
1

DEVELOPMENT OF SOFTWARE TOOLSUITE FOR RAPID GENERATION OF SPACECRAFT REQUIREMENTS

FROM MISSION CONSTRAINTS FOR SPACECRAFT PROPOSAL DEVELOPMENT

by

Eric Sahr

Copyright © Eric Sahr 2017

A Thesis Submitted to the Faculty of the

SYSTEMS AND INDUSTRIAL ENGINEERING DEPARTMENT

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

2017

2

STATEMENT BY AUTHOR

The thesis titled Development of Software Toolsuite for Rapid Generation of Spacecraft Requirements

from Mission Constraints for Spacecraft Proposal Development prepared by Eric Sahr has been

submitted in partial fulfillment of requirements for a master’s degree at the University of Arizona and is

deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from the thesis are allowable without special permission, provided that an accurate

acknowledgement of the source is made. Requests for permission for extended quotation from or

reproduction of this manuscript in whole or in part may be granted by the head of the major

department or the Dean of the Graduate College when in his or her judgment the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must be obtained

from the author.

SIGNED: Eric Sahr

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

_________________________________ 08/17/2017

Roberto Furfaro Date

Associate Professor of Systems and Industrial Engineering

3

Contents
Table of Tables .. 5

Table of Figures ... 5

Abstract .. 6

1 Introduction .. 7

2 System Architecture .. 8

2.1 Tools .. 8

2.1.1 MATLAB ... 8

2.2 Master Controller Script .. 8

2.2.1 System Requirements ... 9

2.2.2 Subfunctions ... 12

2.3 Destination Subfunction.. 17

2.4 Telecommunications Subfunction ... 20

2.5 Command & Data Handling Subfunction .. 28

2.6 Propulsion Subfunction ... 30

2.7 Attitude Control Subfunction .. 31

2.8 Power System Subfunction ... 36

2.9 Structure Subfunction ... 41

2.10 Thermal System Subfunction .. 43

2.11 Fuel System Subfunction ... 46

3 Results... 51

3.1 Testing... 51

3.1.1 Testing Methodology .. 53

3.2 Case Study 1 – Mars Orbiter.. 54

3.2.1 Mars Reconnaissance Orbiter ... 54

3.2.2 Software-Generated Spacecraft Requirements... 57

3.3 Case Study 2 – Unrealistic Spacecraft Estimate ... 64

3.3.1 Software Generated Spacecraft Requirements ... 65

4 Discussion ... 71

4.1 Case Study 1 Discussion .. 71

4.1.1 Error Due to Thruster Specific Impulse Differences .. 72

4.1.2 Error Due to Insufficient Antenna Requirements .. 72

4.1.3 Power Requirements Error .. 73

4

4.1.4 Other Sources of Error .. 74

4.1.5 Other Unaccounted Assumptions ... 74

4.1.6 Differences in Expected vs Actual Subsystem Breakdowns ... 75

4.2 Case Study 2 Discussion .. 77

4.2.1 Excessive Telecommunications Link Budget Margin ... 78

4.2.2 Excessive Fuel Requirements .. 79

4.2.3 Unreasonable Mass Requirements for Launch Vehicle ... 79

4.2.4 Differences in Expected vs Actual Subsystem Breakdowns ... 79

5 Future Work .. 81

5.1 Command and Data Handling Subsystem Estimation Improvement ... 81

5.2 Structure Power Improvements .. 82

5.3 SPICE Toolkit Integration ... 82

5.4 Trajectory .. 83

5.5 Mission Planner ... 83

5.6 Launch Vehicle Selection ... 84

5.7 Spacecraft Development and Operations Cost Estimate... 85

5.8 Project Management .. 85

5.9 Fuel and Propulsion Subsystem Development Improvements .. 86

5.9.1 User Options to Select Fuel Types ... 86

5.9.2 Improving Power Requirements for Particular Fuel Subsystems....................................... 86

5.9.3 Implementation of Electric Propulsion .. 87

5.10 Improved Antenna Customization .. 87

5.11 Automatic Thermal Constraints .. 87

5.12 Graphical User Interface ... 88

5.13 Improved Margin Determination .. 88

6 Conclusion... 89

7 Appendices ... 89

7.1 APPENDIX A - Software Code .. 89

7.1.1 Master Controller Script .. 89

7.1.2 Destination Subfunction .. 91

7.1.3 Telecommunications Subfunction ... 93

7.1.4 C&DH Subfunction .. 95

7.1.5 Propulsion Subfunction ... 95

5

7.1.6 Attitude Control System Subfunction .. 96

7.1.7 Power Subfunction .. 97

7.1.8 Structure Subfunction ... 98

7.1.9 Thermal Subfunction ... 99

7.1.10 Fuel Subfunction ... 101

7.1.11 Test Script.. 103

8 References .. 111

Table of Tables

Table 1 - Software-Developed Mars Mission Telecom Link Budget .. 59

Table 2 - Subsystem Mass Percentage Comparison for Mars Spacecraft .. 62

Table 3 - Subsystem Power Percentage Comparison for Mars Spacecraft .. 63

Table 4 - Unrealistic Spacecraft Estimate Link Budget .. 66

Table 5 - Subsystem Mass Percentages Comparison for the Unrealistic Mission Spacecraft 69

Table 6 - Subsystem Power Percentages Comparison for the Unrealistic Mission Spacecraft 70

Table 7 - Comparison of Launch Mass Breakdown between MRO and Software-Generated Mars

Spacecraft ... 71

Table 8 - Launch Mass Breakdown for Unrealistic Mission Spacecraft ... 78

Table of Figures

Figure 1 - Launch Mass Breakdown for MRO .. 56

Figure 2 - Launch Mass Breakdown for Software-Generated Spacecraft .. 61

Figure 3 - Subsystem Mass Breakdown for Software-Generated Spacecraft .. 62

Figure 4 - Subsystem Power Breakdown for Software-Generated Spacecraft .. 63

Figure 5 - Launch Mass Breakdown for the Unrealistic Mission Spacecraft .. 68

Figure 6 - Subsystem Mass Breakdown for the Unrealistic Mission Spacecraft .. 69

Figure 7- Subsystem Power Breakdown for the Unrealistic Mission Spacecraft 70

6

Abstract

The development, testing, and results of a software suite for automated development of spacecraft

requirements is discussed. This software suite will enable mission scientists and engineers to rapidly

develop spacecraft requirements from a previously-developed set of mission requirements. The

software, written in MATLAB, is controlled by a Master Controller script, whose purpose is to accept

inputs from the user and call subfunctions responsible for designing the various spacecraft subsystem

requirements. The software was tested through the use of a series of arbitrarily-generated mission

requirements, with the test results being examined for potential feasibility and reasonableness. Case

studies are examined which show the efficacy of the software suite to accurately generate spacecraft

requirements. The first case study examines a set of software-developed spacecraft requirements

intended to meet the mission requirements of the Mars Reconnaissance Orbiter. The second case study

examines a set of infeasible mission requirements to the planet Uranus, in an effort to demonstrate that

the software will generate realistic, but infeasible, spacecraft requirements when the mission

requirements are themselves infeasible. Both case studies generate reasonable spacecraft requirements

as expected, with the direct comparison between the Mars spacecraft resulting in very similar

preliminary spacecraft designs. This software suite will enable spacecraft scientists and engineers to

quickly assess the feasibility of mission concepts and proposal designs through rapid development of

spacecraft requirements.

7

1 Introduction
NASA and other space agencies currently use a proposal-based approach for the early development of

potential mission and spacecraft concepts. Typically, a call for proposals will be issued by the respective

agency, and various entities (including NASA field centers, academic institutions, and private companies)

will spent significant time, money, and energy to develop a feasible mission proposal and spacecraft

concept [1]. While much of this analysis is performed using advanced software tools, no software

currently unifies the design of the various spacecraft subsystems to rapidly and iteratively develop a set

of potential spacecraft requirements. This thesis aims to improve this early development process by

automating the tasks associated with determining mission feasibility, allowing scientists and other non-

engineering individuals to rapidly assess whether a particular mission concept is feasible with current

spacecraft technology. If the mission concept is shown to be too unrealistic, the individual can rapidly

make changes to ease the mission constraints, rather than wasting valuable resources exploring a

mission concept that cannot be supported by current spacecraft technology.

The current method of developing mission proposals has the advantage of being highly accurate and

reliable. Since engineers are intimately involved in the development of these spacecraft concepts, it is

safe to argue that the overall mission goals and constraints have been carefully considered when sizing

the spacecraft subsystems and developing spacecraft subsystem requirements. The disadvantage of this

current method is the fact that a potential proposal must have the funding required to hire a staff of

engineers to assess these feasibilities prior to being awarded a contract to fly the mission.

The scope of this software is solely in the development of the spacecraft subsystem requirements. The

mission, budget, and schedule requirements are all elements that must be separately developed prior to

using this tool. Additionally, the spacecraft trajectory must be separately developed outside of this tool.

8

The documentation associated with this software tool includes a discussion and justification of the

software source code, followed by an explanation of the testing used to validate that source code. Two

case studies are explored, one comparing the software output to the spacecraft requirements for the

Mars Reconnaissance Orbiter, and another exploring infeasible mission constraints for a spacecraft

traveling to Uranus. A discussion of potential errors as revealed by each of the case studies are

discussed. Lastly, a list of potential future improvements to the software is outlined. The software

source code appears as an appendix to this document.

2 System Architecture

2.1 Tools

2.1.1 MATLAB

The software suite is written entirely in MATLAB. MATLAB is a platform optimized for solving

engineering and scientific problems rapidly. MATLAB, short for Matrix Laboratory, is developed and

maintained by Mathworks, Inc [2]. This platform was used to develop and test all of the subfunctions

discussed throughout the ‘System Architecture’ section. MATLAB has been used for the development of

many scripts and functions in the spaceflight in the past, and is referenced by many undergraduate and

graduate-level textbooks as the platform of choice for solving problems in the realm of spaceflight

engineering.

2.2 Master Controller Script

The software suite is governed by a single master script, which takes in inputs from the user, calls

subfunctions which design spacecraft subsystems, manages data between the subfunctions, and

aggregates the subfunctions to build the initial spacecraft estimate.

9

2.2.1 System Requirements

The first task of the master controller script is to gather the necessary mission requirements. In a

nominal proposal, the mission requirements will come from the science team, and spacecraft engineers

involved with the proposal would design to those requirements. The master controller script serves a

similar function. The master controller script requests the following mission requirements in order to

arrive at the spacecraft requirements.

2.2.1.1 Requirements

2.2.1.1.1 Spacecraft Delta-V

This requirement is driven by the trajectory design of the potential mission. Since this is out of the scope

of the current software suite, the master controller script requests this information from the spacecraft

team. This parameter requests the Delta-v of the entire mission that will be handled solely by the

spacecraft. Trajectory injection from the launch vehicle is excluded. This parameter is in the units of

kilometers/second.

