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ABSTRACT

This dissertationdescribes theanalytical research as part of a comprehensive
research program to develemew flooranchorage systefior seismic resistant design
termedthe Inertial Forcelimiting Floor AnchorageSystem (IFAS)

The IFAS intendsto reducedamagein seismic resistant building structurbyg
limiting the inertial force that develspin the building duringearthquakes The
development of the IFAS is being conducted through a large research project involving
both experimental and analytical research. This dissertationk focuses on analytical
component of this researclwhich involves standlonecomputational simulation as well
as analytical simulation in support of the experimental resésticittural and shake table
testing)

The analytical researaovered in this dissertationcludesfour major parts

(1) Examimation ofthe fundamentalynamicbehavior ofstructuregpossessinghe
IFAS (termed hereinFAS structure) by evaluaton of simpletwo-degree of freedom
systens (2DOF). The 2DOFsystemis based ora prototype structureand simplifiedto
represenpnly its fundamentamoderesponseEquations of motions are derived for the
2DOF system and used fod the optimum design space of ttBDOF system The
optimum design space is validated by transient analysis using earthquakes.

(2) Evaluaton ofthe effectiveness ofFAS designs fodifferentdesign parameters
through earthquake simulati®of two-dimensional(2D) nonlinear numerical modelof
an evaluationstructure Themodels are based ornFAS prototypedeveloped by fellow

researcheon the project atehigh University
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(3) Develgpmentand calibratiorof threedimensional nonlinear numerical models
of the shake table test specimased in the experimental research. This model wsas
for predictingand designing thehake table teistg program

(4) Analytical parameter studiesf the calibrated shake table test modédiese
studiesinclude: relating the shake table test performance to pghevious evaluation
structure analytical respongeerforming extended parametric analysesl investigating
and explaining certain unexpectgltbke table test responses

This dissertationdescribes theonceptand scopeof the analyticalresearchthe
analytical resultsthe conclusions,and suggests futuravork. The conclusions include
analytical resuls thatverify the IFAS effectivenesshow the potential othe IFASIn

reduang building seismic demandand provide an optimum design space of the IFAS
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1. INTRODUCTION

In current earthquake engineeringeismieresistant structures are designed to
dissipate earthquake energy through yielding of their structural elements. Thus, structures
are intended to incur damage during strong earthquakes. This damage may be direct
yielding, butcanalsobeaccompared by local bucklingind low cycle fatigue fracturfer
steel members and cracking crushiagd spalling of concrete members. Thadesign
objectiveof seismic codes to dates beeno prevent collapse dhe structurgtherefore
ensuringts occupants survive the event. If possible, the damage can be rebaredrd
(yellow tag) though in severe cases, the building halVe tobe demolishedred tag)
Further, nonstructural components (cladding, glazing, partitions, ceilings, etcalsta
incur damage that can be more costly than structural daflagéevel of damage tookh
the structural and nonstruca&l components is typically closely correlated to the level of
lateral deformation (drift) in the structure. Finally, building @ms$ and equipment can be
damaged or lose functionality due to high floor accelerations.

Thus, a weHldesigned structure may survive the earthquake, but severe damage can
make it costly to repair or even not woritho repair. Thetemporaryclosure of hilding
service may also cause economic loss and business dowitimecentdecadesthe
conceptof performancebasedseismicdesign hasaken hold. In this approach, a level of
desired performance is related tdifferent earthquake intensgts with more critical
structures tending toward immediate operabil@pepromising trend in this regard is the
recent development of ledamage systems. These structural systems attempt to eliminate

or minimize the damage in structudaging earthquakes
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Traditional building structures consist of a gravity load resisting system (GLRS)
and a lateral force resisting system (LFR®)e GLRS which comprises most of the
structurejs the portion of the structure (gravity system columns and the floor syshe)
cariiesthe gravity loaddead and live load$) the foundation. The LFR8sually a limited
number of specially placed elements (e.g. shear walls, braced frames, moment frames, etc.),
is used to resist lateral forcesch as wind oearthquakedn essence, the LFRS provides
the lateral stability to the GLRS.hese systemare connected by the floor diaphragm
anchorage (e.g. dowel bars extending from shear walls, studs extending from a braced
frame beam, etc.), which &ssentiallya rigid connegbn. When earthquakes occur, the
majority of the inertial force is generatedthin the GLRS (through the large mass of the
floor system) andnust betransferred to the LFRS.

Thenew lowrdamage system being developedhis researchthe Inertial Force
limiting Floor Anchorage SysteifiFAS), hasthe potential taeduce both the structural
and nonstructural component damage in earthquakes by partially isolating the large floor
mass through a deformable diaphragm connection between the GLRS and th@ hiERS.

Ph.D. dissertatiofocuseson theanalytical research related to the developmetitadfFAS.

1.1 IFAS Concept

The IFAS is proposed as a respofiggting system for building structures to
minimize the earthquake damage. The IFAS reduces seismic sesfyrpartially
uncoupling the GLRS and LFRS respaortibereforepartially isolating the floor mas$his
objective is achieved by providing a deformafdectile) connection betweethe floor
system and the primary vertical plane elements of the LFRSg@egr walls or braced

frames). This deformablédiaphragmconnection possesses a predefined strength. At
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diaphragm force levels below this strength, for instance daily wind events or small

earthquakes, the floor anchorage is essentially rigid, and tadmitlling responds like a

traditional structuréSeeFig. 1-1a). However, when the diaphragm force reaches the IFAS

strength,as will occur in a strong earthquakke floor anchoragdeforms transforming

the diaphragm seismic demands into relativeziomtal displacement between the GLRS

and LFRS thereforelimiting the seismic forces transferred to the LF®®eFig. 1-1b).

This action wil reduce LFRSdrift demanls and floor accelerations in comparison to

traditional building structurestherefore mitigating both structural and nonstructural

component damagé&lastic restoring elements, stabilizing elements, and if needed, re

centering elements to eliminate resatdisplacements in the floor system, complete the

IFAS.
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LFRS

Large earthquake

Fig. 1-1.Structure deformation under lateral forces: (a) without slip; (b) with slip.

