
MODELING AND OPTIMIZATION FRAMEWORKS FOR RUNTIME ADAPTABLE

EMBEDDED SYTEMS

by

Adrian Lizarraga

Copyright © Adrian Lizarraga 2016

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2016

2

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation

prepared by Adrian Lizarraga entitled Modeling and Optimization Frameworks for

Runtime Adaptable Embedded Systems and recommend that it be accepted as fulfilling

the dissertation requirement for the Degree of Doctor of Philosophy.

___ Date: 05/09/16

Dr. Roman Lysecky

___ Date: 05/09/16

Dr. Ali Akoglu

___ Date: 05/09/16

Dr. Jonathan Sprinkle

Final approval and acceptance of this dissertation is contingent upon the candidateôs

submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and

recommend that it be accepted as fulfilling the dissertation requirement.

__ Date: 05/09/16

Dissertation Director: Dr. Roman Lysecky

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at the University of Arizona and is deposited in the University Library

to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgment of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the copyright holder.

 SIGNED: Adrian Lizarraga

4

ACKNOWLEDGEMENTS

Over the past six years, I have received valuable support and encouragement from

a great number of individuals. I would like to express my deepest gratitude to Dr.

Roman Lysecky and Dr. Susan Lysecky for their excellent guidance, patience,

and care. Their support in professional and academic matters has extended far

beyond what I expected.

I would like to thank Dr. Jonathan Sprinkle, Dr. Ali Akoglu, Dr. Loukas Lazos,

and Dr. Steven Dvorak for serving as committee members for my exams. I would

also like to acknowledge and thank my committee members as well as Dr. Hal

Tharp for their commitment as educators in the classroom.

I am grateful to Tami Whelan Whelan for her prompt support and guidance.

I am highly indebted to Dr. Maria Teresa Velez for her guidance and, along with

Dr. Jeffrey Rodriguez, for being instrumental in my reception of the NSF Bridge

to the Doctorate Grant.

I would like to thank all my labmates for always being kind and helpful.

Lastly, I am grateful to my parents, brothers, and friends for their unconditional

love and support.

5

DEDICATION

To my parents, Jaime and Elsa, and my brothers, Ivan and Daniel.

6

TABLE OF CONTENTS

LIST OF FIGURES ...9

LIST OF TABLES ...12

ABSTRACT ...13

CHAPTER 1 INTRODUCTION ...15

CHAPTER 2 DYNAMIC PROFILING AND FUZZY LOGIC BASED

OPTIMIZATION OF SENSOR NETWORK PLATFORMS ...19

2.1 Overview ..19

2.2 Previous Work ...22

2.3 Dynamic Profiling and Optimization Platform ..24

2.3.1 Sensor-Based Platform..24

2.3.2 Application Expert Design Metric Specification ..25

2.3.2.1 Fuzzy Design Metric Classification .. 26
2.3.2.2 Fuzzy Design Fitness Rules .. 29

2.3.3 Dynamic Profiling ...31

2.3.3.1 Dynamic Profiler Module ... 33
2.3.4 Dynamic Optimization ..35

2.3.4.1 System Metric Estimator... 36

2.3.4.2 Online Greedy Fuzzy-Directed Dynamic Optimization 38
2.4 Re-optimization Evaluation Algorithms ..43

2.4.1 Simple Metric Change Algorithm ...44

2.4.2 Neighboring Configuration Evaluation Algorithm ...45

2.4.3 Taylor Series Based Neighboring Configuration Approximation

Algorithm ...47

2.4.4 Uni-directional Neighboring Configuration Evaluation for Reduced

Computational Runtime ...51

2.5 Sensor Network Applications ..53

2.5.1 Forest Fire Detection and Propagation Tracking ..53

2.5.2 Building Monitoring ...56

2.5.3 Environmental Wildlife Monitoring ...57

2.5.4 Climate Controlled Greenhouse Monitoring ..58

2.6 Experimental Results ...60

7

CHAPTER 3 ATLES-SN: A MODULAR SIMULATOR FOR SENSOR

NETWORKS ...69

3.1 Overview ..69

3.2 Previous Work ...70

3.3 SystemC and Transaction-level Modeling Overview ..72

3.4 ATLeS-SN Simulator Structure ...73

3.4.1 Application Component ..76

3.4.2 Sensor Component ..78

3.4.3 Network Stack and Subcomponents ...79

3.4.4 System Monitor Component ...81

3.4.5 Transmission Medium Component ...82

3.4.6 Environment Component ..83

3.5 Implementation and Verification of ATLeS-SN Components for Target

Sensor Platform ..84

3.5.1 Transmission Medium: Path Loss Lognormal Shadowing Model

Implementation ..85

3.5.2 Network Stack ...89

3.5.2.1 PhysicalLayer: Castalia Transceiver Model Implementation 89

3.5.2.2 MACLayer: Castalia Tunable MAC Model Implementation 93
3.5.2.3 NetworkLayer: AODV Routing Protocol Description 98
3.5.2.4 NetworkLayer: AODV Routing Protocol Implementation 101

3.5.3 System Monitor: IRIS Mote Power Tracking Model Implementation104

3.6 Case Study: S.E.N.S Sound Localization Application ..106

3.6.1 SENS Application ...107

3.6.2 SENS Sound Environment and Sensor Implementation108

3.6.3 SENS Sound Environment and Sound Sensor Verification111

3.7 Experimental Results ...112

CHAPTER 4 MODEL-DRIVEN OPTIMIZATION OF DATA-ADAPTABLE

EMBEDDED SYSTEMS ..115

4.1 Overview ..115

4.2 Previous Work ...117

4.3 Data-adaptable Approach...120

4.4 Data-adaptable System Modeling ..123

4.4.1 Overview: Video-based Vehicle Tracking and Collision Avoidance

Application ...124

8

4.4.2 Tasks and Data Types ...125

4.4.3 Task Options and Attribute Guards ..127

4.4.4 Data and Evaluation Attribute Transforms ...128

4.4.5 Computational Resource and Communication Delay130

4.5 Model-guided Optimization ...131

4.5.1 Design Space Exploration: Model-guided Genetic Algorithm131

4.6 Experimental Results ...135

CHAPTER 5 MODEL-BASED FUZZY LOGIC CLASSIFIER SYNTHESIS

FOR OPTIMIZATION OF DATA-ADAPTABLE EMBEDDED SYSTEMS...............141

5.1 Overview ..141

5.2 Fuzzy Logic Based System Fitness Specification ...142

5.2.1 Fuzzy Design Metric Classification ..142

5.2.2 Fuzzy Design Fitness Rules ..144

5.2.3 Fuzzy Logic Classifier Synthesis ..146

5.3 Runtime Model-guided Optimization ..149

5.4 Experimental Results ...150

CHAPTER 8 CONCLUSIONS ...155

CHAPTER 9 FUTURE WORK ..159

REFERENCES ..162

9

LIST OF FIGURES

Figure 1: Overview of the dynamic profiling and optimization platform (DPOP). 21

Figure 2: Application expert tasks include (a) specifying fuzzy design metric

classification functions that relate raw design metric values to a fuzzy classification,

(b) specifying fuzzy design fitness rules to indicate the relative importance of each

design metric, and (c) optionally specifying the anticipated application profile. 27
Figure 3: Average overhead of network traffic, energy consumption, code size, and

computation time for profiling methodology utilized in the DPOP framework for the

considered WSN applications. .. 32

Figure 4: Overview of the online optimization methodology implemented withing the

Optimizer module. .. 36
Figure 5: Pseudocode for Online Fuzzy-Directed Optimization Algorithm. 39
Figure 6: Overview of modified online optimization methodology with re-optimization

evaluation algorithm. .. 43
Figure 7: Pseudocode for Simple Metric (SMC) Re-optimization Evaluation Algorithm.

... 44
Figure 8: Illustrative plot of design fitness score as a function of processor frequency. .. 45
Figure 9: Pseudocode for the (a) Neighboring Configuration Evaluation (NCE) re-

optimization evaluation algorithm, and (b) Taylor Series based Neighboring

Configuration Approximation (TSNCA) re-optimization evaluation algorithm. 46

Figure 10: Plots of (a) lifetime as a function of processor frequency and (b) packet

delivery rate as a function of radio output power with 1st, 2nd, 3rd, and 4th order

Taylor series approximation functions. Circular markers denote neighboring

parameter configurations.. 49

Figure 11: Application expert specified fuzzy design metric classification functions and

fuzzy design fitness rules for several sensor-based applications. 55
Figure 12: Transaction-level model example consisting of several components (P, Mem,

PE1, PE2,é, PEn) connected through a communication channel (Bus) with two

interfaces. .. 72
Figure 13: Overview of the components, ports, and interfaces for the Arizona

Transaction-Level Simulator for Sensor Networks (ATLeS-SN) 2.0. 74

Figure 14: Overview of the simulator structure for the IRIS mote platform highlighting

the utilized component models in parenthesis. ... 84
Figure 15: StateChart detailing the interactions between concurrent super-states in the

Transmission Medium Component. .. 85
Figure 16: StateChart detailing the interactions between four concurrent super-states in

the Castalia Transceiver model for the PhysicalLayer Component. 88

Figure 17: Plot of received signal power VS distance from the transmitting source. ʂ
τȟʎ πȟ0ÔπÄ" .. 92

Figure 18: Diagram (a) illustrates the timing and activities of the B-MAC protocol using

one sender and one receiver [27] and (b) shows a plot of current versus time for a

transmitting node as produced by ATLeS-SN. ... 93

10

Figure 19: StateChart detailing the interactions between concurrent super-states in the T-

MAC model for the MACLayer component. .. 95
Figure 20: StateChart detailing the interactions between four concurrent super-states in

the AODV Routing model for the NetworkLayer Component. 100

Figure 21: StateChart detailing the interactions between concurrent super-states in the

SystemMonitor component.. 103
Figure 22: Plots of total system current versus time (a) measured from a physical IRIS

mote and (b) attained from the ATLeS-SN PowerTracker. These measurements

correspond to a 27 byte packet transmission .. 105

Figure 23: StateCharts detailing the interactions between concurrent super-states in the

(a) Environment and (b) Sound Sensor components .. 109

Figure 24: Plot of sound delay versus distance from the source. 110
Figure 25: ATLeS-SN simulation execution for one hour of simulated time using the

Acoustic Ranging sensor network application for 2 to 512 deployed nodes. 111
Figure 26: Distribution of energy consumed for non-anchor nodes to calculate their

location within the SENS Sound Localization Application for various node densities

... 113

Figure 27: (a) A DAES application achieves an initial latency and output data quality. (b)

A change in data size creates congestion between tasks B and D, increasing end-to-

end latency. (c) Consequently, a DAES application must be able to adapt task

implementations in order to account for data variability and optimize system

performance at runtime. .. 120

Figure 28: Task flow modeling for a video-based vehicle tracking and collision avoidance

application. Modeling a DAES application requires specifying the end-to-end task

flow, data types, and available task options. ... 122
Figure 29. Illustration demonstrating collision avoidance by slowing down and matching

lead vehicleôs speed. ... 124
Figure 30: Each Task contains Task Options that transform input data to output data.

Task Options optionally specify attribute guards to indicate the acceptable values for

each input attribute. ... 127
Figure 31: A Task Option consists of Data Attribute Transforms and Evaluation Attribute

Transforms. ... 128
Figure 32: Example of a designer-specified Resource and Communication model within

DASM showing two devices, each with two processing elements, a memory and

intra-PE communication models. The inter-PE communication block models

communication between PEs on separate devices. ... 129

Figure 33: (a) Accuracy score per each generation of the model-guided and standard

optimization genetic algorithms and (b) execution speedup for optimization scenario

1. Similar data is presented for optimization scenario 5 in charts (c) and (d). 135
Figure 34: Execution runtime of the model-guided GA for the optimization scenarios 1

and 5. ... 137
Figure 35: Relative performance of the five selected configurations over the five

optimization scenarios. Each graph presents an optimization scenario showing the

percent deviation in latency, accuracy, and utilization of each configuration in

11

comparison to the optimal configuration. Video resolution violations are indicated

with the acronym RV, and latency constraints violations are indicated with an LV.

... 138
Figure 36: Defining models for the fitness estimation of a task option configuration

involves (a) specifying fuzzy metric classification functions that relate a raw metric

value to a fuzzy classification, and (b) specifying fuzzy design fitness rules that

relate the relative importance of each fuzzy high-level metric in determining the

overall system fitness. ... 142
Figure 37. Example of fuzzy metric percent membership normalization for a fuzzy design

fitness rule that requires a latency that is Good, Fair, or Superior. A latency

membership value of 20% G is normalized to 40% for that rule. 145

Figure 38. A Fuzzy Logic Classification Synthesizer model consists of classifier attribute

transforms, which synthesize a metricôs fuzzy metric classification function at

runtime based on the runtime values of evaluation attributes. 146
Figure 39: Prototype of the DASM runtime optimization framework for the VBVTCA

application. .. 148
Figure 40: Improvement in metric and overall system fitness due fuzzy logic based

optimization in comparison to piecewise weighted linear functions. 151
Figure 41: Relative performance of the non-optimal configurations over the five

optimization scenarios. Each graph presents an optimization scenario showing the

percent deviation in latency, accuracy, and utilization of each configuration in

comparison to the optimal configuration. Video resolution violations are indicated

with the acronym RV, and Unacceptable latency violations are indicated with an

LV. .. 152

12

LIST OF TABLES

Table 1: Overview of WSN design metrics, configurable parameters, and tradeoffs

considered in related research projects. .. 22
Table 2: Comparison of optimal static and dynamic node configurations for (a) low

activity and (b) high activity dynamic scenarios showing breakdown of individual

fuzzy design metric classifications for lifetime (L), packet delivery rate (P), and

latency (LA), and the overall fuzzy design fitness (F). ... 60

Table 3: Comparison of exhaustive search and online fuzzy directed optimization

algorithms for low activity and high activity dynamic scenarios showing breakdown

of individual fuzzy design metric classifications for lifetime (L), packet delivery rate

(P), and latency (LA), the overall fuzzy design fitness, and percentage of

configurations searched (%CS) for the online fuzzy directed optimization algorithm.

... 63

Table 4: Comparison of the simple metric chance (SMC), neighboring configuration

evaluation (NCE), Taylor series neighboring configuration approximation

(TSNCA), and uni-directional variants (U-) re-optimization algorithms for all

applications (averaged) using over 19,000 different application profiles considering

an initial configuration of {F, V, RFP, DR, RFF} = {2 MHz, 2.7 V, 3 dB, 250

Kbits/s, 2405 MHz}. ... 65
Table 5: Power Model for the IRIS platform based on physical measurements of an IRIS

mote during operation. .. 102

Table 6: Sound propagation parameters for each tile type (adapted from [92]). 108

Table 7: Five optimization scenarios, each representing a specific vehicle speed

differential. .. 134

Table 8: Synthesized fuzzy metric classification functions for latency and accuracy over

five execution scenarios. ... 150

13

ABSTRACT

The widespread adoption of embedded computing systems has resulted in the realization

of numerous sensing, decision, and control applications with diverse application-specific

requirements. However, such embedded systems applications are becoming increasingly

difficult to design, simulate, and optimize due to the multitude of interdependent

parameters that must be considered to achieve optimal, or near-optimal, performance that

meets design constraints. This situation is further exacerbated for data-adaptable

embedded systems (DAES) applications due to the dynamic characteristics of the

deployment environment and the data streams on which these systems operate. As

operating conditions change, these embedded systems must continue to adapt their

configuration and composition at runtime in order to meet application requirements.

