
PHYSICAL REVIEW A 95, 052507 (2017)

Potassium tune-out-wavelength measurement using atom interferometry
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The longest tune-out wavelength for potassium atoms, λzero = 768.9701(4) nm, was measured using an atom
interferometer with a large irradiance gradient supported in a multipass optical cavity. Systematic errors in λzero

measurements that arise from laser light, Doppler shifts, and the Earth’s rotation are described. The ratio of
oscillator strengths for the potassium D2 and D1 lines inferred from this λzero measurement is ρ = fD2/fD1 =
2.0066(11), and the ratio of line strengths is R = SD2/SD1 = 1.9977(11).
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Tune-out wavelengths (λzero) are associated with roots in the
dynamic polarizability spectrum of an atom. Light at a tune-out
wavelength therefore causes zero energy shift (no ac Stark
shift) for atoms in a particular state. Precise λzero measurements
[1–5] serve as a means to study several atomic properties
including lifetimes; oscillator strengths; oscillator strength
ratios; atomic scalar, vector, and tensor polarizabilities and
hyperpolarizabilities; the polarization of atomic core electrons;
core-valence electron correlations; and relativistic and QED
effects on atomic transition amplitudes [6–15]. Improved
knowledge of λzero values can also be important for several
experiments that use species-specific and state-specific optical
dipole potentials created with light near a tune-out wavelength
[16–23]. Tune-out wavelengths, also known as magic-zero
wavelengths, were mentioned in 2004 by Safronova et al.
[6]. They were introduced in more detail in 2007 by LeBlanc
and Thywissen [16], and more precise calculations of several
λzero were presented in 2011 by Arora et al. [7]. The most
accurate measurements of tune-out wavelengths to date have
used atom diffraction [1,5], atom interferometry [2,3], and
studies of trapped atom dynamics [4].

Here we present an improved measurement of the longest
tune-out wavelength for potassium, λzero = (786 970.14 ±
0.41) pm. We describe how we made this measurement using
a multipass optical cavity to recycle light shining on an atom
interferometer. Then we discuss methods we used to reduce
errors and estimate systematic uncertainties. We interpret this
measurement in terms of the ratio of line strengths,

R = SD2

SD1
= |〈4s‖D‖4p3/2〉|2

|〈4s‖D‖4p1/2〉|2 = 1.9977(11), (1)

and the ratio of oscillator strengths,

ρ = fD2

fD1
= R

(
ωD2

ωD1

)
= 2.0066(11), (2)

for the D1 and D2 lines in potassium associated with the
4s-4p1/2 and 4s-4p3/2 transitions. We discuss the impact of
this measurement on our knowledge of the 4p1/2 and 4p3/2

state lifetimes.
To measure λzero we applied an irradiance gradient on

the paths of a three-nanograting Mach-Zehnder atom beam
interferometer [24–26] as shown in Fig. 1. Then we report the

root in the light-induced phase-shift spectrum,

φ(ω) = α(ω)

2ch̄εov

∫
s

d

dx
I (x,y; ω) dy, (3)

where ω = 2πc/λ is the laser frequency, v is the atom beam
velocity, s is the atom wave-packet separation, and dI/dx is
the irradiance gradient. Figure 1 shows the coordinate axes.

I. MULTIPASS CAVITY ENHANCEMENT

To improve the precision of λzero measurements we built an
optical cavity that increases the line integral of the irradiance
gradient

∫
dI
dx

dy. We used an optical fiber to guide light directly
into the vacuum chamber and to launch a laser beam into a
multipass optical cavity (MPC). The MPC is made of two
plane mirrors separated by 	 = 1 cm. The mirrors surround
the atom beam as sketched in Fig. 1 so atoms interact with
approximately 40 passes of the laser beam. This is not a stable
resonator (the laser spots walk and grow without bound), so
we refer to it as a multipass cavity (MPC).

