement in the individual design metric and overall fithess
rule are achieved. The aim of this procedure is to attain the highest possible fithess value
by wtilizing a metricds relative rark with
the order and direction increasing or decreasirigin which configuration parameters
are evaluated.

Once all selected fitness rules and their respective metric goals have been
considered, the algorithm checks if the fitness ge#thessGoal, has beemchieved. For
example, if the first iteration finds 8Superior node configuration, the optimization
procedure will terminate and return the current configuration regardless of its actual
fitness value. However, i f  thhhe goalptimeh thg ur at i
fithess goal is reduced by one fuzzy classification lévely. Superiorto Goodi and the
optimization algorithm will subsequently utilize the fitness rules matching the reduced
fitness goal to guide the optimization process. Thexgss will repeat until the overall
fuzzy classification of the node configuration matches the current fithess goahe
worst case producing dnsufficientconfiguration.

In the event that redundant or conflicting rules are defined such that a singl
parameter configuration can be evaluated using multiple fuzzy rules of the same or
different fuzzy requirement, our fuzzijrected optimization algorithm will utilize the

fuzzy rule resulting in the highest design fitness value. The validity of thetingsul
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configuration is thuslependenon the validity of conflicting or redundant fuzzy rule with
the highest fuzzy requirement. If, for example, an incorrectly spedt@adfitness rule
conflicts with aSuperiorrule, the resulting optimizedonfiguration would remain valid,
as theSuperiorfitness rule will be evaluated first.

An asymptotic upper bound on the execution time of this optimization algorithm

is O(|FR|qm|d8), where FFR| denotes the total number of fuzzy rulés, denotes the total

number of metrics, and§| denotes the total number of settings for all configurable
parameters. Thus, for the application describe#igure 2, [FR| is equal to six,M| is
equal to three, an@|is equal to sixiseven, which is attained by adding the number of
settings for all five configurable parameters.

The success of this approach depends both on developing an estimation
framework for efficieny evaluating the design metric values as well as profiling the
required execution statistics to accurately estimate these valesurrent framework
utilizes a combination of physical measurements and analytical analysis to estimate the
raw design meit values using the profile statistics highlighted earlier. Although we
currently focus on a particular subset of design metrics, configurable parameters, and
profiling information, it should be noted that these could be modified to supiheit o

applicaton design metrics.
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Figure6: Overview of modified online optimization methodology with re
optimization evaluation algorithm.

2.4 Reoptimization Evaluation Algorithms
As previously mentionedhe DPOPframework profiles application behavior in order to
reconfigure nodéevel hardware parameters in accordance with-deéned application
goals.Althoughan ode 6 s ap p !l i cotinuouslycharmgingnbt ievery profile
changewarrants node reptimization. Hence, reptimizing the node configuration for
every profile change would incur significasamputatioml and energy overheabh order
to mitigate this reoptimization overheadhe DPOP framework utilizesra-optimization
evaluationalgarithm to determine if anode 6s current maripspré i cat i
optimizing the node configuration

As illustrated inFigure 6, the reoptimizatian evaluation algorithm is invoked
prior to the online optimization algorithm presented in the previous sections. If-the re
optimization evaluation algorithm determines that the current node parameter

configuration is suboptimai or that it could be imprad i based on the current
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Initialize FuzzyMetricso = { %0MembershipLoid,%MembershipPod,
%MembershipLAoq }

Initialize Configuration ={V, F, DR, RFP, RFF }
Initialize Profileincoming = { PktSize, RxPkt, TxPkt, ¢ p | nSenEwents }

{Lnew, Pnew, LAnew } = MetricEstimationFramework(Configuration, Profil€incoming)
%MembershipLnew = LifetimeFuzzyClassification(Lnew)

%MembershipPrew = PacketDeliveryFuzzyClassification (Pnew)
%MembershipLAnew = LatencyFuzzyClassification(LAnew)

FuzzyMetricsnew = {¥6MembershipLnew,%MembershipPnew,%MembershipLAnew}

for all FuzzyMetrics; :
if ( [FuzzyMetricsnew I FuzzyMetricso| > %Threshhold) Reoptimize();

Figure7: Pseudocod®r Simple Metric (SMC) Re
optimization Evaluation Algorithm.

application profile, the online optimization algorithm is executed to determine the
optimal configuration. Otherwise, the online optimization algorithm is bypassed and the
current configuration remains unchanged. We consider #itemative reoptimization
evaluation algorithms. The performance of each algorithm is evaluated based on the
number of correct reptimization detections, the number of unnecessary re
optimizations, the number missed-aptimization opportunities, anché decrease in

fuzzy fitness score for missed-optimizations.

2.4.1 Simple Metric Change Algorithm

First, a simple metric change (SMC) evaluation algorithm is considered. This algorithm
recalculates the higlevel metrics given the new application prefdind compares them
with the previous metrics. As shown within the pseudocode for the SMC algorithm in
Figure 7, if the difference is greater than an experimentally determined threshold, then
the online optimization algorithm is launched. This threshold was statically determined
by executing our fuzzdirected optimization algorithm using four applications and
various application profiles considered within thiissertation as discussed in Section

2.6.
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Figure8: lllustrative plot of design fithess score as a function of processor frequ

While this algorithmis not anticipated to achieve near optimal resititsas the
advantage of an extremely faskecution time and serves as an effective basis for
evaluating the other algorithms. Howevéierte is nalirectcorrelation between percent
changein an individualmetric score anthe optimality of the current configuration, thus
limiting the algorithnd s abi | i t y t o-optinizatiore apportupitiesd &dr e c t r
example, we have encountered scenarios in which an incoming application profile
decreased a configurationdés design fitness
the best fithess amgnall configurations. On the other extreme, we have encountered
scenarios in which raincoming application profile improved the fitness value of the

previously optimal configuration, which was later found to be utimal.

2.4.2 Neighboring ConfiguratioBvaluation Algorithm

A neighboring configuration evaluation (NCE) algorithm is also considered. Given an
updated application profile, this algorithm evaluates the adequacy of the current
configuration by evaluating the fitness value of neighboring cordigans for each
configurable parameter. This-optimization evaluation algorithm essentially performs a
reduced greedy search similar to the fudimgcted optimization algorithm. If any of the

neighboring configurations produce a higher fitness values dlear that the current
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Initialize Configuration; = { Vi, Fi, DRi, RFP;, RFF; }
Initialize Profileincoming = { PktSize, RxPkt, TxPkt, € p | nSenEwents }

{ Li, Pi, LA; } = MetricEstimation (Configuration;, Profileincoming)
{%MembershipL;,%MembershipPi ,%MembershipLA; }= FuzzyClassification(Li, P;,
LAI)

Fitness; = Fitness(%MembershipLi, %6MembershipPi, %MembershipLA;)

for each configurable parameters CP {

Lis1= LifetimeTaylor(CPi1, Profil€incoming)

I{ Lis1, Pis1, LAis1 } = MetricEstimation (CPi1, Profileincoming) I Pis = PacketDeliveryTaylor(CPus, Profileinconing)
LAi1 = LatencyTaylor(CPi1, Profileincoming)

{ %MembershipLi+1,%MembershipPi:1,%MembershipLAi:1 }= N
= FuzzyClassification(Li+1, Pi+1, LAi+1 )
Fitnessi+1 = Fitness(%MembershipLi+1,%MembershipPi.1,%MembershipLAi:1)
if (Fitnessi+1 > Fitness; ) {
Reoptimize()

"""""""""""""""" Liv1= LifetimeTaylor(CP:.1, Profil€incoming)
- Pi.1 = PacketDeliveryTaylor(CPi1, Profil€incoming)
LA1 = LatencyTaylor(CPi.1, Profileincoming)

I{ Li1, Pi1, LAi1 } = MetricEstimation (CPi.1, Profileincoming) I

{ %MembershipLi.1,%MembershipPi.1,%MembershipLA;.1 } =
= FuzzyClassification(Li.1, Pi1, LAi.1)
Fitnessi.1 = Fitness(%MembershipLi.1,%MembershipPi.1,%MembershipLAi.1)
if ( Fitnessi1 > Fitness; ) {
Reoptimize();

@) (b)
Figure9: Pseudocode for th@) Neighboring Configuration Evaluation (NCE

re-optimization evaluation algorithm, and (b) Taylor Series based Neighbu
Configuration Approximation (TSNCA) reptimization evaluation algorithm

configuration is noroptimal and reoptimization is necessarptherwise, the algorithm
assumes the current configuration is either optimal or near optimal, and the current
parameter configuration is kefigure 8 presents an example plot of overall fithess and
processor frequency that illustrates a case in which an increased frequency Betting,
results in an improved fithess score. This neighboring configuration by itself is a
sufficient i ndicati on o-6ptimaliyeandahe meed tore c o n f
optimize the configuration.