The idea of partially uncoupling the GLRS is attractive smaes t

mass originates in the GLR®hus by limiting the force transfer, the IFAS has the potential

of

t

he

to limit diaphragm inertial forceghereforelowering floor accelerations and reducing

LFRSseismic demandss mentioned previouslyhis condition will result in less damage

36

st

r



to the structure, nestructural elements and building contents, and prevents failure of the
floor diaphragm itself.

The conceptof decoupling the building mass from the LFRs originally
proposedby [1]. In this work, asmart frame was developed for uncouplingGLRSand
LFRS [1]. Thesmart frame involvespring and viscous dampglacedbetweerthe GLRS
andLFRS (SeeFig. 1-2a), andisolatorsunder eaclLRS columnso that the period of the
structurdengthens towartbwer earthquake demand.

A similarfloor decouplingconcepto the IFASwas pilot tested ind). In this work,

a small scale shake table test on two-siery buildingspecimes (SeeFig. 1-2b) was
conducted 2]. One specimemepresergd a traditional building witha rigidly conneced
slab; the other utilized hysteretic energy dissipation connections (triaqpjataradded
damping and stiffness elementsTADAS) betweertheslabs and the LFRS. The response
comparison indicated thahe use of theenergy dissipatiorconnecton reduced the
displacement and accelerationth respect to thespecimen using th&aditional rigid

connection, but also hddgher residual deformation.

Springs & Dampers ~

M. a
M
Isolators /'
TG TG I
Gravity Frame Reaction Frame
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A tradeoffexists forthe IFASIn that as inertial forces and floor accelerations are
lowered, themagnitude of theelative displacemenitetweerthe floorsandLFRSincreases
Thus, an optimum IFAS strength mustitdentified that lowers seismic demand, yet limits
the relativefloor displacementvithin an acceptable rangeith respect to architectural
requirementskurther, for very low IFAS strengththe lateral drifts of the gravity system
columnsmay also becomwo large The GLRS column lateral drifts must be limited to
assure a stable structu@.[

A key design parameter tsh e -ofif cfuot st r dAAS. tAldimengionldsd e
parameten is used texpresghe relative strength of the IFAS to current code diaphragm
design forceFp«[4, 5], defined as)  SFy/ Fpy, Where the summation occurs forlaRS
connectionsacting in the direction oFpx (i.e. NS orEW directoin) Note that since the
diaphragm anchorage is part of thelectior system, the system overstrength faqteis
applied(in addition to the shear strength reduction facjan the desigr4, 5]. Thisleads
to a current code nominal strengthvalue not of unity, but instead o/t (typicaly

~3.33) Fig. 1-3 shows the general structure response trends at different IFAS strength.

3
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Fig. 1-3. Anticipatedbenefits and tradeoffs in response at different IFAS strength.
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1.2  Overall Research Program to Develophe IFAS

The IFASis beingdeveloped through a large muliniversity research program
with significant design consultant inp@ [ The research program incluslgothanalytical
and experimentatesearch Pertinent details of the research program are described in
Sectionl.4. However, for context, the main points bétreseait program are summarized
below:

The analyticalresearch(this dissertation)involves five main actvities: (1)
developng numerical models ofFAS buildings; (2) perfornmg parametricstudies to
examinethe potential effectivenesand todeterminea preliminaryiFAS design space3)
performing numerical predictions of the tests to suppbe experimentaprogram; 4)
updaing and calibraton of numerical model using the testdatg and (5) conducing
parameter studiesith the calibratd modelto determine final design recommendations

The experimentalesearchnvolvestwo primary tesing prograns:

(1) Reaktime dynamic teston a fullscalespecimen representing the IFAS and
surrounding floor region to one wall on one fladra reinforced concrete structur8de
Fig. 1-4a). The objective of thigestprogram wago: (a) determine the characteristics of
the IFAS prototypéSee Setion 1.3);, and, (b) examineconstrucability and performance
aspects The specimen was subjected diferent excitation including sinusoidal and
predefined displacement historids3).

(2) A shake table test of a hal€ale fourstory reinforced concrete structure (See
Fig. 1-4b). The objective of tfs testprogram wago: (1) demonstrate the IFAS prototype
in a structure subjected to earthquake excitati(®) directly compar¢he IFASstructure

to a traditional structureand, (3) validate thenumerical models ofhe shake table test
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specimen The testspecimen which was converted between an IFAS and traditional
structure, possessed an eccentric layouwdrderto examine IFAS response structure

twist in plan. The test specimen was subjected to multiple strongmsoti

Fig. 1-4. Photos of test specimens: (a) fatlale sukstructure; (b) halscale shake table
testspecimen

Additionally, omponent testingras performed oa bumper element that serves as
a key devicen the IFAS prototype (described in Sectib). The bumper wasriginally
tested under quaststatic loading rate to determine hysteretic propems for
implemenationinto numerical modsl Later, d/namic test of the bumpewereconducted

to determire its force-deformation behaviannderhigh loadingrate

1.3 IFAS Prototype Development

A key deliverable from the first phase of the research program was the development
of anlFAS prototypefor use in the shake table test. The IFAS prototype is composed of
stateof-the-art devices to achieve the needed behavior: (1) predefinéccontrollable
strength (2) efficient energy dissipatian (3) elastic restorinigentering; (4) LFRS

stabilization(described subsequent/ynd b) relativedisplacement limiting.
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The first step in developg thelFAS prototype was to evaluate differestiergy
dissipationdevices for suitability Candidate deviceincluded metallic damperg11],
viscous damperfd 2], friction dampergtermedrFD in thisdissertation[13], andbuckling
restrained braceBRB), normally used as diagonal braces in braced frgdd5]. Of
these, thé-D andBRB were selected for the IFASototypedue to their superior energy
dissipation capabilities, large deformation capacity, high initial stiffness andlefetied
and repeatable strengthl$].The device selected for elastic restoring ah#&RS
stabilization isa rubber bearing (RBtypically used on bridge€€ach RB consists &
laminated rubber pad bondéetweensteel plates. The laminated rubber pad consists of
rubber layers laminated to steel shim plates, which reinforce the rubber for staBjlity [

In the development of the concept, more aggressive desogves (FAS strength
to minimize response in the desigasisearthquake (DBE) were found to be possible if
the resultingargerelative displacemenh the maximumconsiderecearthquake (MCE)
could somehowbe limited[3, 7, 8]. A specialbumperdevicewas introducedor limiting
relative displacement he bumperalsoserves taeduce impact force between the floor
andthe LFRS (e.g. wall)when the floorsundergoexcessivaelative displacemengig.

