Journal of Agricultural and Resource Economics 41(1):42-61 ISSN 1068-5502
Copyright 2016 Western Agricultural Economics Association

Quantifying Adoption Intensity for
Weed-Resistance Management Practices
and Its Determinants among U.S. Soybean,
Corn, and Cotton Farmers

Fengxia Dong, Paul D. Mitchell, Terrance M. Hurley, and George B. Frisvold

Using data envelopment analysis with principal components, we calculate an adoption-intensity
index for herbicide-resistance best management practices (BMPs). Empirical results for over
1,100 farmers in twenty-two U.S. states suggest that many farmers could improve their herbicide-
resistance BMP adoption. Two-limit truncated regression results show that higher yields and a
greater proportion of acres planted with Roundup Ready® seeds motivate weed BMP adoption.
While soybean and corn farmers have lower adoption intensity than cotton farmers, farmer
educational attainment and greater concern for herbicide effectiveness and for human and
environmental safety are found to help increase the adoption of weed BMPs.
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Introduction

Glyphosate is currently the world’s most widely used herbicide (Baylis, 2000; Woodburn, 2000).
It is highly effective and provides control of a broad spectrum of weeds yet is also toxicologically
and environmentally relatively safe (Duke and Powles, 2008). A 2000 survey of Australian grain
farmers who were not using genetically engineered varieties found that they valued glyphosate
more highly than other herbicides (Llewellyn et al., 2002). In the United States, glyphosate use
is closely connected to adoption of Roundup Ready® (RR) crop varieties genetically engineered
to tolerate glyphosate applications. Besides convenience, flexibility, safety, and simplicity of weed
management, RR crops provide economic benefits to farmers by reducing herbicide expenditures
and increasing yield through improved weed control. These benefits have led to widespread adoption
of RR and other herbicide-tolerant crops since their U.S. commercial release in 1996 (Bonny, 2008;
Brookes and Barfoot, 2008). In 2013, herbicide-tolerant crops accounted for 93% of soybean planted
acres, 85% of corn planted acres, and 82% of cotton planted acres in the U.S. (U.S. Department of
Agriculture, National Agricultural Statistics Service, 2013), with the vast majority planted to RR
varieties.

This widespread use of glyphosate has been accompaned by the evolution and spread of
glyphosate-resistant weeds (Norsworthy et al., 2012), as herbicide resistance often develops in
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fields where herbicides with the same mode of action have been sprayed repeatedly. Since the first
glyphosate-resistant weed was reported in Victoria, Australia, in 1996, a total of thirty-one weed
species have evolved resistance to glyphosate worldwide, with eleven of these identified since 2010
(Heap, 2014). Fourteen weed species with glyphosate-resistant populations have been confirmed
in the United States since glyphosate-resistant rigid ryegrass (Lolium rigidum) was documented in
1998 (Heap, 2014). By 2012, glyphosate-resistant weeds had infested 25 million hectares of U.S.
cropland.!

The evolution and spread of glyphosate-resistant weeds may jeopardize the economic and
environmental benefits of herbicide-tolerant crops as farmers shift to more frequent tillage and
apply more toxic and/or more expensive herbicides (National Research Council, 2010; Price et al.,
2011). In response, weed scientists have developed several best management practices (BMPs) for
farmers to slow the evolution and spread of herbicide resistance (e.g., Norsworthy et al., 2012; Shaw,
2012). These BMPs generally increase diversity in weed-management systems and include practices
such as alternating herbicides with different modes of action and incorporating cultural (e.g.,
scouting), mechanical (e.g., tillage), and other non-herbicidal weed control practices (e.g., rotation
between RR and non-RR crops). However, because of the heterogeneity in the value of weed-
resistance management benefits and in adoption costs, farmers have varying degrees of adoption
of the various BMPs. For example, Frisvold, Hurley, and Mitchell (2009) find that U.S. farmers
are more likely to adopt BMPs with immediate benefits arising from controlled weed populations
and improved yield potential. Also, farmers experiencing resistance problems are inclined to adopt
BMPs when traditional means of control become less effective. Human capital requirements and
greater variability in agronomic and economic outcomes also influence BMP adoption (Frisvold,
Hurley, and Mitchell, 2009). Llewellyn et al. (2007) reach similar conclusions regarding integrated
weed-management practices in Australia.

Given the importance of herbicide-resistance BMPs, quantitatively identifying factors that
enhance adoption is critical for policy makers. However, measuring farmer adoption of multiple,
interrelated practices is recognized as a difficult methodological issue in weed and pest management
(e.g., McDonald and Glynn, 1994; Llewellyn et al., 2007). Various methods have been used to try
to evaluate farmer adoption of multiple practices and further identify factors associated with BMP
adoption in the context of pest management. Many of these studies have either analyzed adoption of
each practice separately or assigned a score to each farm based on the number of practices adopted.
For example, Hammond et al. (2006) and Frisvold, Hurley, and Mitchell (2009) used the total
number of practices adopted as a measure, and Llewellyn et al. (2007) considered farmers who adopt
three or more out of a possible six practices as adopters. As some BMPs may be correlated with each
other, such a measurement is not able to precisely evaluate a farm’s adoption intensity. Furthermore,
analyzing each practice separately is impractical when the number of BMPs is extensive.