 To assist platform developers and application domain experts, the research

summarized by this dissertation presents design and optimization frameworks for the

synthesis of runtime adaptable embedded systems. For sensor network platforms, we

present an initial dynamic profiling and optimization platform that profiles network and

sensor node activity to generate optimal node configurations based on designed-specified

application requirements. To support a broader class of DAES applications, we present a

modeling and optimization framework that supports the specification of application task

flows, data types, and runtime estimation models for the runtime adaptation of task

implementations and device mappings.

14

Experimental results for these design and optimization frameworks demonstrate the

benefits of dynamic optimization compared to static optimization alternatives. For the

presented sensor network and video-based collision avoidance applications, dynamic

configurations exhibited improvements of up to 109% and 76%, respectively. Moreover,

the performance of the heuristic design space exploration (DSE) algorithms utilized by

the runtime optimization frameworks is compared to exhaustive DSE implementations,

resulting in speedups of up to 1662X and 544X for the same two applications,

respectively.

15

CHAPTER 1

INTRODUCTION

Embedded computing systems have found widespread adoption in numerous sensing,

decision, and control applications by virtue of the increasing performance to price ratio of

microcontrollers and other more complex processing devices [1]. Embedded systems

comprise the computational backbone of applications in various domains including

consumer electronics, automotive control, multimedia systems, and many others. Given

the diversity of application possibilities, it is not surprising to see a wide range of high-

level application requirements that must be considered. For example, in safety-critical

automotive applications, task execution latency constitutes a primary design concern to

ensure real-time deadlines are met. On the other hand, energy consumption may be the

dominant design concern for distributed applications deployed on wireless sensor

networks (WSN), which consist of battery-powered networked microcontrollers called

nodes. We refer to these high-level application requirements as design metrics, which

include latency, lifetime, throughput, security, among many others.

 To achieve the desired high-level application requirements, platform developers

must carefully design, configure, and optimize the software application, supporting

operating systems or middleware, and the underlying hardware platform. At the hardware

level, designers may consider voltage levels and operating modes for the processor

[1][98] and communication settings including baud rates, packet sizes, or encoding

schemes for networked applications. At the application level, designers can utilize

16

alternative task implementations, data aggregation, communication methods for low-

power listening, sleep states [22], and network deployment strategies [35]. These

configurable, or tunable, parameters span all levels of an embedded application, and

platform developers must understand the complex interdependences between

configurable parameters and high-level design metrics to ensure the deployed system

meets the desired requirements.

 Additionally, the dynamic characteristics of the physical environment in which

the system is deployed can significantly impact the effectiveness of configuring and

optimizing the embedded application. A static configuration determined at design time,

i.e., a point solution, often cannot account for variability in data qualities, operational

modes, etc. For example, a change in the quality or characteristic of sensed data may

trigger a high-activity operational mode that consumes more energy across the entire

system. If the increased energy consumption exceeds application requirements, runtime

optimization and adaptation is required in order to mitigate overheads, meet performance

requirements, or even restore proper functionality.

 Ultimately, optimizing embedded systems applications can quickly become an

overwhelming task due to the large number of design options and competing design

metrics that must be considered ï a common challenge with many multi-objective design

optimization problems. Furthermore, system design tasks are often split across platform

developers and application experts. Whereas platform developers are typically engineers

with the requisite understanding of hardware and software required to develop the

embedded platform, application experts ï utilizing the terminology proposed in [9] ï are

17

often not engineers, but rather scientists, biologists, or teachers. For example, an

application expert may be a biologist recording nocturnal animal activity at a watering

hole, a structural engineer monitoring the structural integrity of a bridge, or a military

technician tracking troop movements over a battlefield. Many of these application experts

are not likely to have extensive programming or engineering experience and will

assuredly face difficulty in constructing, configuring, and optimizing embedded

applications to best meet their application-specific goals.

 Consequently, the implementation of runtime adaptable embedded systems

capable of dynamic reconfiguration in the face of competing design metrics requires new

formalisms and tools to support design, simulation, and synthesis. This dissertation

presents design and runtime optimization frameworks for two classes of embedded

systems applications: sensor network platform applications and data-adaptable embedded

systems applications. The contributions in this dissertation are: 1) a dynamic profiling

and optimization platform (DPOP) for the runtime optimization of sensor network

platforms; 2) a fuzzy logic based formalism for the specification of high-level design

metrics and overall system fitness; 3) a modular transaction-level simulator for sensor

network platform applications; 4) a modeling and optimization tool for the design and

runtime optimization of DAES applications; and 5) a model-based fuzzy logic

classification synthesizer for the runtime optimization of DAES applications.

 Chapter 2 presents a framework for the dynamic profiling and optimization of

sensor network platforms, including a generic fuzzy logic based formalism for the

specification of competing high-level design metrics and overall system fitness. Chapter

18

3 then introduces a modular transaction-level simulator that enables design-time

simulation of sensor network applications. This simulator supports event-based

simulation of custom applications, sensor node hardware, wireless communication media,

and sensed environmental media. Chapter 4 presents a modeling and runtime

optimization tool for a growing class of distributed embedded applications known as

DAES applications. Chapter 5 presents an extension to the DAES modeling and runtime

optimization tool that enables both the specification of competing high-level metrics via a

fuzzy logic based formalism and the specification of models that estimate fuzzy

classifications for each high-level design metric at runtime. Chapter 6 and Chapter 7

conclude and highlight future work, respectively.

19

CHAPTER 2

DYNAMIC PROFILING AND FUZZY LOGIC BASED OPTIMIZATION OF

SENSOR NETWORK PLATFORMS

2.1 Overview

Sensor networks are a class of distributed embedded systems consisting of networked

sensing and computing nodes. Numerous sensor network platforms have appeared, with

platforms targeting environmental and structural monitoring, medical-based applications,

and wearable computing, among numerous others [19][38][59][98]. Application experts

utilizing sensor network platforms aim to optimize configurable parameters to achieve

the desired application-specific requirements.

 Many studies have investigated the interdependency between these parameters

and the impact on the resulting high-level design metrics. For example, [1] investigates

the impact of protocol-level parameters such as a nodeôs shutdown scheme, network

routing algorithms, and data compression schemes. In [102], researchers utilize design

space exploration for node-level parameters, specifically microprocessor voltage and/or

frequency scaling. Moreover, application-level parameters such as sensor capability,

number of sensors deployed, sensor sampling rate, and deployment strategy ï e.g. grid,

random, and biased deployment ï are shown to greatly affect high-level design metrics

such as accuracy, latency, energy, throughput, and scalability [61][93].

However, the interdependences between parameters and high-level design metrics

are not isolated based on node-, protocol-, or application-level parameters. Rather,

20

parameters spanning various levels must be considered together. Parameters

encompassed at all levels are surveyed in [35], outlining the energy impacts of various

communication protocols, node circuitry, message size, distance between nodes, and

number of intermediate nodes. Similarly, the impact of different protocols and algorithms

on energy consumption are examined in [88], including the use of dynamic voltage

scaling and sleep states. Numerous other studies similarly illustrate the need for

developers to evaluate a wide variety of platform considerations

[31][43][46][47][87][88][89].

 Further complicating matters, the operating modes of sensor network applications

are heavily dependent on the dynamic characteristics of the deployment environment.

That is, a sensor nodeôs state is commonly driven by the characteristics of the sensed

phenomena in the environment. Therefore, application experts must take into

consideration the complex interdependences between configurable parameters, dynamic

application activity, and the applicationôs high-level design metrics during the design and

optimization phases.

21

As new applications for sensor network platforms emerge, providing new methods

to enable application experts to efficiently utilize these platforms is increasingly

important. Recently, researchers have started focusing on developing languages enabling

application experts within specific domains to efficiently program sensor network

platforms [10]. Complimentary to these efforts, others have also begun to investigate

various optimization methodologies [66][67] to quickly and efficiently determine an

appropriate system configuration considering competing design metrics. These earlier

efforts utilized weighted piecewise linear equations to define the importance of the

individual design metrics on the overall system fitness. However, such formalisms are

often difficult to utilize efficiently for such multi-objective optimization [62] and may not

be approachable by application experts.

Actuator

SENSOR-BASED APPLICATION

Sensor

é

Sensor

Actuator

 Intermediate
Nodes

App. Expert Guided Design
Metric Specification

Sensor Activity

Update Network
Configuration

Design Metric
Achievement

APP EXPERT METRIC CLASSIFICATION

AND FUZZY DESIGN RULES

é

DPOP

Dynamic
Profiler

Online
Optimizer

Figure 1: Overview of the dynamic profiling and

optimization platform (DPOP).

22

This chapter presents a dynamic profiling and optimization platform (DPOP) for

sensor networks (Figure 1) enabling application experts ï as well as platform developers

ï to optimize low-level configurable parameters for a particular application. This

centralized optimization framework, typically implemented within a single basestation

node, allows application experts to efficiently characterize application requirements

through high-level design metrics and fuzzy logic optimization rules. The low-level

configurable platform options are abstracted from the application experts, thereby

providing a clear delineation between developing the sensor network platform and

supporting tools, and programming/configuring that platform to implement the desired

application functionality and application-specific goals. The DPOP framework

specifically seeks to increase accessibility to non-engineer application experts.

2.2 Previous Work

Table 1: Overview of WSN design metrics, configurable parameters, and tradeoffs

considered in related research projects.

 Lifetime
Packet Delivery

Rate
Coverage Area Latency Throughput

Output Power [39][50] [4]

MAC protocol [20][106] [106] [20][50][106] [20]

TX sleep states [83][90] [50][83][90]

Routing Protocol [3][39] [26] [4][26] [50]

Sensor duty cycle [16][103] [16][103]

23

Table 1 presents a condensed view of high-level design metrics, configurable parameters,

and systems tradeoffs described in wireless sensor network (WSN) optimization

literature, representing a cross-section of the types of design metrics and tunable

parameters application experts and developers consider in their optimization efforts.

Network lifetime is by the far the most prominent design metric found in literature, with

researchers often opting to mitigate power consumption by tuning radio output power

[39][50], transceiver sleep/active states [83][90], routing protocols [3][39], or MAC

protocol parameters [20][106].

Optimizing lifetime, however, often involves carefully balancing tradeoffs

between competing design metrics. In [106], MAC protocol parameters are tuned in order

to optimize lifetime, latency ï the time necessary to deliver a packet over one hop ï and

packet delivery rate. Similarly, in [20] competing high-level design metrics include

lifetime, latency and throughput measured in bytes transmitted per node per second. [90]

and [83] both utilize algorithms that modify transceiver sleep/active states in order to

strike a balance between lifetime and latency, with the former defining latency as the

time necessary to transition between power states and respond to an event. Finally, [16]

and [103] seek to optimize coverage area given a constraint on lifetime, where coverage

area is defined as the physical area monitored by sensors.

We note that configurable parameters are typically specific to the individual

optimization methodologies and the configuration options available to the platform

developer or application expert. Thus, for the sake of brevity, tunable parameters specific

to each of the aforementioned papers have been generalized into the categories shown in

24

Table 1. Based on these papers, we can begin to characterize design metrics of interest to

application experts and developers. Although we only consider a particular subset of

design metrics in this dissertation, namely lifetime, latency and packet delivery rate, it

should be noted that our dynamic profiling and optimization platform is specifically

designed to work with most, if not all, combinations of configurable parameters and

design metrics.

 2.3 Dynamic Profiling and Optimization Platform

The underlying goal of the DPOP platform is to dynamically determine sensor node

parameter configurations that best meet user-defined goals as internal and external

stimuli alter the applicationôs behavior. A description of each component within the

DPOP framework is provided below.

2.3.1 Sensor-Based Platform

The Sensor-Based Platform is the physical deployment of the application within the

intended environment and consists of sensor nodes, intermediate processing and routing

nodes, and actuator nodes, working together to achieve the desired application

functionality. While a variety of sensor network platforms are available, we currently

consider the IRIS motes [19]. We focus specifically on the microprocessor and radio

subsystem, providing tunable node parameter options for the microcontroller and RF

Transceiver. The sensor and flash data logger subsystems are included as part of the

system estimation framework, but characterization of these components is currently left

as future work.

25

Between the microcontroller and transceiver, we consider the following configurable

platform parameters:

Á Microprocessor Supply/Operating Voltage (V): 2.7 ï 5.5 V

Á Microprocessor Operating Frequency (F): 0.4 to 16 MHz

Á RF Output Power (RFP): -17.2 to 3.0 dB

Á RF Frequency (RFF): 2405 to 2480 MHz

Á Data Rate (DR): 15.625 to 250 kbits/s

A specific node configuration corresponds to selecting a setting for each adjustable node

parameter. As previously mentioned, these parameters are adjusted within our centralized

DPOP framework in order to optimize the configuration based on the user specified

design metrics of interest. We note that some combination of settings are not feasible and

are not considered. Thus, while there are over 225,000 possible combinations of settings,

of those only 189,440 configurations are feasible.

2.3.2 Application Expert Design Metric Specification

Ultimately, the application expert is interested in high-level system metrics such as the

expected lifetime of a node or sensor network utilizing two AA batteries, the time

required to process a single packet, or the time required to process and respond to a

sensor event. The Application Expert Design Metric Specification allows the application

expert to define which design metrics are of importance to a particular application, and of

those design metrics, what are the acceptable or unacceptable values of each. Thus, users

are able to define a method to interpret the resulting system achievement within the

26

context of a given application. We currently consider the following three system design

metrics:

Á Lifetime (L): The time in months a node is able to operate on a power source. In

our case, we utilize a simple battery model assuming a battery capacity of 3000

milliamp-hours (mAhr) ï roughly equivalent to a 2 AA batteries.

Á Packet Delivery Rate (P): The probability that a packet is successfully

transmitted.

Á Latency (LA): The time in seconds necessary to successfully transmit a packet to a

neighboring node over one hop.

These design metrics by no means provide an exhaustive list, but rather provide a

glimpse of the challenges faced by application experts in balancing various high-level

design metrics.

2.3.2.1 Fuzzy Design Metric Classification

An application expert is familiar with the desired goals of the application, understands

how the sensor network achieves these goals, and can determine acceptable design

metrics values for the particular system of interest. The use of fuzzy logic allows

application experts to more intuitively specify design tradeoffs, thus enabling them to

easily customize the underlying platform for a particular application without requiring

knowledge of the underlying hardware implementation or communication protocols.

Weighted piecewise linear formalisms are often challenging to utilize because precisely

defining acceptable design tradeoffs between competing design metrics is difficult.

Notably, researchers compared the effectiveness of such mathematical and fuzzy logic

27

based evaluations, demonstrating that the fuzzy logic based evaluation can achieve

superior results [62]. Further, note that this outcome matches our own experiences in

utilizing weighted piecewise linear equations, in that such methods produced adequate

results only after repeated experimentation and adjusting of the function parameters. The

benefits of the fuzzy logic heuristic optimization are evident across a wide variety of

applications, including hardware/software codesign [85], system-level design space

exploration [17][30], and optimization of operational amplifiers [71].