2.2.1.1.2 Destination Name

This requirement prompts the user to identify the destination object of the spacecraft. Due to the

limitations of the software, currently only one destination can be identified. In the event a spacecraft is

expected to visit multiple solar system objects, the user of the software should perform their own

preliminary analysis to determine which destination will drive the spacecraft requirements. One of the

suite’s subfunctions contains pertinent data for the 8 planets, Pluto, and Earth’s moon. The script also

allows for Deep Space missions, where no particular destination is expected to drive requirements.

Further details about the script handling destination data will appear in its own section.

10

2.2.1.1.3 Destination Minimum Range

This requirement is the minimum range of the spacecraft to the destination planet during nominal

mission operations. This parameter is in kilometers.

2.2.1.1.4 Payload Mass

This requirement is the estimated mass of the spacecraft payload. This parameter does not include any

spacecraft subfunctions, and should only include the estimate of the mass for any science instruments

or other science payloads. This parameter is in kilograms.

2.2.1.1.5 Payload Power

This parameter represents the estimated power requirements of the science payload for the spacecraft

during nominal peak science operations. This power requirement does not include any necessary

spacecraft subsystems (ie thermal). This parameter is in watts.

2.2.1.1.6 Payload Volume

This parameter represents the estimated volume requirements for the science payload. This volume

requirement does not include any necessary spacecraft subsystems. This parameter is in cm3.

2.2.1.1.7 Payload Count

This parameter represents the number of science instruments on board the spacecraft. This parameter

is used to estimate certain other requirements that will be levied on the spacecraft subsystems by the

science payload.

2.2.1.1.8 Spacecraft Pointing Requirement

This requirement is the maximum rotation rate of the spacecraft in order to meet spacecraft safety and

mission objectives. This requirement drives many attitude control requirement estimates. This

parameter is in degrees per second.

11

2.2.1.1.9 Primary Mission Length

This parameter is the length of the spacecraft primary mission in days, not including outbound cruise to

the destination.

2.2.1.1.10 Spacecraft Thermal Maximum

This parameter represents the maximum temperature that the spacecraft can endure. This would

represent the component of the spacecraft who has the coldest maximum temperature, extrapolated to

the entire vehicle. This parameter is in degrees Celsius.

2.2.1.1.11 Spacecraft Thermal Minimum

This parameter represents the minimum temperature that the spacecraft can endure. This would

represent the component of the spacecraft which has the warmest minimum temperature, extrapolated

to the entire vehicle. This parameter is in degrees Celsius.

2.2.1.1.12 Spacecraft Thruster Specific Impulse

This parameter sets the specific impulse of the thrusters on the spacecraft. The unit for this parameter is

seconds. The software uses three different thruster sizes to accomplish the maneuvers that a spacecraft

must typically accomplish. These three thruster sizes are described as ‘small’ (typically used for small

attitude control system maneuvers), ‘medium’ (typically used for tasks where the attitude control

system would not efficiently suffice, but where the large thrusters would be overpowered for the task at

hand, such as some Trajectory Correction Maneuvers during Outbound Cruise phases of interplanetary

missions), and ‘large’ (typically used for major maneuvers, such as orbit insertion at the destination of

the spacecraft). The specific impulse for each of these three thruster sizes can be set separately from

one another.

12

2.2.1.1.13 Spacecraft Flyby Flag

This parameter sets the “flyby flag.” This allows the user to decide whether the mission will be an

orbiter at its destination, or a flyby mission of a particular destination. This flag affects how subfunctions

execute. A flag of ‘0’ indicates the mission is an orbiter of the specified destination. A flag of ‘1’ indicates

that the mission is a flyby mission of the specified destination. There are circumstances where it does

not make sense to set the Flyby flag to 1, such as when the vehicle is intended as an Earth observer.

2.2.2 Subfunctions

Upon loading the requirements, the master script calls a series of subfunctions. These subfunctions

perform preliminary analysis in sizing the mass and power requirements of the spacecraft subsystems

needed in order to meet the mission requirements. Each subfunction is called, with Requirements data

being passed to the subfunction. The subfunction performs its analysis, before passing updated

requirements back to the main function. Once these requirements have been passed back, the main

function updates its current estimates of the total mass and power requirements of the overall

spacecraft, and passes these updated constraints to the next subfunction.

13

Figure 1 - A flow diagram illustrating the order of the subfunctions as called by the Master Controller Script, and the relationship
between the Mission Requirements inputs, the subfunctions, and the outputs of Spacecraft Mass, Power, and Fuel

Requirements.

14

A list and brief summary of each subfunction appears below:

2.2.2.1 Destination

This subfunction reads in the destination of the spacecraft as specified by the user, and loads in

constants pertaining to that destination. An exhaustive list of these constants appears in the detailed

description for this subfunction. These constants are passed back to the main function and loaded into

the mission requirements passed to the subfunctions that design the spacecraft subsystems. If the

destination has no data, the user will be prompted to provide this data about the destination prior to

proceeding.

2.2.2.2 Telecommunications

This subfunction reads in mission requirements pertaining to range to Earth and data volume to design a

preliminary telecommunications subsystem for the spacecraft. An optimization function balancing

power required and antenna mass runs to optimize this subsystem. Total mass and power requirements

for components of this subsystem are tabulated and passed back to the main function for inclusion in

calculations made for other subsystems. A link table is also produced.

2.2.2.3 Command & Data Handling

This subfunction reads in mission requirements as well as telecommunications capabilities to design a

preliminary Command & Data Handling subsystem for the spacecraft. These requirements pertain to

data volume and downlink bandwidth. Total mass and power requirements for the various components

for this subsystem are tabulated and passed back to the main function for inclusion in calculations made

for other subsystems.

2.2.2.4 Propulsion

This subfunction reads in mission requirements to design a preliminary Propulsion subsystem for the

spacecraft. This subfunction does not design the fuel system (this is completed at the end of the Master

15

Controller script when the spacecraft mass and volume requirements can be better estimated), but

rather only performs calculations regarding the number of thrusters required to meet mission

requirements. Total mass and power requirements for the various components for this subsystem are

tabulated and passed back to the main function for inclusion in calculations made for other subsystems.

2.2.2.5 Attitude Control

This subfunction reads in mission requirements to design a preliminary Attitude Control subsystem for

the spacecraft. This subfunction reads in requirements pertaining to pointing, mission length, orbit

insertion burn length, and estimated spacecraft mass/volume to design a preliminary attitude control

subsystem. This subfunction also calculates the mass of the fuel required to perform the estimated

attitude control burns. It does not calculate the mass or power requirements required to store the fuel.

Total mass and power requirements for the various components for this subsystem are tabulated and

passed back to the main function for inclusion in calculations made for other subsystems.

2.2.2.6 Power

This subfunction reads in mission requirements to design a preliminary Power system for the spacecraft.

This subfunction reads in requirements pertaining to payload power, eclipse time at the destination, and

distance from the sun. In the event that the spacecraft will travel far enough from the sun to make solar

panels impractical, the subfunction will automatically perform calculations for an RTG-based power

system instead. This is done for all spacecraft with destinations beyond Jupiter. This subfunction designs

the solar panels and battery systems, and tabulates the mass and power requirements necessary for this

subsystem. Total mass and power requirements for the various components for this subsystem are

tabulated and passed back to the main function for inclusion in calculations made for other subsystems.

16

2.2.2.7 Structure

This subfunction reads in mission requirements to design a preliminary spacecraft structure to house the

payload and other subsystems. This subfunction makes assumptions about the total volume of the

spacecraft subsystems, in addition to reading in the payload volume requirements from the user.

Knowing these requirements on the spacecraft, this subfunction designs a cylindrical spacecraft bus that

could hypothetically house these components (with no assumptions made for the potential geometry or

thermal constraints). The mass of the spacecraft structure is tabulated assuming a bus built from

aluminum. Total mass and power requirements for the various components for this subsystem are

tabulated and passed back to the main function for inclusion in calculations made for other subsystems.

While a spacecraft structure could possibly have additional requirements for actuation, it is assumed

that these are less than the science payload power requirements, and can be adequately handled by the

power system as potential major actuation events would take place when the science payload was off.

2.2.2.8 Thermal

This subfunction reads in mission requirements, spacecraft requirements (so far), and destination

constant parameters to design a preliminary thermal subsystem. The thermal subsystem is designed

assuming that a passive system will be adequate for maintaining the spacecraft within acceptable

thermal conditions at the destination. In the event that passive thermal systems are not sufficient to

meet the spacecraft thermal requirements, the subfunction will automatically add spacecraft heaters to

bring the thermal system into compliance with thermal requirements. Total mass and power

requirements for the various components for this subsystem are tabulated and passed back to the main

function for inclusion in calculations made for other subsystems.

2.2.2.9 Fuel

Once all other subfunctions are sized and estimated, the final design subfunction is called which reads in

mission requirements and spacecraft requirements to size an appropriate fuel system. The amount of

17

fuel necessary to meet the requirements is tabulated, with additional margin added to account for

spillage, loading error, and mass growth through the development lifecycle. A fuel system designed to

store and deliver this fuel to the propulsion system is designed. Total mass and power requirements for

the various components for this subsystem are tabulated and passed back to the main function for

inclusion in calculations made for determining the final estimated spacecraft requirements.

2.3 Destination Subfunction

The Destination subfunction is the first subfunction executed off of the main script. This subfunction

holds planetary destination data for Mercury, Venus, Earth, Earth’s Moon, Mars, Jupiter, Saturn, Uranus,

Neptune, and Pluto [3]. Additionally, the script is equipped to handle Deep Space and other

destinations, but the user must provide additional data for the script to function properly.

function [Requirements] = Destination(Requirements)

The subfunction is written as a MATLAB function. It reads in the structure ‘Requirements’ which is first

built in the Master Controller script. Once this subfunction is completed, it passes the structure

‘Requirements’ back to the Master Controller script.

if strcmp(Requirements.Destination.Name,'Mercury') == 1

 %Requirements.Destination.Name = 'Mercury';

 Requirements.Destination.IR = 4150;

 Requirements.Destination.Albedo = 0.106;

 Requirements.Destination.Radius = 2439.7;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (6.156 * 10^7);

 Requirements.Destination.SolarFlux = 9228;

 Requirements.Destination.mu = 2.2032 * 10^4;

 Requirements.Destination.SolarPressure = 3.05 * 10^-5;

Once the script has completed reading in the structure ‘Requirements’, it utilizes the parameter

‘Requirements.Destination.Name’ to determine which solar system destination the user desires. The

subfunction performs a simple string comparison, if the names do not exactly match, it passes to the

next elseif statement (representing a different possible destination). For destinations with known and

18

consistent parameters (such as Mercury as shown above), the following parameters are hard-coded into

the script:

2.3.1.1 Requirements.Destination.IR

This parameter represents the infrared radiation of the destination. It is in the units of Watts per meter

squared [4].

2.3.1.2 Requirements.Destination.Albedo

The average albedo, the proportion of incident light reflected by a surface, of the destination, as

observed by a hypothetical orbiting spacecraft [1].

2.3.1.3 Requirements.Destination.Radius

The radius of the destination, in kilometers [3].