To quantify the benefit of the MPC we first discuss the phase
shift φsingle caused by a single laser beam propagating in ẑ with
an irradiance profile I = [2P/(πw2)] exp[−2(x2 + y2)/w2],
where P is the power and w is the beam width (radius at
e−2 irradiance). From Eq. (3), the phase φsingle ∝ ∫

dI
dx

dy =
[8Px/(

√
2πw3)] exp[−2x2/w2] is maximized when the laser

beam center is offset from the atom beam paths by x = w/2.
Then, with that optimized alignment, φsingle ∝ | ∫ dI

dx
dy|

max
=

(8/eπ )−1/2(P/w2). Because the laser beam width is large
compared to the s = 20 μm separation of the atom interferom-
eter paths (w � s), we neglect higher-order derivatives, e.g.,
d2

dx2

∫
I dy. We find the maximum phase shift due to a single

pass of a laser beam is

φsingle =
(

2

eπ

)−1/2
α(ω)s

ch̄εov

P

w2
. (4)

Since φsingle is proportional to P/w2, we are motivated to
use a smaller waist to get a bigger signal. However, the 60-μm
thickness of the atom beam sets a constraint on the minimum
waist w. If the laser beam is smaller than this, it tends to reduce
the ensemble- averaged light-induced phase shift and contrast.
Therefore, we chose w ≈ 60 μm to produce a more uniform
irradiance gradient across all of the atom beam paths.
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FIG. 1. (a) Top-view schematic of atom interferometer paths
passing through a multipass optical optical cavity. (b) Side-view
schematic of the plane-plane optical multipass cavity aligned so atoms
interact with multiple passes of the laser beam. The deviation from
parallel is exaggerated to show how the laser beam folds back at
different angles.

Fully separated interferometer paths would enable us to
apply light on one path while leaving the other path through
the interferometer completely in the dark, as demonstrated in
[3]. This would cause a phase φ1 = α(ω)/(2ch̄εov)

∫
I (ω) dy

that is larger than the gradient-induced phase shift in Eq. (4) by
the ratio φ1/φsingle = (

√
e/2)(w/s). However, producing such

well-separated atom beam paths requires improved collimation
and/or larger diffraction angles, both of which reduce the
atomic flux in our apparatus. An alternative method to increase
φ without reducing atomic flux is to use more laser power or
recycle the laser light.

That is why we constructed a MPC to recycle light and thus
increase light-induced phase shifts. Because the MPC sketched
in Fig. 1(b) is built with two plane mirrors, the laser beam
diameter eventually grows as the laser propagates in the MPC.
Therefore, one might expect that there is a tradeoff between a
small waist or a long Raleigh range, but this is not the case.
Even though a smaller waist causes a larger signal for a single
pass of the laser beam, a long Raleigh range makes several
passes contribute significantly to φ. These factors compensate
as shown with Eqs. (5) and (6).

The MPC enhances the signal by the factor

φmulti

φsingle
= w2

0

∑
n

R′n

[w′(z′)]2
, (5)

where R′ is the reflectivity of the mirrors and w′(z′) = w′
0[1 +

(z′/z′
R)2]1/2 is the laser beam width. z′ = n	 after n reflections

in the plane-plane cavity where 	 is the separation between the
two mirrors, and n = 0 corresponds to the laser beam waist
location. The Raleigh range is z′

R = πw′2
0 /λ. We use primes

(w′, z′, and R′) to indicate quantities for the laser beam in the
MPC.
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FIG. 2. Enhanced slope for phase vs wavelength data due to
multipass cavity. The slope for φmulti is dφ/dλ = 1.9 mrad/pm with
v = 2900 m/s atoms (solid line and solid circles). A smaller slope
of 0.76 mrad/pm was observed for a single-pass experiment (φsingle)
with v = 1600 m/s atoms (dashed line and open circles).

For comparison, w0 is the waist in a single-pass experiment.
For high-reflectivity mirrors (R ≈ 1) and z′

R � 	, we approx-
imate the sum in Eq. (5) with the integral

∫
[w′(z′)]−2 dz′/	 to

find the enhancement factor:

φmulti

φsingle
= π

(
w0

w′
0

)2(
z′

R

	

)
= π2 w2

0

λ	
. (6)

The last form shows that the enhancement is independent of w′
0

and z′
R. For our experiments with w0 = 60 μm, λ = 769 nm,

and 	 = 1.0 cm, Eq. (6) yields a calculated enhancement
of ℵ = 4.6. With reflectivity R′ = 99.7%, Eq. (5) predicts
ℵ = 4.0.