The application expert is tasked with interpreting the resulting system

achievement within the context of a given application. For each design metric, an

application expert creates a fuzzy-logic inspired classification function that relates a raw

design metric value ï i.e. lifetime of 2 months ï to a fuzzy classification term. Although

the selection of which fuzzy terms are utilized for a given system could be arbitrarily

defined by the application expert, we propose the following four classifications for

specifying the fitness of individual design metrics: Insufficient, Fair, Good, and Superior.

Insufficient

ü IF L IS S, P IS G OR S, AND LA IS G OR S, THE DESIGN IS S
ü IF L IS G, P IS G OR S, AND LA IS G OR S, THE DESIGN IS G
ü IF L IS S, P IS G OR S, AND LA IS F, THE DESIGN IS G
ü IF L IS F OR P IS F, AND LA IS F, G, OR S, THE DESIGN IS F
ü IF L IS G, P IS G OR S, AND LA IS F, THE DESIGN IS F
ü IF L IS I, P IS I, OR LA IS I, THE DESIGN IS I

Fuzzy Design Fitness Rules Fuzzy Design Metric Classification

Application Profile

RX PACKETS/H OUR: 32
TX PACKETS/H OUR: 360
SENSOR EVENTS/H OUR: 12

(a)

(b)

(c)

UP INSTRUCTIONS: 1843
PACKET SIZE (BYTES): 12

Good

Fair

Superior

Legend

0

Lifetime (months)
5

1
0

1
5

2
0

2
5

3
0

100%
80%
60%
40%

20%
0%

100%
80%
60%
40%

20%
0%

Latency (sec)

9
6

 x
 1

0
0

 9
6

 x
 1

0
-2

 9
6

 x
 1

0
-3

 9
6

 x
 1

0
-4

 9
6

 x
 1

0
-5

 9
6

 x
 1

0
-6

 9
6

 x
 1

0
-1

Packed Delivery Rate (%)

0
.3

8
1

9
9
.0

9
9
.9

9

 1
0
0
.0

100%
80%
60%
40%

20%
0%

Figure 2: Application expert tasks include (a) specifying fuzzy design metric

classification functions that relate raw design metric values to a fuzzy

classification, (b) specifying fuzzy design fitness rules to indicate the relative

importance of each design metric, and (c) optionally specifying the anticipated

application profile.

28

Using this classification mechanism, an application expert simply needs to specify the

range of values that correspond to an Insufficient, Fair, Good, and Superior design for

that given metric. As application experts are unlikely to be experts in optimization

methods, this fuzzy classification scheme provides a relatable method for mapping design

metric values to relative rankings using common terminology. Minimally, an application

expert need only specify what range of values constitutes a Fair and Good design, above

and below which the Superior and Insufficient designs can automatically be inferred.

Figure 2 illustrates the fuzzy design metric classification functions for lifetime,

packet delivery rate, and latency. Each raw design metric value is mapped to one of four

discrete ranges: Insufficient, Fair, Good, or Superior. Within each discrete range, the raw

metric value is mapped to a percentage. Thus, the y-axis denotes a raw metricôs percent

membership within its corresponding classification. In other words, the y-axis quantifies

how Insufficient, Fair, Good, or Superior a metric value is, and relates that value with a

percentage to allow application experts a quick method of interpreting the raw values. For

example, in Figure 2(a) a Fair lifetime is between 4 months to 12 months, a Good

lifetime is between 12 and 16 months, a Superior lifetime is greater than 16 months, and

anything below 4 months is deemed Insufficient. While not required, an application

expert can also define a plateau for the Superior classification indicating that anything

above this value does not provide any further benefit. In the example provided, all

lifetime values greater than 20 months are consider to be 100% Superior. By the same

token, application experts are free to define each of the four discrete ranges using any

particular cost function ï i.e. quadratic or cubic ï that best suits their individual

29

application needs. In [56], the benefits of utilizing mean-squared error, penalty or barrier

functions in order to constrain or emphasize a particular range of metric values. The only

limitation we introduce, however, is that the each function should be differentiable in

order to allow the utilization of the algorithms presented in Section 2.4.

Lastly, we note that although overlap between fuzzy classifications can be specified,

our tests do not show an improvement in configuration optimality, and hence we have

chosen to forgo overlap in order to provide a simpler more intuitive framework for non-

technical application experts. Thus, the raw metric score defining the boundary between

Fair and Good is considered to be 100% Fair such that the reported percentage will

always be greater than 0% for a corresponding classification. A similar scheme is utilized

for all other boundaries between Fuzzy classifications.

2.3.2.2 Fuzzy Design Fitness Rules

The fuzzy design metric classification functions specify how to interpret raw design

metric values for a given application. However, we have yet to understand how the

design metrics relate to one another. Is lifetime the critical design metric consideration

within the application, where the application expert is willing to accept lower packet

delivery rate and higher latency values to optimize the lifetime design metric? Or

alternatively, is lifetime a secondary concern such that the application expert is willing to

sacrifice lifetime to achieve low latency?

To determine the relative importance of each design metric and how they relate to

the overall design quality, the application expert specifies a set of fuzzy design fitness

rules. These fuzzy design fitness rules are specified using English sentences that map the

30

fuzzy classifications of the design metrics to a fuzzy classification of the overall design.

Figure 2(b) provides a condensed example of the fuzzy design fitness rules. The first rule

defines that a Superior design must achieve a lifetime that is Superior, whereas the

latency and packet delivery rate can both be Good or Superior. Minimally, the

application expert should define at least one rule for a Superior design, one rule for a

Good design, and one rule for a Fair design. Any combinations of design metrics not

covered by the application expertôs fuzzy design fitness rules can be automatically

inferred to correspond to an Insufficient design. If design metrics are covered by multiple

fuzzy design fitness rules, the rule resulting in the highest fitness value is utilized.

Given a specific fuzzy fitness rule, an overall design fitness value is calculated by

normalizing and averaging the percent fitness values for each fuzzy membership function

using the following equations:

%100
3

%%%
³

++
=

normPMembershipnormLAMembershipnormLMembership
Fitness (1)

P
FC

P
ffsetFuzzyRuleOPMembership

normPMembership

LA
FC

LA
ffsetFuzzyRuleOLAMembership

normLAMembership

L
FC

L
ffsetFuzzyRuleOLMembership

normLMembership

+
=

+
=

+
=

%
%

,
%

%

,
%

%

 (2)

As shown in Equation 2, each metricôs percent membership value is normalized to one by

adding a fuzzy rule offset and dividing the sum by the number of fuzzy classifications,

31

|FC|, specified for that metric within a given fitness rule. The fuzzy rule offset is a

positive integer ranging from 0 to |FC| ï 1 that maps a metricôs percent membership

value to a normalized scale where zero and one respectively correspond to the lowest and

highest fuzzy classifications of the metric in question for the current fitness rule. As an

example, if we consider the first fuzzy design fitness rule specified in Figure 2(b) and

assume a configuration resulting in a 10% S li fetime, a 30% G latency, and a 50% S

packet delivery rate, then for each metric the corresponding |FC| values are one, two and

two, and the corresponding fuzzy rule offset values are zero, zero and one. Using

Equations 1 and 2, the previous values result in a Superior configuration with a fitness

value of 33%. In summary, the fuzzy design rules correlate the design metric values to an

overall design quality using the same fuzzy classifications.

Note that an application expert does not need to know the impact of various

underlying node parameters on the high-level design metrics, or how the aforementioned

values are calculated. Instead, a single framework and terminology is provided for

understanding the quality ï or fitness ï of individual metrics and overall designs without

exposing any underlying mathematical formalism.

2.3.3 Dynamic Profiling

32

The deployed environment can have a significant impact on the application behavior,

thus part of the application characterization must also include specification of the

communication and computation requirements. For example, an application that monitors

temperature may only take a reading once a minute, resulting in a low communication

requirement. Alternatively, an application tracking the movement of an object is likely to

take multiple sensor samples in a second, resulting in a higher communication

requirement. Computation requirements are similarly dependent on an application and

can vary depending on factors such as the amount of aggregation performed within the

network or the type of data that is processed ï e.g. processing images versus averaging

temperature readings.

While an application expert can provide this profile information at design time,

precisely predicting the actual deployment environment at design time can be difficult. In

the case of a periodic sampling rate, a developer may be able to calculate the underlying

computation and communication requirements. However, if the application profile values

0%

20%

40%

60%

80%

100%

FF BM EM GH

O
v
e
rh

e
a
d

Applications

Network Traffic Energy Consumption

Code Size Computation Time

Figure 3: Average overhead of network traffic, energy consumption, code size, and

computation time for profiling methodology utilized in the DPOP framework for the

considered WSN applications.

33

are dependent on external events such as motion, determining this information can be

difficult. Thus, as shown in Figure 1, we have also incorporated a dynamic profiling

module within the framework that is responsible for monitoring the application behavior

within the deployment environment. Being able to dynamically profile parameters that

adequately capture changes in high-level design metrics is crucial in optimizing

underlying configurable parameters.

The following profile parameters have been defined to capture the communication and

computation requirements of our targeted applications based on the aforementioned

design metrics.

Á Rx Packets/Hour (PktRx): Average number of packets received by an individual

node per hour.

Á Tx Packets/Hour (PktTx): Average number of packets transmitted by an individual

node per hour.

Á Sensor Events/Hour (SenEvents): Average number of sensor events processed by an

individual node per hour.

Á Microprocessor Instructions (ɛpInstr): Average number of instructions executed by

the microprocessor to process each packet reception or sensor event.

Á Packet Size (PktSize): Average number of bytes transmitted within each packet.

2.3.3.1 Dynamic Profiler Module

Dynamically profiling a sensor-based application requires profiling methods to be

incorporated within each node to monitor the execution behavior for individual sensor

34

nodes. Additionally, in order to optimize a sensor-based system, a global view of the

entire system is needed. The resulting node-level profile data must be transmitted and

analyzed by the system-level Dynamic Profiler Module. Numerous profiling strategies

can be employed to collect the pertinent application level information.

At each sensor node, various low-level execution details are monitored and

transmitted to the profiler module in order to enable the optimization approach to

accurately estimate the various high-level design metrics of interest. Overall, determining

what low-level metrics to profile within a sensor-based platform is thus related to both

the high-level design metrics of interest and the estimation method utilized to evaluate

those design metrics. Within our current profiling implementation, the aforementioned

profile parameters can be profiled for individual sensor nodes.

Given the desired profiling information to be collected, the frequency at which

profiling is performed directly impacts both the accuracy of the profile data as well as the

intrusiveness of the profiling method. Our current profiling implementation provides

support for three methods of controlling when profiling is performed for individual

nodes. Specifically, periodic, event-driven, and profiler module directed strategies are

employed. Additionally, our current dynamic profiler implementation provides support

for either transmitting profile data as separate profile packets or appending ï i.e.

piggybacking ï the profile data to existing packets already transmitted by the application.

Finally, the dynamic profiler can be configured to select which nodes to profile and

whether or not the profile data is aggregated at intermediate nodes. We refer the

interested reader to [86] for an in-depth analysis of our profiling methodologies.

35

Each of the aforementioned profiling metrics and methods are currently

implemented within the DPOP framework. These options are implemented as a set of

software functions that can be automatically integrated within a sensor application, as the

required profiling methods are directly inserted within the underlying software

infrastructure and operating system support. Thus, the application expert can seamlessly

integrate the dynamic profiling within the target application without any effort.

The dynamic profiling of sensor-based platforms enables an accurate view of an

applicationôs execution behavior but at the expense of network traffic, energy, and code

size overheads. We have developed various methods for controlling the profiling process

and analyzed the corresponding overhead for a subset of profiling methods. In Figure 3,

we summarize the overheads for the profiling methodology used in the DPOP

framework, which utilizes piggybacking to periodically transmit information on all

profile parameters for all nodes in the network without aggregation at intermediate nodes.

The average network traffic, energy consumption, code size, and computation time

overheads for this profiling methodology are 21.7%, 1.1%, 42.1%, and 20.4%,

respectively. Importantly, the energy consumption overhead, which is defined as the ratio

of the augmented applicationôs energy consumption to the original, remains modest

across all applications, ranging from 0.5% to a maximum of 2.59%.

2.3.4 Dynamic Optimization

The Online Optimizer Module shown in Figure 1 and reproduced in more detail in Figure

4 is responsible for evaluating various sensor node configurations within the design space

to determine which configuration best meets the application expert specified fuzzy design

36

goals given the current system behavior characterized by the dynamic execution profile.

As previously mentioned, both the Profiler and Optimizer modules are implemented in a

centralized location, and are thus responsible for profiling and optimizing every node in

the network. A distributed approach in which every node implements and utilizes its own

DPOP framework is feasible. In such an environment, each node would be independently

profiled and optimized. However, global parameters such as radio frequency would have

to be optimized using a centralized approach in order to ensure correct communication

between nodes. We leave further inquiry into the potential tradeoffs as future work.

2.3.4.1 System Metric Estimator

In order to determine the underlying node configuration, the system metric estimator

must first evaluate the design metrics of interest based on the selection of configurable

Optimized
Configuration

(F, V, RF, DR)

Dynamic Profile

(TX Pkts, RX

Pkts, IC/event)

System Metric

Estimator

Configurable
Parameters
(F, V, RF, DR)

Raw Metrics
(L, LA, P)

Metric and Fuzzy
Fitness Rules

Evaluation

Fuzzy Metrics and

System Fitness

Parameter

Adjustment

DPOP

Dynamic
Profiler

Online
Optimizer

Figure 4: Overview of the online optimization methodology implemented withing the

Optimizer module.

37

parameters and feedback from the profiler module. For the examples considered in this

chapter, lifetime, latency and packet delivery rate are defined as functions of our

configurable parameters ï frequency, voltage, data rate, radio frequency, and output

power ï and the aforementioned application profile parameters. This allows the

framework to monitor changes in design metrics via the application profile, and more

importantly, it allows for metric adjustment via configurable parameters.

Latency is dependent upon three configurable parameters ï frequency, data rate

and output power ï and two profile parameters ï packet size and microprocessor

instructions.

)(

,

8*
)1)(4(8

)4(8

RFPfunctionopdataRateDr

where

PktSize
opdataRateDrPktSize

F

pInstr

DR

PktSize

Latency

=

³
-+

+
+

=

m

(3)

Packet delivery rate, on the other hand, is a function of radio output power and packet

size, and is defined as follows.

[]
8

))]1(
405.72985.0

10(1[

)8(
1

³
+³

-³-
-=

³
-=

PktSize
opdataRateDr

RFP

PktSize
berveryRatePacketDeli

(4)

Finally, lifetime is a function of all configurable and profile parameters. For the sake of

brevity, we merely provide the simplified equation shown below.