Figure9(a) presents thpseudocode for the neighboring configuration evaluation
algorithm As soon as a new application profile is receivedr metric estimation

framework evaluates all metried reighboringconfigurable parameteraluesi i.e. the
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next frequency oradio output power values in order to determine if increasing or
decreasingeach parameterwill potentially result in an increase in the overall fithess
value The algorithm terminatesnmediately after detecting a better configuration, or

after all neighboring configurable parameters have been considered.

2.4.3 Taylor Series Based Neighboring Configuration Approximation Algorithm
The Taylor series basegtighboring configuration appxomation (TSNCA) algorithmis
a variation on the aforementionatkighboring configuration evaluation algorithm
differing only in the underlying implementation details. Specifically, the raw metric
values for neighboring configurations are approximatedngusiTaylor series
approximation functions rather than using the system metric estimation framework,
which, as demonstrated later, can lead to improvexgbtienizations.

A Taylor series, shown below, is a representation of a particular function as an
infinite sum, whera! denotes the factorial of andf"(a) denotes the" derivative of

the functionf evaluated at the poimt= a.

f(x)= f(a)+%(x- a)+%(x- a)2 +%(x- a)3+... ©

n
:aﬁzo—f n!(a)(X- a)n

As computing an infinite sum is infeasiblegtiaylor series is commonlgonvertednto
an approximation by utilizing only a finite number of terms, where each additional term
provides better accuracy. Shown below are equationss{o?"4, and ¥ order Taylor

seriesapproximationgespectively
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f(x)° f(a)+%(x- a) 0
F(x)° f(a)+ (a)(x a) + (a)(x a)2 ®)
f(x)° f(a)+%(x- a)+%(x- ) fm( )(x a) ®)

A first-order Taylor series approximation yields a straight line, whereas a second
orderapproximation corresponds to a parabola, a third order approximation corresponds
to a cubic, and son. Figure10(a) presentan example plot of lifetime as function as a
function of processor frequencgnd illustrates severalapproximation functionsi
evaluated at an initial frequency of 2 MiHzsuperimposed on an actual lifetime curve.
Clearly, as the number of terms, or order, of the approximation function increases, the
better we are able to approximate function values esleviate further from the initial
independent variable value, which in this case corresponds to the initial frequency of 2

MHz.
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(@ (b)

FigurelQ: Plots of (a) lifetime as a function of processor frequemzy/(b) packet
delivery rate as a function of radio output power with2l9, 39, and 4" order Taylor
series approximation functionSircular markers denote neighboring parameter
configurations

Utilizing these concepts, th&aylor series basedheighboring configuration
approximation algorithnreplaces the metric estimation framework with single variable
approximate function$or all design metrics. The equations below illustrate how these
functions are used to evaluate metric values at neigiipgrarameter configurations,
where the subscriptindicates the current value, the subsariptl indicates neighboring
configuration, ConfigParam can be any one of our configurable parameters, and
Metric/GConfigParamis an alternative notation forame i c6s deri vate wi
the configurable parameter.

Lifetim(? 01 " LifetimeI + (10)

 Lifetime ) .
——— (ConfigParan. , . - ConfigParan. ) + K
L ConfigParan 1°1 '

Latenc¥o = Latenc¥ + (11)

MLatency . .
(ConflgParami oa ConflgPara&mi )+ K

LConfigParan 1
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PacketDeliery , | = PacketDeliery + (12)

pPacketDeliery . .
_— (ConflgParelmiol - ConfigParan; ) + K
pConfigParan

With these approximation equations, the algorithrRigure9(a) can be modified
with the changes seen Figure 9(b). Replacing the metric estimati framework with
these Taylobased approximation functions can improve thepgtmization decisions by
selecting the number of Taylor series terms appropriately for each metric approximation
function. Specifically, the order or the Taylor series is ehosuch that the
approximation functions closely approximate, yet slightly overestimate, the actual
function within the region of interesti.e. neighboring parameter configurations. In order
to limit computation time, however, waso aim to select theefest number of terms
possible. The plot of lifetime versus frequency showrFigure 10(a), for example,
indicates that a third order approximatiaor fifetime as a function of frequendyest
meets the aforementioned criteria as it closely approximates, yet slightly overestimat
the actual lifetime curve for the neighboring frequency settings. Orottier hand,
Figure 10(b) indicates that both first and third order approximations for packet delivery
rate as a function of radio output power are suitable, yet the first order is chosen as it is
less computatiodlyg complex In a similar fashion, we can statically determine the form
of the approximation functions for all metrics as functions of each configurable
parameter.

By allowing the approximation to slightly overestimate the neighboring

configurations valuei and thereby overestimate the benefit oloptimizationi the
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resulting reoptimization evaluation algorithm will determine if the neighboring
configuration idikely to lead to a better overall fithess value. This methodology has been
shown to decreasthe number of missed-optimization opportunities, although with a
tradeoff of a slightly increased number of unnecessagptienizations. Based on our

data, however, this tradeoff is both acceptable and preferable as the Taylor series based
neighborirg configuration approximation algorithmvas able to detect the need te re
optimize in several critical instances in which the original neighboring configurations
algorithm missed reptimization opportunities that lead to significant decreases in

overall cesign fitness.

2.4.4 Untdirectional Neighboring Configuration Evaluation for Reduced Computational
Runtime

As the reoptimization evaluation algorithm will be executed within the deployed systems
for which runtime performance and energy overheads must remain minimal, a modified
implementation of the reptimization evaluation algorithms can support this goal by
evaluating only one neighboring configuration for each configurable parameter rather
thantwo. For eachconfigurable parameter, we can predict which neighboring setting
either higher or lower should be evaluated or approximated by computing the deriva
OFitness/ OConhHhHiiggPdhemimvati ve indicates how
fluctuates at this initial configurable parameter setting given the new application profile.

If OFi t nes s/ O pasifive, hénafinessns increasing as theameter setting
increases, and thus the algorithm should evaluate or approximate the configuration at the

next higher configurable parameter setti@jherwise, if the derivative is negative, the
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algorithm should look at the next lower settifitguations13 and 14 below show how
these derivatives are computed for two of our five configurable param@terst nfe s s/ O
is the derivative of fitness with respect to frequency@féi t n e dsshe OdR\atRe

of fitness with respect to radio output power.

WFitness_ pLifetimgay , d%Membership . uFitness (13)
Vi uF dLifetimgy,,  H%Membership
. HLatencyayy , d%MembershipA | pFitness
MF dLatencygyy p¥%MembershipA
N HPacketDelieryRatgyyy d%Membership pFitness
pF dPacketDéVveryRates,, H%Membership

WFitness _ plLifetimgay , d%Membership . pFitness (14)
HURFP HRFP dLifetimgy,  H%Membershilp
N HLatencyg , d%MembershipA uFitness
MRFP dLatencygy p¥%MembershipA
. pPacketDelieryRate,y, s d%Membership s pFitness
URFP dPacketDéVveryRates,, M¥%Membership

The derivatives OL i f gt CamfigParan), OL a t &/nCdnfigParan), and

O P a c kieety@amJl/(ConfigParam) are themselves functions and are derived by
differentiating the metric estimation framework equations giveseiction2.3.4.1using a
mathematical tool such as MATLAB. The derivativéMembershipL ( OL inf)et i me
oMembershipLA ( O L aat),e and WoMembeshipP ( OP a dvergRat@g lare

simply constants that represent the slopes of the fuzzy design metric classification
functions shown in Figure 2(a). The derivatives (Fi t n goBlambersip),

GFi t n eoSlanbersbipL® and OF i t nvMersber6hplP are constants that
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represent the weight assigned to each metric in evaluating the current fuzzy fitness rule

and are derived by differentiating the &8s value equation presented ati®n2.3.2.2

2.5 Sensor Network Applications
To analyze the benefits of dynamic profiling, online fudgcted optimization
algorithm, and reoptimization evaluation algorithms, we consider four different sensor

netwak based applications.