We experimentally verified that our MPC increased the
signal slope as shown in Fig. 2. With the MPC, the slope of
dφ/dλ = 1.9 mrad/pm with 2900 m/s potassium atoms was
significantly larger than the slope dφ/dλ = 0.76 mrad/pm that
we observed with a single pass of the laser beam. This was
true even though we had used slower (1600 m/s) potassium
atoms for the single-pass experiments. For a more direct
comparison, because the signal slope depends on v−2 we
predict that a single-pass experiment with 2900 m/s potassium
atoms in our experiment would have an even smaller slope
of 0.23 mrad/pm. This predicted single-pass slope is 8.2
times smaller than the slope we observed with the MPC. This
validates that the MPC is serving its purpose. The data with the
MPC used for the tune-out wavelength measurement presented
here were obtained over 9 days with an average signal slope
of 2.1 mrad/pm and an rms distribution of 0.5 mrad/pm.

Our experiment also benefited from improved mechanical
stability associated with the MPC and with bringing the
laser into the atom interferometer vacuum chamber via an
optical fiber. Repeated measurements of λzero demonstrated
less scatter than we had in [2] by factor of 6. The MPC
improved our statistical precision for λzero measurements from
1.4 pm in [2] to 0.3 pm in the present work. In each case we
quote a 2σ statistical uncertainty (where σ is the standard
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error of the mean [27]), and both [2] and this measurement
used approximately 30 h of data.

Another example of an optical cavity to enhance irradi-
ance on an atom interferometer was described by Hamilton
et al. [28], who used intracavity light to make an atom
interferometer. In comparison, we only used a cavity as an
interaction region. Yet, similar to Hamilton et al., we benefit
from increased light-atom interactions intracavity. In principle,
a resonant cavity with curved mirrors can further increase
irradiance and maintain smaller beam waists in a cavity mode,
both factors which would increase dφ/dλ. Resonant cavities
can also serve as a spectral filter, which can be both beneficial
and detrimental as we discuss in the section on tuning out
broadband light (Sec. IV).

II. CHOICE OF ATOM VELOCITY

Experimentally, we found it more favorable to work with
velocities of 2900 m/s as compared to 1600 m/s. So, here
we discuss reasons why there may be an optimum atom
beam velocity for λzero measurements with our apparatus. The
velocity of the atoms has an effect on the signal-to-noise
ratio for two reasons. First, slower atoms receive larger
light-induced phase shifts because the signal φ is proportional
to v−2. This is because the interaction time is proportional to
1/v, and the separation, s in Eq. (3), depends on the de Broglie
wavelength λdB = h/mv. However, slower atom beams also
have much lower atom count rates (N ∝ v3) and therefore
worse statistical precision (shot noise) in phase described by
δφ = (C

√
N )−1. Thus, the shot noise limited signal-to-noise

ratio is

RS/N = φ

δφ
∝ C√

v
(7)

This naïve estimate shows that higher signal-to-noise ratios
would be obtained with velocity as low as possible. However,
this assumed zero detector background noise and zero drifts in
the laser wavelength, laser power, laser beam alignment, and
atom fringe reference phase over time.

If we consider a more realistic model with a flux-
independent background (average) atom count rate due to
detector noise, then we find there is an optimum atom beam
velocity. If the observed counts N = N0 + B are the sum of
N0 detected atoms and B background counts, this increases
the fluctuations in counts and reduces contrast so

C = C0
N0

N0 + B
, (8)

where C0 is the contrast that would be observed if B = 0. Then

δφ = 1

C
√

N
=

√
N0 + B

C0N0
(9)

and

RS/N = φ

δφ
∝ v−2C0N0√

N0 + B
. (10)

Now let N0 = kv3, where k = 100B/(3 km/s)3 is typical.
This means that the background B is about 1% of the count
rate that we observe with 3 km/s atom beams. Then we find

FIG. 3. Decoherence spectroscopy data (solid red circles) show-
ing contrast vs laser wavelength. Theoretical curves are shown in
solid blue for no Doppler shift and dashed blue for a −0.21-pm
Doppler shift. The best-fit model indicates that a +0.21-pm shift
should be added to our λzero measurements due to Doppler shifts in
the MPC [29].

the velocity that maximizes RS/N is

v =
(

2B

k

)1/3

= 814 m/s. (11)

This model of signal to noise identifies a nonzero optimum
velocity. Additional phase noise due to drifts in alignment
will make the optimum velocity even higher. This is because
faster atoms provide higher flux, and this enables us to operate
experiments faster and thus control for drifts better. Hence, our
selection of 2–3 km/s atoms may be close to optimal.

III. DECOHERENCE SPECTROSCOPY

The MPC causes a set of Doppler shifts. As indicated in
Fig. 1 we do not have a simple crossed-beam experiment.
Instead there are many laser beams crossing at different angles
relative to the atom beam.