1-5a-d shows theindividual devicesthat comprise the findFAS prototype

Fig. 1-5. IFAS devices: (a) BRB; (b) FD; (c) RB: (d) bumper

Fig. 1-6a,b show an elevation and plan view tbfe IFAS prototypein a structure.
The deformable connectioRD or BRB) connects between the vertical LFRS element (a
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shear walin this casgand thelbor. The connection is installed underneath the floor slab
(in the ceiling space) and connected to one end of the(®adFig. 1-6a). In order to
accommodat¢herelative displacement between the LFRS and GLRS, a moatuired
(SeeFig. 1-6b). The moat creates an unbraced LFRS elenvegit)(thatwill not be stable
out ofplane. This, tre RBis placedetween the wall and slathin the moat aéach floor
level to ensure wall stabilitySeeFig. 1-6b). In addition, the RB providean elastic
restoring forceto the floor system to assist in-centering after an earthquak&umpes
areinstalled on the slab with the moat at each end thfe wall SeeFig. 1-6). A gapis
provided between the bumper and the wall corresponding to the maxathmwnwable

relative displacement between the wall and floor.

| I
(a) Rubbervbearing Bumper  Throughrods (b) N
(RB) ( Bas&pxlate > Rubberbearing(RB)
7k — S Moat
r jh .7 . .7 sheawall
T\Sh "/7 ) i g () Noat
eawal
ol N Clevi¢Spherical “Eioorslab” Initial
/ Deformable eVBI pherical Baseplate v - bumpergap,g,
! connection earing

Fig. 1-6. IFAS Prototype System: (a) elevation vigiw) plan view.

14  Scopeof Dissertation Research

The dissertation focwsson analytical research supporting the developmernhef
IFAS concept tavardan effective IFAS prototypd his analyticalresearch includes:

(1) An examimation of thefundamental bieavior of the IFAS structurethrough
classical dynamic analysis tfo-degree of freedort DOF) systens;

(2) Parametric studies to determine the influentelesign parametermsn IFAS

performance. The studies were performe@athquake simulati@of two-dimensional
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(2D) nonlinear numerical models ofnaevaluationstructure The parameters varied
included IFAS strength stiffness and structure properties (building heightLFRS
overstrength, LFRS type, etcAdditionally, the kinematics of the IFAS sponse was
studied (moats vs. ledges, bumper gap magnitude, etc.).

(3) Development ofthreedimensional 3D) nonlinear numerical models of the
shake table test specimtsted in the projecthese models were ustxt predictingthe
response othe specimen in theshake table test programhese predictions assisted in
design on the specimen, both for structural elements and the IFAS, as well as selecting the
appropriategground motiorrecords for the tesprogram Thesimulations of the shake table
testalsoassised in determining where to positiamstrumentatioron the specimeandto
ensure safe construction of the specimen.

(4) Calibration ofthe 3D modelusingthe shake table test resuk4odels were first
updaed for actualmaterial and deviceroperties Validaion of the modelis crucial for
IFAS development by making possitbd&tensiveanalytical research with high fidelity
models. Such analytical research can cavetder ranges of design parametensn is
possible wih physical experimentsand providetheseresults with a high level of
confidenceThe updated mode&assubjected to a sequential analysis that follows the test
program to examine the abiliyf the model tocaptue cumulativedamage during the
tesing. Model calibration involveé adjusting strength and stiffness parameters in the
analytical models tonatch experimental resultkiring different stages dhe shake table
testsequenceA calibrated model that can successfully match a point in the test sequen
will provide more effective comparisons to a pristine model rather than performing

sequential runsOnce the 3D model igalidated theresponses between the 3D and 2D
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model can be compared. This comparison can be used to show the the tkffeteice
between the 2D and 3D model

Further, titureanalytical workcan be imaginedhe 2D and/or3D models carbe
extended toapply to a range ofFAS building structuresincluding different structual
systemsThus, aparametric study investigag the IFASdesignspace for different types
of structual systemscanbe performedOther aspects of earthquake respotisat may
influencelFAS performancecanbe consideredncluding different structue layout and
earthquakdoading, different IFAS tsength distributions, different mass distributions

between the LFRS and GLR&)ddifferent interface conditions

15 Dissertation ResearchJnique Intellectual Contribution

The unique intellectuatontributionof this dissertation researdrerelatedto the
development ofan innovative seismic response reduction system, the IFAS. These
contributionsinclude: (1)The developmerdand analysi®f simple models trovide the
fundamental behavior of structures with the IFAS; (2) extensive parameter sindies
determine the effect of key design parameters and to identify the optimum design space for
the IFAS; (3) the developmenipdating, calibratioand evaluation of 3D structure models
to examingherespons®f thelFAS structure These accomplishmentsiMead todesign

guidelinedor the IFAS

16  Organization of Dissertation
The dissertation is organized as follows:
Chapter 2: Background on lowdamage systenend diaphragm design

Chapter 3: IFAS: 2DOFSystem Investigation
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Chapter 4: IFAS: 2D Evaluation Structure Models

Chapter 5: IFAS: 3D Model Development an@alibration

Chapter 6: IFAS: Calibrated3D Model Analyses

Chapter 7: Bumperimpact Testing

Chapter 8: Conclusions an&uggestedruture Work

Note that esultsfrom each stage dhework described irfChapters3-7 areshown

in that section. Some of the related background information (derivation of equations,

description of the methods, etc.)psvided in Appendices at the end of tHissertation

The status progressfuture workand deliverablesof each of theseissertation research

topicsis summarizedn Table1-1.