2.5.1 Forest Fire Detection and Propagation Tracking

First, aForest Fire Detection and Propagation Trackin@-F) application intended to
monitor remote regions of wilderness is considered. During normal fire detection
operationthe sensor nodes within the system will periodically monitor temperatures and
transmit the temperature readings every five minutes to the base station. In the event that
a node detects an elevated temperature for the previous two temperature samples, that
node issues an alert to nearby nodes and transitions toteatikeng mode. Whenever a

node receives an alert message from a nearby node, the former will also enter the fire
tracking mode to ensure that t he fithreds
reduced latency. In the futeacking mode, each node will sample and report the
temperature every ten seconds. The base station node aggregates the reported temperature
sensor readings, displays the reported daia appropriate timestamps, and issaderts
whenever a node enters the firacking mode or a sensor node suffers an abrupt node

failure.
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Figure 11 provides the fuzzy metric classifiton functions and design fitness
rules for theForestFire Detection and Propagation Trackirapplication, noting that this
is the only application for which we consider tmsufficientmetric classification. For
this application, lifetime is a critical design metric given the often inaccessible nature of
the terrain in which the nodes are deployed. Thus, a long lifetime that minimizes the need
to replace batteries is desired. A lifetime12 to 16 months is consider&bodand a
lifetime between 4 and 12 months is consideFadr, above and below which is
consideredSuperior and Insufficient respectively. Packet delivery rate is also an
important metric because fire tracking and prexaenbhecessitates accurate dataGéod
range for the packet delivery rate is selected as 99.9% to 100% and packet delivery rates
between 60% and 99.9% are deerRad. As nodes only transmit small amounts of data
T even when in tracking modeé the latencyrequirements for the application are
marginal, corresponding toFRair range of 15 seconds to 960 ms anG@@odrange of

960 ms to 2.4 seconds.
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Fuzzy Design Metric Classification Fuzzy Design Fitness Rules
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Figurell: Application expert specified fuzzy design metric classification funct
and fuzzy design fitness rules for several sehssed applications.

The importance of each metric and how it relates to the fitness of the overall
system design is specified by the fuzzy design fitness rules. FBothstFire Detection
and Propagation Trackingpplication, lifetime is the most important design metric.
Therefore, if the lifetime iSuperiorand all other metrics are at le&bod the overall

design is considere8uperior If lifetime is Good and all other metrics are at le&stod
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the overall design i&ood As latency is not considered a critical metric, if the latency is
Fair, the overall design is still acceptable only if the lifetim&igeriorand the packet
delivery rate is at leasbood Otherwise the design Fair. Finally, if either lifetime or
peacket delivery rate arEair, the overall design is considerEdir. An application expert
need only explicitly define the fitness rules fBuperior Good and Fair, as any

remaining metric evaluations are considdreslifficient.

2.5.2 Building Monitoring
The second application, referred toBaslding Monitoring (BM), is designed to monitor
activity within a building using periodic sampling of motion and vibration sensors.
Depending on the userd6s request, thngs dat a
the daytime, employees may be able to determine which conference rooms are free, or an
automated system may turn lights off if a room is not in use for an extended period of
time. During norbusiness hours, security professionals can utilize thignre#on to
ensure there are no personnel or unauthorized individuals are left in restricted areas.
Compared to théorestFire Detection and Propagation Trackinghe lifetime
requirement for thé&uilding Monitoringapplicationis more lenient with a ligme of 5
to 12 months considere@ood For packet delivery, a rate of 99.0% to 99.9% is
consideredGood as multiple packets will likely be transmitted to indicate activity
occurring within a room and a single erroneous packet will not significantly intipact
resulting system operation. However, as any detection of motion will be reported to the

base station, a lower latency will be necessary, such that a latency of 0.2 ms to 9.6 ms is
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consideredGood We note that without amnsufficient classification, he application
expert need only specify tli@oodrange.

Again, lifetime is the dominant design metric for this application, followed by
latency and packet delivery rate. Thussaar lifetime or latency automatically results in
a Fair design. However, if the lifetime Superiorand all other metrics are at le&bod
the overall design is consider8dperior Alternatively, if the lifetime isSuperiorand the
latency is at leastood the design is still considergglood even if the peket delivery
rate is onlyFair. If the lifetime isGood and all other metrics are at le&bod the

overall design is consideréabod

2.5.3 Environmental Wildlife Monitoring

The third application considered, referred ta&easironmentalWildlife Monitoring (EM),

is used to send time stamped thumbnail images of pictures obtained by cameras placed

next to watering holes and frequently used wildlife trails for monitoring and recording

wildlife activity. The sensor nodes activate digital cameras wheneviéonrie detected.

While the full resolution images are stored locally within the digital camera, the sensor

nodes are responsible for logging and tracking activity along with transmitting low

resolution thumbnail imaget e.g. 20x20 gray scale imagésto the base station to

provide biologists or environmentalists quick access to detected activity without requiring

physical access to the digital camera that may be located in a remote wilderness location.
Unlike the previous two application scenarios, ldifefimes are not required for

the Environmental Wildlife Monitoring application, as researchers must frequently

venture into the field to collect the digital camera data. Consequently, replacing batteries
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at the same time will not be particularly burdemso Thus, a lifetime of just 0.5 to 1
month is considere@ood However, the transmission of the thumbnail images using the
wireless network will require low latency, with a latency of 0.9 ms to 3.5 ms considered
Good As the thumbnail images transmitteasrdugh the network are only meant to
provide quick updates on activity and the full image data is stored within the digital
camera, slight aberrations in the transmitted data will only result in degraded thumbnails.
Hence, packet delivery requirements ao¢ as stringent, with &oodrate ranging from
96.5%t0 99.7%.

Overall, latency is more important than packet delivery rate, which in turn is
much more important than lifetime. If latencySaperiorand all other metrics are at least
Good the overall dsign fitness isSuperior On the other hand, Fair latency or packet
delivery rate corresponds toFair design. Since lifetime is not critical, if latency is
Superiotr packet delivery rate is at leaSbod and lifetime is onlyFair, then the design
is dill Good If, however, lifetime isFair and the latter requirements on latency and
lifetime are not met, the overall design fitnes$-&r. All other design alternatives are

considerednsufficient

2.5.4 Climate Controlled Greenhouse Monitoring

Finally, we consider &£limate ntrolled Greenhouse (GHjpplication consisting of
sensor nodespatially distributed throughout an automated greenholsery five
seconds, each node sends the current temperature and humidity to the base station for

monitoring purposesAdditionally, if the temperature exceeds a user defined threshold
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the humidity drops below a defined threshdlie sensor nodes will activate a misting
system until the greenhouse climate has returned to an acceptable level.

A moderagely long lifetime is desired in order to minimize human presemce
maintenancewithin the automated greenhouse environment. However, the desired
lifetime would ideally encompass the elapsed time required to plant and harvest the
specific crop being grownHence, a lifetime of 3 to 6 months is considefeood
Reliable data is crucial in monriag the greenhouse environment, as properly
controlling the mistingsystemss essential for good plant health and minimizing water
costs. Thus, &oodpacket deliery metric corresponds to a rate of 99.95%06% The
importance of latencig inverselyproportional to the sampling raté/hile the amount of
data being processed and transmitted by individual nodes may be small, a larger number
of sensors may be pregewithin the greenhouse. Thus, a latency of 0.48 ms to 48 ms is
Good

For theClimate Mntrolled Greenhousapplication, lifetime and packet delivery
are more important design metrics than latency. Thgiralifetime or packet delivery
rate results ima Fair overall design fitness. Auperiordesign must have Superior
lifetime, aGoodor Superiorpacket delivery rate, and@ood or Superiorlatency. If a
Good lifetime is achieved along with &ood or Superior packet delivery rate, and a
Goodor Superor latency, the overall design is considefgaod As latency is not critical
for this application, dair latency can still lead to @oodoverall design only if lifetime
is Superiorand the packet delivery rate @ood or Superior Otherwise, the design is

considered-air.
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Table2: Comparison of optimal static and dynamic node configurations for (
low activity and (b) high activity dynamic scenarios showing breakdown of
individual fuzzy design metric clasisations for lifetime (L), packet delivery
rate (P), and latency (LA), and the overall fuzzy design fitness (F).