An alternative method is to generate a composite index, which aggregates information on all
practices. An important issue when constructing composite indices is how to weight and aggregate
a set of variables measuring individual practice adoption. Many studies have assigned equal weights
to each variable, even though some practices are recognized to be of greater importance than others
and practices are highly correlated (Frisvold, Hurley, and Mitchell, 2009; Hammond et al., 2006).
Nardo et al. (2005) pointed out that applying equal weighting to all variables could result in an
unbalanced structure of the composite index. When variables are grouped into subgroups and further
aggregated into the composite index, applying equal weighting may imply an unequal weighting of
the subgroups as the subgroups with the larger number of variables will have higher weights. In
addition, aggregating variables with high degree of correlation using equal weights may bring an
element of double counting into the composite index (Nardo et al., 2005).

Some studies have assigned weights based on expert opinion, an approach that may be feasible
when there is a well-defined basis for a policy (Nardo et al., 2005). However, this method introduces

I See the recent editorial: “A Growing Problem” Nature 510:187 (doi:10.1038/510187a).
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social preferences regarding individual dimensions of sustainability that may affect the quality and
reliability of the analysis (Gomez-Limoén and Riesgo, 2009; Jollands, Lermit, and Patterson, 2004).
In addition, this method may cause serious cognitive stress to the experts who are asked to allocate
the weights to all variables if too many variables are involved (Nardo et al., 2005).

This study combines data envelopment analysis and principal component analysis to create
a composite index that endogenously solves for practice weights without resorting to exogenous
information or subjective preferences. The method can correct for overlapping information of
correlated variables, compare individuals under a common basis, and can be applied to large datasets
containing both discrete and continuous variables measuring practice adoption. Furthermore, we
use regression analysis to investigate factors affecting BMP adoption intensity. More specifically,
we analyze adoption of weed-resistance management BMPs among U.S. soybean, corn, and cotton
farmers, since the first commercially successful herbicide-tolerant varieties were developed for these
crops and have become popular among farmers.

Data

The data for this analysis are the same weed-resistance management BMP adoption data analyzed
by Frisvold, Hurley, and Mitchell (2009). Telephone interviews of U.S. farmers planting at least 250
acres of soybeans, corn, or cotton were conducted in November and December of 2007 in twenty-
two different U.S. states. The survey covered a representative random sample of soybean, corn, and
cotton farmers. The final data contain responses from 402 soybean farmers, 402 corn farmers, and
401 cotton farmers.

In terms of weed-resistance management BMPs, farmers were asked specifically for the adoption
of the following practices:

1. Scouting fields before herbicide applications;

2. Scouting fields after herbicide applications;

3. Starting with a clean field, using either a burndown herbicide application or tillage;
Controling weeds early when they are relatively small;

Controling weed escapes and prevent weeds from setting seeds;

AN AR

Cleaning equipment before moving from field to field to minimize spread of weed seed;
7. Using new commercial seed as free from weed seed as possible;

8. Using multiple herbicides with different modes of action;

9. Using tillage to supplement herbicide applications;

10. Using the recommended application rate from the herbicide label.

9 < 99 < 99 ¢,

Potential responses for how often each BMP was used were “always,” “often,” “sometimes,” “rarely,”
and “never.”

In addition to these BMPs analyzed by Frisvold, Hurley, and Mitchell (2009), three variables
were constructed for other important weed-management practices to include in this analysis.
Because rotation between RR crops and non-RR crops helps reduce the risk of glyphosate resistance,
the percentage of the area planted with RR varieties in 2007 following a non-RR crop planted in 2006
(%RRPostNonRR) was included as a BMP. In addition, the percentages of the total soybean-, corn-,
and cotton-planted area receiving pre-plant burndown herbicides (%Burndown) and pre-emergent

residual herbicides (%Residual) were also included as BMPs.
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Table 1. Statistical Description of the Weed-Resistance Management BMP Adoption Data for
Farmers Growing Soybeans, Corn, and Cotton (n = 1,143)

Frequency of Adoption (% of Respondents)

Practice Never Rarely Sometimes Often Always
Scout fields before herbicide application 2.4 2.7 11.4 26.5 57.0
Scout fields after herbicide application 1.5 24 15.0 29.7 51.5
Start with clean field, using burndown 7.3 4.7 12.8 14.6 60.6
herbicide application or tillage

Control weeds early when small 0.5 1.2 8.5 35.1 54.7
Control weed escapes and prevent weeds 1.8 3.9 15.2 34.0 45.0
from setting seeds

Clean equipment before moving between 31.5 22.6 20.4 10.8 14.8
fields

Use new commercial seed free from weed 1.7 0.7 32 6.9 87.5
seed

Use multiple herbicides with different modes 12.2 15.2 33.9 20.5 18.3
of action during season

Use tillage to supplement weed control 31.1 21.3 26.6 10.0 11.0
provided by herbicides

Use recommended application rate from 0.4 0.9 4.5 19.8 74.4
herbicide label

Variable Mean St. Dev. Min. Max.
Percent Roundup Ready area planted after a 32.8 41.4 0.0 100.0
non-Roundup Ready crop

Percent planted area treated with a burndown 36.4 43.9 0.0 100.0
herbicide application

Percent planted area treated with a residual 40.0 45.7 0.0 100.0

herbicide application

Table 1 summarizes farmer responses regarding adoption of these thirteen practices. Data for
379 soybean farmers, 377 corn farmers, and 387 cotton farmers remained after removing those
with incomplete or unusable responses. Responses of “never,” *
“always” were coded as 0, 1, 2, 3, and 4, respectively.