Table1-1. Dissertation work summary

Research
Focus

Chaptersn
Dissertation

Status

Description

Fundamental
Behavior of
Structures
with IFAS

Activities

9 Creation of simple 2DOF systam

9 Derivation of dynamic equations fone elastic 2DOF
system

9 Harmonic analysis aheelastic 2DOFsystem model

9 Single-objective  and multiobjective  design
optimizationof the elastic 2DOF system

1 Align nonlinear 2DOF systems to seismic design ¢
parameters

1 Nonlinear time history analyses of nonlinear 2D
systems using earthquakes across range of d
parameterslFAS strength GLRS mass ratio,IFAS
initial stiffness, IFAS secondary stiffness

Deliverables

9 Influences from the design parameters listed aboy
the 2DOF systenmmesponses
9 Optimum IFAS design spatased on the 2DOF Systg
response

Suggested
future work

1 Creation of relationship betweetihe 2DOF system
respons@&ndevaluation structureesponse

Seismic
Response of
Structures

with IFAS

Activities

1 Selection and design of Evaluation Structure

1 Creation of 2D nonlinear models of Evaluati
Structurs

9 Parametric study of seismic performance for differ
IFAS strength, building height,FRS overstrengtiand
LFRS types
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9 Secondary parameter stadon IFAS initial stiffness,
IFAS secondary stiffness, GLRStiffness, GLRY
strength IFAS eccentricityIFAS strengttpatternalong
the height

1 Evaluation of effectiveness of different IFAS
configurationschemegledges, pockets, etc.)

Deliverables

1 Influences from thalesign parameters listed abowe
the 2D structuremodelresponses

1 IFAS design spacand preliminary design guideling
for multi-story structures

Suggested
future work

1 Examination of aggressive designs using calibr
bumper model

1 Development of a 3D nonlinear meldftheshake tablg
test specimen
1 Analyses in support of design and construction of

Developmen Activities shake table test specimen
tand 1 Prediction of shake kde tests by numerical analysis
updationof 9 Postprocessing of the shake table test data
3D IFAS 1 Calibration of the 3D nonlinear model
Structure { Validation of a numerical modeling methodology
Models Deliverables| IFAS and precast reinforced concretructure with
generic scenario
fit?;gr]gevjé?g 1 Sequential angkis of theupdated3D model
9 Analytical studies orLFRS offset, bumper stiffnes
Analysis of Activities transvgrsg wall strength _
IFAS using 1 Investigation qf unexpected test specimen respo
through analytical study
Updated and - -
Calibrated Deliverables| | D.efe.nse.ﬁthe IFAS effe.ctlven.ess .
Model Suggested 1 Bi-direction earthquaksimulation of the test specime

future work

1 Summarization of the analyticavork from design
perspectives

Bumper test
under high
loading rate

1 Establishment of relationship between differ
parameters for the bumper test from the meas

Activities relativedisplacement in shake table test
9 Investigation of bumper forcedeformation poperty
under high loading rate
Suggested | { Development and implement of a better bumper m

future work

for thenumerical analysis
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2. BACKGROUND

2.1  Structure Damageand EconomicL ossin Past Earthquakes

In current seismiadesign approacheslife safety and collapse prevention are
targeed for building structures tgermit occupants tosurvive the earthquakg9].
Reconnaissance oécentarge earthquakes indicates that the amount of damage, economic
loss due to downtime, and repair cost of strusturere unacceptably hidl26]. Building
damage also makes rescue activities and critical faalterationsmore difficult to
execute because of the loss of lifenend cascadingevents[10, 18-25]. Recent
earthquakes show that countries with wadleloped seismic codesn still undergo
significant financial loss in large earthquak2g [ For examplethe2010 Chile Earthquake
caused about US$43 billionin economic lossei®8], the2011 Christchurch Earthquake
caused about NZ$86 billionin economic losse®2p], and the2011 East Japan Earthquake
caused about US$2€8D0 billionin economic losses3))].

Researcherksaveincreasd their interesin nonstructural component performance
in earthquakes in recent decad84-35] as nonstructuraldamageis a main source of
economic lossA nonstructural damage database was develdg®dn 1999 focusing on
the nonstructural components and cordgrgrformance in previous earthquakesd
expanded in 20033p]. The expanded database shows exasyplehe cost breakdown
between structural, nonstructural and contéotsoffice buildings, hotels and hospitals
[39]. This cost breakdown shows tmainstructural and contents costs dominate the overall
constructioncosts of all these buildings (82%, 87% and 92% respectivelyffare

buildings hotekand hospita) [35]. Thisresultimplies thathe protection ohonstructural
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components and contents of the buildingm earthquakelemand is a key factorin
avoidng excessiveeconomic loss

Extensiveresarch habeen conducted @tonomic losfrom earthquake[36-46].

Several methodologidsve beeileveloped for evaluating the potential economic loss for

a community so that decision makers can assign resources according to the estimate
economic risk 37-40]. The lossegonsist of direct losses amdirect losses. The direct
losses consist of physical destruction and additional impacts following the physical
destruction, such as fire after earthquakes. The indirect losses are resulted from the
consequences of physical destruction, such as intemupff business or industries
Indirect lossis more difficult to measure than direct logd][ Research shoswhat the
impactof indirect lossesre large anadtancontinueinto alongterm[42, 43, 44].

Building damage ighus unavoidable in earthquakes based on cursemmic
design.In order to reduce structural and nonstructural damage, redpe& cost and
economic loss in earthquaksesyeral lowdamage structure systems have been developed.
The IFAS concept treated in this dissertation is an example of suchdatoage system.

Otherlow-damage structure systemereviewed briefly in Section 2.2.