Optirncaglnl?ér?amic Optimal Static Config. Optinzja(t)lnl?ﬁamic Opticn;ilfiZtlatic
App [L% |P% |LA%|F% | L% | P% |LA %| F % App [L% |P% |LA%|F% | L% | P% |LA %| F %
FF |100 S|100 S{ 98 S (100 S|100 S|100 S|54S |92 S FF |100 S{100 S| 98 S (100 S|100 S|100 S|54S |92 S
BM |15G (100 S|0.3G|39G |39S [100S|15F |65 F BM |35G |100 S|.03G|45G |29G (100 S| 20 F |54 F
EM |0.8S|100 S|58F |75F |0.8S[100S[58F |75 F EM [0.7S|100S|34 G |62 G |0.7S|100S|34G (62 G
GH |12S |100 S{83F |65G |23 S |100 S| 38 F |54 G GH |76 F |100S|97F | 74F |69 F (100 S| 13 F |45 F

2.6 Experimental Results
Each of the aforementioned applications was written for the TinyOS operating system
using the NesCprogramming language, and implemented on the IRIBes sensor
network platformwith each incorporating our dynamic profiling framework. Using a
small scale’ on the order of 10 nodésdeployment of sensor nodes, we profiled two
dynamic execution scenasigper application corresponding tdoav activityenvironment
and ahigh activity environment which subjected the deployed sensor network system
with manually created environmental stimuli for the two execution scenarios. For
example, considering tHeorest Fire Detection and Propagation Trackiagplication, a
low activity scenario corresponds to the normal detection mode in the absence of fire. On
the other hand, a high activity scenario is one in which the nodes have already detected
fire, during whch the temperature sensor is more frequently read and alert messages are
transmitted within the network. Similar low and high activity scenarios are considered for
the remaining applications.

For each application, profile information for all sensor nodas collected and

averaged under both dynamic execution scenarios. This averaged profile data was
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subsequently utilized by the optimizer module in order to produce a single optimal
configuration for each combination of application and dynamic executienago i
noting that such an optimal configuration remains valid as long as the execution
environment remains constant. To evaluate to the benefits of dynamically optimizing a
sensor nodeds configuration i nstmrwdfirsof ut.
comparethe optimal staticconfigurationto thedynamic node configuratisproduced by
the online optimizerfor low activity andhigh activity executionscenarios Given our
extensive experience with the IRIS platform and having completedaebelopment of
each applicationwe determined a static profile including the average packet reception
rate, packet transmission rate, packet size, and number of microprocessor instructions
required to process each packet reception and sensor event. (Bigestatically
determined application profile, for each application, we determined an optimal static
node configuration by exhaustively searching all feasible configurations given the
application expert specified fuzzy classification functions and fitndss. Additionally,
the dynamic application profile for each execution scenario was utilized to determine the
optimal dynamic node configuratiomable2 presents tabreakdown of individual fuzzy
design metg classifications for lifetime, packet delivery rate, and laterasyd the
overall fuzzy design evaluatidor the optimal static and dynamic node configuration for
each application execution scenario.

For the bw activity scenario presented Trable 2(a), the dynamically optimized
node configurations either equal or exceed the performance of the statically optimized

configurations.In the Forest Fire Detection and Propagation Trackiagplication, the
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dynamically optimized node configuration showed a 46% increase in the latency fuzzy
classification compared to the statically determined configuration. This improved latency
realts in an increase in the final fuzzy fitness score from ®8 100%S, where S
indicates &Superiorrating, G indicates &oodrating, and F indicates Faair rating. For

the Building Monitoring application, the dynamically optimized node configuration
showed a similar improvement in lifetime but at the expense of latency. Specifically, this
lifetime fuzzy score increase from 15%to 39%S corresponds to rawfétime increase

of 6.05 months to 21.9 months; and the latency fuzzy score decrease from® 3%
15% F corresponds to a raw latency increase of 9.5 ms to 64 ms. This tradeoff is
beneficial as it improves the overall design fithess from @% 39% G. For the
Environmental Monitoring application, the dynamic and static node configurations were
both identical, thus dynamic optimization produced no discernable improvement for this
one particular scenario. The Greenhouse Monitoring application is analtgdbe
Building Monitoring application in that overall improvement was attained using dynamic
profiling, but resulted in an improvement in latency at the expense of lifetime, achieving

a modest improvement in overall design fitness from 8186 65%G.
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Table3: Comparison of exhaustive search and online fuzzy directed optimize
algorithms for low activity and high activity dynamic scenarios showing
breakdown of individual fuzzy design metric classifications for lifetime (L),
padet delivery rate (P), and latency (LA), the overall fuzzy design fitness, a
percentage of configurations searched (%CS) for the online fuzzy directe
optimization algorithm.

Low Activity Scenario High Activity Scenario

Exhaustive Online Fuzzy Directed Alg. Exhaustive Online Fuzzy Directed Alg.

App | L% |[P% [LA%|(F% | L% |P% [LA%|F% (%CS| L% |[P% |[LA%| F% | L% | P% |[LA%| F% (% CS

FF 100 S|100 S| 98 S |100 S|100 S|100 S| 98 S |100 S| 0.06 [100 S|100 S| 98 S {100 S|100 S|100 S| 98 S |100 S| 0.06
BM |15G [100S|0.3G|39G|15G |100 S|0.3G|39G | 0.06 | 35 G |100 S|.03 G |45G |35G |100 S|.03 G| 45 G | 0.05
EM |0.8S|100S|58F | 75F |0.8S|100 S| 58 F | 75F | 0.10 |0.7 S|100S|34 G |62 G |0.7S|100 S| 34 G |62 G | 0.05
GH [12S|100S|83F |65G|12S|100S|83F |[65G |[0.05 |76 F [100S|97F |74F |76 F [100 S| 97 F | 74 F | 0.06

Importantly, given the focus on application expértsvith limited engineering
expertisei by presenting the improvements using fuzzy metric classifications, an
application expert can quickly evaluate the improvements in individual metrics and
overall degjn fitness without needing to analyze the raw metric values. For example, in
the case of the Forest Fire Detection and Propagation Tracking application, rather than
presenting the improvement in latency as a raw improvement of 9.4 ms, the fuzzy metric
classification presents the improvement as an increase from 54% S to 98% S. We believe
that such an approach is more readily approachable and understandableshginears.

For the high activity scenarjoresented imable2(b), all dynamically determined
node configurations outperformed their statically optimized counterparts. Additionally,
improvements in individual design metrics were achieved without trazffndecreases
in other design metrics. The largest improvement was achieved for the Building
Monitoring application, for which the dynamically optimized node configuration
achieved an overall design fitness of 45% G compared to 54% F for the statically

optimized configuration.
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For both the high activity and low activity scenarios, despite our experience with
the underlying platform, a statically determined profile cannot reliably account for the
inherent variability in performance demands due to dynamicutiom requirements.
Instead, dynamic optimization of sensor node configurations provides significant
advantages in being able to adapt to these environmental changesaomtithize the
configuration.