To measure the range of Doppler shifts in our multipass
cavity we developed decoherence spectroscopy [29]. This
technique uses quantum decoherence due to photon scattering
to cause laser-wavelength-dependent contrast loss.

For decoherence spectroscopy we used the same experi-
mental laser beam and atom beam geometry as we did for
λzero measurements, but the laser wavelength is tuned near
resonance (across the D2 line). The laser power is also
attenuated by several orders of magnitude to reduce power
broadening. Then, we monitor the atom interference fringe
contrast as a function of laser wavelength as shown in Fig. 3.

A model decoherence spectrum shown as a dotted blue line
in Fig. 3 makes the best fit to the decoherence data. The theory
used for the fits to the data is explained in [29]. The measured
contrast spectrum is shifted by (−0.21 ± 0.10) pm from the
theoretical prediction. Therefore, we apply a (+0.21 ± 0.10)
pm correction to our λzero measurement. This correction
accounts for the net Doppler shift in our experiment and for
any systematic errors of the Bristol 621B wavemeter that we
use to measure the laser wavelength.
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FIG. 4. Power spectrum output from our tapered amplifier. The
broadband spectrum (open blue circles) was observed with 1000 times
more acquisition time while using a dark fringe from an etalon to
suppress the monochromatic component of the spectrum, as described
in this paper. A spectrum with the monochromatic light tuned to a
bright fringe of the etalon is shown with solid red circles.

IV. TUNING OUT BROADBAND LIGHT

Broadband light from a tapered amplifier (TA) laser can
cause errors in λzero measurements. Therefore, we measured
the spectrum of broadband emission of our TA and controlled
it in order to minimize systematic errors in λzero.

For more background, as discussed by Bolpasi and von
Klitzing [30], there are several categories of atomic physics
experiments for which broadband light causes problems such
as heating, decoherence, or background signals. There are also
some types of experiments such as fluorescence spectroscopy
and magneto-optical trapping that are not adversely affected
by a small amount of off-mode light. However, in experiments
to measure λzero, broadband light near a resonance can add
significant light-induced phase shifts.

To minimize broadband light we saturate the TA [31] with
20 mW of light from an external cavity diode laser [32] after
an optical isolator, and spatially filter the 1.2-W TA output by
focusing it into a single-mode optical fiber [33] after another
optical isolator. The fiber brings 200 mW of light into the
multipass cavity in vacuum.

To measure the broadband spectrum shown in Fig. 4, we
used a grating spectrometer [34] in conjunction with a thin
(1-mm) glass etalon, which increases the effective dynamic
range of the spectrometer. A dark fringe and bright fringe are
used alternately to suppress or transmit the monochromatic
component of the laser. A dark fringe in reflection from the
etalon suppresses the monochromatic component of the laser
by a factor of 1000, whereas the broadband light spectrum
is spread over many etalon fringes. Etalon fringes are not
resolved in Fig. 4 since the 0.2-nm (100-GHz) free spectral
range of the etalon is five times smaller than the 1-nm
resolution of the grating spectrometer. Thus, the power of
the broadband light spectrum is two times larger than what is
measured and we make a correction for this effect. Suppressing
the monochromatic light increased the dynamic range of
our spectrometer system sufficiently for us to measure the
broadband spectrum when the TA was seeded. For comparison,

the unseeded TA light has about three times more power and a
1–2-nm bluer broadband spectrum (not shown). We observed
the broadband spectrum shown in Fig. 4 using a 1-s acquisition
time. We measured the relative power in the monochromatic
peak using a maximum in reflection from the etalon (a bright
fringe) and reducing the spectrometer acquisition time to 1 ms.
The asymmetric spectral peak reported for the monochromatic
light in Fig. 4 is due to the spectrometer’s response, as we
verified using a monochromatic HeNe laser.

Scanning the seed laser wavelength by 1 nm causes no
observed changes in the broadband spectrum of the laser. This
is important because to measure φ(λ) we scan the wavelength
of the seed laser on either side of λzero as shown in Fig. 2.
Also of note, the peak wavelength of the broadband spectral
component depends on the temperature of the TA’s water-
cooled mount. With this, we can minimize shifts in φ(λ) caused
by broadband light by adjusting the TA temperature.