2.2  Developmentof L ow-damageStructure Systens

Several lomdamage systems W@abeen proposed for reducing buildiregsponse in
earthquakes. Thesgystemsoften attempt toreduce builthg seismic forces, lateral
deformation(drift) andfloor acceleratioa Reducing these response quantities will tend to
reduce the building damagand thusconomic loss in earthquakes.

New low-damage structuseecently or currently undetevelopmeninclude:sel-

centering rocking systeif7-58]; horizontal seHcentering systembp, 60]; replaceable
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energy dissipation device81-69] thatcontrol the force transferred to the structural system
and protect the struaral componentsbase isolation technique for reducing building
acceleration responsé]]; active or semactive control to improve structure perfonnca

in earthquakes7l2-75]; negative stiffness devis¢o reduce structure base shear demand
and to limit the structure deformations and accelerations in strong earthqu@kéek [

In particular, lase isolation is a design concept which decouples the horizontal
motion of the superstructurérom the foundationin earthquakes. Several types lse
isolation devices have been developed, such as high damping rubdbadrubber
elastometric bearingdriction pendulum bearingsViscous dampergan be addedin
parallel asa supplementadamping device for energy dissipation purEiss).

Designing structures with isolation systshifts the structural fundamental period
to a longerperiod and changes the fundamental mode shape. This period lengthening
reduces the acceleration and irgeory drift of the superstructure, but increases the
displacement demand of the superstructure at the same time. Supplemental ¢damping
beaddednto the isolation system to reduce the structure displacement respéhse [

Several buildings using base isolation techniques have been builpadiseveral
decadesSomeof these buildingperformed wellin comparisorto traditional fixed base

buildings in earthquaked(,71,80,82,83].

2.3  Floor Isolation Systems

Floor isolation systes[81,84] aresimilarin conceptto base isolation butan be
more cost effectivaince they do not require special foundatif8498]. Floor isolation
typically introduces a secondary floor system within a traditiirad base buildingg4],

allowing equipmentto be protected against earthquak8sme floor isolation systems
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proposed and investigatedclude using roof isolation systesito reduce the building
response under earthquak8g,[88] in a manner similar to the use of tuaeadss damper
[89]; applyinganisolation layer in intermediate lesaf high rise structuise{90]; locating
singlestory isolations system or multiple isolation systeme building P1]; dividing the
superstructure of a basslated building into several segments by isolation lay#fs [
Severalsolation system devicdsve been developed for floor isolation purgpse

including spring (linear and nonlinear) and damper (viscous and hystdi&tic)0, 97],
wire rope systes[96] and friction pendulum systesr[93,94,95. Semtactive control
techniqus can beapplied to the floor isolatiomo pursue lowerstructural responsi
earthquakesdg]. A negative stiffnesplatformhas beemproposedetween the key nen

structural equipment and the structu®8] [for mitigatingequipment high acceleratian

2.4  Diaphragm Design

Diaphragms are designed to transfer the seismicdtma® the floor system to the
vertical elemerst of the LFRS. Diaphragm design forcds,y, are determined bwn
equivalent lateral force (ELF) proceduré, b]. Theseforces are used to design the
diaphragm reinforcement: chadheareinforcementcollectos and anchoraggd10Q.

In the ELF procedurdghe expectedotal lateral force inthe desigrearthquakes
estimated fot he struct ur e, Vi Ehe latera forfiels eaasseng tHidgse ar 0,
shearFi, are distributed at each floor leyssed on thtundamentamode ofthe building
structure, thus essentially amverted triangle, with slight modifications faantilever

structure (Fig. 2-1).
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Fig. 2-1. ELF design: (a) lateraeismic force; (b) base shear; (c) diaphragm design force.

The base shea¥), is calculateds shown irEgn.2-1 [4, 5]:

G =0 (2-1)

whereSpsis the design spectreesponse acceleration parameter at short periods calculated
from seismic maps if¥, 5], Wis the total structure weighR is aresponse modification
coefficient andle is animportancefactor. Note that R significantly reduces the design
forces from their elastic levels (up tdifeg based on the amount of ductility and energy
dissipation possible in the building; thus, in surviving the earthquake, a typical building is
expected to utergo damage.

Lateral seismic foree; for a givenlevel x, Fy, is calculatedasedon Eqn. 2-2:

0

. @ (2-2)

wherewx andw; are the portion of the total effective seismic weight of thectire located
or assigned toelvelx andi. hy andh; are the height from the baselévelx andi. k is an
exponent related to the structure peridde diaphragm design forceByy, are calculated

based orEqgn.2-3:

0 (2-3)
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wherewpxis the weight tributary to the diaphragnmetelx. Note that while the diaphragm
forces and structure seismic forces refer to the same action, the diaphragm design forces
Fpxand the seismic design fordedollow different patterns because(used fordesign of
the vertical elements) is a profile representing the response of the structure at a given instant;
while Fpx (used for design of each floor element) is an envelope of maxima for each level
occurring at different times in the earthquakiee diahwragm design force fairtherlimited
by thedesigncodeas follows

"0 MY Q (2-4)

0 @Y Q) (2-5)

Recent research indicates thaturrent codediaphragm design forces may
significantly underestimatiteactualinertial forces that develop in the floor system during
strong earthquake4(1, 102 because of the importance of higher modes during inelastic
structural responsel(3. The upcomingcode versiorf104 will reflect these findings.
Nonethelesghe IFAS strengtfused in concept developmenté&erencedo Fpx using the
nontdimensional ratia, aswas introduced in &. 1.1andwill be further discussed in

Section 4
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3. IFAS: 2DOF SYSTEM INVESTIGATION

3.1  Overview

Theidentification of @timumIFAS desigrsis being determined primarily through
nonlineartime historyanalysis 02D modelsof multi-story evaluation structusgas will
be described in Section 4). These analyses provide the IFAS seismic response, but are
sufficiently complicatedo prevent arrivingat satisfactory answeregarding fundamental
behavior.For this reasonan investigation © a simplified 2DOF sysem of the IFAS
structure is performed, as has been done in the past with other response reduction systems,
for instance tuned mass dampers (TMDs).