We further evaluated the performance and efficienayunfonline fuzzydirected
optimization algorithm.Table 3 presents a comparison of the optimal dynamic node
configuration determined by exhaustively evaluating edistble node configurations and
the dynamic node configuration determined using our online fdiregted algorithm. A
breakdown of the individual fuzzy design metric classifications and the overall fuzzy
design evaluations for both low and high activicgmsarios is presented along with the
percentage of feasible configurations evaluated by our online-flirzgted optimization
algorithm. For all applications and execution scenarios, our online -flirzgted
optimization algorithm finds the optimal dynammode configuration, while evaluating
an average of only 0.06% of the entire set of feasible node configurations. This equates to
evaluating only 114 node configurations, of which 65 evaluations are utilized for the
initial search phase. On an 8 MHz pessor, a single node configuration is evaluated in
approximately 4 milliseconds, leading to a total execution time of 0.456 seconds for the
fuzzy-directed optimization algorithm, compared to an execution time of 758 seconds
using an exhaustive searctWe rote that for subsequent dynamic optimization, the

current node configuration would be utilized as the initial configuration, further reducing



Table4: Comparison of the simple metric chance (SMC), neighboring

configuration evaluation (NCE), Taylor series neighboring configuration

approximation (TSNCA), and wdirectional variants (&) re-optimization
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algorithms for allapplications (averaged) using over 19,000 different applicati
profiles considering an initial configuration of {F, V, RFP, DR, RFF} = {2 MH:

2.7V, 3 dB, 250 Kbits/s, 2405 MHz}.

Re—optimiz'ation Co'rre;ct i Unnecessary Missgd ) Avg. Fuzzy Malx Fuzzy Sealien T
Evaluation Re-optimization Re- Re-optimization Fitness Fitness

Algorithm Detections optimizations | Opportunities Decrease Decrease ()

SMC 12.20% 27.38% 60.42% 2.19% 47.86% 4.01

NCE 95.63% 0.00% 4.41% 22.26% 45.63% 20.01

U-NCE 94.98% 0.00% 5.02% 22.97% 94.78% 16.74

TSNCA 95.90% 1.18% 2.92% 21.39% 24.00% 42.82

U-TSNCA 95.36% 1.18% 3.46% 23.65% 94.29% 36.50

both the number of node configuration evaluated by the online optimization

and its execution time.

algorithm

We evaluate the effectiveness of the variousop@gmization evaluation

algorithms based on the number of correcbpémization detectionsthe number of

unnecessary reptimizations, and the number of missedopimization opportunities

considering an initial configuration o~ V, RFP, DRRFF} = {2 MHz, 2.7 V, 3 dB,

250 Kbits/s, 2405 MHz}. To evaluate the effectiveness of these algayitiven further

consider over 19,000 different application profiles based on data delineating meaningful

ranges for each profile parameter. These application profiles corresponds to all possible

combinations of the following profile parameters: SenEvenvalues ranging from O to

2500, sixPktRxand PktTx values ranging from O to 500, eigRktSizevalues ranging

from O to 21, and eleves p | waduesrranging from 0 to 425,000.

Table 4 comparesthe simple metric chanceSKIC), neighboring configuration

evaluation (NCE), Taylor seriegighboring configuration approximatiohgNCA), and

uni-directional variant®f theneighboring configuration evaluatio{NCE), andTaylor
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series neighboring configuration approximatidh {SNCA) by averaghg the data for
each of theapplicationsconsideredWheneveithe algorithmmisses an opportunity re-
optimize, afuzzy fitness decreas@lueis calculated. Thivaluerelates thduzzy score
difference between the current suboptimal configuration and the optimal configuration.
Additionally, the execution time using an 8 MHz processor is reported for -all re
optimization evaluation algorithms.

The SMC algorithm achieves the fastaserage execution time of 4 ms, yet on
average, it achieved the lowest correctopéimization detections, the highest
unnecessary reptimizations, and the highest misseebptimization opportunities with
values of 12.20%, 27.38%, and 60.42%, respdgtivAlthough the average and
maximum fuzzy fitness decrease values due to missegtimization opportunities are
surprisingly modest, these values alone dc
performance, and thus do not warrant its use. We thatewhile these results will vary
depending on the selected metric change threshold, we do not expect any significant
improvements, as no direct correlation exists between a change in metric values and the
adequacy of the current hardware configuration.

As expected, both the NCE and TSNCAomimization evaluation algorithms
achieved comparable results asgjnificantly outperformed the SMC algorithm. On
average, the TSNCA algorithm incurs a small 1.18% increase in unnecessary re
optimizations in exchangdor a 0.27% improvement in correct -optimization
detections, and a 1.49% decrease in missexptienization opportunities over the NCE

algorithm. Most notably, the TSNCA algorithm achieves the lowest average fitness
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decrease value at 24%, which corragpoto an improvement of 21.63% over the NCE
algorithm. The TSNCA algorithm overestimates the neighboring configuration
specifically to reduce the number of misseebpéimizations and aids in detecting re
optimization opportunities that the NCE algoritlthsmisses. The potentially significant
difference in behavior for these two optimization algorithms is best exhibited for the
Environmental Monitoring application. For this application, the TSNCA algorithm incurs

a maximum fitness decrease value of onl 3.% compared to the NC
maximum fuzzy fitness decrease value of 91.26%. Whereas the NCE algorithm keeps a
suboptimal configuration with a latency of 22.3 ms, the TSNCA algorithm determines

that reoptimization is needed and finds a configunatiath a latency of 3 ms.

As any reoptimization evaluation algorithm should be considerably faster than
the online fuzzy directed optimization algorithm, the execution time for the re
optimization evaluation algorithms is critical. The original NCE alfaomi is faster to
compute, requiring 20 milliseconds, or roughly one half the time required for the TSNCA
algorithm. This constraint served as the primary impetus for developing-M@BJand
U-TSNCA algorithms, which achieved a slightly decreased, yet atabfe, performance
over their original counterparts in exchange for a 4 ms decrease in computation time. The
main drawback, however, is that the slight increase in misseagptimization
opportunities of 0.61% and 0.54% for the-NCE and UTSNCA algorithns,
respectively, leads to a maximum fitness decrease greater than 94%.

The viability of these r@ptimization evaluation algorithms hinges on both

detection performance and execution time. Based on the presented data, all algorithms,
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with the exception of the SMC algorithm, achieve a satisfactory detection performance.
On the other hand, an execution time 1is
total optimization time. Given that our online fuzdiyected optimization algghm has
an average execution time of 0.456 seconds, the NG¥CH, TSNCA, and UTSNCA
re-optimization evaluation algorithms spend respectively 4.4%, 3.7%, 9.4%, and 8%, of

the average optimization time determining whetheypmization is necessary.
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CHAPTER 3

ATLES-SN: A MODULAR SIMULATOR FOR SENSOR NETWORKS

3.1 Overview

The accuracy of the aforementioned profiling and optimization frameworks depends
critically on the accuracy of the estimation models Usedhe high-level design metrics
atruntime. However, ssessing h e  ef comfigurableand profileparametes on high

level design metricean be a daunting taskie to the complex interdependences between
parameters Unless the parameter relationships can be determined using known
mathematical models, application experts and platform developers must typically derive
such models via experimentation.

Physically deploying a sensor network tbetl and relying on empiat
measurements to assess t he e caabempracticalpar ame
time consuming, and costly. Thus, computer simulatiares an attractive means of
assessing the performance of sensor network platforms. These WSN simulators give
apdication developers the ability to rapidly and accurately simulate an application for
design space exploration or performance assessment. The speed, accuracy, and suitability
of these simulations are largely dependent on the structure and features tudapar
simulator[23]. In this chapterwe presenthe Arizona Transactioclevel Simulator for
Sensor Networks ATLeS-SN), which allows developers to specify commnts at

di erent | e v eil foom oytleacaUrasetto lghetval algorithmsi thus
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providing a greater degree of control over simulation speed and accuracy in comparison
to other o erings.
3.2 Previous Work
Various sensor networkimulators have been introduced. The-ASimulator[24] is an
early pioneer that began as a general network simulator. Its functionality has been greatly
expandd since inception and it has become arguably one of the most popular discrete
event sensor network simulators in y88). NS2 o ers advanced mode
MAC, transceiver, and routing protocols as well as a simple energy consumption model.
The MAC protocols integrated within N& however, are not necessarily suitable for
low-power wireless sensor network®9]. Moreover, application and environmental
sensing models are limited or neristent[41]. Similarly, Castalid14] is discreteevent
simul ator built on t he OM&erdl advanced veirelds® r m.
transmission medium, radio, and MAC models that are suitable for wireless sensor
networks [49][41][40]. The simulation platform is also extensible and reasonably
modular, yet the lack of rigidlyd e y n e d entoimepfaces often limits the
compatibility of thirdparty developed componenfg3]. While developers are free to
create cust om compone nabdractiant Castdlia kBoks thg | ev
infrastructure necessary to easily model concurrent hardware down to-teeehithus
prompting some to extend O[BNeTd6s capabilit
TOSSIM and its extension PowerTOSSI%3][89] accurately model the
networking and energy consumption of TinyOS based sensor nodes. The TOSSIM

simulators achieve excellent scalability and accuracy by emulating actual application
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code and simulating networking hardware devices down to the bit levele\do, the
main drawback to these simulators is that models to incorporate the sensed environmental
phenomena are not available, and all nodes must execute the same source code. Most
importantly, TOSSIM is not suitable for all sensor networks as it istlgtdesigned for
MICA motes running the TinyOS operating system.