38

),,(

),,,,,(

),,,,,,,(

,

))(36524(

12

SenEventsVFfunction
sensors

I

PktTxPktRxPktSizeDRRFPRFFfunction
radio

I

pInstrSenEventsPktTxPktRxPktSizeDRVFfunction
p

I

where

sensors
I

radio
I

p
I

acityBatteryCap
Lifetime

=

=

=

++³

³
=

m
m

m

(5)

We note that the presented estimation framework is specific to the IRIS platform

and the configurable parameters previously defined. However, the system metric

estimator can be updated by a platform developer to reflect any sensor network platform

and set of configurable parameters, and is an orthogonal concern to the overall dynamic

profiling and optimization mechanisms.

2.3.4.2 Online Greedy Fuzzy-Directed Dynamic Optimization

Once the relationship between the design metrics, configurable parameters, and

application profile is defined, the optimizer must explore a variety of node configurations

to determine which configuration is best suited for a given application. The online

optimizer explores the design space by evaluating feasible node configurations to

determine which configuration yields the highest design fitness given the application

expert specified fuzzy metric classification functions and fuzzy fitness rules. As the

dynamic optimizer module is intended to execute as part of the deployed system,

exhaustively searching all configurations to find the optimal configuration is infeasible as

stringent time and energy constraints must be met. Instead, an efficient heuristic

algorithm is needed for dynamic optimization.

39

Figure 4 summarizes the proposed online optimization methodology. The system

metric estimator module estimates the raw values for each design metric of interest given

the dynamic profile information and platform configuration being evaluated. These

values are then evaluated based on the fuzzy fitness rules and individual requirements for

the fuzzy metric classifications defined by the application expert. Based on this

evaluation, the heuristic search procedure explores the design space to determine a near

optimal configuration for the current system execution behavior and environmental

conditions.

Figure 5 presents an overview of the proposed online fuzzy-directed optimization

algorithm. The algorithm begins by initializing each configurable parameter, specifically

Vc, Fc, DRc, RFPc, and RFFc, to the minimum feasible configuration, where subscript c

indicates the current best parameter setting and subscript i indicates the current

Initialize Vc, Fc, DRc, RFPc, RFFc to minimum setting

find Vi : maximize(Fitness(Vi, Fc, DRc, RFPc, RFFc))

find Fi : maximize(Fitness(Vi, Fi, DRc, RFPc, RFFc))

find DRi : maximize(Fitness(Vi, Fi, DRi, RFPc, RFFc))

find RFPi : maximize(Fitness(Vi, Fi, DRi, RFPi, RFFc))

find RFFi : maximize(Fitness(Vi, Fi, DRi, RFPi, RFFi))

Fitnessc = Fitness(Vc, Fc, DRc, RFPc, RFFc)

FitnessGoalc = S;

while (FitnessGoalc ² F) {

 for all FRi Í FitnessRules s.t. FitnessGoal(FRi) == FitnessGoalc

 for all Mi Í : MetricGoal(FRi, Mi) > MetricGoal(FRi, Mi+1)

 ŷ/Ź Vi : Mi ŷ AND FRi (Vi, Fc, DRc, RFPc, RFFc) maximized

 ŷ/Ź Fi : Mi ŷ AND FRi (Vc, Fi, DRc, RFPc, RFFc) maximized

 ŷ/Ź DRi : Mi ŷ AND FRi (Vc, Fc, DRi, RFPc, RFFc)) maximized

 ŷ/Ź RFPi : Mi ŷ AND FRi (Vc, Fc, DRc, RFPi, RFFc) maximized

 ŷ/Ź RFFi : Mi ŷ AND FRi (Vc, Fc, DRc, RFPc, RFFi) maximized

 }

 if (Fitnessc == FitnessGoalc) break;

 FitnessGoalc--;

}

Figure 5: Pseudocode for Online Fuzzy-Directed

Optimization Algorithm.

40

parameter setting being explored. An initial search phase is utilized to greedily optimize

each configurable parameter by increasing the parameter setting as long as an increase in

the current overall design fitness, Fitnessc, is achieved. Parameters are tuned in the

following order: Vi, Fi, DRi, RFPi, and RFFi. While the order in which configurable

parameters are explored may impact the initially selected node configuration,

experiments have indicated that this effect is marginal ï only affecting the number of

configurations searched within the following fuzzy-directed search phase, but not the

final optimized node configuration. Additionally, this initial search phase is only

necessary for the first node configuration. For subsequent dynamic optimizations, the

current node configuration is utilized as the starting configuration.

Following the initial search phase, a fuzzy-directed optimization phase is utilized

to further refine the node configuration given the application expert specified fuzzy

fitness rules and design metric classifications. The process starts by initializing the

current fitness goal, FitnessGoalc, to the maximum fuzzy classification of S. Each

individual fuzzy fitness rule, FRi, will be utilized to guide the optimization process

provided that the fitness ruleôs overall fitness goal matches the current fitness goal. For

each fuzzy fitness rule, the optimization method will further be guided by the fuzzy

requirements for each individual design metric, Mi, where metrics are considered in

decreasing order of fuzzy requirement. For example, a metric goal of S is prioritized over

a metric goal of G and will be utilized first to guide the order in which configurable node

parameters are evaluated.

41

Given the current fitness rule, FRi, and design metric, Mi, the optimization process

will monotonically increase/decrease each configurable parameter based upon the

statically determined relationship between the configurable node parameter and design

metric, as long as both an improvement in the individual design metric and overall fitness

rule are achieved. The aim of this procedure is to attain the highest possible fitness value

by utilizing a metricôs relative rank within the current fuzzy rule as a guide to determine

the order and direction ï increasing or decreasing ï in which configuration parameters

are evaluated.

Once all selected fitness rules and their respective metric goals have been

considered, the algorithm checks if the fitness goal, FitnessGoalc, has been achieved. For

example, if the first iteration finds a Superior node configuration, the optimization

procedure will terminate and return the current configuration regardless of its actual

fitness value. However, if the configurationôs fitness does not match the goal, then the

fitness goal is reduced by one fuzzy classification level ï e.g. Superior to Good ï and the

optimization algorithm will subsequently utilize the fitness rules matching the reduced

fitness goal to guide the optimization process. This process will repeat until the overall

fuzzy classification of the node configuration matches the current fitness goal ï in the

worst case producing an Insufficient configuration.

In the event that redundant or conflicting rules are defined such that a single

parameter configuration can be evaluated using multiple fuzzy rules of the same or

different fuzzy requirement, our fuzzy-directed optimization algorithm will utilize the

fuzzy rule resulting in the highest design fitness value. The validity of the resulting

42

configuration is thus dependent on the validity of conflicting or redundant fuzzy rule with

the highest fuzzy requirement. If, for example, an incorrectly specified Fair fitness rule

conflicts with a Superior rule, the resulting optimized configuration would remain valid,

as the Superior fitness rule will be evaluated first.

An asymptotic upper bound on the execution time of this optimization algorithm

is

O(FRÖM ÖS) , where |FR| denotes the total number of fuzzy rules, |M| denotes the total

number of metrics, and |S| denotes the total number of settings for all configurable

parameters. Thus, for the application described in Figure 2, |FR| is equal to six, |M| is

equal to three, and |S| is equal to sixty-seven, which is attained by adding the number of

settings for all five configurable parameters.

The success of this approach depends both on developing an estimation

framework for efficiently evaluating the design metric values as well as profiling the

required execution statistics to accurately estimate these values. The current framework

utilizes a combination of physical measurements and analytical analysis to estimate the

raw design metric values using the profile statistics highlighted earlier. Although we

currently focus on a particular subset of design metrics, configurable parameters, and

profiling information, it should be noted that these could be modified to support other

application design metrics.

43

2.4 Re-optimization Evaluation Algorithms

As previously mentioned, the DPOP framework profiles application behavior in order to

reconfigure node-level hardware parameters in accordance with user-defined application

goals. Although a nodeôs application profile is continuously changing, not every profile

change warrants node re-optimization. Hence, re-optimizing the node configuration for

every profile change would incur significant computational and energy overhead. In order

to mitigate this re-optimization overhead, the DPOP framework utilizes a re-optimization

evaluation algorithm to determine if a nodeôs current application profile merits re-

optimizing the node configuration.

As illustrated in Figure 6, the re-optimization evaluation algorithm is invoked

prior to the online optimization algorithm presented in the previous sections. If the re-

optimization evaluation algorithm determines that the current node parameter

configuration is suboptimal ï or that it could be improved ï based on the current

 YES

NO

Previous
Configuration

(F, V, RF, DR)

Dynamic Profile

(TX Pkts, RX Pkts,

IC/event)

Configurable
Parameters

(F, V, RF, DR)

Heuristic
Optimization
Algorithm

Optimized
Configuration

(F, V, RF, DR)

Re-optimization
evaluation
algorithm

Dynamic Profile

(TX Pkts, RX Pkts,

IC/event)

System Metric
Estimator

Configurable
Parameters
(F, V, RF, DR)

Raw Metrics

(L, LA, P)

Metric and Fuzzy
Fitness Rules
Evaluation

Fuzzy Metrics and
System Fitness

Parameter

Adjustment

Figure 6: Overview of modified online optimization methodology with re-

optimization evaluation algorithm.

44

application profile, the online optimization algorithm is executed to determine the

optimal configuration. Otherwise, the online optimization algorithm is bypassed and the

current configuration remains unchanged. We consider three alternative re-optimization

evaluation algorithms. The performance of each algorithm is evaluated based on the

number of correct re-optimization detections, the number of unnecessary re-

optimizations, the number missed re-optimization opportunities, and the decrease in

fuzzy fitness score for missed re-optimizations.

2.4.1 Simple Metric Change Algorithm

First, a simple metric change (SMC) evaluation algorithm is considered. This algorithm

recalculates the high-level metrics given the new application profile and compares them

with the previous metrics. As shown within the pseudocode for the SMC algorithm in

Figure 7, if the difference is greater than an experimentally determined threshold, then

the online optimization algorithm is launched. This threshold was statically determined

by executing our fuzzy-directed optimization algorithm using four applications and

various application profiles considered within this dissertation, as discussed in Section

2.6.

Initialize FuzzyMetricsold = { %MembershipLold,%MembershipPold,

 %MembershipLAold }

Initialize Configuration = { V, F, DR, RFP, RFF }

Initialize Profileincoming = { PktSize, RxPkt, TxPkt, ɛpInstr, SenEvents }

{Lnew, Pnew, LAnew } = MetricEstimationFramework(Configuration, Profileincoming)

%MembershipLnew = LifetimeFuzzyClassification(Lnew)

%MembershipPnew = PacketDeliveryFuzzyClassification (Pnew)

%MembershipLAnew = LatencyFuzzyClassification(LAnew)

FuzzyMetricsnew = {%MembershipLnew,%MembershipPnew,%MembershipLAnew}

for all FuzzyMetricsi :

 if (|FuzzyMetricsnew ïFuzzyMetricsold| > %Threshhold) Reoptimize();

Figure 7: Pseudocode for Simple Metric (SMC) Re-

optimization Evaluation Algorithm.

45

 While this algorithm is not anticipated to achieve near optimal results, it has the

advantage of an extremely fast execution time and serves as an effective basis for

evaluating the other algorithms. However, there is no direct correlation between a percent

change in an individual metric score and the optimality of the current configuration, thus

limiting the algorithmôs ability to correctly detect re-optimization opportunities. For

example, we have encountered scenarios in which an incoming application profile

decreased a configurationôs design fitness value by more than 50%, yet it still achieved

the best fitness among all configurations. On the other extreme, we have encountered

scenarios in which an incoming application profile improved the fitness value of the

previously optimal configuration, which was later found to be sub-optimal.

2.4.2 Neighboring Configuration Evaluation Algorithm

A neighboring configuration evaluation (NCE) algorithm is also considered. Given an

updated application profile, this algorithm evaluates the adequacy of the current

configuration by evaluating the fitness value of neighboring configurations for each

configurable parameter. This re-optimization evaluation algorithm essentially performs a

reduced greedy search similar to the fuzzy-directed optimization algorithm. If any of the

neighboring configurations produce a higher fitness value, it is clear that the current

Fitnessi+1

 F
it
n

e
s
s
 S

c
o

re

Fi+1

Frequency

Fi Fi-1

 Fitnessi-1

Fitnessi

Figure 8: Illustrative plot of design fitness score as a function of processor frequency.

46

configuration is non-optimal and re-optimization is necessary. Otherwise, the algorithm

assumes the current configuration is either optimal or near optimal, and the current

parameter configuration is kept. Figure 8 presents an example plot of overall fitness and

processor frequency that illustrates a case in which an increased frequency setting, Fi+1,

results in an improved fitness score. This neighboring configuration by itself is a

sufficient indication of the current configurationôs non-optimality and the need to re-

optimize the configuration.

 Figure 9(a) presents the pseudocode for the neighboring configuration evaluation

algorithm. As soon as a new application profile is received, our metric estimation

framework evaluates all metrics at neighboring configurable parameter values ï i.e. the

(a) (b)

Initialize Configurationi = { Vi, Fi, DRi, RFPi, RFFi }
Initialize Profileincoming = { PktSize, RxPkt, TxPkt, ɛpInstr, SenEvents }

{ Li, Pi, LAi } = MetricEstimation (Configurationi, Profileincoming)
{%MembershipLi,%MembershipPi ,%MembershipLAi }= FuzzyClassification(Li, Pi,
LAi)
Fitnessi = Fitness(%MembershipLi, %MembershipPi, %MembershipLAi)

for each configurable parameters CP {

 { Li+1, Pi+1, LAi+1 } = MetricEstimation (CPi+1, Profileincoming)

 { %MembershipLi+1,%MembershipPi+1,%MembershipLAi+1 }=
 = FuzzyClassification(Li+1, Pi+1, LAi+1)
 Fitnessi+1 = Fitness(%MembershipLi+1,%MembershipPi+1,%MembershipLAi+1)
 if (Fitnessi+1 > Fitnessi) {
 Reoptimize()

 }

 { Li-1, Pi-1, LAi-1 } = MetricEstimation (CPi-1, Profileincoming)

 { %MembershipLi-1,%MembershipPi-1,%MembershipLAi-1 } =
 = FuzzyClassification(Li-1, Pi-1, LAi-1)
 Fitnessi-1 = Fitness(%MembershipLi-1,%MembershipPi-1,%MembershipLAi-1)
 if (Fitnessi-1 > Fitnessi) {
 Reoptimize();
 }

}

 Li+1 = LifetimeTaylor(CPi-1, Profileincoming)

 Pi+1 = PacketDeliveryTaylor(CPi-1, Profileincoming)

 LAi+1 = LatencyTaylor(CPi-1, Profileincoming)

 Li+1 = LifetimeTaylor(CPi+1, Profileincoming)

 Pi+1 = PacketDeliveryTaylor(CPi+1, Profileincoming)

 LAi+1 = LatencyTaylor(CPi+1, Profileincoming)

Figure 9: Pseudocode for the (a) Neighboring Configuration Evaluation (NCE)

re-optimization evaluation algorithm, and (b) Taylor Series based Neighboring

Configuration Approximation (TSNCA) re-optimization evaluation algorithm.

47

next frequency or radio output power values ï in order to determine if increasing or

decreasing each parameter will potentially result in an increase in the overall fitness

value. The algorithm terminates immediately after detecting a better configuration, or

after all neighboring configurable parameters have been considered.