Theobjectives of the study include(1) descrilng the fundamental responsetbé
IFAS structuresand (2) providing insight onselectingoptimal IFAS properties.This
chaptersummarizes work performed orsenplified 2DOF systemThe simplified 2DOF
systenresembles the classical representatiothefTMD. Thus, the classical solutions for

the TMD[113 are used to guide and interpret the results of this study.

3.2 2DOF System

The2DOF systenis asimplified version ofthe full 2D numerical model of thi-
storyevaluatiorstructureln the full 2D model (described in detail in Chapter B¢, ltFRS
isrepresentedsa 12storycantilever column vwth lumped massesteach floolevel, while
the GLRS isa 12storyframe model (SeEig. 3-1a). In the simplified 2DOF system, each
of these components represented by a single DOF ($&g. 3-1b): the LFRS is DOF 1;
the GLRS is DOF 2The IFASis representethy a KelvinVogit model: a dashpdts) in

parallel with an elastic springa). In thestudy, optimum IFAS propertieks( cs) are sought
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as herelative values of theFRS propertieskq, m) andthe GLRS propertieare(ko, m)
are varied. The total structure properties, stiffndss+(k2) and massnfu + mp) are
determined usingeneralized parameters: effective modal mas$)( effective modal
stiffness ( *), and effective moddieight {O) of the fundamental mode of the evaluation
structure with a traditional (rigid) anchorage between #iRS and GLR$SeeApdx A.1).

Two 2DOFIFAS models are examined: (a) an elastic 2DOF sySeefrig. 3-1b);
and (b) an inelastic 2DOF systef8eeFig. 3-1c). The elastic2DOF systenmprovides
insight on optimum IFAS stiffness, either an elastic stiffness, or more appropriately an
equivalent elastic stiffness that can be assigned to the nonlinear IFAS déa@DOF
modelwas extended tan inelastic syster{SeeFig. 3-1c) by introducing:a base plastic

hinge for capturing nonlinear property of the LFRS8dan elastieperfectly plastidFAS.

(a)LF_RS(l_F_AlS_ ___GLRS ____ (b) X1 X2, U2

-

i WH | i :E Base hmge GLRS
LFRS GLRS TfRs

[N L] 1

1=kl _ B

ag sin ot

Fig. 3-1. IFAS Models (a) evaluation structure; (b) elasBDOF, (c) inelastic 2DOF

The primary design parametegaluated using the elasBOOF systenare mass
ratio € = my/my, IFAS stiffness ratid = ka/ki, GLRS stiffness ratié = ko/ki and IFAS
damping ratie-= cs/cc, wherec is the critical damping ainequivalent traditional (rigidly
connected) building systenThe elastic2DOF systemis investigatedusing harmonic
motionswith maximum amplitudeg and frequency (SeeFig.3-1b). The inelastic 2DOF

system is investigatagsingearthquakenotions
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It will be useful to providensighton typical values of the design paramster

GLRS Stiffness Ratid : In typical structureshe lateral stiffness of the GLRS is

much lower tharthat ofthe LFRS Thus, typical values ¢f will be much smaller than

unity. As an example,=0.03for the 12-story reinforced concretvaluationstructue [7,

8]. Different GLRS stiffness ratios are studtedieterminghe influence d GLRS stiffness.
MassRatio 177z As opposed tdahe TMD, where theTMD to structuremass ratio

mp/my is small,the typical values of for the IFASstructureare much larger than unity.

This outcome occurs because most of the mass in a building is associated with the floor.

For a typical IFAS configuratiorthe IFASresides between the LFRS athe floor (See

Fig. 3-2a). This configuration leads to=10 for the 12story evaluation structurén the

study, alternate IFAS configurations are evaluated where the device acts between portions

of the floor, leading to lower values ef(SeeFig. 3-2b). For instance, aiFAS device

located in the middle of the floarould result in a value=1. The IFAS couldlsobe used

between a building and an external stair tower, leadiggstoaller than unity.

180 180

GLRS i GLRS LFRS GLRS

100"
100-

33-4 ﬁ—33:4"—y—33“4”—
33u4"ﬂ-— 33‘44"f3324”4

~
O
N

@)

2525126826 8"——26-8" 25— 25— 25—+ 251 26— 268+ 26825} 25|
Fig. 3-2. Floor isolaion schematic drawing: (a) Full floor; (b) Partial floor.

IFAS Stiffness Ratiab : The IFAS deformable connectiois envisioned to ban

inelastic devicdSeeFig. 3-3a), however it could also be viscoelastic damper (S€g.
3-3b, ¢).The inelastic IFAS devicean ke simplified to bean equivalent (secandjiffness

[105 (SeeFig. 3-3a) and an equivalent damping basediw® maximum IFAS connector
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deformation Thus, the value db caneither represent the actual (elastic) stiffness or an

equivalent stiffnessf an inelastt system

@) (b) F ©

Fig. 3-3. IFAS hysteresis: (aelasticlFAS; (b)linear elastic spring; (c) viscous damping

IFAS DampingRatio x: The IFASdeformable connectiowill dissipate energy

through inelasticysteretic action§eeFig. 3-3a) or with added (e.g. viscous) dampers
(SeeFig. 3-3c) for a linear elastic sprind ypical values for supplemental dampfngm a

viscous dampedire in the range of=5%71 50%][107].

3.3  Background: TMD Modeling as a2DOF System

The TMD is a device foreducing structure vibration responggimarily in tall
building respons® wind. The TMD iscreated by placing a large mass inside the structure
(though much smaller in relation to the overall mass efsthucture) and connecting it to
the structure using a sprittashposystem.