2.3.1.4 Requirements.Destination.TransmitterMaxRange

The maximum range in kilometers of the spacecraft from the Earth at the destination. For Mercury,

Venus, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto, this is determined by the hypothetical

maximum distance at conjunction [3]. For these destinations, this is calculated with the following

formula:

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟𝑀𝑎𝑥𝑅𝑎𝑛𝑔𝑒 = 𝐸𝑎𝑟𝑡ℎ𝑅𝑎𝑛𝑔𝑒𝑇𝑜𝑆𝑢𝑛 + 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒𝑇𝑜𝑆𝑢𝑛

For the Earth, the TransmitterMaxRange is defined as Earth’s Sphere of Influence radius.

For the Moon, the TransmitterMaxRange is defined as the Moon’s maximum orbit distance from the

Earth.

For Deep Space and other destinations, the user is prompted to enter the spacecraft’s maximum range

from the Earth.

19

Requirements.Destination.TransmitterMaxRange = input('What is the maximum range of the

destination to Earth in km?');

2.3.1.5 Requirements.Destination.SolarFlux

The solar flux at the destination, in W/m2.

For Deep Space and user-specified destinations, the Solar Flux is calculated using the following equation:

[5]

𝑆𝑜𝑙𝑎𝑟 𝐹𝑙𝑢𝑥 =
𝑆𝑜𝑙𝑎𝑟 𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦

𝑅𝑎𝑛𝑔𝑒 𝑇𝑜 𝑆𝑢𝑛

2.3.1.6 Requirements.Destination.mu

The Standard Gravitational Parameter of the destination, in km3s-2 [3].

2.3.1.7 Requirements.Destination.SolarPressure

The Solar Pressure at the destination, in (W-s)/m3.

For all destinations, this is calculated by the following formula: [6]

𝑆𝑜𝑙𝑎𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑆𝑜𝑙𝑎𝑟 𝐹𝑙𝑢𝑥

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐿𝑖𝑔ℎ𝑡

For destinations that are not hard-coded into the subfunction, the user is prompted to enter each piece

of necessary data in order for the spacecraft subsystem requirement development to proceed.

else

 %Ask user to specify IR, Albedo, and Radius.

 Requirements.Destination.IR = input('What is the Orbit-Average IR of the destination in

W/m^2?');

 Requirements.Destination.Albedo = input('What is the Geometric albedo of the destination?');

 Requirements.Destination.Radius = input('What is the radius of the destination?');

 Requirements.Destination.TransmitterMaxRange = input('What is the maximum range of the

destination to Earth?');

 Requirements.Destination.SolarFlux = input('What is the solar flux of the destination?');

20

 Requirements.Destination.mu = input('What is the mu of the destination?');

 Requirements.Destination.SolarPressure = (Requirements.Destination.SolarFlux)/(2.998*10^8);

This section of the subfunction only runs if the destination as specified by the user does not match any

of the above-mentioned destinations.

Once the Requirements for the destination is added to the ‘Requirements’ structure (which takes place

at the end of each elseif statement), the ‘Requirements’ structure is passed back to the Master

Controller script as an output.

2.4 Telecommunications Subfunction

Once all of the mission requirements have been loaded into the Master Controller, the script then

begins to develop the spacecraft requirements. The first spacecraft requirements developed are the

Telecommunications Requirements. This script utilizes a handful of assumptions about the

telecommunications subsystem, all of which can be modified by the user if different assumptions are

desired. These assumptions are: [1]

 Antenna Efficiency of 65%

 Antenna Frequency of 8.4 * 10^9 Hz

 Transponder weight of 7.6 kg

 Control Unit weight of 10.9 kg

 TWTA (traveling wave tube amplifier) weight of 6.2 kg

 RFS Components weight of 8 kg

 Medium Gain Antenna Weight of 2.1 kg

 Coax Cable weight of 7.8 kg

 Control Unit Power Requirement of 12.2 watts

 X-Exciter power requirement of 1.4 watts

21

 Receiver power requirement of 6.8 watts

 TWTA power requirement of 67 watts

 XS Down Converter power requirement of 2.1 watts

This subfunction is written as a MATLAB function, with the aforementioned ‘Requirements’ structure

serving as the inputs, and TelecomMass and TelecomPower requirements as the output.

This subfunction calculates the Telecommunications subsystem requirements differently depending on

the mass of the payload the spacecraft is expected to support. Very small payloads would potentially

result in a very small spacecraft. This would cause the subfunction to generate unrealistically small

antennae. To resolve this, the script was broken up into three different elseif branches.

The first branch is executed if the payload of the spacecraft is greater than 160 kg.

if Requirements.Payload.Mass > 160

syms x

f(x) = (AntennaEfficiency * (0.5*Requirements.Payload.Mass - 80 - 4 * x ^2) * (pi * x / ((3 *

10^8) / AntennaFrequency)^2));

df = diff(f,x);

AntennaRoots = solve(0 == df,x);

ARootsPos = double(AntennaRoots(AntennaRoots>0));

AntennaDiameter = max(0.4,ARootsPos);

LightweightAntennaMode = 0;

The script performs an optimization between antenna size and power requirements. This allows the

script to reduce weight without putting unnecessary strain on the power system. This optimization is

determined by the following equation: [1]

0 = 𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗
1

2
∗ 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑀𝑎𝑠𝑠 − 80 − 4 ∗ 𝑥2 ∗

𝜋𝑥

(
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐿𝑖𝑔ℎ𝑡

𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
)2

𝑑𝑥

22

This equation will result in multiple non-real answers. The script automatically parses the real answer,

compares it to a minimum antenna size of 0.4 meters diameter, and sets the

“LightweightAntennaMode” variable to 0.

The second branch is executed if the payload mass of the spacecraft is less than 27.999 kg.

elseif Requirements.Payload.Mass < 27.999

 AntennaDiameter = 0.4;

 LightweightAntennaMode = 1;

This branch assumes that a very small spacecraft will use a small, commercial-off-the-shelf antenna.

Typically, these antenna have a diameter of about 0.4 meters [1]. This branch sets the

“LightweightAntennaMode” variable to 1.

The last branch executes if the payload mass of the spacecraft is greater than 27.999 kg, but less than

160 kg.

else

 AntennaDiameter = 0.68;

 LightweightAntennaMode = 2;

Like the previous branch, this branch assumes that a small spacecraft will used a small, commercial-off-

the-shelf antenna. This spacecraft will likely support a larger antenna, but still does not need a custom

design. These antenna have a typical diameter of 0.68 meters [1]. This branch sets the

“LightweightAntennaMode” to 2.

if LightweightAntennaMode == 0

 %Calculate weight using formula

 HGAAntennaWeight = max(2.1,2.89 * AntennaDiameter ^ 2 + 6.11 * AntennaDiameter - 2.59);

elseif LightweightAntennaMode == 1

 HGAAntennaWeight = 2.1;

elseif LightweightAntennaMode == 2

 HGAAntennaWeight = 7;

else

23

 %An error has occurred.

end

The “LightweightAntennaMode” automatically determines which calculation should be used to assess

the mass of the antenna as designed.

When the mode is set to 0, this indicates that the Payload Mass was greater than 160kg, and a custom

antenna was optimized for. In this mode, the subfunction performs a calculation to determine an

estimated mass of the antenna based on the antenna diameter [1].

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝑀𝑎𝑠𝑠 = 2.89 ∗ 𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟2 + 6.11 ∗ 𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 2.59

This equation was developed by examining diameter/mass ratios of antenna on previously flown

spacecraft, and creating a best-fit equation to match that dataset [1].

When the LightWeightAntennaMode is set to 1, it indicates that a very small Payload Mass requirement

was required, likely resulting in a small spacecraft. This mode uses a small commercial-off-the-shelf

antenna, and thus the antenna weight is hard-coded into the function. This is also true when the

LightweightAntennaMode is set to 2.

Lastly, if the LightweightAntennaMode is set to anything other than 0, 1, or 2 – the script aborts as an

error has somehow occurred.

The script then calculates the power necessary to transmit using this antenna size. This equation is as

follows: [1]

𝑃𝑜𝑤𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 = 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑀𝑎𝑠𝑠 − 80 − 4 ∗ 𝐴𝑛𝑡𝑒𝑛𝑛𝑎𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

Next, the script takes the antenna information as designed, and adds it to the mass and power

requirements for the rest of the telecommunications subsystem.

TelecomPower = ControlUnitPower + XExciterPower + ReceiverPower + PowerTransmitted + TWTAPower +

XSDownConvertPower; %W

24

TelecomMass = TransponderWeight + ControlUnitWeight + TWTAWeight + RFSComponentsWeight +

HGAAntennaWeight + MediumGainAntennaWeight + CoaxCableWeight; %kg

Once these requirements are tabulated, they are passed as an output back to the Master Controller

script. The Master Controller script then adds these numbers to the requirements of the spacecraft so

far, which will inform further calculations in preliminary development of the spacecraft.

As an additional output, the subfunction also generates a nominal telecommunications link table,

consisting of the pertinent information demonstrating the robustness of the telecommunications link

between the spacecraft and the ground. Some of these values are assumptions, others are selected by

the user, and the remainder are calculated from the rest of the link table values: [1]

 Frequency (Assumed: 8.4 GHz)

 Bit error rate (Assumed: 1 * 10-5)

 Range, km

 Symbol Rate (Assumed: 0.125 bps)

 Transmitter Power, watts

 Transmitter to antenna cable loss (Assumed: 0 dB)

 Transmitting Antenna Gain (Assumed: 67 dB)

 EIRP, dB

 Free Space Path Loss, dB

 Atmospheric Attenuation (Assumed: -0.17 dB)

 Polarization Loss (Assumed: -1 dB)

 Ground receiver gain (Assumed: 67 dB)

 Pointing loss (Assumed: -5 dB)

 Receiver cable loss (-1.95 dB)

 Total Received Power, dB

25

 System Noise Temperature (Assumed: 18 K)

 System Noise Density, dB/Hz

 Carrier power to total power ratio, dB

 Received carrier power, dB

 Carrier noise bandwidth (Assumed: 13 dB-Hz)

 Carrier signal to noise, dB

 Carrier signal to noise required by ground station (Assumed: 10 dB)

 Carrier link margin, dB

 Data power/total power ratio, dB

 Data power received, dB

 Data symbol rate, dB-Hz

 Eb/N0 achieved, dB

 Eb/N0 required (Assumed: 4.2 dB)

 Data link margin, dB

 Modulation Index, degrees

The Frequency, Bit Error Rate, Symbol Rate, Cable Loss, Antenna Gain, Atmospheric Attenuation,

Polarization Loss, Spacecraft Antenna Gain, Pointing Loss, Received Cable Loss, Receiver Noise

Temperature, Spacecraft Antenna Temperature, Carrier Noise Bandwidth, Carrier Noise Ratio Required,

and Eb/N0 Required, and Modulation Index are all assumed values in this subfunction. Future work

would include enabling the user to fine-tune the telecommunications subsystem to better serve the

requirements of the mission. For this software at this time, the default values for these parameters will

suffice.

𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑅𝑎𝑛𝑔𝑒 = 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 𝑀𝑎𝑥 𝑅𝑎𝑛𝑔𝑒

26

For computing the nominal link table, the spacecraft range is assumed to be the range from the Earth to

the Destination at opposition.

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 = 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝑃𝑜𝑤𝑒𝑟

The optimization between antenna size and required transmitter power yields a value “Spacecraft

Antenna Power” which is now used in the link table.

𝐸𝐼𝑅𝑃 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 + 𝐶𝑎𝑏𝑙𝑒 𝐿𝑜𝑠𝑠 + 𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝐺𝑎𝑖𝑛

The EIRP (Effective Isotropic Radiated Power) is calculated as the summation of transmitter power, cable

losses, and antenna gain [1].

𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 = 92.44 + 20 ∗ log(𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) + 20 ∗ log(𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑅𝑎𝑛𝑔𝑒)

The Free Space Path Loss is calculated by subtracting 20 times the log of the frequency, and 20 times the

log of the maximum spacecraft range to the ground station from 92.44 [1].

𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝐺𝑎𝑖𝑛 = 10 ∗ log (𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗
𝜋 ∗ 𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

(
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐿𝑖𝑔ℎ𝑡

𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
)2

The Spacecraft Antenna Gain is 10 multiplied by the log of the Antenna Efficiency multiplied by π times

the Antenna Diameter, divided by the Speed of Light divided by the antenna frequency, squared [7].

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑜𝑤𝑒𝑟

= 𝐸𝐼𝑅𝑃 − 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 + 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠

+ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐴𝑛𝑡𝑒𝑛𝑛𝑎 𝐺𝑎𝑖𝑛 + 𝑃𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 + 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐶𝑎𝑏𝑙𝑒 𝐿𝑜𝑠𝑠

The total received power is the summation of the EIRP, Free Space Path Loss, Atmospheric Attenuation,

Polarization Losses, Spacecraft Antenna Gain, Pointing Losses, and Received Cable Losses [1].

𝑆𝑦𝑠𝑡𝑒𝑚 𝑁𝑜𝑖𝑠𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = −228.6 + 10 ∗ log(𝑆𝑦𝑠𝑡𝑒𝑚 𝑁𝑜𝑖𝑠𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

27

The System Noise Density of the telecommunications link between the ground and the spacecraft is

calculated as -228.6, plus 10 times the log of the cosine of the System Noise Temperature [1].

𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝑃𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
= 20 ∗ log(cos (𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥))

The Carrier Power/Total Power value is calculated by multiplying 20 by the log of the Modulation Index

[1].

𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 +
𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝑃𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

The Carrier Power Received is the sum of the Total Received Power and the Carrier Power/Total Power

values [1].

𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

= 𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑆𝑦𝑠𝑡𝑒𝑚 𝑁𝑜𝑖𝑠𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 − 𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝑁𝑜𝑖𝑠𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

The carrier noise ratio received value is the carrier power received, minus the system noise density,

minus the carrier noise bandwidth [1].

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑃𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
= 10 ∗ log(sin(𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥))

The Command Power/Total Power volume is 10 multiplied by the log of the sin of the modulation index.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 +
𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑃𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

The Command Power Received is the sum of the Total Received Power and the Command Power/Total

Power [1].

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑆𝑦𝑚𝑏𝑜𝑙 𝑅𝑎𝑡𝑒 = −10 ∗ log(𝑆𝑦𝑚𝑏𝑜𝑙 𝑅𝑎𝑡𝑒) − 30

The Command Symbol Rate is 30 subtracted from 10 times the log of the Symbol Rate [1].

28

𝐸𝑏𝑁0 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 = 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 + 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑆𝑦𝑚𝑏𝑜𝑙 𝑅𝑎𝑡𝑒 − 𝑆𝑦𝑠𝑡𝑒𝑚 𝑁𝑜𝑖𝑠𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

The EbN0 Achieved value is the System Noise Density subtracted from the sum of the Command Power

Received and the Command Symbol Rate [1].

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐿𝑖𝑛𝑘 𝑀𝑎𝑟𝑔𝑖𝑛 = 𝐸𝑏𝑁0 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 − 𝐸𝑏𝑁0 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

The Command Link Margin is the EbN0 Achieved minus the EbN0 Required [1].

After completing these calculations, the subfunction has completed building the Link Table outlining the

capabilities and margins of the Telecommunications subsystem. The subfunction ends and the script

returns to the Master Controller script. Care must be taken when using the Telecom script, as it is

possible with the present assumptions that negative margins will result. The user should consider

altering characteristics of the telecom system (such as transmission frequency) to result in positive

margin.

2.5 Command & Data Handling Subfunction

The Command & Data Handling subfunction is written as a MATLAB function, with the structure

‘Requirements’ being loaded as an input, and ‘CDHMass’ and ‘CDHPower’ as outputs.

This subfunction contains a number of hard-coded values, which serve as assumptions to the design of

the subsystem. Future work on this subfunction would further optimize Command & Data Handling

subsystem design to better match the needs of the spacecraft. These hard-coded values are: [1] [4]

 Independent Data Rate Equipment Mass: 30 kg

 Computer Mass: 2 kg

 Science Data Processor Mass: 15 kg

 Engineering Data Processor Mass: 10 kg

 Independent Data Rate Equipment Power: 20 watts

29

 Computer Power: 10 watts

 Engineering Data Processor Power: 5 watts

The subfunction designs small aspects of the overall Command & Data Handling subsystem. To

determine the estimated power requirements of the Science Data Processor, the subfunction uses the

following equation: [1]

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝐷𝑎𝑡𝑎 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑃𝑜𝑤𝑒𝑟 = 2 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑠 + 1

The data storage mass is calculated with the following equation: [1]

𝐷𝑎𝑡𝑎 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑀𝑎𝑠𝑠 = 0.25 ∗ 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝐷𝑎𝑡𝑎 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

Lastly, the data storage power requirement is determined by the following equation: [1]

𝐷𝑎𝑡𝑎 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 = 1 ∗ 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝐷𝑎𝑡𝑎 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

Once all of these aspects of the subfunction have been determined, the requirements of the entire

subsystem can be formulated:

CDHMass = IndependentDataRateEquipmentMass + ComputerMass + ScienceDataProcessorMass +

EngineeringDataProcessorMass + DataStorageMass;

CDHPower = IndependentDataRateEquipmentPower + ComputerPower + ScienceDataProcessorPower +

EngineeringDataProcessorPower + DataStoragePower;

These tabulated values are then passed back to the Master Controller script for inclusion in the overall

spacecraft mass and power requirements so far. These values will be utilized to further design the

remaining spacecraft subsystems.

30

2.6 Propulsion Subfunction

The Propulsion subfunction is responsible for designing the thrusters and engines that will be used to

perform maneuvers with the spacecraft. The fuel system accompanying this subsystem is designed at a

later step, as is the attitude control system.

The subfunction is written as a MATLAB function, with the structure ‘Requirements’ as an input.

‘PropMass’ and ‘PropPower’ are outputs.

The subfunction first determines the mass of each of the different types of thrusters the spacecraft will

utilize. For large and medium thrusters, the equation governing this calculation is as follows: [1]

𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝑊𝑒𝑖𝑔ℎ𝑡 = 0.34567 ∗ 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐼𝑠𝑝0.55235

For small thrusters, it is assumed that the spacecraft will utilize off-the-shelf components, and the mass

of the small thruster is hard-coded as 0.4 kg [1].

The subfunction then reads in the maneuver requirements from the requirements structure. These

requirements are used to determine the number of thrusters of each type necessary to complete the

various maneuvers as anticipated.

𝐿𝑎𝑟𝑔𝑒 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐶𝑜𝑢𝑛𝑡 =
𝑂𝑟𝑏𝑖𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑢𝑠𝑡 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝐿𝑎𝑟𝑔𝑒 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐼𝑠𝑝

𝑀𝑒𝑑𝑖𝑢𝑚 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐶𝑜𝑢𝑛𝑡 =
𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑀𝑎𝑛𝑒𝑢𝑣𝑒𝑟 𝑇ℎ𝑟𝑢𝑠𝑡 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑀𝑒𝑑𝑖𝑢𝑚 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐼𝑠𝑝

Both of these equations round up to the next whole number using the MATLAB ‘ceil’ command, as a

spacecraft logically cannot have a fraction of a thruster.

LargeThrusterCount = ceil(OIThrust/Requirements.Prop.LargeThruster);

MediumThrusterCount = ceil(TCMThrust/Requirements.Prop.MediumThruster);

31

The small thruster count is hard-coded at 12, as it is assumed that the small thrusters will be used for

attitude control.

Once the requirements for the mass and count of all of the thrusters have been determined, they can be

tabulated to determine the total mass of the Propulsion subsystem.

PropMass = LargeThrusterCount * LargeThrusterWeight + MediumThrusterCount * MediumThrusterWeight

+ SmallThrusterCount * SmallThrusterWeight;

The Power Requirements of the Propulsion subsystem are calculated using the following equation: [1]

𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

= 0.01 ∗
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝑠𝑜 𝑓𝑎𝑟) − 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

0.4

This equation assumes that the Propulsion system will utilize approximately one percent of the total

spacecraft subsystem power requirements. The equation then assumes that 40% [1] of the subsystem

power has been allocated so far, and extrapolates this assumption to determine an assumed final

subsystem weight for the spacecraft.

Once mass and power for this subsystem have been determined, they are passed back to the Master

Controller script for inclusion in overall spacecraft mass and power requirements. This information will

be used to inform further subsystem development.

2.7 Attitude Control Subfunction

The subfunction generating the spacecraft Attitude Control System is written as a MATLAB subfunction.

It passes in the structure ‘Requirements’ as an input, with ‘AttitudeMass’ and ‘AttitudePower’ as

outputs.

The subfunction begins by pulling estimated spacecraft mass (so far in the design process) and

extrapolating to determine a low-fidelity mass estimate. At this point in the subsystem design process,

32

the subsystems designed so far represent approximately 39% of a spacecraft’s final dry mass. Thus, the

subfunction assumes that the rest of the spacecraft will follow this mass estimate by utilizing the

following equation:

SpacecraftMass = 1/0.39 * Requirements.SpacecraftMass;

Once the mass is estimated for the purposes of designing the attitude control subsystem, the final

spacecraft volume must be estimated to determine the moment arm of the attitude control subsystem.

A subsystem packing estimate of 20 grams per cubic centimeter is used to estimate the final spacecraft

volume. Additionally, an assumed requirement of a 10-inch packing envelope height is used [8].

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑁𝑜 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒) =
𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑀𝑎𝑠𝑠

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑅𝑎𝑑𝑖𝑢𝑠 (𝑁𝑜 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒) =
3 ∗ 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑁𝑜 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒)

4 ∗ 𝜋

1
3

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

=
4

3
∗ 𝜋 ∗ (𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑅𝑎𝑑𝑖𝑢𝑠 (𝑁𝑜 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒) + 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝐻𝑒𝑖𝑔ℎ𝑡)3

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑉𝑜𝑙𝑢𝑚𝑒

This volume can then be used to estimate a moment arm for the final spacecraft estimate. This estimate

assumes a spherical spacecraft in the calculation of a moment arm.