2.4.3 Taylor Series Based Neighboring Configuration Approximation Algorithm

The Taylor series based neighboring configuration approximation (TSNCA) algorithm is

a variation on the aforementioned neighboring configuration evaluation algorithm,

differing only in the underlying implementation details. Specifically, the raw metric

values for neighboring configurations are approximated using Taylor series

approximation functions rather than using the system metric estimation framework,

which, as demonstrated later, can lead to improved re-optimizations.

 A Taylor series, shown below, is a representation of a particular function as an

infini te sum, where n! denotes the factorial of n and f(n)(a) denotes the nth derivative of

the function f evaluated at the point x = a.

nax
n n

anf

ax
af

ax
af

ax
af

afxf

)(
0 !

)(

...3)(
!3

)('''2)(
!2

)(''
)(

!1

)('
)()(

-ä
¤
=

=

+-+-+-+=

(6)

As computing an infinite sum is infeasible, the Taylor series is commonly converted into

an approximation by utilizing only a finite number of terms, where each additional term

provides better accuracy. Shown below are equations for 1st, 2nd, and 3rd order Taylor

series approximations respectively.

48

)(
!1

)('
)()(ax

af
afxf -+º

(7)

2)(
!2

)(''
)(

!1

)('
)()(ax

af
ax

af
afxf -+-+º

(8)

3)(
!3

)('''2)(
!2

)(''
)(

!1

)('
)()(ax

af
ax

af
ax

af
afxf -+-+-+º

(9)

A first-order Taylor series approximation yields a straight line, whereas a second

order approximation corresponds to a parabola, a third order approximation corresponds

to a cubic, and so on. Figure 10(a) presents an example plot of lifetime as function as a

function of processor frequency and illustrates several approximation functions ï

evaluated at an initial frequency of 2 MHz ï superimposed on an actual lifetime curve.

Clearly, as the number of terms, or order, of the approximation function increases, the

better we are able to approximate function values as we deviate further from the initial

independent variable value, which in this case corresponds to the initial frequency of 2

MHz.

49

Utilizing these concepts, the Taylor series based neighboring configuration

approximation algorithm replaces the metric estimation framework with single variable

approximate functions for all design metrics. The equations below illustrate how these

functions are used to evaluate metric values at neighboring parameter configurations,

where the subscript i indicates the current value, the subscript i ± 1 indicates neighboring

configuration, ConfigParam can be any one of our configurable parameters, and

ÖMetric/ÖConfigParam is an alternative notation for a metricôs derivate with respect to

the configurable parameter.

K
i

mConfigPara
i

mConfigPara
mConfigPara

Lifetime

i
Lifetime

i
Lifetime

+-
°

+=
°

)
1

(

1

µ

µ

(10)

K
i

mConfigPara
i

mConfigPara
mConfigPara

Latency

i
Latency

i
Latency

+-
°

+=
°

)
1

(

1

µ

µ

(11)

(a) (b)

Figure 10: Plots of (a) lifetime as a function of processor frequency and (b) packet

delivery rate as a function of radio output power with 1st, 2nd, 3rd, and 4th order Taylor

series approximation functions. Circular markers denote neighboring parameter

configurations.

50

KimConfigParaimConfigPara
mConfigPara

veryPacketDeli

i
veryPacketDeli

i
veryPacketDeli

+-°

+=
°

)1(

1

µ

µ

(12)

With these approximation equations, the algorithm in Figure 9(a) can be modified

with the changes seen in Figure 9(b). Replacing the metric estimation framework with

these Taylor-based approximation functions can improve the re-optimization decisions by

selecting the number of Taylor series terms appropriately for each metric approximation

function. Specifically, the order or the Taylor series is chosen such that the

approximation functions closely approximate, yet slightly overestimate, the actual

function within the region of interest ï i.e. neighboring parameter configurations. In order

to limit computation time, however, we also aim to select the fewest number of terms

possible. The plot of lifetime versus frequency shown in Figure 10(a), for example,

indicates that a third order approximation for lifetime as a function of frequency best

meets the aforementioned criteria as it closely approximates, yet slightly overestimates,

the actual lifetime curve for the neighboring frequency settings. On the other hand,

Figure 10(b) indicates that both first and third order approximations for packet delivery

rate as a function of radio output power are suitable, yet the first order is chosen as it is

less computationally complex. In a similar fashion, we can statically determine the form

of the approximation functions for all metrics as functions of each configurable

parameter.

By allowing the approximation to slightly overestimate the neighboring

configurations values ï and thereby overestimate the benefit of re-optimization ï the

51

resulting re-optimization evaluation algorithm will determine if the neighboring

configuration is likely to lead to a better overall fitness value. This methodology has been

shown to decrease the number of missed re-optimization opportunities, although with a

tradeoff of a slightly increased number of unnecessary re-optimizations. Based on our

data, however, this tradeoff is both acceptable and preferable as the Taylor series based

neighboring configuration approximation algorithm was able to detect the need to re-

optimize in several critical instances in which the original neighboring configurations

algorithm missed re-optimization opportunities that lead to significant decreases in

overall design fitness.

2.4.4 Uni-directional Neighboring Configuration Evaluation for Reduced Computational

Runtime

As the re-optimization evaluation algorithm will be executed within the deployed systems

for which runtime performance and energy overheads must remain minimal, a modified

implementation of the re-optimization evaluation algorithms can support this goal by

evaluating only one neighboring configuration for each configurable parameter rather

than two. For each configurable parameter, we can predict which neighboring setting ï

either higher or lower ï should be evaluated or approximated by computing the derivate

ÖFitness/ÖConfigParam. This derivative indicates how the configurationôs fitness value

fluctuates at this initial configurable parameter setting given the new application profile.

If ÖFitness/ÖConfigParam is positive, then fitness is increasing as the parameter setting

increases, and thus the algorithm should evaluate or approximate the configuration at the

next higher configurable parameter setting. Otherwise, if the derivative is negative, the

52

algorithm should look at the next lower setting. Equations 13 and 14 below show how

these derivatives are computed for two of our five configurable parameters. ÖFitness/ÖF

is the derivative of fitness with respect to frequency and ÖFitness/ÖRFP is the derivative

of fitness with respect to radio output power.

PMembership

Fitness

rawiveryRatedPacketDel

PMembershipd

F

rawveryRatePacketDeli

LAMembership

Fitness

rawdLatency

LAMembershipd

F

rawLatency

LMembership

Fitness

rawdLifetime

LMembershipd

F

rawLifetime

F

Fitness

%

%

%

%

%

%

µ

µ
³³

µ

µ
+

µ

µ
³³

µ

µ
+

µ

µ
³³

µ

µ
=

µ

µ

(13)

PMembership

Fitness

rawiveryRatedPacketDel

PMembershipd

RFP

rawveryRatePacketDeli

LAMembership

Fitness

rawdLatency

LAMembershipd

RFP

rawLatency

LMembership

Fitness

rawdLifetime

LMembershipd

RFP

rawLifetime

RFP

Fitness

%

%

%

%

%

%

µ

µ
³³

µ

µ
+

µ

µ
³³

µ

µ
+

µ

µ
³³

µ

µ
=

µ

µ

(14)

The derivatives ÖLifetimeraw/(ÖConfigParam), ÖLatencyraw/(ÖConfigParam), and

ÖPacketDeliveryRateraw/(ConfigParam) are themselves functions and are derived by

differentiating the metric estimation framework equations given in Section 2.3.4.1 using a

mathematical tool such as MATLAB. The derivatives Ö%MembershipL/(ÖLifetimeraw),

Ö%MembershipLA/(ÖLatencyraw), and Ö%MembershipP/(ÖPacketDeliveryRateraw) are

simply constants that represent the slopes of the fuzzy design metric classification

functions shown in Figure 2(a). The derivatives ÖFitness/(Ö%MembershipL),

ÖFitness/(Ö%MembershipLA), and ÖFitness/(Ö%MembershipP) are constants that

53

represent the weight assigned to each metric in evaluating the current fuzzy fitness rule,

and are derived by differentiating the fitness value equation presented in Section 2.3.2.2.

2.5 Sensor Network Applications

To analyze the benefits of dynamic profiling, online fuzzy-directed optimization

algorithm, and re-optimization evaluation algorithms, we consider four different sensor

network based applications.

2.5.1 Forest Fire Detection and Propagation Tracking

First, a Forest Fire Detection and Propagation Tracking (FF) application intended to

monitor remote regions of wilderness is considered. During normal fire detection

operation, the sensor nodes within the system will periodically monitor temperatures and

transmit the temperature readings every five minutes to the base station. In the event that

a node detects an elevated temperature for the previous two temperature samples, that

node issues an alert to nearby nodes and transitions to a fire-tracking mode. Whenever a

node receives an alert message from a nearby node, the former will also enter the fire-

tracking mode to ensure that the fireôs propagation can be efficiently tracked with

reduced latency. In the fire-tracking mode, each node will sample and report the

temperature every ten seconds. The base station node aggregates the reported temperature

sensor readings, displays the reported data with appropriate timestamps, and issues alerts

whenever a node enters the fire-tracking mode or a sensor node suffers an abrupt node

failure.

54

 Figure 11 provides the fuzzy metric classification functions and design fitness

rules for the Forest Fire Detection and Propagation Tracking application, noting that this

is the only application for which we consider the Insufficient metric classification. For

this application, lifetime is a critical design metric given the often inaccessible nature of

the terrain in which the nodes are deployed. Thus, a long lifetime that minimizes the need

to replace batteries is desired. A lifetime of 12 to 16 months is considered Good and a

lifetime between 4 and 12 months is considered Fair, above and below which is

considered Superior and Insufficient, respectively. Packet delivery rate is also an

important metric because fire tracking and prevention necessitates accurate data. A Good

range for the packet delivery rate is selected as 99.9% to 100% and packet delivery rates

between 60% and 99.9% are deemed Fair. As nodes only transmit small amounts of data

ï even when in tracking mode ï the latency requirements for the application are

marginal, corresponding to a Fair range of 15 seconds to 960 ms and a Good range of

960 ms to 2.4 seconds.

55

 The importance of each metric and how it relates to the fitness of the overall

system design is specified by the fuzzy design fitness rules. For the Forest Fire Detection

and Propagation Tracking application, lifetime is the most important design metric.

Therefore, if the lifetime is Superior and all other metrics are at least Good, the overall

design is considered Superior. If lifetime is Good, and all other metrics are at least Good,

Fuzzy Design Fitness Rules

Fuzzy Design Metric Classification

ü IF L IS G OR S, P IS G OR S, AND LA IS S,
THE DESIGN IS S

ü IF L IS G OR S, P IS G OR S, AND LA IS G,
THE DESIGN IS G

ü IF L IS F, P IS G OR S, AND LA IS S,
THE DESIGN IS G

ü IF LA IS F OR P IS F, AND L IS F, G, OR S,
THE DESIGN IS F

ü IF LA IS G, P IS G OR S, AND L IS F,
THE DESIGN IS F

ü IF L IS S, P IS G OR S, AND LA IS G OR S,
THE DESIGN IS S

ü IF L IS G, P IS G OR S, AND LA IS G OR S,
THE DESIGN IS G

ü IF L IS S, P IS G OR S, AND LA IS F, THE

DESIGN IS G
ü IF L IS F OR P IS F, AND LA IS F, G, OR S,

THE DESIGN IS F
ü IF L IS G, P IS G OR S, AND LA IS F, THE

DESIGN IS F
ü IF L IS I, P IS I, OR LA IS I, THE DESIGN IS I

Good

Fair

Superior

Legend

Insufficient

E
n

v
ir

o
n

m
e

n
ta

l

M
o

n
it

o
ri

n
g

Lifetime (months)

0

1

2

3

4

5

6

100%

80%

60%

40%

20%

0%

Latency (sec)

3
5

2
 x

 1
0

-1

 3
5

2
 x

 1
0

-3

 3
5

2
 x

 1
0

-4

 3
5

2
 x

 1
0

-5

 3
5

2
 x

 1
0

-6

 3
5

2
 x

 1
0

-7

 3
5

2
 x

 1
0

-2

100%

80%

60%

40%

20%

0%

Packet Delivery Rate (%)

100%

80%

60%

40%

20%

0%

7
0
.2

9
9
.6

5

9
9
.9

9
7

1
0

0
.0

ü IF L IS S, P IS G OR S, AND LA IS G OR S,
THE DESIGN IS S

ü IF L IS G, P IS G OR S, AND LA IS G OR S,
THE DESIGN IS G

ü IF L IS S, P IS G OR S, AND LA IS F,
THE DESIGN IS G

ü IF L IS F OR P IS F, AND LA IS F, G, OR S,
THE DESIGN IS F

ü IF L IS G, P IS G OR S, AND LA IS F,
THE DESIGN IS F

G
re

e
n

h
o

u
s
e

M
o

n
it

o
ri

n
g

Lifetime (months)

0

3

6

9

1
2

1
5

1
8

100%

80%

60%

40%

20%

0%

Latency (sec)

4
8
 x

 1
0

0

 4
8
 x

 1
0

-2

 4
8
 x

 1
0

-3

 4
8
 x

 1
0

-4

 4
8
 x

 1
0

-5

 4
8
 x

 1
0

-6

 4
8
 x

 1
0

-1

100%

80%

60%

40%

20%

0%

Packet Delivery Rate (%)

100%

80%

60%

40%

20%

0%

6
1
.7

2
9

9
5
.2

1
1

9
9
.9

9
6

1
0

0
.0

ü IF L IS S, P IS G OR S, AND LA IS G OR S,
THE DESIGN IS S

ü IF L IS G, P IS G OR S, AND LA IS G OR S,
THE DESIGN IS G

ü IF L IS S, P IS F, AND LA IS G OR S,
THE DESIGN IS G

ü IF L IS F OR LA IS F, AND P IS F, G, OR S,
THE DESIGN IS F

ü IF L IS G, LA IS G OR S, AND P IS F,
THE DESIGN IS F

F
o

re
s
t

F
ir

e

D
e
te

c
ti

o
n

Lifetime (months)

0

5

1
0

1
5

2
0

2
5

3
0

100%

80%

60%

40%

20%

0%

Packet Delivery Rate (%)

100%

80%

60%

40%

20%

0%

3
8
.1

9
9
.0

9
9
.9

9

1
0

0
.0

Latency (sec)

9
6
 x

 1
0

0

 9
6
 x

 1
0

-2

 9
6
 x

 1
0

-3

 9
6
 x

 1
0

-4

 9
6
 x

 1
0

-5

 9
6
 x

 1
0

-6

 9
6
 x

 1
0

-1

100%

80%

60%

40%

20%

0%

B
u

il
d

in
g

M
o

n
it

o
ri

n
g

Latency (sec)

9
6
 x

 1
0

-1

 9
6
 x

 1
0

-3

 96 x
 1

0
-4

 96 x
 1

0
-5

 96 x
 1

0
-6

 96 x
 1

0
-7

 9
6
 x

 1
0

-2

100%

80%

60%

40%

20%

0%

Packet Delivery Rate (%)

100%

80%

60%

40%

20%

0%

9
0
.8

9
9
.9

9
9
.9

9

1
0

0
.0

 0

5

1
0

1
5

2
0

3
5

4
0

100%

80%

60%

40%

20%

0%

Lifetime (months)

Figure 11: Application expert specified fuzzy design metric classification functions

and fuzzy design fitness rules for several sensor-based applications.