To model how broadband light affects our λzero measure-
ment, we write the TA output spectrum as a monochromatic
component plus a broadband component:

Plaser(λ) = Pmono(λ) + Pbroad(λ). (12)

A delta-function spectrum describes the amplified monochro-
matic laser light, Pmono(λ) = PMδ(λ − λM), where PM is
the power of the monochromatic component and λM is the
wavelength of the monochromatic component. A Gaussian
distribution describes the broadband component, Pbroad(λ) =
PBB(σBB

√
2π )−1 exp[−(λ − λBB)2/(2σ 2

BB)], where PBB is the
power of the broadband component, λBB is the peak wave-
length of the broadband distribution, and σBB is the rms width
of the Gaussian broadband distribution. This representation
leads to a two-component model of the phase shift

φtotal(λM) = φ(λM) + φBB, (13)

where φ(λM) is given by Eq. (3) with ω = 2πc/λM, and the
phase shift due to the broadband radiation from the seeded
TA is

φBB = 1

2εoch̄v

∫ ∫
s α(ω)

dIbroad(ω; x,y)

dx
dy dω (14)

with the spectrum of Ibroad(ω; x,y) found from the measured
Pbroad(λ). Then the shift in measured λzero caused by φBB is

δλzero = φBB

(
dφ

dλ

)−1

. (15)

As shown in Fig. 5, the shift δλzero is an antisymmetric function
of λBB. Therefore, we can tune the broadband spectrum to
make δλzero = 0.

If the spectral width of the broadband radiation is larger
than the fine structure splitting, σBB > �λFS, then a peak
wavelength λBB near

λBB,zero ≈ λD2 + fD1

fD1 + fD2
�λFS (16)

can null φBB and thus minimize error in λzero. This λBB,zero is
the peak wavelength for a broadband spectral component that
causes zero phase shift. So we call λBB,zero the broadband
tune-out wavelength. Here, the fine structure splitting is
denoted by �λFS ≡ λD1 − λD2, and for K, �λFS = 3.4 nm.
To derive Eq. (16) we express dynamic polarizability as a
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(b)

(a)

FIG. 5. Error in λzero due to broadband light. (a) Spectra of α(ω)
and Pbroad vs wavelength used in Eq. (14) to calculate φBB. Two
different Pbroad spectra indicate how temperature-tuning the tapered
amplifier laser adjusts the peak wavelength λBB of the broadband
light. Pbroad and α(ω) are scaled in order to be viewed conveniently
on the same graph. (b) Resulting error (δλzero) as a function of the
broadband peak wavelength λBB.

sum over states with just the D1 and D2 excitations, we
ignore αr in Eq. (17), and we make the near-resonance
approximation that ω2

D1 − ω2 ≈ 2ω(ωD1 − ω). Hence λBB,zero

is approximate, but it is significantly different than λzero.
For alkali-metal atoms with an oscillator strength ratio [see
Eq. (2)] of ρ ≈ 2 we find the broadband tune-out wavelength
is approximately λBB,zero = λD2 + (1/3)�λFS, whereas the
tune-out wavelength for monochromatic light is approximately
λzero = λD2 + (2/3)�λFS. For narrower broadband spectra
(so the inequality σBB > λFS is no longer satisfied) the
peak wavelength that minimizes φBB will shift from λBB,zero

towards λzero.
We controlled λBBpeak by adjusting the temperature of the

tapered amplifier mount (to 14 ◦C) with the goal of making
λBB = λBB,zero. We used the spectrometer and etalon system
to measure λBB = 767.5(3) nm, and σBB = 5(1) nm, and
PM/PBB = 370(40). With these data we used Eqs. (14) and
(15) to infer that broadband light caused a systematic error
of −0.08(8) pm for our tune-out-wavelength measurement.
Therefore, we applied a correction of +0.08(8) pm before we
presented our final result for λzero. This correction and the
uncertainty in this correction are smaller than the statistical
precision of our λzero measurement.