The three least-adopted practices were cleaning equipment before moving between fields, using
supplemental tillage, and using multiple herbicide modes of action. Variations exist among farmers
of different crops. Compared to soybean and corn farmers, relatively more cotton farmers always
scouted fields before and after an herbicide application, started with a clean field by using a
burndown herbicide application or tillage, and cleaned equipment before moving between fields
to minimize weed seed spread. Application of pre-plant burndown herbicides, which averaged 36%
among all farmers, was quite different for farmers of the three crops—cotton farmers applied pre-
plant burndown herbicides on 56% of their crop versus 35% for soybean and 18% for corn. On
average, 40% of total planted area was treated with pre-emergent residual herbicides for all farmers,
but soybean farmers treated a smaller percentage of their crop, 22%, compared to 51% for corn and
48% for cotton. Summaries of the thirteen practices for each group of crop farmers are listed in
appendix tables A1-A3.

ELINT3 ELINT3

rarely,” “sometimes,” “often,” and
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Analytical Methodology

Data envelopment analysis (DEA) has been widely used to create composite indices in a variety of
contexts, including measuring human development (Despotis, 2005), quality of life (Hashimoto and
Ishikawa, 1993), and farm sustainability (Reig-Martinez, Gémez-Limon, and Picazo-Tadeo, 2011;
Dong, Mitchell, and Colquhoun, 2015).

Two problems emerge, however, when applying DEA to BMP adoption data. First, adoption of
related BMPs is often highly correlated. For example, practices such as scouting for weeds after
an herbicide application and controlling weed escapes are commonly correlated. Correlation among
variables reduces the discrimination power of DEA and introduces bias (Nunamaker, 1985; Dyson
et al., 2001). Second, BMP adoption surveys commonly offer respondents categories to indicate the
degree of adoption, for example, asking how frequently a particular practice is used (e.g., always,
often, sometimes, rarely, never) or asking whether or not it is used (e.g., yes, no). The resulting
categorical measures of adoption create problems for DEA, such as nonconstant marginal effects
for practice adoption and illogical convex combinations of practices (Kolenikov and Angeles, 2009;
Rigdon and Ferguson, 1991; Banker and Morey, 1986).

To overcome these problems, we follow the approach of Dong, Mitchell, and Colquhoun (2015)
and use principal component analysis (PCA) before the DEA to transform the categorical adoption
variables into continuous variables and reduce the correlations among these variables. Because the
traditional PCA may generate negative principal components, which are problematic for the DEA,
we use polychoric non-negative PCA based on the polychoric correlation coefficient to ensure that
all the principal component weights are non-negative (Dong, Mitchell, and Colquhoun, 2015).

Polychoric Non-negative PCA

Let X € RV*K be the matrix of the original adoption data composed of variables with V rows and
K columns, where v =1 to V indexes the variables measuring practice adoption, k = 1 to K indexes
farmers, and each element x,; is the observation of variable v for farmer k. Divide each observation
x,x by each variable’s standard deviation G, to form the normalized data matrix X € RV*X with
elements ¥, = x,;/0,. Non-negative polychoric PCA solves for the weight matrix U € RY*! used
to calculate Y =UTX , where U >0 is the principal vectors constrained so that all elements are
positive and ¥ € R™*K is the matrix of the I <V principal components retained for subsequent
DEA. Each element of Y is y; = Z‘v/:l uyiXyk, where u,; € U is the weight for variable v for principal
component i, and i =1 to / <V indexes retained principal components. Non-negative polychoric
PCA ensures that each yj is continuous and non-negative and that all of the principal components
are uncorrelated with one another. Dong, Mitchell, and Colquhoun (2015) describe the optimization
process for finding the weight matrix U in more detail.

Data Envelopment Analysis with Common Weights

Following Dong, Mitchell, and Colquhoun (2015), we use the common-weight DEA approach,
originally proposed by Despotis (2005), because it has more discriminating power than basic DEA.
Common-weight DEA solves the following mathematical programming model:

Minimize h(dy, ;,z) =t % Yo di + (1 — 1)z
oy
subject to 87 — Y| @y =di, d >0, z— dy >0V k, 0; > €V i, 2>0.

For farmer k, d;, = SZ — le-: 1 W;yi 1s the deviation of the common-weight DEA adoption-intensity
score ):11'=1 ;yix from the basic DEA adoption-intensity score, Si; vir is the value of the ith principal
component for farmer k, and w; is the common weight for the ith principal component. The common
weight @; must be strictly positive (@; > €), where € is the infinitesimal. The deviation dj, must be
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non-negative (dy > 0) and cannot exceed z, the maximum deviation over all farmers (z — dy > 0),
which also must be non-negative (z > 0). Finally, the parameter 0 <7 < 1 determines the weight for
the average and maximum deviations in the objective function.

For this analysis, ¢ is varied from 0 to 1 with a step size of 0.01 and model (1) is solved, with
each value of 7 giving the adoption-intensity score Sy, = ):{:1 ;v for each farmer k. The final BMP
adoption-intensity score for each farmer k is then the average of these scores over all values of #:

1 d
(2) Sk=7 Y Su= Z Z O yik = Z O;Yit,
t=0

tOl

where T is the total number of different values used for ¢ (e.g., T = 101 with# =0 to 1 and a step size
of 0.01) and w; = %Z}:o w;; is the average weight for the ith principal component over all values
of ¢. In terms of interpretation, each farmer’s score 0 < S; < 1 is a measure indicating how intensely
farmer k has adopted the BMPs relative to the farmers in the group, with scores of 1.0 implying that
farmer £ is on the frontier (i.e., among those most intensely adopting the BMPs).