56

the overall design is Good. As latency is not considered a critical metric, if the latency is

Fair, the overall design is still acceptable only if the lifetime is Superior and the packet

delivery rate is at least Good. Otherwise the design is Fair. Finally, if either lifetime or

packet delivery rate are Fair, the overall design is considered Fair. An application expert

need only explicitly define the fitness rules for Superior, Good, and Fair, as any

remaining metric evaluations are considered Insufficient.

2.5.2 Building Monitoring

The second application, referred to as Building Monitoring (BM), is designed to monitor

activity within a building using periodic sampling of motion and vibration sensors.

Depending on the userôs request, this data can be used for a number of purposes. During

the daytime, employees may be able to determine which conference rooms are free, or an

automated system may turn lights off if a room is not in use for an extended period of

time. During non-business hours, security professionals can utilize this information to

ensure there are no personnel or unauthorized individuals are left in restricted areas.

Compared to the Forest Fire Detection and Propagation Tracking, the lifetime

requirement for the Building Monitoring application is more lenient with a lifetime of 5

to 12 months considered Good. For packet delivery, a rate of 99.0% to 99.9% is

considered Good as multiple packets will likely be transmitted to indicate activity

occurring within a room and a single erroneous packet will not significantly impact the

resulting system operation. However, as any detection of motion will be reported to the

base station, a lower latency will be necessary, such that a latency of 0.2 ms to 9.6 ms is

57

considered Good. We note that without an Insufficient classification, the application

expert need only specify the Good range.

Again, lifetime is the dominant design metric for this application, followed by

latency and packet delivery rate. Thus, a Fair lifetime or latency automatically results in

a Fair design. However, if the lifetime is Superior and all other metrics are at least Good,

the overall design is considered Superior. Alternatively, if the lifetime is Superior and the

latency is at least Good, the design is still considered Good even if the packet delivery

rate is only Fair. If the lifetime is Good, and all other metrics are at least Good, the

overall design is considered Good.

2.5.3 Environmental Wildlife Monitoring

The third application considered, referred to as Environmental Wildlife Monitoring (EM),

is used to send time stamped thumbnail images of pictures obtained by cameras placed

next to watering holes and frequently used wildlife trails for monitoring and recording

wildlife activity. The sensor nodes activate digital cameras whenever motion is detected.

While the full resolution images are stored locally within the digital camera, the sensor

nodes are responsible for logging and tracking activity along with transmitting low-

resolution thumbnail images ï e.g. 20x20 gray scale images ï to the base station to

provide biologists or environmentalists quick access to detected activity without requiring

physical access to the digital camera that may be located in a remote wilderness location.

Unlike the previous two application scenarios, long lifetimes are not required for

the Environmental Wildlife Monitoring application, as researchers must frequently

venture into the field to collect the digital camera data. Consequently, replacing batteries

58

at the same time will not be particularly burdensome. Thus, a lifetime of just 0.5 to 1

month is considered Good. However, the transmission of the thumbnail images using the

wireless network will require low latency, with a latency of 0.9 ms to 3.5 ms considered

Good. As the thumbnail images transmitted through the network are only meant to

provide quick updates on activity and the full image data is stored within the digital

camera, slight aberrations in the transmitted data will only result in degraded thumbnails.

Hence, packet delivery requirements are not as stringent, with a Good rate ranging from

96.5% to 99.7%.

Overall, latency is more important than packet delivery rate, which in turn is

much more important than lifetime. If latency is Superior and all other metrics are at least

Good, the overall design fitness is Superior. On the other hand, a Fair latency or packet

delivery rate corresponds to a Fair design. Since lifetime is not critical, if latency is

Superior, packet delivery rate is at least Good, and lifetime is only Fair, then the design

is still Good. If, however, lifetime is Fair and the latter requirements on latency and

lifetime are not met, the overall design fitness is Fair. All other design alternatives are

considered Insufficient.

2.5.4 Climate Controlled Greenhouse Monitoring

Finally, we consider a Climate Controlled Greenhouse (GH) application consisting of

sensor nodes spatially distributed throughout an automated greenhouse. Every five

seconds, each node sends the current temperature and humidity to the base station for

monitoring purposes. Additionally, if the temperature exceeds a user defined threshold or

59

the humidity drops below a defined threshold, the sensor nodes will activate a misting

system until the greenhouse climate has returned to an acceptable level.

A moderately long lifetime is desired in order to minimize human presence and

maintenance within the automated greenhouse environment. However, the desired

lifetime would ideally encompass the elapsed time required to plant and harvest the

specific crop being grown. Hence, a lifetime of 3 to 6 months is considered Good.

Reliable data is crucial in monitoring the greenhouse environment, as properly

controlling the misting systems is essential for good plant health and minimizing water

costs. Thus, a Good packet delivery metric corresponds to a rate of 99.95% to 100%. The

importance of latency is inversely proportional to the sampling rate. While the amount of

data being processed and transmitted by individual nodes may be small, a larger number

of sensors may be present within the greenhouse. Thus, a latency of 0.48 ms to 48 ms is

Good.

For the Climate Controlled Greenhouse application, lifetime and packet delivery

are more important design metrics than latency. Thus, a Fair lifetime or packet delivery

rate results in a Fair overall design fitness. A Superior design must have a Superior

lifetime, a Good or Superior packet delivery rate, and a Good or Superior latency. If a

Good lifetime is achieved along with a Good or Superior packet delivery rate, and a

Good or Superior latency, the overall design is considered Good. As latency is not critical

for this application, a Fair latency can still lead to a Good overall design only if lifetime

is Superior and the packet delivery rate is Good or Superior. Otherwise, the design is

considered Fair.

60

2.6 Experimental Results

Each of the aforementioned applications was written for the TinyOS operating system

using the NesC programming language, and implemented on the IRIS motes sensor

network platform with each incorporating our dynamic profiling framework. Using a

small scale ï on the order of 10 nodes ï deployment of sensor nodes, we profiled two

dynamic execution scenarios per application corresponding to a low activity environment

and a high activity environment which subjected the deployed sensor network system

with manually created environmental stimuli for the two execution scenarios. For

example, considering the Forest Fire Detection and Propagation Tracking application, a

low activity scenario corresponds to the normal detection mode in the absence of fire. On

the other hand, a high activity scenario is one in which the nodes have already detected

fire, during which the temperature sensor is more frequently read and alert messages are

transmitted within the network. Similar low and high activity scenarios are considered for

the remaining applications.

 For each application, profile information for all sensor nodes was collected and

averaged under both dynamic execution scenarios. This averaged profile data was

Table 2: Comparison of optimal static and dynamic node configurations for (a)

low activity and (b) high activity dynamic scenarios showing breakdown of

individual fuzzy design metric classifications for lifetime (L), packet delivery

rate (P), and latency (LA), and the overall fuzzy design fitness (F).

Optimal Dynamic

Config.
Optimal Static Config.

 Optimal Dynamic
Config.

Optimal Static
Config.

App L % P % LA % F % L % P % LA % F % App L % P % LA % F % L % P % LA % F %

FF 100 S 100 S 98 S 100 S 100 S 100 S 54 S 92 S FF 100 S 100 S 98 S 100 S 100 S 100 S 54 S 92 S

BM 15 G 100 S 0.3 G 39 G 39 S 100 S 15 F 65 F BM 35 G 100 S .03 G 45 G 29 G 100 S 20 F 54 F

EM 0.8 S 100 S 58 F 75 F 0.8 S 100 S 58 F 75 F EM 0.7 S 100 S 34 G 62 G 0.7 S 100 S 34 G 62 G

GH 12 S 100 S 83 F 65 G 23 S 100 S 38 F 54 G GH 76 F 100 S 97 F 74 F 69 F 100 S 13 F 45 F

 (a) low activity scenario (b) high activity scenario

61

subsequently utilized by the optimizer module in order to produce a single optimal

configuration for each combination of application and dynamic execution scenario ï

noting that such an optimal configuration remains valid as long as the execution

environment remains constant. To evaluate to the benefits of dynamically optimizing a

sensor nodeôs configuration instead of utilizing a single optimized configuration, we first

compare the optimal static configuration to the dynamic node configurations produced by

the online optimizer for low activity and high activity execution scenarios. Given our

extensive experience with the IRIS platform and having completed the development of

each application, we determined a static profile including the average packet reception

rate, packet transmission rate, packet size, and number of microprocessor instructions

required to process each packet reception and sensor event. Given this statically

determined application profile, for each application, we determined an optimal static

node configuration by exhaustively searching all feasible configurations given the

application expert specified fuzzy classification functions and fitness rules. Additionally,

the dynamic application profile for each execution scenario was utilized to determine the

optimal dynamic node configuration. Table 2 presents the breakdown of individual fuzzy

design metric classifications for lifetime, packet delivery rate, and latency, and the

overall fuzzy design evaluation for the optimal static and dynamic node configuration for

each application execution scenario.

 For the low activity scenario presented in Table 2(a), the dynamically optimized

node configurations either equal or exceed the performance of the statically optimized

configurations. In the Forest Fire Detection and Propagation Tracking application, the

62

dynamically optimized node configuration showed a 46% increase in the latency fuzzy

classification compared to the statically determined configuration. This improved latency

results in an increase in the final fuzzy fitness score from 92% S to 100% S, where S

indicates a Superior rating, G indicates a Good rating, and F indicates a Fair rating. For

the Building Monitoring application, the dynamically optimized node configuration

showed a similar improvement in lifetime but at the expense of latency. Specifically, this

lifetime fuzzy score increase from 15% G to 39% S corresponds to raw lifetime increase

of 6.05 months to 21.9 months; and the latency fuzzy score decrease from 0.03% G to

15% F corresponds to a raw latency increase of 9.5 ms to 64 ms. This tradeoff is

beneficial as it improves the overall design fitness from 65% F to 39% G. For the

Environmental Monitoring application, the dynamic and static node configurations were

both identical, thus dynamic optimization produced no discernable improvement for this

one particular scenario. The Greenhouse Monitoring application is analogous to the

Building Monitoring application in that overall improvement was attained using dynamic

profiling, but resulted in an improvement in latency at the expense of lifetime, achieving

a modest improvement in overall design fitness from 54% G to 65% G.

63

 Importantly, given the focus on application experts ï with limited engineering

expertise ï by presenting the improvements using fuzzy metric classifications, an

application expert can quickly evaluate the improvements in individual metrics and

overall design fitness without needing to analyze the raw metric values. For example, in

the case of the Forest Fire Detection and Propagation Tracking application, rather than

presenting the improvement in latency as a raw improvement of 9.4 ms, the fuzzy metric

classification presents the improvement as an increase from 54% S to 98% S. We believe

that such an approach is more readily approachable and understandable by non-engineers.

For the high activity scenario presented in Table 2(b), all dynamically determined

node configurations outperformed their statically optimized counterparts. Additionally,

improvements in individual design metrics were achieved without trading off decreases

in other design metrics. The largest improvement was achieved for the Building

Monitoring application, for which the dynamically optimized node configuration

achieved an overall design fitness of 45% G compared to 54% F for the statically

optimized configuration.

Table 3: Comparison of exhaustive search and online fuzzy directed optimization

algorithms for low activity and high activity dynamic scenarios showing

breakdown of individual fuzzy design metric classifications for lifetime (L),

packet delivery rate (P), and latency (LA), the overall fuzzy design fitness, and

percentage of configurations searched (%CS) for the online fuzzy directed

optimization algorithm.

Low Activity Scenario High Activity Scenario

Exhaustive Online Fuzzy Directed Alg. Exhaustive Online Fuzzy Directed Alg.

App L % P % LA % F % L % P % LA % F % % CS L % P % LA % F % L % P % LA % F % % CS

FF 100 S 100 S 98 S 100 S 100 S 100 S 98 S 100 S 0.06 100 S 100 S 98 S 100 S 100 S 100 S 98 S 100 S 0.06

BM 15 G 100 S 0.3 G 39 G 15 G 100 S 0.3 G 39 G 0.06 35 G 100 S .03 G 45 G 35 G 100 S .03 G 45 G 0.05

EM 0.8 S 100 S 58 F 75 F 0.8 S 100 S 58 F 75 F 0.10 0.7 S 100 S 34 G 62 G 0.7 S 100 S 34 G 62 G 0.05

GH 12 S 100 S 83 F 65 G 12 S 100 S 83 F 65 G 0.05 76 F 100 S 97 F 74 F 76 F 100 S 97 F 74 F 0.06

64

For both the high activity and low activity scenarios, despite our experience with

the underlying platform, a statically determined profile cannot reliably account for the

inherent variability in performance demands due to dynamic execution requirements.

Instead, dynamic optimization of sensor node configurations provides significant

advantages in being able to adapt to these environmental changes and re-optimize the

configuration.

We further evaluated the performance and efficiency of our online fuzzy-directed

optimization algorithm. Table 3 presents a comparison of the optimal dynamic node

configuration determined by exhaustively evaluating all feasible node configurations and

the dynamic node configuration determined using our online fuzzy-directed algorithm. A

breakdown of the individual fuzzy design metric classifications and the overall fuzzy

design evaluations for both low and high activity scenarios is presented along with the

percentage of feasible configurations evaluated by our online fuzzy-directed optimization

algorithm. For all applications and execution scenarios, our online fuzzy-directed

optimization algorithm finds the optimal dynamic node configuration, while evaluating

an average of only 0.06% of the entire set of feasible node configurations. This equates to

evaluating only 114 node configurations, of which 65 evaluations are utilized for the

initial search phase. On an 8 MHz processor, a single node configuration is evaluated in

approximately 4 milliseconds, leading to a total execution time of 0.456 seconds for the

fuzzy-directed optimization algorithm, compared to an execution time of 758 seconds

using an exhaustive search. We note that for subsequent dynamic optimization, the

current node configuration would be utilized as the initial configuration, further reducing

65

both the number of node configuration evaluated by the online optimization algorithm

and its execution time.

We evaluate the effectiveness of the various re-optimization evaluation

algorithms based on the number of correct re-optimization detections, the number of

unnecessary re-optimizations, and the number of missed re-optimization opportunities

considering an initial configuration of {F, V, RFP, DR, RFF} = {2 MHz, 2.7 V, 3 dB,

250 Kbits/s, 2405 MHz}. To evaluate the effectiveness of these algorithms, we further

consider over 19,000 different application profiles based on data delineating meaningful

ranges for each profile parameter. These application profiles corresponds to all possible

combinations of the following profile parameters: six SenEvent values ranging from 0 to

2500, six PktRx and PktTx values ranging from 0 to 500, eight PktSize values ranging

from 0 to 21, and eleven ɛpInstr values ranging from 0 to 425,000.