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑅𝑎𝑑𝑖𝑢𝑠 = (
3 ∗ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑉𝑜𝑙𝑢𝑚𝑒

4 ∗ 𝜋
)

1
3⁄

This estimated radius is used as the moment arm of our attitude control system for the rest of this

subsystem design.

33

The next step of the attitude control subsystem subfunction is to determine the thruster capability

requirement, utilizing the spacecraft moment of inertia, number of thrusters in use for the maneuver,

spacecraft moment arm, assumed maneuver to complete, and time to complete the maneuver [8].

𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

=
8 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 ∗ 𝜃

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑀𝑎𝑛𝑒𝑢𝑣𝑒𝑟2

Where theta represents the number of degrees that the attitude control system must rotate the

spacecraft. The following factors are hard-coded for this analysis as assumptions:

 Theta – the number of degrees that the attitude control system must rotate the spacecraft (180

degrees) along one coordinate direction

 Number of thrusters – 2

 Time to Complete Maneuver – 30 seconds

Next, the subfunction will determine the amount of solar torque acting on the spacecraft. The

spacecraft surface area is calculated from the assumed spherical volume, and a spacecraft reflectivity of

0.5 is assumed as a reasonable value for the spacecraft’s reflectivity. The solar pressure at the

spacecraft’s anticipated distance from the sun is pulled from the Requirements structure.

𝑆𝑜𝑙𝑎𝑟 𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑆𝑜𝑙𝑎𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚 ∗ (1

+ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

Next, the subfunction determines the amount of Momentum Buildup in the course of a single orbit. This

is determined by calculating the orbit period from known values specific to the destination, as well as

the orbit distance from the destination [8].

34

𝑂𝑟𝑏𝑖𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 =
2 ∗ 𝜋

𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

∗ (𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑑𝑖𝑢𝑠 + 𝐻𝑒𝑖𝑔ℎ𝑡 𝐴𝑏𝑜𝑣𝑒 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑆𝑢𝑟𝑓𝑎𝑐𝑒)
3

2⁄

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝐵𝑢𝑖𝑙𝑑𝑢𝑝 = 𝑆𝑜𝑙𝑎𝑟 𝑇𝑜𝑟𝑞𝑢𝑒 ∗ 𝑂𝑟𝑏𝑖𝑡 𝑃𝑒𝑟𝑖𝑜𝑑

Next, the subfunction determines how frequently momentum wheel desats will have to take place to

keep the wheels from becoming saturated and losing spacecraft attitude control authority. It is assumed

that a typical spacecraft reaction wheel can store 100 kg-m/s before becoming saturated [8].

𝑊ℎ𝑒𝑒𝑙 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
100

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝐵𝑢𝑖𝑙𝑑𝑢𝑝

𝑇𝑖𝑚𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝐷𝑒𝑠𝑎𝑡𝑠 = 𝑂𝑟𝑏𝑖𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 ∗ 𝑊ℎ𝑒𝑒𝑙 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛

The time between reaction wheel desats is calculated in order to determine how many reaction wheel

desat maneuvers must be performed during the nominal science mission while in orbit at the

destination [8].

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝐷𝑒𝑠𝑎𝑡 𝐶𝑜𝑢𝑛𝑡 =
𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐿𝑒𝑛𝑔𝑡ℎ

𝑇𝑖𝑚𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝐷𝑒𝑠𝑎𝑡𝑠

The subfunction then calculates how much total force will have to be expended in order to desaturate

the reaction wheels over the course of the primary mission. The subfunction also calculates how much

propellant is expended desaturating the wheels [8].

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝑆𝑡𝑜𝑟𝑎𝑔𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚 𝑅𝑎𝑑𝑖𝑢𝑠

The burn time spent for each reaction wheel desat is calculated [8].

𝐵𝑢𝑟𝑛 𝑇𝑖𝑚𝑒 =
𝑊ℎ𝑒𝑒𝑙 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

35

Lastly, the total mass needed to desaturate the wheels over the course of the primary mission is

determined by the following equation: [8]

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝐷𝑒𝑠𝑎𝑡 𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑀𝑎𝑠𝑠

= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝐷𝑒𝑠𝑎𝑡 𝐶𝑜𝑢𝑛𝑡 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠

∗ 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 𝐵𝑢𝑟𝑛 𝑇𝑖𝑚𝑒

A series of constants in regards to the mass and power requirements of the attitude control system are

hard-coded. These assumptions are: [1]

 Sun Sensor Power Requirement – 1 watt

 Star Tracker Power Requirement – 18 watts (per star tracker)

 Reaction Wheel Power Requirement – 21.4 watts (per wheel)

 Sun Sensor Mass – 0.5 kg

 Star Tracker Mass – 7 kg (per star tracker)

 Reaction Wheel Mass – 8.5 kg (per wheel)

 Star Tracker Count – 2

 Reaction Wheel Count – 4

The counts of star trackers and reaction wheels are set to 2 and 4 (respectively) as reasonable

assumptions for minimizing weight requirements while still maintaining redundancy in the event of a

hardware failure in these components.

StarTrackerCount = 2;

StarTrackerPower = StarTrackerCount * 18;

StarTrackerMass = StarTrackerCount * 7;

ReactionWheelCount = 4;

ReactionWheelPower = ReactionWheelCount * 21.4;

ReactionWheelMass = ReactionWheelCount * 8.5;

36

Lastly, the subfunction calculates the total mass and power requirements of the overall subsystem,

before passing this information back to the Master Controller Script for inclusion in the development of

further spacecraft subsystem estimates.

AttitudeMass = SunSensorMass + StarTrackerMass + ReactionWheelMass + PropMass;

AttitudePower = SunSensorPower + StarTrackerPower + ReactionWheelPower;

2.8 Power System Subfunction

The next subfunction called designs a preliminary power subsystem to meet the power needs of the

spacecraft. It is written as a MATLAB function. The input for the function is the structure ‘Requirements’

while the outputs are ‘PowerMass’ and ‘PowerPower.’ These outputs represent the mass and power

requirements for the subsystem, respectively.

The subfunction begins by assessing the power requirements at different phases of the mission. The

nominal science phase requirements are determined by assuming that the spacecraft being designed

will be similar to other spacecraft. This is performed by determining the power requirements of the

spacecraft subsystems “so far”, then extrapolating out to the rest of the spacecraft design. So far, the

Master Controller script has designed the Telecommunications, Command and Data Handling,

Propulsion, and Attitude subsystems for the spacecraft. These subsystems typically represent about 61%

of the total power requirements for a spacecraft. Thus, we can extrapolate that the power requirement

we have calculated “so far” will represent about 61% of the final spacecraft’s power needs.

Next, the subfunction determines the maximum range to sun in order to determine whether it is

appropriate to design solar panels or use radioisotope thermoelectric generators to provide power for

the spacecraft.

If the range is greater than 8.155 * 108 kilometers (about Jupiter’s distance from the sun), the script will

automatically generate requirements for using a radioisotope thermoelectric generator to power the

37

spacecraft. Since this is an early estimate and designing nuclear reactors is outside the scope of this

software, two simple equations estimating mass and power requirements are used [1].

𝑃𝑜𝑤𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚 𝑀𝑎𝑠𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = (
1

4.93
) ∗ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑃𝑜𝑤𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 0.1 ∗ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

In these instances, radioisotope thermoelectric generators are used as solar panels would have to be

very large in order to realistically power a useful spacecraft past Jupiter’s orbit.

For spacecraft expected to be closer to the sun, a solar panel design is utilized by the subfunction. A

number of losses are assumed in a solar panel system throughout the energy collection, storage, and

distribution process. These estimated losses are outlined below. All of these are multiplicative factors on

the overall power system output.

 Solar Panel to Power Loads Efficiency: 0.95

 Solar Panel to Battery Efficiency: 0.7

 Battery to Power Loads Efficiency: 0.96

 Radiation Degradation: 0.82

 UV Degradation: 0.98

 Thermal Degradation: 0.99

 Cell Mismatch Loss: 0.975

 Cell Resistance Loss: 0.99

 Contamination Loss: 0.99

 Shadow Loss: 1

 Temperature Adjustment Losses: 1

Other assumptions about the power subsystem are also made:

38

 Battery Depth of Discharge: 0.4

 Battery Discharge Voltage: 28 volts

 Array Pointing Error: 5 degrees

o The equation for determining the loss of efficiency in the solar panels is governed by the

equation cos(Array Pointing Error) [1].

 Cell Output: 0.172 watts per cell

If the spacecraft is in deep space, it will never meaningfully be in the shadow of any objects in the solar

system. The subfunction automatically accounts for this in designing the battery system by setting the

“Maximum Eclipse Time” variable to 0. This will be used later when designing the battery system.

If the spacecraft is going to a destination where it will have significant periods in shadow, the

subfunction must determine this “eclipse time” in order to design a battery system to maintain the

spacecraft while in shadow, as well as size the solar panels to handle the nominal spacecraft load and

charge the batteries.

To determine the eclipse time of the spacecraft during nominal operations, the subfunction utilizes the

following equations: [9]

𝑎𝑙𝑝ℎ𝑎 = asin (
𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑑𝑖𝑢𝑠

𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑑𝑖𝑢𝑠 + 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑂𝑟𝑏𝑖𝑡 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒
)

𝑂𝑟𝑏𝑖𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 = 2 ∗ 𝜋 ∗ √(
(𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑑𝑖𝑢𝑠 + 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑂𝑟𝑏𝑖𝑡 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒)3

𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
)

Once the orbit period is determined, the subfunction can determine how much of that period is in

shadow of the destination with the following equation: [9]

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑐𝑙𝑖𝑝𝑠𝑒 𝑇𝑖𝑚𝑒 =
𝑂𝑟𝑏𝑖𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 ∗

𝑎𝑙𝑝ℎ𝑎
𝜋

60

39

With the knowledge of the eclipse time, the subfunction can now calculate the size of the battery

system as well as how much energy needs to be stored for while the spacecraft is in shadow. The

subfunction also calculates the time not in shadow, and the overall amount of power the solar panels

must deliver in order to meet the science requirements and charge the batteries [1].

𝑇𝑖𝑚𝑒 𝑁𝑜𝑡 𝐸𝑐𝑙𝑖𝑝𝑠𝑒𝑑 = 𝑂𝑟𝑏𝑖𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 − 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑐𝑙𝑖𝑝𝑠𝑒 𝑇𝑖𝑚𝑒

𝑆𝑜𝑙𝑎𝑟 𝑃𝑎𝑛𝑒𝑙 𝑂𝑢𝑡𝑝𝑢𝑡

=
𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 ∗ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑐𝑙𝑖𝑝𝑠𝑒 𝑇𝑖𝑚𝑒

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑡𝑜 𝐿𝑜𝑎𝑑 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝑆𝑜𝑙𝑎𝑟 𝑃𝑎𝑛𝑒𝑙 𝑡𝑜 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝑇𝑖𝑚𝑒 𝑁𝑜𝑡 𝐸𝑐𝑙𝑖𝑝𝑠𝑒𝑑

+
𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑆𝑜𝑙𝑎𝑟 𝑃𝑎𝑛𝑒𝑙 𝑡𝑜 𝐿𝑜𝑎𝑑 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

This equation sizes the minimum output of the solar panels. It does not indicate the requirement that

the solar panels should be designed to, but rather their output at the end of the mission in a worst-case

degradation scenario.