Substitute y;x = Y\, %,k and %,x = x,x/ 0, into equation (2):

Vv

\’
3) §k = Z Z 0) uvt/o_v Xvk = Z WyXyk,

v=1

where w, = ):ll-:lwiuw' /ov is the weight for each original variable, which depends on the PCA
weights, the DEA weights, and the standard deviation of the original variable. This expression for
w, indicates how changing adoption of a specific practice x,; changes a farmer’s adoption-intensity
score, holding adoption for all other practices for all other farmers constant.

This combined PCA-DEA approach provides a theoretical and empirical basis for deriving
endogenous weights for each practice, rather than some type of subjective weights for each practice.
Based on these weights, a composite index of BMP adoption intensity is calculated for each farmer.

Two-Limit Truncated Regression

To investigate exogenous factors affecting farmer BMP adoption-intensity scores, we use truncated
regression and bootstrapping techniques. The regression model is

N
) Sk="Bo+ Y. BuZu + e,
n=1

where Z, is the nth independent variable for farmer k, 3, is the coefficient to estimate for n =1
to N, and ¢; is the corresponding error term. The dependent variable Sy is the adoption-intensity
score and bounded between 0 and 1, so a two-limit truncated regression is used. Following Simar
and Wilson (2007), we use a bootstrap procedure with 1,000 replications to estimate bias-corrected
standard errors consistent with the data-generating process.

Table 2 summarizes the variables used as independent variables in the regression. Farmer
educational attainment (Education) and years of farming experience (Experience) capture the effects
of different types of human capital. In addition, variables for different measures of operation
characteristics were also used. The acres of the target crop planted (CropArea) is a measure of farm
size. Because herbicide-resistant weeds have potential long-term impacts on land productivity and
value, the percentage of land owned (%Own) is included in the regression. Similarly, the percentage
of herbicide applications made by custom applicators (%CustomApp) is included because custom
applicators potentially have access to broader information sets but also have different incentives.

The variation of county’s average yield for the previous ten years (YieldCV) measures the
geographic variation in systemic yield risk, and the percentage difference between a farmer’s
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Table 2. Statistical Description of Variables Used to Analyze Adoption-Intensity Scores

Variable Description Mean (St. Dev.)

Education Operator has college or advanced degree (Yes=1, No=0) 0.34
(0.48)

Experience Years managing farming operation 29.56
(12.15)

CropArea Acres of target crop plant in 2007 1425.51
(1,202.93)

%0wn % of operated land owned by farmer 41.00
(32.27)

% CustomApp % of herbicide applications made by custom applicator 28.67
(42.35)

YieldCV Coefficient of variation for county average yield 0.18
(0.09)

YieldDiff % tarm average yield deviates from county average 22.48
(51.26)

Livestock Raise commerecial livestock (Yes=1, No=0) 0.36
(0.48)

CropDiversity Herfindahl index of crop diversity 0.61
(0.22)

ValueRR Reported additional value ($US/acre) from planting RR crop in 2007 26.24
(33.29)

ResistanceConcern Mentioned concern with herbicide-resistant weeds (Yes=1, No=0) 0.51
(0.50)

%RR % of acres were planted in Roundup Ready 0.82
(0.34)

Soybeans Planting soybeans (1 if soybeans planted; O otherwise) 0.33
(0.47)

Corn Planting corn (1 if corn planted; O otherwise) 0.33
(0.47)

Cotton Planting cotton (1 if cotton planted; O otherwise) 0.34
(0.48)

reported expected yield and the county-average yield (YieldDiff) measures farm’s relative land
quality. A Herfindahl index (HHI) of each farm’s crop diversity (CropDiversity) and an indicator
variable for farm livestock production (Livestock) are included to reflect enterprise diversity. The
HHI ranges from 0.25 if the farmer splits crop land equally among corn, cotton, soybean, and
other crops and 1.0 if the farmer plants all crop land to a single crop. Crop indicator variables
(Soybeans, Corn, Cotton) were used to capture any crop-specific fixed effects. The ValueRR variable
is the additional value per hectare each farmer reported deriving from planting RR crops instead of
conventional crops. Because planting a RR crop may also affect weed BMP adoption, we include
the percentage of total acres planted to RR crops (%RR).

At the end of the telephone survey, respondents were asked an open-ended question about
their most important concerns regarding weed management. An indicator variable was constructed
from these responses to denote whether or not the farmer mentioned herbicide-resistant weeds:
ResistanceConcern equals 1 if the farmer mentioned resistance and 0 otherwise. The survey did not
mention or ask about herbicide resistance, so this response variable is unprompted. Finally, indicator
variables for the state where the farm is located were used to capture state-level fixed effects, with
farmers in Missouri used as the base for comparison. Table 3 summarizes the state data.
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Table 3. Statistical Description of State Indicator Variables Used to Analyze
Adoption-Intensity Scores

Variable  Description Mean (St. Dev.)
AL Alabama 0.022
(0.15)
AR Arkansas 0.041
(0.20)
GA Georgia 0.028
(0.17)
IL Illinois 0.120
(0.32)
IN Indiana 0.065
(0.25)
1A Iowa 0.121
(0.33)
KS Kansas 0.014
(0.12)
LAMS Louisiana or Mississippi 0.022
(0.15)
MN Minnesota 0.083
(0.28)
MO Missouri 0.062
(0.24)
NCSCVA  North Carolina, South Carolina or Virginia 0.030
(0.17)
NE Nebraska 0.065
(0.25)
ND North Dakota 0.020
(0.14)
OH Ohio 0.043
(0.20)
SD South Dakota 0.046
(0.21)
TN Tennessee 0.020
(0.14)
TXOK Texas or Oklahoma 0.175
(0.38)
Wi Wisconsin 0.020
(0.14)

Notes: Equals 1 if farmer operates in the indicated state(s) and O otherwise.