Table 4 compares the simple metric chance (SMC), neighboring configuration

evaluation (NCE), Taylor series neighboring configuration approximation (TSNCA), and

uni-directional variants of the neighboring configuration evaluation (U-NCE), and Taylor

Table 4: Comparison of the simple metric chance (SMC), neighboring

configuration evaluation (NCE), Taylor series neighboring configuration

approximation (TSNCA), and uni-directional variants (U-) re-optimization

algorithms for all applications (averaged) using over 19,000 different application

profiles considering an initial configuration of {F, V, RFP, DR, RFF} = {2 MHz,

2.7 V, 3 dB, 250 Kbits/s, 2405 MHz}.

Re-optimization
Evaluation
Algorithm

Correct
Re-optimization

Detections

Unnecessary
Re-

optimizations

Missed
Re-optimization
Opportunities

Avg. Fuzzy
Fitness

Decrease

Max Fuzzy
Fitness

Decrease

Execution Time
(ms)

SMC 12.20% 27.38% 60.42% 2.19% 47.86% 4.01

NCE 95.63% 0.00% 4.41% 22.26% 45.63% 20.01

U-NCE 94.98% 0.00% 5.02% 22.97% 94.78% 16.74

TSNCA 95.90% 1.18% 2.92% 21.39% 24.00% 42.82

U-TSNCA 95.36% 1.18% 3.46% 23.65% 94.29% 36.50

66

series neighboring configuration approximation (U-TSNCA) by averaging the data for

each of the applications considered. Whenever the algorithm misses an opportunity to re-

optimize, a fuzzy fitness decrease value is calculated. This value relates the fuzzy score

difference between the current suboptimal configuration and the optimal configuration.

Additionally, the execution time using an 8 MHz processor is reported for all re-

optimization evaluation algorithms.

The SMC algorithm achieves the fastest average execution time of 4 ms, yet on

average, it achieved the lowest correct re-optimization detections, the highest

unnecessary re-optimizations, and the highest missed re-optimization opportunities with

values of 12.20%, 27.38%, and 60.42%, respectively. Although the average and

maximum fuzzy fitness decrease values due to missed re-optimization opportunities are

surprisingly modest, these values alone do not negate the algorithmôs subpar detection

performance, and thus do not warrant its use. We note that while these results will vary

depending on the selected metric change threshold, we do not expect any significant

improvements, as no direct correlation exists between a change in metric values and the

adequacy of the current hardware configuration.

As expected, both the NCE and TSNCA re-optimization evaluation algorithms

achieved comparable results and significantly outperformed the SMC algorithm. On

average, the TSNCA algorithm incurs a small 1.18% increase in unnecessary re-

optimizations in exchange for a 0.27% improvement in correct re-optimization

detections, and a 1.49% decrease in missed re-optimization opportunities over the NCE

algorithm. Most notably, the TSNCA algorithm achieves the lowest average fitness

67

decrease value at 24%, which corresponds to an improvement of 21.63% over the NCE

algorithm. The TSNCA algorithm overestimates the neighboring configuration

specifically to reduce the number of missed re-optimizations and aids in detecting re-

optimization opportunities that the NCE algorithm dismisses. The potentially significant

difference in behavior for these two optimization algorithms is best exhibited for the

Environmental Monitoring application. For this application, the TSNCA algorithm incurs

a maximum fitness decrease value of only 5.33% compared to the NCE algorithmôs

maximum fuzzy fitness decrease value of 91.26%. Whereas the NCE algorithm keeps a

suboptimal configuration with a latency of 22.3 ms, the TSNCA algorithm determines

that re-optimization is needed and finds a configuration with a latency of 3 ms.

As any re-optimization evaluation algorithm should be considerably faster than

the online fuzzy directed optimization algorithm, the execution time for the re-

optimization evaluation algorithms is critical. The original NCE algorithm is faster to

compute, requiring 20 milliseconds, or roughly one half the time required for the TSNCA

algorithm. This constraint served as the primary impetus for developing the U-NCE and

U-TSNCA algorithms, which achieved a slightly decreased, yet comparable, performance

over their original counterparts in exchange for a 4 ms decrease in computation time. The

main drawback, however, is that the slight increase in missed re-optimization

opportunities of 0.61% and 0.54% for the U-NCE and U-TSNCA algorithms,

respectively, leads to a maximum fitness decrease greater than 94%.

The viability of these re-optimization evaluation algorithms hinges on both

detection performance and execution time. Based on the presented data, all algorithms,

68

with the exception of the SMC algorithm, achieve a satisfactory detection performance.

On the other hand, an execution time is only satisfactory if itôs a small fraction of the

total optimization time. Given that our online fuzzy-directed optimization algorithm has

an average execution time of 0.456 seconds, the NCE, U-NCE, TSNCA, and U-TSNCA

re-optimization evaluation algorithms spend respectively 4.4%, 3.7%, 9.4%, and 8%, of

the average optimization time determining whether re-optimization is necessary.

69

CHAPTER 3

ATLES-SN: A MODULAR SIMULATOR FOR SENSOR NETWORKS

3.1 Overview

The accuracy of the aforementioned profiling and optimization frameworks depends

critically on the accuracy of the estimation models used for the high-level design metrics

at runtime. However, assessing the e ect of configurable and profile parameters on high-

level design metrics can be a daunting task due to the complex interdependences between

parameters. Unless the parameter relationships can be determined using known

mathematical models, application experts and platform developers must typically derive

such models via experimentation.

Physically deploying a sensor network test-bed and relying on empirical

measurements to assess the e ect of parameter and design decisions can be impractical,

time consuming, and costly. Thus, computer simulations are an attractive means of

assessing the performance of sensor network platforms. These WSN simulators give

application developers the ability to rapidly and accurately simulate an application for

design space exploration or performance assessment. The speed, accuracy, and suitability

of these simulations are largely dependent on the structure and features of a particular

simulator [23]. In this chapter, we present the Arizona Transaction-level Simulator for

Sensor Networks (ATLeS-SN), which allows developers to specify components at

di erent levels of abstraction ï from cycle-accurate to high-level algorithms ï thus

70

providing a greater degree of control over simulation speed and accuracy in comparison

to other o erings.

3.2 Previous Work

Various sensor network simulators have been introduced. The NS-2 simulator [24] is an

early pioneer that began as a general network simulator. Its functionality has been greatly

expanded since inception and it has become arguably one of the most popular discrete-

event sensor network simulators in use [49]. NS-2 o ers advanced models for several

MAC, transceiver, and routing protocols as well as a simple energy consumption model.

The MAC protocols integrated within NS-2, however, are not necessarily suitable for

low-power wireless sensor networks [79]. Moreover, application and environmental

sensing models are limited or non-existent [41]. Similarly, Castalia [14] is discrete-event

simulator built on the OMNeT++ platform. Castalia o ers several advanced wireless

transmission medium, radio, and MAC models that are suitable for wireless sensor

networks [49][41][40]. The simulation platform is also extensible and reasonably

modular, yet the lack of rigidly deýned component interfaces often limits the

compatibility of third-party developed components [23]. While developers are free to

create custom components at di ering levels of abstraction, Castalia lacks the

infrastructure necessary to easily model concurrent hardware down to the bit-level, thus

prompting some to extend OMNeTôs capabilities with SystemC [65].

TOSSIM and its extension PowerTOSSIM [53][89] accurately model the

networking and energy consumption of TinyOS based sensor nodes. The TOSSIM

simulators achieve excellent scalability and accuracy by emulating actual application

71

code and simulating networking hardware devices down to the bit level. However, the

main drawback to these simulators is that models to incorporate the sensed environmental

phenomena are not available, and all nodes must execute the same source code. Most

importantly, TOSSIM is not suitable for all sensor networks as it is strictly designed for

MICA motes running the TinyOS operating system.

Finally, SENS [92] is an event-driven simulator that allows interchangeable

models for the application, network, transmission medium, and environment components.

The provided environment model is arguably one of the most sophisticated as it

accurately models both sensed phenomena and the radio transmission medium [40].

However, the main limitation to the SENS platform is the lack of accurate models for

routing and medium-access control.

Although numerous other simulation platforms exist, these platforms are similarly

e ective for their respective purposes, but do not provide a holistic environment for

application experts to design, evaluate, and optimize their respective applications. Thus,

we aim to consolidate the strengths of the aforementioned simulation platforms through

the introduction of the Arizona Transaction Level Simulator for Sensor Networks

(ATLeS-SN) ï a modular and conýgurable simulator implemented in the SystemC

language.

 We ýrst introduced the ATLeS-SN simulator in [37] and described basic

component functionality via two application case studies. This research extends upon this

previous e ort by presenting a signiýcantly revised and improved simulator structure

along with revised component models that more precisely and e ciently model real

72

sensor network implementations and applications. Speciýcally, the network stack now

includes subcomponents for the physical layer, medium-access control layer, and the

networking layer; the implementation and accuracy of the transmission medium model

has been improved; the interfaces and ports of the application component have been

restructured; a system monitoring component has been added; and a new sound

application and its corresponding environment and sensor components has been created.

3.3 SystemC and Transaction-level Modeling Overview

Transaction-level modeling (TLM) is a programming methodology that facilitates the

implementation of various elements within a design at di erent levels of abstraction by

decoupling communication from computation. Developers are provided with the freedom

to work on a speciýc aspect of a design without having to implement all other

components in detail. Such a model is of great beneýt for developers, as developers are

able to concurrently develop and reýne di erent components within the same system

without having to wait for the previous phase to be completed.

Figure 12: Transaction-level model example consisting of several components (P, Mem,

PE1, PE2,é, PEn) connected through a communication channel (Bus) with two interfaces.

73

Figure 12 provides an example of a transaction-level implementation. In this

conýguration, a processor, memory, and several processing elements ï all called

components ï are connected through a common bus. This bus is a channel through which

all communication between components takes place and implements two interfaces that

deýne the types of methods ï or transactions ï that the connected components can use to

interact with the channel. The processor, memory, and processing element components

contain ports, which additionally deýne the type of interfaces to which they can be

connected.

As long as these interfaces and their respective transactions remain ýxed, a

developer is free to modify or reýne the underlying channel, processor, memory, or

processing elements without compromising system compatibility. Thus, these interfaces

and ports are the constructs through which TLM manages to separate the details of

communication from the underlying implementation. A developer, for example, could

ýrst implement the processor as a basic C/C++ algorithm and then progressively increase

its level of detail in order to implement a cycle accurate instruction-set simulator without

having to change any other component or a ecting compatibility. The SystemC language

ï which is actually a class library to C++ ï enables developers to easily take advantage of

TLM. Additionally, it provides support for discrete-event, time-based, and cycle-accurate

simulations.

3.4 ATLeS-SN Simulator Structure

74

The Arizona Transaction-Level Simulator for Sensor Networks is a simulation platform

built using the SystemC extension to the C++ language. Through the principles of

transaction-level modeling, ATLeS-SN emphasizes a modular design that allows

developers the ability to iteratively reýne and replace individual components with

minimal e ect to system compatibility. Such modularity facilitates the design process by

giving developers the freedom to focus primarily on components of interest while others

are speciýed only to the necessary level of detail. Moreover, developers can easily take

advantage of third-party developed components to extend the application of interest or

evaluate various design options. Indeed, through the case study presented in this chapter,

Figure 13: Overview of the components, ports, and interfaces for the Arizona

Transaction-Level Simulator for Sensor Networks (ATLeS-SN) 2.0.

75

we aim to demonstrate the beneýts of integrating a diverse set of components from

di erent simulators into a single simulation environment.

 In designing the structure of this simulation framework, special attention was

given to the issue of modeling the overall functionality of a sensor network using an

adequate and realistic set of components. This task involved determining both the number

of components and their individual functionalities. Specifying an insu cient number of

components makes it di cult for the developer to reýne a speciýc aspect of the simulator

as multiple di ering functionalities are lumped together. On the other hand, too many

components can overwhelm the developer and impede high-level thinking and design. In

order to achieve the appropriate balance in component composition and granularity, a

survey of sensor node modeling was conducted and it revealed that the essential

considerations in sensor network design and optimization are power consumption,

communication, application functionality, and the sensed environment [53][14][92].

Consequentially, these are the categories that guided the selection of components for

ATLeS-SN. If, however, a developer ýnds that the subdivision of components within

ATLeS-SN is too coarse a granularity for a particular application, transaction-level

modeling additionally allows the implementation of subcomponents within an existing

component, thus e ectively making the latter a wrapper through which all

communication with external components takes place.

 Figure 13 presents an overview of the components, interfaces, ports, and

connections that compose the underlying structure of the ATLeS-SN framework. Each

individual Sensor Node is speciýed as a collection of subcomponents. Speciýcally, the

76

App component encapsulates the core functionality of the sensor node; the Sensor

component models the sensors found within each node; the NetworkLayer, MACLayer,

and PhysicalLayer components within the Network Stack component model the software

and hardware necessary for wireless communication; and the SystemMonitor component

enables a developer to monitor activity in the Network Stack, App, and Sensor

components for later estimation and optimization of node power consumption, lifetime,

or other metrics of interest [66][67][86]. The Environment and Transmission Medium

components are external to the sensor nodes and model the sensed phenomena and the

wireless communication medium, respectively.

 Figure 13 additionally speciýes the interfaces implemented by each component as

well as the corresponding ports and connections. These elements are critical in deýning

all potential interactions ï or transactions ï between components and are further

explained in the following sections.

3.4.1 Application Component

The App component models the functionality of the software executed in a sensor nodeôs

processor. This, however, does not include the drivers utilized to interface with the

sensors or physical layer components such as the transceiver. Instead, App simulates the

algorithms necessary to implement the high-level functionality of the wireless sensor

network at large. Examples include the code necessary to detect and respond to elevated

temperatures in the case of a forest ýre application, or the algorithms necessary to

calculate speed and direction in an accelerometer based application.

77

As speciýed by Figure 13 (d) and (g), the App component implements two

interfaces: packet_receive_if and sensor_interrupt_if. The packet_receive_if interface

speciýes a ñreceiveò transaction that allows the application component to receive data

packets from elsewhere in the network. The application typically receives these packets

from the nodeôs networking components, which as explained in Section 3.4.3, are

responsible for controlling inter-node communication. Finally, the sensor_interrupt_if

interface speciýes an ñonSensorInterruptò transaction that allows a Sensor component to

interrupt the application in order to deliver a sensor reading asynchronously.

The App component additionally contains ports that allow it to initiate

transactions with other components ï again via interface deýnitions. The upper port

connects to an interface for transmitting packets (Figure 13(c)); the lower connects to an

interface for actively demanding sensor data or actuating the environment (Figure 13(f));

and the rightmost port connects to an interface for tracking power states (Figure 13(e)).

The provided models for the App component simulate high-level C/C++ algorithms using

an approximate-timed model in which operation delays are approximated using SystemC

wait statements. Under an approximate-timed model, these wait statements ï written as

wait(time, time unit) or wait(event) ï are utilized to instruct the simulation engine to halt

program execution until an event, such as the expiration of time, is triggered in order to

approximate delays inherent of a particular algorithm or calculation. However, di erent

levels of abstraction can be implemented in order to meet the goals of a particular

simulation. For example, a cycle-accurate instruction-set simulator that executes

assembly instructions can be implemented within the App component in order to model

78

performance, instruction delay, and energy consumption more accurately. However, a

low-level implementation such as this may be inadequate if simulation time and

scalability are primary concerns. In these situations, the aforementioned approximate-

timed model or an untimed model that only utilizes event counters to calculate the energy

consumed may be more suitable. Nonetheless, within the TLM implementation the

developer is free to specify the required level of abstraction with the assurance of system

compatibility as long as the custom application component implements the

aforementioned interfaces.