The theoretical solar panel cell output is assumed to be 0.172 watts. The actual solar panel cell output is

described by the following equation: [1]

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑜𝑙𝑎𝑟 𝑃𝑎𝑛𝑒𝑙 𝐶𝑒𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑙𝑎𝑟 𝑃𝑎𝑛𝑒𝑙 𝐶𝑒𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 ∗ 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑠

Degradation factors are determined by this equation: [1]

𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑠

= 𝑈𝑉𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 ∗ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 ∗ 𝐶𝑒𝑙𝑙 𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ 𝐿𝑜𝑠𝑠

∗ 𝐶𝑒𝑙𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐿𝑜𝑠𝑠 ∗ 𝐶𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 ∗ 𝑆ℎ𝑎𝑑𝑜𝑤 𝐿𝑜𝑠𝑠

∗ (1 − 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛) ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑆𝑜𝑙𝑎𝑟 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑃𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝐿𝑜𝑠𝑠

40

This aforementioned theoretical 0.172 watts per cell value comes from laboratory testing. The solar

intensity degradation factor represents the reduced (or increased) solar intensity in the spacecraft’s

operating environment as compared to the laboratory conditions [1].

Calculation the actual output of the cell allows the subfunction to determine how many cells are needed

to meet the power requirements of the spacecraft in sunlight [1].

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠 =
𝑆𝑜𝑙𝑎𝑟 𝑃𝑎𝑛𝑒𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑜𝑙𝑎𝑟 𝑃𝑎𝑛𝑒𝑙 𝐶𝑒𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡

The solar panel cells are assumed to have a packing density of 1,100 cells per square meter [1].

𝑆𝑜𝑙𝑎𝑟 𝐴𝑟𝑟𝑎𝑦 𝐴𝑟𝑒𝑎 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠

𝐶𝑒𝑙𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

The subfunction can now calculate the battery system requirements, using the Science Power

Requirements, the eclipsed time, and the aforementioned assumptions about the power system [1] [5].

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 ∗ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑐𝑙𝑖𝑝𝑠𝑒 𝑇𝑖𝑚𝑒

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑡𝑜 𝐿𝑜𝑎𝑑 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

The subfunction has now calculated the requirements for the Battery system and the solar panels. The

mass of the solar arrays and battery system can now be quantified using known relationships between

power system components and component mass [1].

𝑆𝑜𝑙𝑎𝑟 𝐴𝑟𝑟𝑎𝑦 𝑀𝑎𝑠𝑠 = 4𝑘𝑔 ∗ 𝑆𝑜𝑙𝑎𝑟 𝐴𝑟𝑟𝑎𝑦 𝐴𝑟𝑒𝑎

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑀𝑎𝑠𝑠 =
1

24
𝑘𝑔 ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Lastly, the subfunction calculates the mass and power requirements for the solar-panel-based power

subsystem. It is assumed that the mass of power cabling, power distribution components, and other

components will total 119.2 kilograms [1].

41

𝑃𝑜𝑤𝑒𝑟 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑠𝑠 = 𝑆𝑜𝑙𝑎𝑟 𝐴𝑟𝑟𝑎𝑦 𝑀𝑎𝑠𝑠 + 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑀𝑎𝑠𝑠 + 119.2

𝑃𝑜𝑤𝑒𝑟 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = 0.1 ∗ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

The subfunction ends by passing the Power Subsystem Total Mass and Power Subsystem Total Power

Requirement back to the Master Controller subfunction for inclusion in calculations for further

spacecraft subsystems.

2.9 Structure Subfunction

The structure subfunction performs a preliminary design estimate of the structure that will contain the

other spacecraft subsystems and the science payload. This subfunction was written as a MATLAB

function. The input of the subfunction is the structure ‘Requirements.’ The outputs of the subfunction

are the variables ‘StructureMass’, ‘StructurePower’, and ‘SubsystemVolume.’

The subfunction estimates the total volume expected to be occupied by the various spacecraft

subsystems, and adds this to the science payload volume requirement. The subsystem volume is

estimated as a function of subsystem mass. The subfunction also assumes a subsystem packing density

of 20 pounds per square foot, and a packing envelope height of 10 inches. For spacecraft structure

material, the subfunction assumes aluminum.

The formula for estimating the subsystem volume from the subsystem mass is as follows: [8]

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑁𝑜 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒) =
𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑀𝑎𝑠𝑠

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑅𝑎𝑑𝑖𝑢𝑠 (𝑁𝑜 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒) =
3 ∗ 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑁𝑜 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒)

4 ∗ 𝜋

1
3

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

=
4

3
∗ 𝜋 ∗ (𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑅𝑎𝑑𝑖𝑢𝑠 (𝑁𝑜 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒) + 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝐻𝑒𝑖𝑔ℎ𝑡)3

42

Next, the subfunction estimates the amount of fuel that the mission will require [9]. This estimation is

made solely for volume estimation purposes. Final design of the fuel system for the spacecraft is made

in the fuel subfunction.

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐹𝑢𝑒𝑙 𝑁𝑒𝑒𝑑 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑀𝑎𝑠𝑠 ∗ (1 − 𝑒
(

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑒𝑙𝑡𝑎−𝑉
9.81∗𝐼𝑠𝑝)

)

It is assumed that the spacecraft will use hydrazine, which has a density of 1.01 g/cm3. The propellant

volume that will be loaded onto the spacecraft can now be estimated.

𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐹𝑢𝑒𝑙 𝑁𝑒𝑒𝑑

𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

The total spacecraft volume is then estimated:

𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

= 𝑆𝑐𝑖𝑒𝑛𝑐𝑒 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 + 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑉𝑜𝑙𝑢𝑚𝑒

A structural thickness with safety factors is assumed, and the mass of the structure can be calculated: [1]

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑀𝑎𝑠𝑠

= 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 2 ∗ 𝜋 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑅𝑎𝑑𝑖𝑢𝑠 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐿𝑒𝑛𝑔𝑡ℎ

∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

The structure subfunction makes no calculations for power requirements, and returns ‘0’ for

StructurePower to the Master Controller script. The ‘StructureMass’ value and ‘SubsystemVolume’

calculations are passed as outputs to the Master Controller script for inclusion in further spacecraft

subfunction calculations.

43

2.10 Thermal System Subfunction

The Thermal System subfunction is written as a MATLAB function. It accepts the structure

‘Requirements’ as an input from the Master Controller script, and passes ‘ThermalMass’ and

‘ThermalPower’ as outputs back to the Master Controller script.

The subfunction begins by setting the maximum and minimum acceptable thermal range from the

Requirements structure. These are set manually by the user prior to running the script. This range

represents the maximum and minimum temperatures that any subcomponent of the spacecraft can

endure, with the assumption that this thermal range would be applied to the entire spacecraft as a

preliminary estimate of thermal subsystem needs.

Assumptions are also made about ‘alpha’ and ‘epsilon.’ Alpha is the solar absorptivity of the surface,

whereas epsilon is the infrared emissivity.

The power dissipation is the required power system output.

The Thermal subfunction utilizes an assumed sphere diameter to calculate possible thermal

management needs. This calculation uses the Structure subfunction assumptions about Spacecraft

Volume to determine a spherical equivalent spacecraft for making the thermal calculations.

𝑆𝑝ℎ𝑒𝑟𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 2 ∗ √
3 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

4 ∗ 𝜋

3

The subfunction then assesses where the “worst-case” spacecraft heating takes place. If the structure

‘Requirements’ has a “range to sun at destination” variable that is closer to the sun than Earth, the

destination’s thermal environment is used as the worst-case heating environment. Otherwise, the

Earth’s thermal environment is used.

44

Once this assessment is made, the subfunction loads the thermal variables at the worst-case heating

location in order to analyze the potential worst-case heat load on the spacecraft.

The first calculation made is the “Worst-Case View Factor” which measures how much heat will be

coming off of the destination into the spacecraft thermal environment. This is followed by determining

the Reflectance Factor, a measure of the percentage of the energy reflected. These two variables are

used to determine the Worst-Case Spacecraft Temperature. In these measurements, all variables

pertaining to a specific planet refer to the planet with the worst-case thermal heating on the spacecraft.

This can either be the Earth or the destination, depending on the destination’s range to the Sun [1].

𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝑉𝑖𝑒𝑤 𝐹𝑎𝑐𝑡𝑜𝑟

= 0.5 ∗ (1 −
(𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒2 + 2 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 ∗ 𝑃𝑙𝑎𝑛𝑒𝑡 𝑅𝑎𝑑𝑖𝑢𝑠)2

𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 + 𝑃𝑙𝑎𝑛𝑒𝑡 𝑅𝑎𝑑𝑖𝑢𝑠
)

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟

= 0.657 + 0.54 ∗ ((
𝑃𝑙𝑎𝑛𝑒𝑡 𝑅𝑎𝑑𝑖𝑢𝑠

𝑃𝑙𝑎𝑛𝑒𝑡 𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒
) − 0.196

∗ (
𝑃𝑙𝑎𝑛𝑒𝑡 𝑅𝑎𝑑𝑖𝑢𝑠

𝑃𝑙𝑎𝑛𝑒𝑡 𝑅𝑎𝑑𝑖𝑢𝑠 + 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒
)

2

)

𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑡 1

= ((
𝑆𝑜𝑙𝑎𝑟 𝐹𝑙𝑢𝑥 ∗ 𝑎𝑙𝑝ℎ𝑎

4
) + (𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝐼𝑅 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∗ 𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝑉𝑖𝑒𝑤 𝐹𝑎𝑐𝑡𝑜𝑟)

+ (𝑆𝑜𝑙𝑎𝑟 𝐹𝑙𝑢𝑥 ∗ 𝐴𝑙𝑏𝑒𝑑𝑜 ∗ 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝑉𝑖𝑒𝑤 𝐹𝑎𝑐𝑡𝑜𝑟)

+ (
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑜𝑤𝑒𝑟 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

𝜋 ∗ 𝑆𝑝ℎ𝑒𝑟𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟
))

𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

= (
𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑡 1

𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛
)

1
4

45

This series of calculations is repeated for the “Best Case” thermal scenario, representing the thermal

conditions when the spacecraft is furthest from the sun.

Once the best case and worst case temperature scenarios are computed, the subfunction determines

whether an additional heater is necessary to maintain the spacecraft thermal state, or if radiators will

suffice to maintain the spacecraft thermal state [1].

𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝐴𝑟𝑒𝑎

=
𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑀𝑎𝑥 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∗ 𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒4

The temperature of the spacecraft with the best-case thermal environment (furthest from the sun) is

computed to determine if additional heaters will be necessary in the coldest environment the spacecraft

is expected to endure [1].

𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

= (
𝐵𝑒𝑠𝑡 𝐶𝑎𝑠𝑒 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝐴𝑟𝑒𝑎 ∗ 𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛
)

1
4

The subfunction then checks to see if this thermal criteria requires an active heater to keep the

spacecraft within the required range [1].

𝐻𝑒𝑎𝑡𝑒𝑟 𝐶ℎ𝑒𝑐𝑘 = 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑀𝑖𝑛𝑖𝑚𝑢𝑚

If the Heater Check variable is less than 0, it is set to 0. Otherwise, a heater is designed and added to the

spacecraft [1].