V. MINIMIZING ERRORS DUE TO EARTH’S ROTATION

In [22], we reported large (±200 pm) systematic shifts
in measured tune-out wavelengths, λzero,lab, due to the
Earth’s rotation rate, E , and elliptically polarized light.
Such errors stem from balancing the Coriolis force with
atomic-spin-dependent forces that are caused by light near

FIG. 6. λzero measurement as a function of optical polarization
and magnetic field orientation. Data with circularly polarized laser
light are from [22] and were taken with v ≈ 1600 m/s atom beams.
Data with linearly polarized light were take with v ≈ 2900 m/s atom
beams. Open red squares show measurements with the laser beam
on the right side of the interferometer and solid blue circles show
measurements on the left side.

a tune-out wavelength. In [22] we demonstrated that λzero,lab is
more sensitive to E when we use circularly polarized light,
magnetic fields parallel to the light propagation (along ẑ),
and atom beams with broad velocity distributions. For the
λzero measurement reported here we reduced the sensitivity to
E by using linearly polarized light, a transverse magnetic
field (along x̂), and a narrow atom beam velocity distribution.
To create those conditions in the laboratory we installed a
polarizer immediately prior to the MPC inside the vacuum
system, we applied a 10-G transverse magnetic field with
coils outside vacuum, and we used a 50-μm-diam nozzle for
the supersonic beam jet to obtain an rms velocity spread of
σv = v0/16, where v0 = 2.9 km/s is the most probable atomic
velocity in the beam.

To monitor systematic errors due to E we measured how
the root λzero,lab depends on the sign of the irradiance gradient.
Alternately illuminating the left and right sides of the atom
interferometer reverses the sign of the atomic spin states (mF

numbers) that participate in phase echoes [22]. This changes
the sign for the error (λzero,lab − λzero). Figure 6 summarizes
how the difference λ

right
zero,lab − λleft

zero,lab was reduced by using
linearly polarized light and the transverse magnetic field. We
attribute the remaining difference to smaller but still nonzero
spin-dependent forces that change with the irradiance gradient.
Therefore, as suggested by Trubko et al. [22] we report the
average 1

2 (λright
zero,lab + λleft

zero,lab) for our measurement of λzero,
as shown in Fig. 7. We estimate an additional systematic
uncertainty of (λright

zero,lab − λleft
zero,lab)/10 = 0.26 pm associated

with this averaging procedure. This uncertainty accounts for
the fact that the magnitude and uniformity of the irradiance
gradient, and hence the size of the systematic shift, can be
slightly different when we reverse the sign of the irradiance
gradient by moving the MPC from left to right.

VI. RESULTS

Here we summarize the data acquisition, analysis, and error
budget. Data in Fig. 8 were acquired with light chopped on or
off in between every file. Each file index (point) represents 5 s
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FIG. 7. Determination of λzero from the average 1
2 (λright

zero,lab +
λleft

zero,lab). Only statistical error bars of two times the standard error
of the mean are shown. Systematic corrections total 0.3 pm, and
systematic uncertainties totaling 0.3 pm are later added before a final
result is presented for λzero.

of data. The wavelength of light was automatically switched
every 125 s, and the laser wavelength was measured with
a Bristol Instruments 621B wavemeter and recorded four
times per second. Files with laser wavelength changes greater
than 0.1 pm were ignored. The light-off data were used to
remove the (∼6 rad/h) phase drift. Twenty minutes of data
from a series of 220 files shown in Fig. 8(a) were used to

FIG. 8. (a) Phase data for the laser shining on the right path of
the interferometer. Each file contains 5 s of data. Laser light from
the tapered amplifier was chopped on or off in between every file.
Light-on data are shown in solid red circles; light-off data are shown
in open black circles. After 24 files the seed laser wavelength was
automatically changed. (b) Phase data from (a) vs laser wavelength.
Corrections for the net Doppler shift and broadband laser light have
not been applied to the shown data in (a) and (b).

TABLE I. Error budget for the λzero measurement. Statistical and
systematic uncertainties added in quadrature combine to make the
total uncertainty of 0.4 pm. Corrections due to known systematic
shifts are also shown. The left and/or right shift refers to the error from
the difference in λzero measurements when the irradiance gradient is
greater on either the left or right arms of the atom interferometer,
as shown in Figs. 6 and 7. The left and/or right shift depends on
the optical polarization, the magnetic field orientation, the Earth’s
rotation rate, and the atom beam velocity distribution, as described in
this paper and in [22].