The TMD is primarily designed for reducing tHendamentaimode of the main
structure[112. Den Hartog[113 proposed a method to optimize the response of an
undamped main structure with a damped TMD under harmonic. fohte method was
accomplishedy control |l i ng | oc atnitherrsqueoncy respomse i f i X
curve.Villaverde[89] proposecand proved that adding a small heaadgmped vibration
absorber can increase the damping of a structuretlausl reduces its responses in
earthquakesMiyama[114 mentioned that small TMD mass (less than 2% of thedde

effective mass of the building) is not effective teduce the structure response in
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earthquakes. Tsai and Lja2Q proposed a numerical searching procedure to determine

the optimum parameters of the TMD for reduaitagnped main structures responses under

harmonic motion. Sadek et a[115 improved the method proposed 89] and formulated

new equations for calculating the optimum damping of the TMD for a given mass ratio.
The classical TMD optimization methotil3 is briefly reviewedFig. 3-4a shows

asimplerepresentationf an undampedtructure('Q, & ) with adampedTMD (Q, &

6HUA harmonic external forc® (O E B) acts on the structurEig. 3-4b shows thestructure

(o) frequency response at different assigned damping rétipsfor a given TMD

configuration @ is the displacement @& under static external excitatiol,. ¥ is the

frequency of external excitation$n is the natural frequency of the structure.

Fig. 3-4. TMD structure: (a) schematic; (b) frequency response.

As seen,liew frequency response curves always pass througffifiwed points
(P,Q for any, value,implying theselocationsare independeritom dampinglevel. Den
Hartogproposed maoptimization procedurtor minimizing the structure with as two steps
[113 : (1) bal ance dfbtre givew desigibly adjustidg the IMD t s
frequency; (2)find a proper damping that producesthe frequency responseurve

horizont al | 'y passes t hr ou incealldrequendy respbnse ciirnfes x e d

pass the Afixed pointso, the damping whi cl
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Afi xed pointso provides the mini mum
respnse. This selected dampingesmedoptimum dampingXypy). The structure response
at thexopt is named as optimum response. Sometimes there are two diffgsefor the
two fifixed point® respectively, and the avage of them is assumed as the finalizgd

It is noted that therera threeprimarydifferences between the TM&ructureand
the2DOFIFAS system (1) In the2DOFIFAS system aspringk: (representing the GLRS
lateral stiffnessfonnecs mp to the foundation(2) In the TMD structure mp is typically
much smallerthan my, while np is typically larger thanm for the 2DOF system (3)
Responseninimization ofx: is the primaryconcerrfor the TMD structurewhile response
minimizationof x1, X2, Uz arethe objectives of thB-AS (X1, X2, U wereshown inFig. 3-1b
and defined in Section 3.4)herefore while the optimized TMD structuremay notbe
directly applied to the 2DOR-AS system a similar approach t§113 is explored in the

next section to determine the properties of an optimum IFAS design

34 IFAS: Elastic 2DOF System

The 2DOF IFAS elastic responge derived hereThe d/namic response of the
system(SeeFig. 3-1b) is normalized by the stat{@DOF)response daditraditional structure,
that is with a rigid anchorage between the LFRS and GLRBRS k= Bérmedrigid

2DOF systemThe static response tfis rigid2DOF system is expressed:as
o - — — (3-1)

The circular natural frequency of the rigg@OF systenis:

5 T QT4 4 (3-22)

with the frequency othe individual LFRS and GLRS being:
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5 Q18 (3-2b)

5 Qfa (3-2¢)
3.4.1 Dynamic Equation Derivation

The main response parameters forab®©F systenare (refer td-ig. 3-1b): (1) the

LFRS lateral displacementxs; (2) the GLRSlateral displacementx,; (3) the relative
displacemenbetween the LFRS and the GLR&x; (4) the LFRSabsoluteacceleration
Ug; and (5) the GLRSabsoluteacceleratioriz. Dynamic amplificatiorequations fothese
respons@arametersire derived Ased on classical methodslf and expressed in terms
of the dimensionless parametégshb, -, 3). The derivation is shown in Apdx A.2.The

resultingresponse parametexpresssionf, Xz, X2-X1, U, Uz2), normalized bystor ag, are:

s

(3-3)
cs _ _

(3-4)
8

(3-9)
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an
an

(3-6)

an
an

(3-7)
The equations are verified by numerical analysis u€ipgnSeésof an example
case(SeeFig. 3-5). Note thatx = cs/c;, wherec. is the critical damping of thegid 2DOF

systemA ¢5 & @

Simulation

w/w, w/ w,

Fig. 3-5. Validation of the equations: (&); (b) x2; (C) X2 - x1; (d) U1; (e) Uo.

3.4.2 Modal Analysis
The modal properties of the 2DOF IFAS system are first considéhe2DOF

IFAS systemeigenvalues can be obtainlegequating the real term of the denominator in

1 Open System for Earthquake Engering Simulatiophttp://opensees.berkeley.edu/
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Eqrs. 3-3i3-7 to zero. The resulting general expression for th#' and 2" natural

frequences( n1,]1 n2), Normalized by, is:

L — - (3-9)
Equations3-9ai ¢ are special cases Bfn.3-8 for whenb=0 andn+f :

e (b= )0 (3-99)

— P — P — (= 1) (3-9b,0)

Fig. 3-6a showsthe natural frequenciesf the 2DOF IFAS systemfor the typical
GLRS stiffness ratio =0.03. Solid and dashed lines represénti,1 n2), respectively.
Black and greyinesrepresent 2DOF systeywith b=0 andb=0.2 respectively. Theesults
shows that thesimode(solid lines)contributon is from the LFRSwhen 7< f andfrom
theGLRSwhenm>f. Thi s A s w,et cihindigated astbloe circle inFig. 3-6b

inset Whenb=0.02, theswitchto the 29 modeoccurs at largerm

(@) 4 (b)4

—b=0 f=0.03 f=0.03— b=0
b=0.2 =0.2

gcz 7 WnZIWni 0| WnZ/Wn
= == T~ .o

Q _______ Wnllwn —= —-O ———

7 W, /W,
0 ‘ : : ‘ 0 : ‘ ‘
0 02 04 06 08 1 0.01 0.02 0.03 0.04 0.05
m m

Fig. 3-6. Naturalfrequenciess. |1 (a) full plot; (b) closeup atme=f.