𝐻𝑒𝑎𝑡𝑒𝑟 𝑀𝑎𝑠𝑠 = 2 𝑘𝑔/𝑚2

𝐻𝑒𝑎𝑡𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 = 𝐻𝑒𝑎𝑡𝑒𝑟 𝐶ℎ𝑒𝑐𝑘

46

Once the passive thermal system and active heaters have been designed, the subfunction computes the

total mass and power requirements of the thermal subsystem.

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑀𝑎𝑠𝑠 = 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑀𝑎𝑠𝑠 + 𝐻𝑒𝑎𝑡𝑒𝑟 𝑀𝑎𝑠𝑠 + 𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑠𝑠 + 𝑃𝑎𝑖𝑛𝑡 𝑀𝑎𝑠𝑠 + 𝐹𝑜𝑎𝑚 𝑀𝑎𝑠𝑠

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑃𝑜𝑤𝑒𝑟 = 𝐻𝑒𝑎𝑡𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

The Radiator Mass is computed by: [1]

𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝑀𝑎𝑠𝑠 = 0.03 ∗ 𝑅𝑎𝑑𝑖𝑎𝑡𝑜𝑟 𝐴𝑟𝑒𝑎

The Insulation Mass is calculated by: [1]

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑠𝑠 = 0.03 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎

The Paint Mass is calculated by: [1]

𝑃𝑎𝑖𝑛𝑡 𝑀𝑎𝑠𝑠 = 0.24 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎

The Foam Mass is computed by: [1]

𝐹𝑜𝑎𝑚 𝑀𝑎𝑠𝑠 = 64 ∗ 0.075 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑉𝑜𝑙𝑢𝑚𝑒

The Thermal Mass and Thermal Subsystem Power requirements are passed as outputs from the

subfunction back to the Master Controller script for inclusion in further spacecraft subsystem design.

2.11 Fuel System Subfunction

The final spacecraft subsystem to be designed is the fuel subsystem. This subsystem is designed last so

as to accurately compute final estimated spacecraft mass to determine the amount of fuel required to

complete the mission requirements.

47

The subfunction is written as a MATLAB function. It accepts the structure ‘Requirements’ from the

Master Controller script, and returns ‘FuelMass’ and ‘FuelPower’ to the Master Controller script for

inclusion in the final spacecraft requirements design.

The subfunction utilizes the estimated spacecraft volume to determine the moment arm for any

maneuvers. This information is pulled from the ‘Requirements’ structure, passed into the subfunction by

the Master Controller script.

The subfunction assumes the efficiency of the thrusters in different use cases, specifically the actual

specific impulse of the thruster when in steady thrust as compared to during pulsing thrust.

𝐼𝑠𝑝𝑠𝑡𝑒𝑎𝑑𝑦 = 0.93 ∗ 𝐼𝑠𝑝

𝐼𝑠𝑝𝑝𝑢𝑙𝑠𝑖𝑛𝑔 = 0.5 ∗ 𝐼𝑠𝑝

These “actual” specific impulses will be used for all further calculations pertaining to the fuel system in

this subfunction.

The fuel system subfunction then computes the fuel requirements for using the previously-designed

attitude control system to spin up the spacecraft to 5 rpm for the outbound cruise, and back to 0 rpm

for orbit insertion at the destination [1]. While this may not be fully required for all missions, it is a good

approximation of some of the maneuvers that will be expected of the spacecraft during any nominal

mission.

𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚 𝐿𝑒𝑛𝑔𝑡ℎ = √
3 ∗ 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑉𝑜𝑙𝑢𝑚𝑒

4 ∗ 𝜋

3

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 5 𝑟𝑝𝑚

𝑇ℎ𝑟𝑢𝑠𝑡 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚 𝐿𝑒𝑛𝑔𝑡ℎ

𝐼𝑠𝑝𝑠𝑡𝑒𝑎𝑑𝑦
)

48

𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑇ℎ𝑖𝑠 𝑀𝑎𝑛𝑒𝑢𝑣𝑒𝑟

= 2 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚 𝐿𝑒𝑛𝑔𝑡ℎ

𝐼𝑠𝑝𝑠𝑡𝑒𝑎𝑑𝑦

The subfunction then determines the propellant needed to maintain attitude control during a potential

orbit insertion maneuver being made by the spacecraft. If the spacecraft’s “Flyby Flag” is set to 1

(indicating that the spacecraft’s mission is a flyby mission, and thus will not be making an orbit insertion

maneuver), then all propellant needs for attitude control for this maneuver are set to 0. Otherwise, the

subfunction determines the propellant needed through the following set of equations [1] [10].

𝑂𝑟𝑏𝑖𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝐵𝑟𝑎𝑘𝑖𝑛𝑔 𝐵𝑢𝑟𝑛)

= 2

∗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ √
2 ∗ 𝐼𝑠𝑝𝑠𝑡𝑒𝑎𝑑𝑦 ∗ 𝑜𝑚𝑒𝑔𝑎

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚 𝐿𝑒𝑛𝑔𝑡ℎ

𝐼𝑠𝑝𝑠𝑡𝑒𝑎𝑑𝑦

𝑂𝑟𝑏𝑖𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑝 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒 𝐶𝑜𝑛𝑡𝑜𝑙)

= 2 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 𝑂𝑟𝑏𝑖𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝐼𝑠𝑝𝑝𝑢𝑙𝑠𝑖𝑛𝑔

The next propellant requirement is the propellant required to maintain limit cycles during nominal

science operations. A spacecraft attitude control system will have some error when performing

maneuvers. This will result in a drift from the expected attitude of the spacecraft. Rather than constantly

correcting for this error (which would use a significant amount of fuel), an error is allowed to propagate

until the error reaches an unacceptable limit, in which case the attitude control system performs a

maneuver to correct the error. The calculations for determining the amount of fuel to maintain this

attitude state is discussed below.

49

The first calculation is the duration cycle, how much time elapses between when a maneuver must be

performed to correct the attitude state [1].

𝐶𝑦𝑐𝑙𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
8 ∗ 𝐼𝑠𝑝𝑝𝑢𝑙𝑠𝑖𝑛𝑔 ∗ 1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚 𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 0.5

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠 =
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐿𝑒𝑛𝑔𝑡ℎ

𝐶𝑦𝑐𝑙𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑀𝑎𝑠𝑠𝑃𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 𝐶𝑦𝑐𝑙𝑒 = 6 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 ∗ 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 0.03

𝐼𝑠𝑝𝑝𝑢𝑙𝑠𝑖𝑛𝑔 ∗ 𝑔

The fuel inventory for the Attitude Control system over the course of the mission can now be computed.

An error margin of 3.5% is added to account for potential loading errors and trapped propellant [1].

𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐴𝐶𝑆

= (𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑀𝑎𝑠𝑠𝑃𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 𝐶𝑦𝑐𝑙𝑒 + 𝑂𝑟𝑏𝑖𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑝 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

+ 𝑆𝑝𝑖𝑛 𝑈𝑝 𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡) ∗ 𝐸𝑟𝑟𝑜𝑟 𝑀𝑎𝑟𝑔𝑖𝑛

The volume of the Propellant Inventory is calculated: [1]

𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒𝐴𝐶𝑆 =
𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐴𝐶𝑆

𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

With this information, the subfunction can now design a tank system to contain the Propellant Inventory

for the Attitude Control system [1]. These calculations assume a Hydrazine Blowdown Ratio of 4.5, as

well as a Hydrazine Initial Pressure of 625 psi.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝐶𝑆 𝑈𝑙𝑙𝑎𝑔𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 =
𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒𝐴𝐶𝑆

𝐻𝑦𝑑𝑟𝑎𝑧𝑖𝑛𝑒 𝐵𝑙𝑜𝑤𝑑𝑜𝑤𝑛 𝑅𝑎𝑡𝑖𝑜 − 1

The subfunction then designs the volume of the bladder in the tank that will contain the Attitude

Control System fuel [1].

50

𝑅𝑎𝑑𝑖𝑢𝑠𝐴𝐶𝑆𝐵𝑙𝑎𝑑𝑑𝑒𝑟 = √
0.75 ∗ 𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒𝐴𝐶𝑆 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝐶𝑆 𝑈𝑙𝑙𝑎𝑔𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝜋

𝐴𝑟𝑒𝑎𝐴𝐶𝑆𝐵𝑙𝑎𝑑𝑑𝑒𝑟 = 2 ∗ 𝜋 ∗ 𝑅𝑎𝑑𝑖𝑢𝑠𝐴𝐶𝑆𝐵𝑙𝑎𝑑𝑑𝑒𝑟
2

𝑉𝑜𝑙𝑢𝑚𝑒𝐴𝐶𝑆𝐵𝑙𝑎𝑑𝑑𝑒𝑟 = 0.075 ∗ 𝐴𝑟𝑒𝑎𝐴𝐶𝑆𝐵𝑙𝑎𝑑𝑑𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑛𝑘 𝑉𝑜𝑙𝑢𝑚𝑒𝐴𝐶𝑆

= 𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒𝐴𝐶𝑆 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝐶𝑆 𝑈𝑙𝑙𝑎𝑔𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

+ 𝑉𝑜𝑙𝑢𝑚𝑒𝐴𝐶𝑆𝐵𝑙𝑎𝑑𝑑𝑒𝑟

Once the volume of the tank is determine by the subfunction, the weight of the ACS fuel tank can be

calculated [1].

𝑇𝑎𝑛𝑘 𝑊𝑒𝑖𝑔ℎ𝑡𝐴𝐶𝑆 = 0.0116 ∗ 𝐻𝑦𝑑𝑟𝑎𝑧𝑖𝑛𝑒 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑛𝑘 𝑉𝑜𝑙𝑢𝑚𝑒𝐴𝐶𝑆

This concludes the calculations for the tank for the Attitude Control System. The subfunction now

repeats this process for the main propellant inventory for major spacecraft maneuvers. The equations

are the same as for the Attitude Control system, with the only exception being the inventory of fuel for

maneuvering the spacecraft [1] [9].

𝑀𝑎𝑖𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑇𝑜𝑡𝑎𝑙 𝐷𝑟𝑦 𝑀𝑎𝑠𝑠 ∗ (1 − 𝑒
𝐷𝑒𝑙𝑡𝑎−𝑉 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

9.81∗𝐼𝑠𝑝)

Lastly, the subfunction computes the mass of the overall fuel system to complete the dry mass

calculations for the spacecraft as well as the wet mass of the fuel required to meet the maneuvering

requirements throughout the mission. It is assumed that the plumbing of the spacecraft for the fuel

system will have a dry mass of 20 kg [1].

𝐹𝑢𝑒𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝑀𝑎𝑠𝑠 = 𝑇𝑎𝑛𝑘 𝑊𝑒𝑖𝑔ℎ𝑡𝐴𝐶𝑆 + 𝑇𝑎𝑛𝑘 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑖𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 𝐹𝑢𝑒𝑙 + 𝑃𝑙𝑢𝑚𝑏𝑖𝑛𝑔

51

It is assumed that the fuel system will use minimal power when the spacecraft is in nominal science

mode, and that the science power requirements will cover any potential needs for power by the fuel

system when maneuvers are being performed. See the ‘Future Work’ section.