Source of error Correction (pm) Uncertainty (pm)

2× Standard error 0.29
of the mean
Doppler shift +0.21 0.10
Broadband light +0.08 0.08
Left and/or right shift 0.26
Total +0.29 0.41

make φ(λ) spectra shown in Fig. 8(b). We obtain a λzero

measurement from this spectrum by finding the root of a φ(λ)
fit. The fitting procedure uses χ -squared minimization and a
theoretical spectrum given by Eq. (3), where φ(ω) is simplified
to φ(ω) = bα(ω) and α(ω) is shown in Eqs. (17) and (18). R

and b are the free parameters. This analysis is further described
in [2]. Ninety-one data sets similar to Fig. 8, some longer in
duration than others, representing over 30 h of data in total,
were compiled on a total of 9 different days to make 91 separate
λzero measurements.

We compared results using the mean of all the data, the
trimmed mean using the central 80% of the data, the weighted
average using error bars that come from finding roots of
individual φ(λ) data sets, and the trimmed weighted mean
[27]. The results were all within 0.3 pm, and the statistical
uncertainty (standard error of the mean) using these different
methods ranged from 0.15 to 0.24 pm. For the final result
we used the trimmed weighted means for λ

right
zero,lab and λleft

zero,lab
shown in Fig. 6.

The error budget for this λzero measurement is presented
in Table I. The statistical uncertainty in λzero that we report,
0.3 pm, is twice the standard error of the mean [27]. Table I
also summarizes the three types of systematic errors we
discussed in the sections on decoherence spectroscopy, tuning
out broadband light, and minimizing errors due to E . These
errors in turn are related to Doppler shifts, broadband light, and
optical polarization. Table I summarizes the correction (if any)
and the uncertainty due to each source. Our final result with
corrections applied and statistical and systematic uncertainties
added in quadrature is λzero = 768.9701(4) nm.

VII. DISCUSSION

Several calculations of tune-out wavelengths [7–14,16]
use the sum-over-states approach to calculate the dynamic
polarizability α(ω), expressed in terms of reduced dipole
matrix elements 〈i‖D‖k〉 or oscillator strengths fik . For K
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between the D1 and D2 lines,

α(ω) = e2fD1

m
(
ω2

D1 − ω2
) + e2fD2

m
(
ω2

D2 − ω2
) + αr

= ωD1|〈4s1/2‖D‖4p1/2〉|2
3h̄

(
ω2

D1 − ω2
) + ωD2|〈4s1/2‖D‖4p3/2〉|2

3h̄
(
ω2

D2 − ω2
)

+αr, (17)

where ωD1 and ωD2 are atomic resonance frequencies, and
αr = αtail + αcore + αvc includes residual contributions from
all transitions except the principle D1 and D2 transitions,
contribution from core electrons, and the contribution from
valence-core coupling [12,35–38]. Theoretical values for αr

have been calculated by several theorists including [12,35,39].
Using our λzero measurement of 768.9701(4) nm and the
theoretical αr(λzero) = 6.7009 a.u. [12], we report the ratio
of D1 and D2 line strengths for K as

R = SD2

SD1
= |〈4s‖D‖4p3/2〉|2

|〈4s‖D‖4p1/2〉|2 = 1.9977(11) (18)

and the ratio of oscillator strengths

ρ = fD2

fD1
= R

(
ωD2

ωD1

)
= 2.0066(11) (19)

and the ratios of lifetimes

τ4p1/2

τ4p3/2

= R

2

(
ωD2

ωD1

)3

= 1.01223(55). (20)

Independent measurements of state lifetimes by Volz et al.
[40] established the value R = 1.9989(74). Holmgren et al.
[2] found R = 2.0005(40) based on a tune-out-wavelength
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green triangles. Measurements made with atom interferometry are
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measurement. Now, with a more precise λzero measurement
we report R = 1.9977(11). This result has 6.7 times smaller
uncertainty for R than was experimentally measured with-
out tune-out wavelengths. The uncertainty of 0.0011 for
R reported here primarily comes from uncertainty in the
measured λzero. For comparison, a contribution of 0.0001
to the uncertainty in R is due to a 5% uncertainty in αcore.
Our experiments with a multipass cavity have improved the
statistical precision in the λzero measurement by a factor of 6
compared to [2]. However, due to the systematic shifts that
we have described, the experiment with a multipass cavity has
only improved the total uncertainty for R by a factor of 3.6 as
compared to [2].