3.4.2 Sensor Component

The Sensor component models the functionality of a physical sensor within a sensor node.

Examples include light sensors, temperature sensors, or accelerometers. As shown in

Figure 13(f), the Sensor component must implement a sensor if interface that speciýes

ñReadò and ñActuateò transactions. The former allows other components, typically the

App, to read data values from the sensor, and the latter is used to actuate the environment.

Because the data returned to a physical processor consists of bits, the ñReadò transaction

adheres to this abstraction by returning unsigned integer values which the App component

must decipher according to the type of sensor being used.

The Sensor component additionally contains three ports that allow the sensor to

initiate transactions with other components. One port connects to a component

implementing the sensor_interrupt_if interface ï typically the App ï and allows the

sensor to interrupt its execution in order to deliver a new sensor value asynchronously.

Another port connects to the environment_if interface, described in Section 3.4.6, and

79

enables the sensor to interact with the environment. The last port connects to an interface

in the System Monitor component for tracking the sensorôs power states.

The provided models for the Sensor component are approximate-timed and

consequently use SystemC wait statements to simulate delays. In fact, both the ñActuateò

and ñReadò transactions block ï or delay the execution of ï the calling components with

these wait statements in order to more accurately simulate the time necessary for sensor

reading and communication. Again, the developer is free to modify or implement his or

her own Sensor component using the desired level of abstraction.

3.4.3 Network Stack and Subcomponents

The PhysicalLayer, MACLayer, and NetworkLayer components, collectively called the

Network Stack, implement the sensor nodeôs networking functionality. The

PhysicalLayer models the capabilities of wired or wireless transceivers and the

controlling circuitry, thus allowing the node to receive and transmit data in the form of

bits. The MACLayer component implements the medium-access control functionality

which, depending on the actual implementation, controls aspects such as when packets

are transmitted and the states of the transceiver. The NetworkLayer component

implements the high-level networking functionality, and depending on the speciýc

routing protocol employed, determines the appropriate recipients of transmitted packets

and whether a received packet should be retransmitted or given to the application

software for processing.

When a node ýrst receives a packet, the packet traverses the entire network stack

from the PhysicalLayer to the NetworkLayer before being delivered to the App

80

component. If the App needs to transmit a packet to another node, then this order is

reversed. The PhysicalLayer implements a physical_if interface that speciýes three

possible transactions. The ñTransmitPacketò transaction allows other components ï

typically the MACLayer ï to give the PhysicalLayer a packet for transmission, the

ñConýgureò transaction is used to change the its state or conýguration, and the

ñisChannelClearò transaction is utilized to determine if the transmission medium around

the sensor node is clear. These three transactions are typically utilized by the MACLayer

component. The PhysicalLayer additionally contains three ports. The upper port allows it

to send and receive packets from the transmission medium via a medium_if interface

(Figure 13(a)); the lower connects to a packet_receive_if interface and allows it to pass

along received packets to components such as the MACLayer (Figure 13(d)); and the

rightmost port connects to an interface in the System Monitor component for tracking

power states (Figure 13(e)).

The MACLayer component implements the packet_receive_if and packet_send_if

interfaces to enable components such as the PhysicalLayer to supply the MACLayer

component with received packets, and components such as the NetworkLayer component

to send packets meant for transmission. The NetworkLayer component similarly

implements the same packet_receive_if and packet_send_if interfaces. The MACLayer

component has two ports that are simply utilized to deliver packets to the PhysicalLayer

and NetworkLayer components. Similarly, the NetworkLayer ports are used to deliver

packets to the App and MACLayer components.

81

The provided models for the network stack components are also approximate-

timed. The ñTransmitPacketò transaction implemented by the PhysicalLayer and used by

the MACLayer is blocking and utilizes SystemC wait statements to model the

communication time between processor and transceiver.

We note that although all of the provided MACLayer and NetworkLayer

components ï see Section 3.5.2 ï are currently modeled as software routines running in

the sensor nodeôs processor, the user is free to develop custom components that are

modeled as hardware implementations or some mixture of software and hardware.

3.4.4 System Monitor Component

The SystemMonitor is a general monitoring component used to improve the accuracy of

simulation; however, it may also represent an actual software component used in

profiling and optimization efforts. It can be used to model a variety of node parameters

including the energy consumption of an individual sensor node. As illustrated in Figure

13(e), the System Monitor component implements a system_monitor_if interface that

specifies an ñUpdateStateò transaction that other components use in order to inform the

PowerTracker of component state changes. Based on these states, this component can

keep track of parameters such as the remaining battery energy or voltage. While the use

of this component is optional, the System Monitor component can provide developers

with deeper insight into the execution of the application and evaluation of platform

design choices. The provided model is presented in more detail in Section 3.5.3.

82

3.4.5 Transmission Medium Component

The TransmissionMedium component models the physical medium through which signals

propagate. After transmission, data packets traverse this physical medium as encoded

information in the form of electromagnetic radiation and are eventually received by a

sensor nodeôs PhysicalLayer as seen in Figure 13(a). The TransmissionMedium

component simulates aspects such as packet delay and signal degradation as information

propagates through the environment. However, in order to properly simulate this

degradation, this component must have access to information regarding each nodeôs

location. Thus, it is initialized with an array of objects containing identification and

location information for all sensor nodes.

The TransmissionMedium component, shown in Figure 13(a), implements a

single medium_if interface to which all sensor nodes in the network are connected via the

PhysicalLayerôs port. This interface specifies the ñTransmitò and ñListenò transactions.

The ñTransmitò transaction is utilized by a PhysicalLayer component when sending a

packet and the ñListenò transaction is similarly used by the PhysicalLayer when listening

for remote packets.

Because signal degradation and packet losses are of significant concern in the

realm of networking, a broad number of signal propagation models have been introduced

in literature. These include advanced models such as the Radio Irregularity Model [104],

the log-normal shadowing path loss model [107], as well as other simpler models that

discard packets based on probabilities or assume an ideal environment in which every

83

node can receive all packet transmissions without error. Our implementation of the log-

normal shadowing path loss model is introduced in Section 3.5.1.

3.4.6 Environment Component

The Environment component is analogous to the aforementioned TransmissionMedium

component, however, it instead models the physical medium through which sensed

phenomena originate and propagate. In a forest fire monitoring and tracking application,

for example, the sensed phenomena is temperature and the Environment component could

model the propagation of fire through the landscape and the conduction of heat to

individual nodes.

The Environment component, depicted in Figure 13 (b), implements an

environment_if interface which specifies ñSenseò and ñActuateò transactions. The

ñSenseò transaction allows individual Sensor components to sense the environment and

returns the appropriate reading typically based on the calling nodeôs position and sensor

type. The ñActuateò transaction allows sensors to actively influence and alter the

environment. In a greenhouse monitoring application, for example, a sensor detecting

elevated temperatures could actuate the environment by turning on misters to reduce the

ambient temperature.

 Because the correct environment implementation is strictly dependent on the type

of application, a wide variety of models ï such as the sound propagation environment

presented in Section 3.6.2 ï can be used. Some developers might choose to forgo

modeling the mathematical complexities of propagation and simply read values from a

file, and others may not have the need to use the Environment component.

84

3.5 Implementation and Verification of ATLeS-SN Components for Target Sensor

Platform

The component models included in ATLeS-SN were selected based on our survey of

WSN simulator literature and are highlighted in Figure 14. Although a variety of sensor

network platforms are available, the sensor node components within ATLeS-SN have

been configured to closely approximate IRIS motes [19] running the TinyOS operating

system. Specifically, the SystemMonitor component has been designed to simulate an

Figure 14: Overview of the simulator structure for the IRIS mote platform highlighting

the utilized component models in parenthesis.

85

IRIS moteôs energy consumption and the MAC component models the B-MAC protocol

developed for TinyOS. The App, Sensor, and Environment components were designed to

model the target acoustic ranging application discussed in Section 3.6. The remaining

components were selected from various other simulators and our implementations closely

approximate their original functionalities. The following sections highlight each of the

provided models.

3.5.1 Transmission Medium: Path Loss Lognormal Shadowing Model Implementation

The TransmissionMedium component models the physical medium through which signals

ï which encapsulate packets ï propagate before reaching their destination. Due to the

popularity of the Castalia simulator [14] and the maturity of their models, the

Transmission Medium component integrates the signal degradation and propagation

model found in Castalia. We note that this model assumes node locations are static and

Figure 15: StateChart detailing the interactions between concurrent super-states in the

Transmission Medium Component.

86

that nodes cannot be dynamically added to the network during runtime. However, the

simulatorôs extensibility certainly allows developers to add this functionality by

developing their own custom implementation of the Transmission Medium.

The functionality of our Path Loss Lognormal Shadowing model for wireless

transmission is illustrated by the StateChart shown in Figure 15. In accordance to

StateChart automata, dashed lines indicate parallel execution of concurrent states. Thus,

any component described by such a StateChart is simultaneously operating in all

concurrent super-states at once. Transitions between states occur upon the activation of

events, and these transitions may be guarded using conditional statements enclosed in

parenthesis. The timeout(event, delay) expression represents an event that is activated

when a specified time delay has elapsed after the occurrence of some event. Additionally,

the expression /x indicates the generation of event x upon transition. Importantly, this

method of mixed event-driven and time-based simulation is efficiently supported in

SystemC. We refer the interested reader to [34] for a more detailed description of

StateCharts.

This particular model has three concurrent super-states: the Listen State (L),

Transmit Signals State (TS), and Track Active Signals State (TAS). Although not

explicitly shown in Figure 15, a new instance of the TS super-state is launched whenever

a node utilizes its physical if port to transmit a new packet. When this event occurs, sub-

state E(Wait for Node Transmit) within the newly created TS super-state transitions to

sub-state F (Store Signal and Calculate Expiration Time), where the medium component

stores the incoming signal, calculates its expiration time ï or the amount of time the

87

signal will be in transmission ï and finally notifies other concurrent states that a new

signal has been received before returning to sub-state E.

Similar to the Castalia framework, the wireless signals used in our model have a

non-zero transmission time that is calculated based on the packetôs size and the

transmitting radioôs data rate. Consequentially, the TAS super-state is responsible for

keeping track of any active signals being transmitted and removes those that have

ñexpiredò in sub-state H (Remove Expired Signal).

The L super-state essentially models the functionality of the ñListenò transaction.

A new instance of the L super-state is launched whenever a node uses its medium_if port

to listen for wireless signals. When this occurs, the medium first checks the number of

currently active signals in sub-state B (Check # of Active Signals). If any active signals

are present, a transition to sub-state D (Return Active Signals to Node) occurs and the

medium delivers any signals the listening node has not yet received. Otherwise, if no

active signals are being transmitted, a transition to sub-state C (Wait for New Signal

Notification) occurs and the transmission medium component blocks the nodeôs

execution until a new signal has been received.

In order to determine which signals a particular node can receive, the medium

utilizes a signal propagation function to model the power loss of a signal as it propagates

a certain distance. If the signalôs power is calculated to be below a certain configurable

threshold upon reaching a receiving node, then the packet is simply not delivered. The

threshold utilized in the model is 10dB below the Transceiverôs sensitivity or noise floor,

and the propagation model is called the ñPath Loss Lognormal Shadowing Modelò [107].

88

The following equation, (15), is used to approximate the path loss ï or loss in

power ï of a signal as it propagates through a medium.

ὖὒὨ ὖὒὨ ρπϽ–ϽÌÏÇ
Ὠ

Ὠ
ὢ

(15)

ὖὒὨ is the path loss at distance Ὠ from its source, ὖὒὨ is a known path loss

value at a reference distance Ὠ, ɖ is the path loss exponent, and Xů is a Gaussian zero-

mean random variable with a standard deviation of ů. Using equation (15), a signalôs

strength after propagating a distance d can be calculated as shown in (16).

ὖὨ ὖ ὖὒὨ (16)

ὖὨ is the received signal strength at distance Ὠ, ὖ is the original transmitter output

power in decibels and ὖὒὨ is the path loss at a distance Ὠ. With these formulas, the

Figure 16: StateChart detailing the interactions between four concurrent super-states in the

Castalia Transceiver model for the PhysicalLayer Component.

89

medium component can determine if a node will receive a certain signal by comparing

the result of equation (16) with the predefined noise floor threshold.

3.5.2 Network Stack

The following sections within this chapter describe our implementations of several

existing networking protocols. The selected protocols are well-known and suitable for

WSNs. We emphasize that our goal is not to provide improved implementations of these

established protocols, but rather to demonstrate the versatility of our simulator by

showing examples of the types of protocols that can be developed for ATLeS-SN.

3.5.2.1 PhysicalLayer: Castalia Transceiver Model Implementation

We constructed the MACLayer and PhysicalLayer component models based on their

corresponding Castalia counterparts. As illustrated in Figure 16, our custom

implementation of Castaliaôs wireless transceiver model for the PhysicalLayer contains

four concurrent super-states: the Transmit State (T), the Listen for Commencing Signals

State (LCS), the Listen for Ending Signals State (LES) and the RSSI State (R). Together,

these concurrent super-states enable the transceiver to receive packets, transmit packets,

and check if the medium around the node is clear by using a received signal strength

indicator ï or RSSI.

The transceiver model is designed to continuously listen to the transmission

medium for the duration of the simulation, enabling the transceiver to accurately

calculate the signal-to-noise ratio and signal interference at all times. The reception of a

signal/packet is determined by calculating the number of bit errors that occurred during

its reception and checking if this number is less than the appropriate threshold given by

90

the packetôs encoding. The number of bit errors is a function of the incoming signalôs

signal-to-noise ratio (SNR), the modulation scheme, data rate and the length of the

packet. The interference of multiple signals is accounted by summing the signal strengths

of all interfering signals and calculating a new SNR. We refer the interested reader to the

Castalia Userôs Manual [14] for a more detailed explanation of signal reception.

 The LCS super-state shown in Figure 16 is responsible for detecting all incoming

signals by first calling the medium_if interfaceôs ñListenò transaction in sub-state A

(Begin Listening). This transaction will block the transceiverôs execution until the node

receives a signal. Once the medium delivers these signals, sub-state B (Process Signal)

will 1) discard new signals whose carrier frequency does not match the transceiver, 2)

mark those signals received while the transceiver is not in the RX state, 3) update the

interference and bit errors of all previously received signals due to the arrival of the new

ones, 4) calculate the interference and bit errors of the newly received signals, and 5)

calculate the total power ï or interference ï at the radio. Once this processing is

completed, the transceiver stores the remaining signals in sub-state C (Store Signals in

Buffer) and then returns to the initial state. We note that signals received while the

transceiver is not in the RX state are not immediately discarded, but are instead kept in

order to accurately calculate interferences and bit errors. Also, a single iteration of the

super-state (LSC) completes without consuming simulation time in order to process every

possible signal.

The LES super-state is analogous to the transmission mediumôs Active Signal

Tracking super-state. It is responsible for detecting when active signals meant for