Finally, SENS[92] is an eventdriven simulator that allows interchangeable
models for the appation, network, transmission medium, and environment components.
The provided environment model is arguably one of the most sophisticated as it
accurately models both sensed phenomena and the radio transmission rFEjium
However, the main limitation to the SENS platform is the lack of accurate models for
routing and mediuraccess control.

Although numerous other simulation platforms exist, these platformsnaitark/
e ective for their respective purposes, b
application experts to design, evaluate, and optimize their respective applications. Thus,
we aim to consolidate the strengths of the aforementioned simulddéidorms through
the introduction of the Arizona Transaction Level Simulator for Sensor Networks
(ATLeSSN) T a modul ar and conygurable simulato
language.

We yrst I nt r odSNcsandlatot im@B7] #nd ldes@ibed basic
component functionality via two application case studiéss researclextend upon this
previous e ort by presenting a ssirgtore ycant

along with revised component model s that
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uP Bus

] Component

: . Port
D Interface

—> Connection

PE4

Figurel2: Transactiodevel model example consisting of several componéhtdem,
PEL, PB, é , n) édihected through@mmunication channel (Bus) with two interfac

sensor net work i mplementations and appliceé
includes subcomponents for the physical layer, mediooess control layer, and the
networking layer; the implementatioma accuracy of the transmission medium model

has been improved; the interfaces and ports of the application component have been
restructured; a system monitoring component has been added; and a new sound

application and its corresponding environment amg@ecomponents has been created.

3.3 SystemC and Transactionlevel Modeling Overview

Transactiodevel modeling (TLM) is a programming methodology that facilitates the

i mpl ementation of wvarious el ements within
decoupling communication from computation. Developers are provided with the freedom

to work on a speciyc aspect of a design
components in detail. Such a model iI's of C
ablet o concurrently develop and reyne di er

without having to wait for the previous phase to be completed.
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Figure 12 provides an example of a transactlexel implementation. In this
conyguration, a processor, me mio allycalleda n d S
component$ are connected through a common bus. This bus is a channel through which
all communication betwen components takes place and implements two interfaces that
deyne t he t )i praransaction$ that thé acorthected components can use to

interact with the channel. The processor, memory, and processing element components

contain ports, which ali t i onal ly deyne the type of i n
connected.

As |l ong as these interfaces and their
developer iI's free to modify or reyne the

processing elements Witut compromising system compatibility. Thus, these interfaces

and ports are the constructs through which TLM manages to separate the details of
communication from the underlying implementation. A developer, for example, could
yrst i mpl e me astabdsib @C+p algoitrensasdahen progressively increase

its level of detail in order to implement a cyeecurate instructieset simulator without
having to change any other component or a
T which is actuallya class library to C++ enables developers to easily take advantage of
TLM. Additionally, it provides support for discretvent, timebased, and cyclaccurate

simulations.

3.4 ATLeS-SN Simulator Structure
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void Transmit(wireless signal, node id);

void Listen (&received signals, node id);

(b) physical_if:
void Configure (configuration);
void TransmitPacket (packet) ;
int isChannelClear () ;

(c) packet_send_if:

void Send(packet);
(d) packet _receive_if:

void Receive (packet);
(e) system_monitor _if:

void UpdateState(state, component);
(f) sensor_if:

void Read() ;

void Actuate (ArgsArray) ;
(g) sensor_interrupt_if:

void onSensorInterrupt (sensor value);
(h) environment if:

int Sense(node id, sensor type);

void Actuate (node id, action);

Legend

[J] Component
:[D Interface —> Connection |

@ Port

Figurel3: Overview of the components, ports, and interfaces for the Arizona
TransactiorLevel Simulator for Sensor Networks (ATL&N) 2.0.

The Arizona Transactichevel Simulator for Sensor Networks is a simulation platform

built using the SystemC extension to tBe+ language. Through the principles of

transactiodevel modeling, ATLeSSN emphasizes a modular design that allows

devel opers

mi ni mal e

t

ect

he

t o

giving developers the freedom to focus primarily on components of interest while others

ar e

speciyed

onl

ability to iteratively rey
s y st e mfadlitatesptteedesigh process by . Suc
y to the necessary | evel C

advantage of thirgharty developed componeriis extend the application of interest or

evaluate various design options. Indeed, through the case study presentedhaptss
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we aim to demonstrate the beneyts of i nt e
di erent simul at onenironrménb a single simul at

In designing the structure of this simulation framework, special attention was
given to the issue of modeling the overall functionality of a sensor network using an

adequate and realistic set of components. This task involved detertnatimthe number

of components and their individual functio
components makes it di cult for the develo
as multiple di ering funct iaheréhénd ttooenany ar e |

components can overwhelm the developer and impedeldwghthinking and design. In
order to achieve the appropriate balance in component composition and granularity, a
survey of sensor node modeling was conducted and it revealedhthaessential
considerations in sensor network design and optimization are power consumption,
communication, application functionality, and the sensed environii&3jt14][92].
Consequentially, these are the categories that guideddlection of components for
ATLeSS N. I f, however, a developer ynds that
ATLeS-SN is too coarse a granularity for a particular application, transdetrehn
modeling additionally allows the implementation of subcongmis within an existing
component , t hus e ectively maki ng t he I
communication with external components takes place.

Figure 13 presents an overview of the components, interfaces, ports, and
connections that compose the underlying structure of the ABN$ramework. Each

individual Sensor Nodé s speciyed as a coll ect,ithen of
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App component encapsulates the core functionality of the sensor node; the Sensor
component models the sensors found within each nodéyleheorkLayer MACLayer
andPhysicalLayercomponents within the Network Stack component model the software
and hardwae necessary for wireless communication; andygtemMonitocomponent
enables a developer to monitor activity in thetwork Stack App, and Sensor
components for later estimation and optimization of node power consumption, lifetime,
or other metrics ofnterest[66][67][86]. The Environmentand Transmission Medium
components are external to the sensor nodes and model the sensed phenomena and the
wireless communication medium, respectively.

Figurel3addi ti onally speciyes the interface
wel | as the corresponding ports and connec
all potential interactionsi or transactionsi between components and are further

explained in the following sections.

3.4.1 Application Component

TheAppcomponent models the functionality of
processor. This, however, does notlude the drivers utilized to interface with the

sensors or physical layer components such as the transceiver. IAgipainulates the

algorithms necessary to implement the Hig¥el functionality of the wireless sensor

network at large. Examples incle the code necessary to detect and respond to elevated
temperatures i n the case of a forest yre

calculate speed and direction in an accelerometer based application.
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As s pec Figued3 (d wnd (g), theApp component implements two
interfaces: packet_receive_ifand sensor_interrupt_if The packet_receive_iinterface
speciyes a fr e ctallowsetie afplicaionscaponend to redeilieadata
packets from elsewhere in the network. The application typically receives these packets
from the nodeods net working c¢compodBeare s, w h
responsible for controlling intexode communication. Finally, theensor_interrupt_if
interface speciyes an fAonsSe rBsneorcompdnentto upt 0O
interrupt the application in order to deliver a sensor reading asynchronously.