If we combine this measurement of λzero with our re-
cent measurement of static polarizability for potassium of
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FIG. 10. Theoretical calculations shown with solid circles, and
experimental measurements shown with open circles, of ρ, the ratio
of oscillator strengths (top), and R, the ratio of line strengths (bottom):
MBPT refers to many-body perturbation theory and the number in
parentheses refers to the order [45]. RMBPT refers to relativistic
MBPT [37]. DF refers to Dirac-Fock basis orbitals [37]. SD refers
to the single-double all order method [37]. RCICP refers to the rela-
tivistic configuration interaction plus core polarization approach [12].
CICP refers to the configuration interaction plus core polarization
method [12]. DHF refers to the Dirac-Hartree-Fock method [39].
CCSD refers to the singles-doubles coupled-cluster method [39].
BGLS refers to beam-gas-laser spectroscopy measurements [40].
AIFM refers to atom interferometry measurements. BEC IFM refers
to interferometry measurements made with Bose-Einstein conden-
sates [3]. Photo assoc. spec. refers to photoassociation spectroscopy
[47,67,68]. Abs. spec. refers to absorption spectroscopy [47].
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α(0) = 289.7(3) a.u. [41,42] and the theoretical value αr(0) =
6.26(33) a.u. [35], then we can report the values for individual
oscillator strengths, dipole matrix elements, lifetimes, and
line strengths with reduced uncertainty. All of these physical
quantities are related as described in [42]. For lifetimes of
the 4p1/2 and 4p3/2 states, we report τ4p1/2 = 26.78(4) ns
and τ4p3/2 = 26.46(4) ns. As a comparison, Volz et al. report
independent lifetime measurements τ4p1/2 = 26.79(7) ns and
τ4p3/2 = 26.45(7) ns [40]. These results are consistent, but ours
offer a smaller uncertainty. Other experiments by Wang et al.
and Falke et al. are sensitive to the average of lifetimes, but
not the difference (or ratio) of the τ4p1/2 and τ4p1/2 lifetimes
[43,44].

Figure 9 compares calculations and measurements for the
longest tune-out wavelength for potassium. We show experi-
mental results in Fig. 9 from this work, from Holmgren et al.
[2], and the λzero inferred from the independent measurements
of the 4p3/2 and 4p1/2 state lifetimes by Volz et al. [40]. The
only calculation with a published uncertainty so far is by Arora
et al. [7], who presented λzero = 768.971 nm with a 3-pm
uncertainty based on many-body perturbation theory (MBPT)
calculations. Relativistic configuration interaction with core
polarization (RCICP) calculations by Jiang et al. [12] showed
λzero = 768.97077 nm. We also used results for dipole matrix
elements from Johnson et al. [45,46], which were already
discussed in the context of R by [47], in order to infer λzero

using Eq. (17).
Along with the theoretical results [7,9,45,46] we plot-

shifted λzero values that show how the value of λzero from
Aurora et al. would change if we assume a value of zero for αr

in Eq. (17). Setting αr = 0 decreases λzero by only 0.2 pm [12].
Then we show a shifted prediction for λzero that we produced
using Eq. (17) and the hypothesis that R = 2 (but still using
the measured values for λD1 and λD2). Setting R = 2 increases
λzero by 0.4 pm.

Historical discussions of the oscillator strength ratio
anomaly problem [37,48–60] explain why R and ρ deviate
from the statistical value of 2 that would be naïvely expected
from the statistical degeneracies of the 4p3/2 and 4p1/2 states.
Both relativistic effects and core polarization effects are
important, as pointed out by Fermi in 1930 [61] and discussed
extensively by Migdalek [48–50,62–66]. Figure 10 shows
theoretical predictions and experimental measurements for R

and ρ for Na, K, Rb, and Cs. This shows that R < 2 and ρ > 2
are trends that get more pronounced for heavier atoms. With the
λzero measurement presented in this work, we have shown that
R < 2 with 2σ significance and ρ > 2 with 5σ significance for
K atoms, where σ here refers to the total uncertainty in our λzero

measurement summarized in Table I. The λzero measurement
presented here constitutes a significant demonstration of the
oscillator strength ratio anomaly for potassium.

To conclude, λzero measurements have stimulated creative
experimental work in several laboratories, such as synchro-
nized pulsing of light on atoms in a time-orbiting potential
trap so as to control �k · �B [3], coherent addition of diffraction
amplitudes from multiple short light pulses [1], and novel
studies of atom trap dynamics [4]. In the work presented here,
we developed a multipass cavity interaction region for an atom
interferometer. We developed decoherence spectroscopy. We
also used the concept of a broadband tune-out wavelength.
These methods help to improve λzero measurements and
demonstrate techniques for atom interferometry.
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