The survey also contained thirteen questions asking farmers about the importance of various
herbicide characteristics and concerns when selecting herbicides. Respondents were asked to rank
each characteristic or concern as “not at all important,” “not too important,” “neither important
nor unimportant,” “somewhat important,” or “very important” when selecting herbicides for weed
control in the three crops, with responses coded as 0, 1, 2, 3, and 4, respectively. Table 4
summarizes farmer responses to these thirteen questions. Because responses were highly correlated
and categorical, we used polychoric PCA to reduce data dimensions and to create variables for use in
the two-limit truncated regression. Based on an eigenvalue-one criterion, three principal components
were retained, which accounted for 58% of total variance. The first principal component is accounted

for by questions 9 to 13 and is associated with concern for human and environmental safety. The

ELINT3
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Table 4. Statistical Description of Variables Measuring Farmer Concerns When Choosing
Herbicides, Which Are Used to Analyze Adoption-Intensity Scores

Frequency (% of Respondents)

Neither
Concerns When Choosing Herbicides Not at All Not Too Important Somewhat Very
Important  Important nor Important  Important
Unimportant

1. Cost of herbicide application 0.27 0.8 1.42 30.22 67.29
2. Reducing yield loss due to weed 0 0 0.09 4.44 95.47
competition

3. Consistency of herbicide effectiveness 0 0 0 3.64 96.36
controlling weeds

4. Reducing number of herbicide 0.09 0.98 1.33 31.47 66.13
applications

5. Crop safety 0.09 0.36 0.09 7.64 91.82
6. Having a clean field 0 0.09 0.53 17.07 82.31
7. Time needed to apply the herbicide 0.71 2.4 3.38 43.64 49.87
8. Flexibility of application timing 0.09 0.44 0.53 34.04 64.89
9. Personal, family, and employee health 0.36 0.44 0.27 4.71 94.22
10. Public health 1.16 0.98 0.89 15.2 81.78
11. Effect of herbicide on wildlife 3.02 3.56 4.18 37.07 52.18
12. Effect of herbicide on water quality 1.24 2.04 1.33 19.56 75.82
13. Erosion control 2.4 3.56 2.67 24.27 67.11

second principal component is accounted for by questions 2 and 3 and is associated with concern for
effective weed control. The third is accounted for by questions 4 and 7 and is associated with concern
for managerial time. These three principal components are included as explanatory variables in the
regression of weed BMP adoption-intensity scores.

Results and Discussion
Weed BMP Adoption Intensities

We applied this PCA-DEA approach to the thirteen variables from the soybean, corn, and cotton
farmer survey summarized in table 1. We first conducted polychoric non-negative PCA on the
normalized weed BMP adoption data to reduce correlations among the adoption variables and to
convert categorical variables to be continuous. Because thirteen variables are not excessive for DEA,
the primary purpose of the PCA for this analysis is to remove correlations among variables and to
generate nondiscrete positive principal components. As a result, twelve principal components were
retained, accounting for 95% of the total variance in the original data. We next conducted common-
weight DEA for the twelve non-negative principal components by solving model (1) with ¢ ranging
from 0.00 to 1.00 with a step size of 0.01.

Table 5 lists the average and the minimum weed BMP adoption-intensity scores as well as scores
at the three quartiles. Across all farmers, the lowest adoption-intensity score is 0.450 and the average
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Table 5. Statistics Describing Weed BMP Adoption-Intensity Scores for Farmers Growing
Soybeans, Corn, and Cotton

Average 0.897
Standard Deviation 0.104
Minimum 0.450
25% Quartile 0.843
50% Quartile 0.926
75% Quartile 0.983

Table 6. Statistics Describing Weed BMP Adoption-Intensity Scores for Farmers Growing
Soybeans, Corn, and Cotton

Practice Final Weights
Scout fields before herbicide application 0.0121
Scout fields after herbicide application 0.0048
Start with clean field, using burndown herbicide application or tillage 0.0007
Control weeds early when small 0.0580
Control weed escapes and prevent weeds from setting seeds 0.0012
Clean equipment before moving between fields 0.0017
Use new commercial seed free from weed seed 0.0819
Use multiple herbicides with different modes of action during season 0.0002
Use tillage to supplement weed control provided by herbicides 0.0000
Use recommended application rate from herbicide label 0.0878
Percent Roundup Ready area planted following a non- Roundup Ready crop 0.0000
Percent planted area treated with a burndown herbicide application 0.0065
Percent planted area treated with a residual herbicide application 0.0000

is 0.897. In terms of quartiles, 25% of farmers had adoption-intensity scores exceeding 0.983,
half exceeding 0.926 and 75% exceeding 0.843. These results imply that most farmers performed
similarly in terms of adopting the weed-resistance management BMPs analyzed here, but there was
still potential for many farmers to improve. For example, 25% of farmers had adoption-intensity
scores of less than 0.843, suggesting that these farmers could increase their BMP adoption by at
least 15 percentage points relative to the best farmers who defined the DEA frontier.

Figure 1 presents the histogram of the adoption-intensity scores for all the farmers. Results
show that 41% of farmers had adoption-intensity scores exceeding 0.95, but 8% had BMP adoption-
intensity scores of less than 0.75. To show the dispersion of scores across crops, figure 2 separately
presents the BMP adoption scores for soybeans, corn, and cotton farmers. Compared to cotton
farmers, relatively more corn and soybean farmers were in the middle of the score distribution and
relatively fewer in the upper and lower tails. These results indicate that farmers were heterogeneous
in terms of adopting weed-management BMPs across and within crop groups, so that regression
analysis could potentially identify factors associated with this heterogeneity.