The App component additionally contan ports that allow it to initiate
transactions with other componeritsasgai n via interface deyni
connects to an interface for transmitting packetgure 13(c)); the lower connects to an
interface for actively demanding sensor data or actuating the envirorfangunte(13(f));
and the rightmost port connects to an interface for tracking power Stagese(13(e)).

The provided models for th&pp component simulate higlevd C/C++ algorithms using

an approximatéimed model in which operation delays are approximated using SystemC

wait statements. Under an approximateed model, these wait statemeitsvritten as

wait(time, time unitpr wait(event)i are utilized to instret the simulation engine to halt

program execution until an event, such as the expiration of time, is triggered in order to
approxi mate delays inherent of a particul a
levels of abstraction can be implementedonder to meet the goals of a particular
simulation. For example, a cyedecurate instructioset simulator that executes

assembly instructions can be implemented withinApp component in order to model
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performance, instruction delay, and energy congiompmore accurately. However, a
low-level implementation such as this may be inadequate if simulation time and
scalability are primary concerns. In these situations, the aforementioned appreximate
timed model or an untimed model that only utilizes evennters to calculate the energy
consumed may be more suitable. Nonetheless, within the TLM implementation the
developer is free to specify the required level of abstraction with the assurance of system
compatibility as long as the custom application congmbnimplements the

aforementioned interfaces.

3.4.2 Sensor Component
The Sensoicomponent models the functionality of a physical sensor within a sensor node.
Examples include light sensors, temperature sensors, or accelerometers. As shown in
Figure 13(f), the Sensorc o mponent mu s t i mpl ement a sens
AReado and AActuatedo transactions.ythehe f or
App, to read data values from the sensor, and the latter is used to actuate the environment.
Because the data returned to a physical pr
adheres to this abstraction by returning unsigned integer vahiel theAppcomponent
must decipher according to the type of sensor being used.

The Sensorcomponent additionally contains three ports that allow the sensor to
initiate transactions with other components. One port connects tongooent
implementing thesensor_interrupt_ifinterfacei typically the App i and allows the
sensor to interrupt its execution in order to deliver a new sensor value asynchronously.

Another rt connects to thenvironment_ifinterface, described in Section4®, and
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enables the sensor to interact with the environment. The last port connects to an interface

in theSystem Monitoc o mponent for tracking the sensor
The provided models for th&ensorcomponent are approximatiened and

consequefuse Sys e mC wait statements to simulate

and AReado t riamndslaycthe execntion dbtHe eatlikg components with

these wait statements in order to more accurately simulate the time necessary for sensor

reading ad communication. Again, the developer is free to modify or implement his or

her ownSensorcomponent using the desired level of abstraction.

3.4.3 Network Stack and Subcomponents
The PhysicalLayeyr MACLayetr and NetworkLayercomponents, collectively calletthe
Network Stack i mpl ement t he sensor nodeds ne
PhysicalLayer models the capabilities of wired or wireless transceivers and the
controlling circuitry, thus allowing the node to receive and transmit data in the form of
bits. Tre MACLayer component implements the mediancess control functionality
which, depending on the actual implementation, controls aspects sudieaspackets
are transmitted and the states of the transceiver. NawvorkLayer component
implements the highe v e | networking functionality, a
routing protocol employed, determines the appropriate recipients of transmitted packets
and whether a received packet should be retransmitted or given to the application
software for processing.

When a node yr st receives a packet, t he

from the PhysicalLayerto the NetworkLayer before being delivered to the App
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component. If the App needs to transmit a packet to another node, then this order is
reversed. Ta PhysicalLayerimplements aphysical ifi nt er f ace t hat spe
possible transactions. The ATransmiit Packe

typically the MACLayeri to give thePhysicalLayera packet for transmission, the

=]

Conygureom tirsansaedi ¢ o change the i ts st

i sChannel Cl earo transaction is wutilized t

=]

the sensor node is clear. These three transactions are typically utilized\dgx@ieayer
component. Th&hyscalLayeradditionally contains three ports. The upper port allows it
to send and receive packets from thensmission medium via medium_ifinterface
(Figure 13(a)); the lover connects to packetreceiveif interface and allows it to pass
along received packets to components such asvith€Layer (Figure 13(d)); and the
rightmost port connects to an interface in the System Monitor component for tracking
power statesHigure13(e)).

The MACLayercomponent implemestthepacket receive if andpacket send if
interfaces to enable components such asPigsicalLayerto supply theMACLayer
component with received packets, and components such BetiverkLayercomponent
to send packets meant for transmission. TetworkLayer component similarly
implements the sampacketreceiveif and packetsendif interfaces. TheMACLayer
component has two ports that are simply utilized to deliver packets RhifscallLayer
and NetworkLayercomponents. Similarly, th&letworkLayerports are used to deliver

packets to théppandMACLayercomponents.
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The provided models for the networkask components are also approximate
timed. The ATransmit Pack e Physicéllragemrsl asedby on i m
the MACLayer is blocking and utilizes SystemC wait statements to model the
communication time between processor and transceiver.

We nde that although all of the provideMACLayer and NetworkLayer
components see Sectior3.5.21 are currently modeled as software routines running in
the sensor nodebs processor, the wuser i s

modeled as hardware plementations or some mixture of software and hardware.

3.4.4 System Monitor Component

The SystemMonitors a general monitoring component used to improve the accuracy of
simulation; however, it may also represent an actual software component used in
profiling and optimization efforts. It can be used to model a variety of node parameters
including the energy consumption of an individual sensor node. As illustratedure

13(e), the System Monitorcomponent implements system_monitor_ifnterface that
specifies an AUpdateStatedo transaction tha
PowerTrackerof component state changes. Based on these states, this component can
keep track of parameters such as the remaining battery energy or voltage. While the use
of this component is optional, tH&ystem Monitocomponent can provide developers

with deeper isight into the execution of the application and evaluation of platform

design choices. The provided model is presented in more detail in S&é&tiRin
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3.4.5 Transmission Medium Component

TheTransmissionMediurcomponent models the physical medium throwirch signals

propagate. After transmission, data packets traverse this physical medium as encoded
information in the form of electromagnetic radiation and are eventually received by a
sensor Physicdleagesas seen inFigure 13(a). The TransmissionMedium
component simulates aspects such as packet delay and signal degradation as information
propagates through the environment. However, in order ¢peply simulate this
degradati on, this component mu st have acc
location. Thus, it is initialized with an array of objects containing identification and
location information for all sensor nodes.

The TransmissionMedim component, shown irFigure 13(a), implements a
singlemedium_ifinterface to which all sensor nodes in the network are connected via the
PhysicalLgyetd s por t . This interface specifies th
The ATransmito tr aPhsicallayemaompaonent whenisdndingead by
packet and the ALiI steno Physcalayewhenlistening s si m
for remote packets.

Because signal degradation and packet losses are of significant concern in the
realm of networking, a broad number of signal propagation models have been introduced
in literature. These include advanced models such as the Radio IrrggMlediél [104],
the lognormal shadowing path loss modé&D7], as well as other simpler models that

discard packets based on probabilities or assume an ideal environment in which every
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node can receive all packet transmissions without error. Our implementation of-the log

normal shadowing path loss model is introduceSectior3.5.1.

3.4.6 Environment Component

The Environmentcomponent is analogous to the aforementioRehsmissionMedium
component, however, it instead models the physical medium through which sensed
phenomena originate and propagate. In a forestfionitoring and tracking application,

for example, the sensed phenomena is temperature aBd\tlienmentomponent could
model the propagation of fire through the landscape and the conduction of heat to
individual nodes.

The Environment component, ddpted in Figure 13 (b), implements an
environment_ifi nt er f ace whi ch speci fies ASenseo
ASenseo tr an s\wadoa Semsorcompbnerdsvc sensentlikienvironment and
returns the appropriate reading typically
type. The HAActuateo transaction all ows se
environment. In a greenhouseonitoring application, for example, a sensor detecting
elevated temperatures could actuate the environment by turning on misters to reduce the
ambient temperature.