Fig. 3-7 shows th2DOF systemmodal properesvs. IFAS flexibility at different

m Fig. 3-7a-c show the effective modal mass raBo 3 i (3 B O)vsdat
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different /;m; whered =1/b. s;i represents theffectivemodal massrom m in thej™" mode,

i 34 %o [116 118. morepresents thotal mass of th@DOF system Fig. 3-7d-f

showthe expansion d in each mass of each mo&/mwotaivs d, at different/

1 1 1
(@) Flexible diaphragm (b) TMD (c) 5
0.8 0.8+ 1 0.8
g os 3 06 S . oe IFAS
E 0.4 Sz
- 0.2
0
0 5 10 15 2
(d) . :
0g Flexible diaphragm
B 06 e Si2
£ o4 S
o 02 S
L
-0.2 2
0 5 10 15 20

Fig. 3-7. Effectivemodal mass ratio for: (ajx 1(b) /# 0 . @)5% 1 Modal expansion
of effectivemodal massatio for: (d)7z 1(e) = 0 . () % 1.0

Fig. 3-7a-c show thaB decreasefrom unity in the F' modeandincreases from
zero in the2"® mode. This trendindicates thathe 2DOF systemis actually one single
degreeof-freedom (SDOF) wherhe IFAS is rigid(a=0). The2DOF systemturns totwo
isolated SDOF systeswhena= B3 and3 arem(1+m) and 1/(1+7) respectively when
a= bMore details are provided ippdx.A.3.

3.4.3 Optimization Procedure

The optimization procedure for thedastic2DOF IFAS systemfollows asimilar
approach tahatused forthe TMD [113. Fig. 3-8a showsthe x; frequencyrespons€Eqn.
3-3) for a representativexamplecase=0.5, b=0.02 and =0.03 Results are shown far

rangeof damping ratiosincluding undampeds€0) andhighly damped3-= 1000. The
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frequencyresponse iseen to béndependent of damping at thréd i x e @ (PoM).nt s
The derivation of the frequency valuasP, Q, M,;Q "Q "Q , is shown inAppdx. A.2,
wherethe termw/ s is replace with "Qfor convenience

Several observations can be made ab€gt 3-8: (1) 'Q and"Q straddle the
resonance frequencg?) the response becomes unbounded at resonanee=fa000; in
other words the isolating effects aflow stiffness IFAS §= 0.02) is negated by the
excessivedampingforce across the interfacg€3) For the undamped syste(a = 0),
response becomes unbounded at values outsiearid"Q .Sincedue to the curve shape,
x1pis always smaller thaxg (at leastvhenb > 0), the procedre will focus oncontrolling
and minimizing the responseatly two of the fixed points;Q and™Q .

The criteria of the optimization is to minimize the maximum response of the
frequency response of the 2D@HAS system across a broad band of expected frequencies.
This optimization proceduricludes threesteps ( 1) fAbal anced the res
Q and M(SeeFig. 3-8b); (2) minimizetheresponse ahesepoints (Sed-ig. 3-8c); and (3)
find the optimum dampinépypy) to minimize response across the broad band of expected

frequencies (Sekig. 3-8d), with the responsed at optimum dampigg;, shown in red

~ Stepl

Step2

Fig. 3-8. OptimizationProcedure: (a) General Response; (b) Balanced Nodes; (c)
Minimized Nodes; (d) Optimum Damping.
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Bal anci ngp aihnmsm$dStepe)dcan beachievedby generating a
relationship among, b and: , termedatargetcurve Thetarget curves are presented in the
next section. Theerivation of he farget curveis providedin AppendixA.2.2.

It is important to note thahé target curve optimization approach, which was used
successfully to optimize the TM213, is not fully effective for the IFAS due to the mass
ratio () ranges associated with the IFASup to 10+).The target curve provideggative
b (designs optinaed with a negative IFAS stiffness) certain ranges of (¢ > 2.0) (See
Fig. 3-9 for example) Thus the design range is divided into two pdoisoptimization (1)
Region | O 0) ; ( 2 )b <R)eRegiann follows thé optimization procedure
described in this section, as will be presented next in Section 3.4.4. Region Il requires an
alternative methodaswill be discussed irsection3.4.5

0.2

-0.2

Regionl Region I

-0.4 ‘
0 2 4 6 8 10
m

Fig. 3-9. x1 Target Curvdor 2DOF IFASwhen%s0.03.

3.4.4 Region I: Target Curves

A challenge for optimizing the IFAS response is that both the LFRS and GLRS
responsesx{, X, Uo) need to be minimized. The Regibriarget curvesdr the LFRS
displacemenk; (analogous to lateral system drift), the Rk displacement. (analogous
to gravity system driff)and the GRS accelerationi, (analogous to floor accelerations),
are given in Egs 3-10ab, ¢ and plotted ifrig. 3-10a, b, cfor differentt values
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T — (3-109

o (3-10b)
T (3-10c)
. , =003 (g
=0.1
. =0.03
— %’ :l
,=0.1 , =1 , =0.2 =0.8
. =02 _ \
. =08 =04 _gg
. =04 =06 AR

0 0.5 1 1.5 2

u
Fig. 3-10. Target Curve: (ay1; (b) x2; (c) 2.

It is seen irFig. 3-10 that he target curv&(and positiveb regionsfor thatmatter)
for x4, Xx2andi, do not coincideRegardlesghe optimization ok: aloneis first pursued:
Minimizing xi response at the f i x e @ (stppo2) was seen twe achieved by
increasinge. An example cas#or xi, using the typical GLR$ = 0.03, is shown inFig.
3-11 Fig. 3-11a shows the target curve fr, with afocus now on Region. Fig. 3-11b
showsthe x1 response curves from the design points on the target curve (colored lines in
Fig. 3-11b correspond with colored circles kig. 3-11a). The results indicatéhat, in

Region | at leasthe optimizedk; response decreasase increases

Fig. 3-11. Response(a) xi targetcurve (b) optimizedx, in Region |
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