Table 6 reports the weight for each BMP as calculated by equation (3), indicating the importance
of each practice for farmer adoption-intensity scores. The weights in table 6 are endogenous and
depend on the practice adoption of all farmers, so that, conceptually, these weights would change if
a single farmer changed adoption of a practice. Thus, interpretation of these weights as marginal
effects—how much adoption of a practice contributes to the total score—depends on the practice
adoption of all other farmers. Therefore, the standard ceteris paribus qualification is somewhat
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different than in other types of analysis. To gain some sense of the impact, see Dong et al. (2015),
who explore how a small subset of farmers changing their practice adoption changes the scores of
the other farmers.

In table 6, using the recommended application rate on the herbicide label is the main practice
affecting the weed-resistance management practice adoption-intensity score, followed by using new
commercial seed as free from weed seed as possible. In terms of interpretation, these weights are
the increase in a farmer’s adoption-intensity score for increasing adoption of the practice by one
unit (e.g., switching from “often” to “always”). As table 1 shows, these two practices have the
greatest percentage of “always” being used by the surveyed farmers. As a result, the PCA-DEA
method gives them relatively large weights because they are the practices that help differentiate
the few farmers who do not use them from the majority of farmers. The weights also depend on
the standard deviations of practice adoption, so controlling weeds early when they are small also
receives a relatively large weight, since most farmers report using this practice “often” or “always.”
Finally, the percentage of the planted area treated with a burndown herbicide application also has
a relatively large weight. Specifically, a ten-percentage-point increase in the area treated with a
burndown herbicide would increase a farmer’s adoption-intensity score by 0.0650.

These weights also indicate the practices for which nonadoption has the largest negative impact
on a farmer’s adoption-intensity score. Farmers who do not use recommended herbicide application
rates, plant weed-free commercial seed, do not control weeds early when they are small, or do
not scout fields before herbicide application have the lowest adoption-intensity scores. Increasing
adoption of these practices among nonadopting farmers would have the largest positive impact on
the distribution of scores in figure 1, indicating good targets for outreach and/or incentive programs.

Determinants of BMP Adoption Intensity

Two-limit truncated regression results are summarized in table 7. Interestingly, regression results
find no significant effect on weed BMP adoption-intensity scores for several variables, such as the
percentage of operated land owned by the farmer (%Own), whether the farmer mentioned concern
about herbicide-resistant weeds (ResistanceConcern), and the farmer’s years of farming experience
(Experience). One possible reason for the insignificant effect for these variables may be that some of
the farmers are not aware of the herbicide-resistance BMPs and thus do not adopt them, suggesting
that educating farmers about herbicide-resistance BMPs is important.

The percentage difference between a farmer’s reported expected yield and the county’s average
yield (YieldDiff) is positively associated with weed BMP adoption, which is consistent with the
notion that farmers with better-quality land adopt more weed BMPs in an effort to preserve the
productivity of that land. The significant negative, though relatively small, effect for CropArea
conforms to the more intense time constraints faced by larger farms that preclude opportunities
for BMPs adoption since many BMPs require additional labor or management times. Farmer
education is positively associated with weed BMP adoption, possibly because they better understand
their importance or are better able to manage more complex production systems. In addition,
the proportion of RR acres (%RR) was positively associated with weed BMP adoption, which
is consistent with a linkage between RR crops and weed resistance to glyphosate and the idea
that farmers planting more RR seeds are more careful in weed-resistance management. Only one
state effect was significant, showing that, compared with farmers in Missouri, those in Texas and
Oklahoma had higher weed BMP adoption intensities. The negative effects for the corn and soybean
indicator variables in table 7 imply that corn and soybean farmers adopted weed BMPs at a lower
intensity relative to their peers growing cotton, with scores on average about 0.04 lower. Figure 2
shows the distribution of these score differences by crop to provide a more nuanced description.
The three curves are fairly similar, but there are more cotton farmers than corn and soybean farmers
among farmers with very high or very low scores. Farmers with scores in the middle, ranging from
0.75 to 0.95, show the reverse, with more corn and soybean farmers than cotton farmers in this range.
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Table 7. Bootstrapped Two-Limit Truncated Regression Results for Determinants of BMP
Adoption-Intensity Scores

Bias-Corrected 90% Confidence Interval

Coefficient Lower Bound Upper Bound
Intercept 0.4540 0.2839 0.6150
Education 0.0234* 0.0109 0.0343
Experience 0.0003 —0.0002 0.0008
CropArea —5.1 x 1076 -1.1x1073 —2.7 % 1078
%0wn 0.0057 —0.0106 0.0253
% CustomApp —2.3x107° —0.0002 0.0001
YieldCV —0.1025 —-0.2174 0.0085
YieldDiff 0.0002* 47 x 1074 0.0003
Livestock 0.0032 —0.0078 0.0142
CropDiversity —0.0354 —0.0731 0.0018
ValueRR —3.6 x 107 —0.0002 0.0002
ResistanceConcern 0.0072 —0.0022 0.0191
%RR 0.0395* 0.0122 0.0690
Soybeans —0.0443* —0.0740 —0.0141
Corn —0.0442* —0.0786 —0.0118
TXOK* —0.0530* —0.0855 —0.0214
Ist Principal Component® 0.0103* 0.0070 0.0135
2nd Principal Component® 0.0087* 0.0034 0.0138
3rd Principal Component® —0.0022 —0.0074 0.0025

Notes: Single asterisk (*) indicates significance at the 10% level.