Because the correct environment implementation is strictly dependent on the type
of appliation, a wide variety of models such as the sound propagation environment
presented in Sectio.6.2 i can be used. Some developers might choose to forgo
modeling the mathematical complexities of propagation and simply read values from a

file, and othersnay not have the need to use Erevironmentomponent.
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Figurel4: Overview of the simulator structure for the IRIS mote platform highlight
the utilized component models in parenthesis.

3.5 Implementation and Verification of ATLeS-SN Components for Target Sensor
Platform

The component models included in ATL-88l were selected based on our survey of
WSN simulator literature and are highlightedRigure 14. Although a variety of sensor
network platforms are available, the sensor node components within ASNelsave
been configured to closely approximate IRIS mdfie€q running the TinyOS operating

system. Specifically, th&ystemMonitoltomponent has been designed to simulate an
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Figurel5: StateChart detailing the interactions betweencurrent supestates in the
Transmission Medium Component.

| RI'S motebds ener gWACcanpeentmpotelsahe-BACnpobtocblh e
developed for TinyOS. Thapp, Sensoy andEnvironmentcomponents were designed to
model the target acoustic rangi application discussed in Secti8r6. The remaining
components were selected from various other simulators and our implementations closely
approximate their original functionalities. The following sections highlight each of the

provided models.

3.5.1 Tansmission Medium: Path Loss Lognormal Shadowing Model Implementation
The TransmissionMediurnoomponent models the physical medium through which signals
T which encapsulate packetspropagate before reaching their destination. Due to the
popularity of the Castalia simulator[14] and the maturity of their models, the
Transmission Mediuntomponent integrates the signal degradation and propagation

model found in Casta. We note that this model assumes node locations are static and
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that nodes cannot be dynamically added to the network during runtime. However, the
Ssimul ator os extensibility certainly all ow
developing their own ctism implementation of th&ransmission Medium

The functionality of ourPath Loss Lognormal Shadowingodel for wireless
transmission is illustrated by the StateChart showrFigure 15. In accordance to
StateChart automata, dashed lines indicate parallel execution of concurrent states. Thus,
any component described by such a StateChart is simultaneously operating in all
concurrent supestates at once. Transitions between states oguum the activation of
events, and these transitions may be guarded using conditional statements enclosed in
parenthesis. Thémeout(event, delaygxpression represents an event that is activated
when a specified time delay has elapsed after the occurmésoene event. Additionally,
the expressionix indicates the generation of event x upon transition. Importantly, this
method of mixed everdriven and timeébased simulation is efficiently supported in
SystemC. We refer the interested readef34] for a more detailed description of
StateCharts.

This particular model has three concurrent sigpates: thelisten State(L),
Transmit Signals StatéTS), and Track Acive Signals StatgTAS). Although not
explicitly shown inFigure 15, a new instance of tHESsuperstate is launched whenever
a node utilizes its physal if port to transmit a new packet. When this event occurs, sub
stateE(Wait for Node Transmityithin the newly created S superstate transitions to
substateF (Store Signal and Calculate Expiration Timehere the medium component

stores the incomyg signal, calculates its expiration tireor the amount of time the
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signal will be in transmissioin and finally notifies other concurrent states that a new
signal has been received before returning testateE.

Similar to the Castalia framework, thereless signals used in our model have a
nonzero transmission time that IS cal cul at
transmitting radi ods drASsaperstatetiserespolsidla fore g u e n |
keeping track of any active signals beingngmitted and removes those that have
Ailexpi r e-stateH (RemoselEkpired Signal)

TheLsuperst ate essentially models the funct
A new instance of the superstate is launched whenever a node usasé@dium_ifport
to listen for wireless signals. When this occurs, the medium first checks the number of
currently active signals in stdiateB (Check # of Active Signaldf any active signals
are present, a transition to sstateD (Return Active Signals to Nodegcurs and the
medium delivers any signals the listening node has not yet received. Otherwise, if no
active signals are being transmitted, a transition tessate C (Wait for New Signal
Notification) occurs and the transmission medium component blobke t node 0 s
execution until a new signal has been received.

In order to determine which signals a particular node can receive, the medium
utilizes a signal propagation function to model the power loss of a signal as it propagates
a certain distance. Ifthei gnal 6s power is calcul ated to
threshold upon reaching a receiving node, then the packet is simply not delivered. The
threshold utilized in the model is 10dB below the a n s c senstiveyrobnise floor,

andthepropjgat i on model is called the AR&E h Loss
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Figurel6: StateChart detailing the interactions betwim concurrent supestates in th
Castalia Transceiver model for the PhysicalLayer Component.

The following equation (15), is used to approximate the path léser loss in

poweri of a signal as it propagates through a medium.

. e Q
v 0Q v 0Q pTO—C]I% )

(15)
0 0Q is the path loss at distan€drom its sourced 0'Q is a known path loss

value at a reference distariQeg d is the path | oss

me an random variabl e with

a i ©otna n(dlabr)d,

strength after propagating a distance d can be calculated as shown in (16).

~
5

0Q 0

~
5

000 (16)
0 Q is the received signal strength at distafic® is the original transmitter output

power in decibels andl 0'Q is the path loss at a distari@eWith these formulas, the

ex-ponent

dae vsi i
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medium component can determine if a node will receive a certain signal by comparing

the result of equatiorlg) with the predefined noise floor threshold.

3.5.2 Network Stack

The following sectios within this chapter describe our implementations of several
existing networking protocols. The selected protocols are-kmelNvn and suitable for
WSNs. We emphasize that our goal is not to provide improved implementations of these
established protocoldput rather to demonstrate the versatility of our simulator by

showing examples of the types of protocols that can be developed for AANLeS

3.5.2.1 PhysicalLayer: Castalia Transceiver Model Implementation

We constructed théMACLayer and PhysicalLayercomponent models based on their
corresponding Castalia counterparts. As illustrated Figure 16, our custom

i mpl ementati on of Guarsnocel for thébysicalLayeeconmiass t r an
four concurrent supestates: thelransmit State (T)the Listen for Commencing Signals

State (LCS)theListen for Ending Signals State (LE&S)d theRSSI State (R)ogether,

these concurrent supstates enabléhe transceiver to receive packets, transmit packets,

and check if the medium around the node is clear by using a received signal strength
indicatori or RSSI.

The transceiver model is designed to continuously listen to the transmission
medium for the duation of the simulation, enabling the transceiver to accurately
calculate the signdb-noise ratio and signal interference at all times. The reception of a
signal/packet is determined by calculating the number of bit errors that occurred during

its recepibn and checking if this number is less than the appatspthreshold given by
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the packetds encoding. The number of bit
signatto-noise ratio (SNR), the modulation scheme, data rate and the length of the
packe. The interference of multiple signals is accounted by summing the signal strengths
of all interfering signals and calculating a new SNR. We refer the interested reader to the
Castal i a U$4defor & moreMeatailed @xXplanation of signal reception.

The LCSsuperstate shown ifrigure 16 is responsible for detecting all incoming
signals by first calling themedium_ifi nt er f aceds fALi sistat@d tr an
(Begin Listening) This transaction will block the transceibes e xecuti on unt.i
receives a signal. Once the medium delivers these signalsiaeB (Process Signal)
will 1) discard new signals whose carrier frequency does not match the transceiver, 2)
mark those signals received while the transceiveroisin theRX state, 3) update the
interference and bit errors of all previously received signals due to the arrival of the new
ones, 4) calculate the interference and bit errors of the newly received signals, and 5)
calculate the total power or interfeencei at the radio. Once this processing is
completed, the transceiver stores the remaining signals istatdC (Store Signals in
Buffer) and then returns to the initial state. We note that signals received while the
transceiver is not in thBX stateare not immediately discarded, but are instead kept in
order to accurately calculate interferences and bit errors. Also, a single iteration of the
superstate (SO completes without consuming simulation time in order to process every
possible signal.

The LESsuperst at e 1 s anal ogous t d\ctivelSignalt r ansr

Tracking superstate. It is responsible for detecting when active signals meant for



















































































































































































































