2Only statistically significant state effects are listed.

bUsing variable numbers in table 6, the first principal component was accounted for by questions 9 to 13 and associated with concern for
human and environmental safety; the second by questions 2 and 3 and associated with concern for effective weed control; and the third by
questions 4 and 7 and associated with concern for managerial time.

In table 7, the results for the first principal component, associated with greater concern for
human health and environmental impacts when choosing herbicides, were positive and significant,
suggesting that concerns about the human and environmental health effects of herbicides are
positively associated with higher weed BMP adoption intensities. The second principal component,
associated with concern for effective weed control, also had a positive and significant effect,
implying that concerns about weed control effectiveness are also positively associated with weed
BMP adoption intensities, which would be consistent with attempts to preserve the longer-term
effectiveness of herbicides.

In summary, the results in table 7 show significant positive associations between the intensity
of adoption of weed-resistance management practices and above-average yields, proportion
of Roundup Ready® crop acres, education, less crop acreage, and concerns about herbicide
effectiveness and human and environmental health when choosing herbicides. Furthermore, cotton
farmers on average have higher adoption-intensity scores than corn and soybean farmers, but, as
figure 2 shows, this difference varies depending on the adoption-intensity score. Finally, we found
little evidence of significant difference among the states.

These results are also suggestive of the types of farmers to target in order to increase the
general level of adoption of weed-resistance management practices. Specific targets would be less
educated farmers with average to below-average yields who still plant a substantial portion of
non-Roundup Ready® seed as well as corn and soybean farmers (as opposed to cotton famers).
In addition, farmer concerns affect adoption behavior, and these concerns can be influenced by
outreach and advertising programs and thus have indirect effects on adoption of weed-resistance
management BMPs. Specifically, these results suggest that efforts to increase concern for the human
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and environmental health impacts of herbicides would help increase weed BMP adoption, as would
efforts to increase farmer interest in achieving or maintaining more effective weed control.

Comparisons and Conclusions

The emergence and spread of glyphosate-resistant weeds is jeopardizing the economic and
environmental benefits of herbicide-tolerant crops. Weed scientists have developed several best
management practices (BMPs) to slow the evolution and spread of herbicide-resistant weeds
(e.g., Norsworthy et al., 2012; Shaw, 2012), and increasing farmer adoption of weed-resistance
management BMPs is an important priority for several stakeholders. Identifying factors that enhance
BMP adoption is critical for developing effective policies, but measuring adoption of multiple,
interrelated practices is recognized as a difficult methodological issue in weed and pest management
(e.g., McDonald and Glynn, 1994; Llewellyn et al., 2007). Various methods have been used to
evaluate adoption of multiple practices and identify factors associated with their adoption in the
context of pest management. Here we introduce another method.

This study uses a common-weight DEA score to measure BMP adoption intensity, first using
non-negative principal component analysis to pre-process the adoption data to remove correlation.
Two-limit truncated regression is then used to identify the effect of exogenous factors on this score.
This method provides an alternative to more standard methods by endogenously solving for the
weights for each practice, in contrast to methods assigning equal or subjective weights. This method
not only ranks farms in terms of weed BMP adoption intensity and generates a composite index as a
score for each farm but also indicates the importance of each practice in determining this composite
score. An advantage of the method is the convenience of a single index measure of BMP adoption
intensity that integrates across multiple interrelated practices and can be analyzed using regression.
For some sense of the differences and other advantages of this method, we compare our results to
those of Frisvold, Hurley, and Mitchell (2009), who analyzed these same data.

Frisvold, Hurley, and Mitchell (2009) used a count-data regression to identify the factors
affecting the total number of weed resistance BMPs used “often” or “always.” The count-data model
implies equal weight for each practice and becomes unusable when there are continuous variables
among the data measuring BMP adoption. In contrast, our analysis used DEA to develop a composite
index of BMP adoption intensity using the full range of farmer responses (i.e., not just a binary
variable for using each practice often or always) and added three more practices measured with
continuous variables (the variables in the bottom portion of table 1).

Frisvold, Hurley, and Mitchell (2009) also conducted an ordered-probit regression to evaluate
effects of covariates on the adoption of each BMP individually (i.e., not a multivariate ordered-
probit). This method is practical when there are few practices, but with ten practices and fifteen
covariates, interpreting the 150 coefficients becomes difficult, even without the state effects for each
practice (see tables 5 and 6 in Frisvold, Hurley, and Mitchell, 2009). In contrast, the method used
here works on large datasets containing both discrete and continuous variables for BMP adoption
and is fairly intuitive to interpret.

Despite using slightly different sets of BMPs and different measures of BMP adoption,
some of the same variables had statistically significant effects with the same signs in both
analyses. Specifically, more educated farmers with above-average yields used more weed-resistance
management BMPs, as did cotton farmers compared to corn and soybean farmers. However, the
number of acres operated had opposite effects in the two studies (though the impact was quite
small in our results). On the other hand, the principal components we used for grower concern for
human and environmental health and for herbicide effectiveness both had positive and significant
impacts on BMP adoption intensity, but Frisvold, Hurley, and Mitchell (2009) did not include these
as covariates. Similarly, they found that having herbicide-resistant weeds in a farmer’s crop-reporting
district had a negative and significant effect on the number of BMPs adopted, but our analysis did
not use this covariate because of endogeneity concern.
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Our results suggest that the pertinent factors driving farmer adoption of weed-resistance
management practices include not only farmer and operation characteristics such as educational
attainment, the intensity of Roundup Ready® crop use, and average yield but also farmer attitudes
and concerns when choosing herbicides. More specifically, our results suggest that farmers with
below-average yields and below-average adoption rates of Roundup Ready® crops use fewer weed-
resistance management practices compared to cotton farmers. In addition, farmers with concerns
about herbicide resistance do not adopt BMPs, possibly because they do not know the BMPs. As a
result, educational outreach programs and/or incentive programs targeted at increasing farmer use
of weed-resistance management practices should focus more on farmers who do not know much
about BMPs and corn and soybean farmers with less education, below-average yields, and who
plant relatively smaller amounts of Roundup Ready® crops. Because farmer concerns also impact
behavior, outreach and promotion programs to increase farmer concern for the human health and
environmental impacts of herbicides and farmer interest in maintaining effective weed control would
help increase weed BMP adoption.

This analysis is based on a survey conducted in 2007; given the rapid spread of herbicide-
resistant weed since then, farmer awareness and concern about herbicide-resistant weeds and their
management practices have likely changed. Repeating this survey would likely find shifts in weed
BMP adoption, as well as more and different variables with significant effects on farmer weed
BMP adoption intensities. Such a study could prove particularly enlightening, especially if the same
farmers were surveyed a second time.

[Received November 2014, final revision received November 2015.]
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Appendix

Table A1. Statistical Description of the Weed-Resistance Management BMP Adoption Data
for Farmers Growing Soybeans (n = 379)

Frequency of Adoption (% of Respondents)

Practice Never Rarely Sometimes Often Always
Scout fields before herbicide application 1.1 1.6 10.3 31.7 55.4
Scout fields after herbicide application 1.3 29 14.5 32.5 48.8
Start with clean field, using burndown 9.8 5.5 12.9 15.3 56.5
herbicide application or tillage

Control weeds early when small 0.3 1.3 10.6 36.9 50.9
Control weed escapes and prevent weeds 2.4 3.7 14.0 31.7 48.3
from setting seeds

Clean equipment before moving between 34.8 26.1 18.5 10.0 10.6
fields

Use new commercial seed free from weed 1.1 0.3 1.9 5.5 91.3
seed

Use multiple herbicides with different modes 18.5 20.1 333 14.5 13.7
of action during season

Use tillage to supplement weed control 37.2 23.0 24.5 7.7 7.7
provided by herbicides

Use recommended application rate from 0.5 0.3 3.7 21.1 74.4
herbicide label

Variable Mean St. Dev. Min. Max.
Y%RRPostNonRR 51.0 43.6 0.0 100.0
YoBurndown 34.7 43.7 0.0 100.0

Y%oResidual 21.9 38.1 0.0 100.0
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Table A2. Statistical Description of the Weed-Resistance Management BMP Adoption Data
for Farmers Growing Corn (n =377)

Frequency of Adoption (% of Respondents)

Practice Never Rarely Sometimes Often Always
Scout fields before herbicide application 4.2 4.2 14.3 25.2 52.0
Scout fields after herbicide application 1.9 1.9 17.5 32.6 46.2
Start with clean field, using burndown 8.2 5.6 12.2 159 58.1
herbicide application or tillage

Control weeds early when small 1.1 1.9 7.7 32.9 56.5
Control weed escapes and prevent weeds 1.9 6.4 16.7 32.6 42.4
from setting seeds

Clean equipment before moving between 35.8 25.7 20.7 8.2 9.6
fields

Use new commercial seed free from weed 1.3 0.3 32 5.8 89.4
seed

Use multiple herbicides with different modes 6.6 12.2 31.6 27.3 22.3
of action during season

Use tillage to supplement weed control 30.0 22.3 25.7 10.1 11.9
provided by herbicides

Use recommended application rate from 0.8 0.8 5.6 20.7 72.2
herbicide label

Variable Mean St. Dev. Min. Max.
%RRPostNonRR 29.0 40.4 0.0 100.0
%Burndown 17.9 329 0.0 100.0

%Residual 50.6 45.0 0.0 100.0
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Table A3. Statistical Description of the Weed-Resistance Management BMP Adoption Data
for Farmers Growing Cotton (n = 387)

Frequency of Adoption (% of Respondents)

Practice Never Rarely Sometimes Often Always
Scout fields before herbicide application 2.1 2.3 9.6 22.7 63.3
Scout fields after herbicide application 1.3 2.3 12.9 24.0 59.4
Start with clean field, using burndown 3.9 3.1 13.2 12.7 67.2
herbicide application or tillage

Control weeds early when small 0.3 0.5 7.2 35.4 56.6
Control weed escapes and prevent weeds 1.3 1.8 15.0 37.7 44.2
from setting seeds

Clean equipment before moving between 24.0 16.0 22.0 14.0 24.0
fields

Use new commercial seed free from weed 2.6 1.6 4.7 9.3 81.9
seed

Use multiple herbicides with different modes 11.4 13.4 36.7 19.6 18.9
of action during season

Use tillage to supplement weed control 26.4 18.6 29.5 12.1 13.4
provided by herbicides

Use recommended application rate from 0.0 1.6 44 17.6 76.5
herbicide label

Variable Mean St. Dev. Min. Max.
9%RRPostNonRR 18.8 32.8 0.0 100.0
9YoBurndown 56.1 45.3 0.0 100.0

YoResidual 47.5 47.8 0.0 100.0
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