The subfunction then passes the Fuel System mass and Fuel system power variables back to the Master

Controller function for final inclusion in the overall spacecraft design.

3 Results

Once the development of the software was completed, the output of the software needed to be verified

to determine whether reasonable spacecraft would be produced over a wide range of conditions. Once

this testing was completed, a case study spacecraft was modeled and compared to spacecraft data for a

spacecraft specifically designed for those conditions. This allows us to determine whether the software

reasonably estimates a spacecraft at a Phase A stage, as well as highlights any shortcomings in the

software that should be improved upon as future work.

3.1 Testing

A separate script was developed in an effort to adequately test the software as developed and identify

bugs or flawed assumptions. This script generated a series of varying requirements for different

spacecraft missions, and produced an output report that allowed for a rapid assessment of whether the

spacecraft estimates being produced were reasonable.

To test the software, several parameters were selected to vary, rapidly producing a large data set of

potential mission designs that would be run through the software. These varying parameter sets were

repeated for each of the default destinations that are included in the Destinations subfunction.

The selection of parameters to be varied are:

 Propulsion Delta-V Requirement

52

 Payload Mass Requirement

 Payload Power Requirement

 Destination Flyby/Orbit Flag

These parameters were selected as they were the most likely to represent stressing cases on the

software, and were also the most likely to be modified by the user to match the needs of their mission

design. Propulsion Delta-V strongly affects the fuel subsystem (as well as total fuel loaded) which is a

strong driver of spacecraft mass. Payload mass and power are the most likely requirements to be

modified by the user, and will strongly drive the overall mass and power requirements of the spacecraft

as a whole. Lastly, if the spacecraft does not intend to orbit the destination body, many secondary

branches on the subfunctions are explored. If the spacecraft is only performing a flyby, the design of

many of the subsystems changes substantially. These varying cases are repeated for each default

destination in the Destination subfunction, resulting in a large dataset of spacecraft designs to be

examined. Ideally, many more (if not all) of the potential mission requirements would be varied in order

to further explore the potential design space. However, due to the nature of the design of the testing

function, this would rapidly result in an unwieldy number (hundreds of millions) of potential spacecraft

designs. Some of these parameters varying do not result in a significant change to the final spacecraft

design, and the analysis of subtly-different spacecraft numbering in the hundreds of millions cannot be

realistically completed in any reasonable amount of time without further automation.

Separately, cases utilizing other branches that were not used as frequently (such as mission designs

relying heavily on user input, such as deep space missions with no particular destination) were also

separately exercised to explore the limits of the software and discover unnoticed bugs and other code

errors.

53

3.1.1 Testing Methodology

The actual code written to test the software was quite simple. The testing code replaced the Master

Controller script’s requirements entry sections, with a large number of the spacecraft requirements

being fixed for the entirety of the testing. For any parameters that needed to be varied to complete the

testing, the script utilized a series of nested WHILE loops.

Each WHILE loop varied one parameter at a time. Within the last WHILE loop, as a function call of the

original Master Controller script, which then completed the remaining analysis as normal. Once this

function call was completed, the outputs were appended to a file for further manual analysis once the

testing script was completed. The nature of the nested WHILE loops allowed us to greater explore the

solution space of the software with ease. Each varied parameter was used in a spacecraft with each

other varied parameter. In other words, thousands of spacecraft were rapidly estimated, with each one

being very similar to the last with only one varied parameter. Each time the spacecraft delta-v

requirement was varied, the remainder of the spacecraft remained fixed. This was repeated with each

parameter until every combination of parameters had been tested.

While it was not feasible to examine each estimated spacecraft individually, this was not the purpose of

our work at this stage of testing. This stage of testing allowed us to at-a-glance determine if the overall

intent of our code was being executed, or if there were bugs or design flaws that were preventing this.

We looked closely at the spacecraft mass and power requirements, as we believed this would be the

easiest way to rapidly determine if reasonable spacecraft were being estimated by the software.

All in all, the testing of the software confirmed that the software was working as intended. However,

there were a few circumstances where this was not the case. It was quickly noticed that the mass and

power requirements for spacecraft going to the outer planets were rapidly ballooning well beyond what

humanity would be reasonably capable of launching. In some cases, spacecraft with mass requirements

54

greater than one million tons were being produced! While it was expected that the software may

encounter edge cases that did not produce a reasonable spacecraft (in fact, mission design feasibility is

the entire point of this software!), there were too many spacecraft being developed with this unrealistic

mass requirement. Ultimately, it was discovered that a flawed unit conversion in the Attitude Control

System subfunction was resulting in very large fuel requirements in order to maintain the needs of the

spacecraft around large planets. This bug was present in all of the testing, but only manifested itself so

severely around larger bodies. Once this bug (among a handful of others) was rectified, the testing

indicated that the script would produce realistic spacecraft if the mission requirements were also

realistic.

3.2 Case Study 1 – Mars Orbiter

In order to demonstrate the validity of this script, a Case Study was performed, comparing the software

output to the Mars Reconnaissance Orbiter. To make this comparison, the mission requirements of the

Mars Reconnaissance Orbiter were used as the mission requirements for the software. The software

then generated a set of spacecraft requirements based on those mission requirements, which can now

be compared to the spacecraft that was built and flown to Mars.

3.2.1 Mars Reconnaissance Orbiter

Launched in 2005 about a Lockheed Martin (now United Launch Alliance) Atlas V 401, NASA’s Mars

Reconnaissance Orbiter has spent the last decade capturing high-resolution imagery and science data of

the Martian surface. The spacecraft has been helping scientists in the search for water on the surface of

Mars, as well as serving as a communications link between NASA’s rovers on the surface and the Earth

[11]. The spacecraft supports six science payloads and three engineering instrument payloads. The

spacecraft was designed to meet these mission requirements: [12]

 Payload Mass: 120 kg

55

 Propulsion System Delta-V requirement: 1.576 km/s

 Payload Power: 1400 W

 Primary Mission Length: 730 days

 Payload: 6 science instruments, 3 engineering payloads

 255 km minimum science orbit altitude

 160 Gb data storage

To support these mission requirements, the spacecraft team for the Mars Reconnaissance Orbiter

designed the spacecraft with the following characteristics: [12]

 Total Mass: 2000 kg (925 kg dry)

 Hydrazine Monopropellant Propulsion System

 Total Power System Capability: 2000 W (at Mars, end of life)

 High-Gain Antenna Diameter: 3 meters

 2-50 Amp-hour batteries

56

Figure 2 - Launch Mass Breakdown for MRO

For NASA’s Mars Reconnaissance Orbiter, payload mass accounts for 6% of the total launch mass, the

dry subsystem mass accounts for 40.25%, and the Wet Mass (Fuel) accounts for the remaining 53.75%.

Respectively, these mass values were 120 kg for the Payload Mass, 805 kg for the Dry Subsystem mass,

and 1075 kg for the wet fuel mass. The total mass of the spacecraft was 2000 kg at this stage in the

estimation process.

The Mars Reconnaissance Orbiter was selected for this case study due to the fact that many of the

spacecraft subsystems were designed in a way that the software is already well-equipped to handle. It

utilizes a hydrazine monopropellant system, which is the default option for the propellant and fuel

subfunctions which design those respective subsystems. The spacecraft utilizes solar panels due to its

relative proximity to the Sun. This allows the case study to explore the development of the solar panel

and battery systems. The spacecraft is in orbit around Mars, which allows the case study to explore

much of the thermal subfunction for designing the thermal subsystem. MRO orbiting Mars also stresses

Dry Subsystem Mass

Payload Mass

Wet Mass

Mars Reconnaissance Orbiter Mass Breakdown

57

the power subfunction further by eclipsing on each orbit, changing the sizing of the solar panels to allow

for sufficient energy to charge the batteries, as well as the design of the batteries themselves. The

propulsion system uses many of the same values on the spacecraft as are included as defaults in the

software. Specifically, the thruster sizing is the same between the Mars Reconnaissance Orbiter as it is in

the default software requirements. Due to the fact that the Mars Reconnaissance Orbiter is a NASA

mission, it was also chosen as spacecraft mass, power, and fuel data was readily available for

comparison to the software output.

3.2.2 Software-Generated Spacecraft Requirements

The software was given a set of mission requirements that would closely match the mission

requirements of the Mars Reconnaissance Orbiter. Those requirements are:

 Delta-V: 1.576 km/s

 Destination Name: Mars

 Destination Min Range: 255 km

 Payload Mass Requirement: 120 kg

 Payload Power Requirement: 1400 W

 Payload Volume Requirement: 1 m3

 Payload Count: 9

 Data Storage Requirement: 160 Gbit

 Pointing: 6 degrees/sec

 Primary Mission Length: 730 days

 Thermal Maximum: 25 degrees C

 Thermal Minimum: 2 degrees C

 Thruster Specific Impulse: 230 sec

58

 Large Thruster Thrust: 170 N

 Medium Thruster Thrust: 22 N

 Small Thruster Thrust: 0.9 N

 Flyby Flag: 0 (Spacecraft will orbit at destination)

No defaults in the subfunctions were modified for the design estimation of this spacecraft. All

requirements were set at the Master Controller level. These mission-level requirements resulted in the

following outputs from each of the subfunctions:

3.2.2.1 Destination Results

 Requirements.Destination.IR = 162

 Requirements.Destination.Albedo = 0.15

 Requirements.Destination.Radius = 3397

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (2.438 * 10^8)

 Requirements.Destination.SolarFlux = 586

 Requirements.Destination.mu = 4.282 * 10^4

 Requirements.Destination.SolarPressure = 2 * 10^-6

All of these requirements pertaining to the input Destination were passed successfully to the Master

Controller script for inclusion in further subfunction analysis.

3.2.2.2 Telecommunications Results

 Telecommunications Subsystem Mass Requirement: 45.5 kg

 Telecommunications Subsystem Power Requirement: 126.78 W

59

3.2.2.2.1 Link Budget

Parameter Value

Frequency, GHz 8.4

Bit error rate 1.0E-5

Range, km 393,400,000

Symbol rate, ksps 0.125

Transmitter Power, dB 37.28

Cable loss, dB 0

Antenna gain, dBi 67

EIRP, dB 104.28

Free space path loss, dB 282.82

Atmospheric attenuation, dB -0.17

Polarization loss, dB -1

S/C antenna gain, dBi 33.28

Pointing Loss, dB -5

Receiver cable loss, dB -1.95

Total Received Power, dB -152.94

System noise temperature, K 18

System noise density, dB/Hz -216.05

Carrier power/total power, dB -5.347

Carrier Power Received, dB -158.29

Carrier noise band width, dB-Hz 13

Carrier/noise ratio received, dB 44.76

Carrier/noise ratio required, dB 6

Carrier margin, dB 38.76

Command power/total power, dB -1.499

Command power received, dB -154.44

Command symbol rate, dB-Hz -20.97

Eb/N0 achieved, dB 40.64

Eb/N0 required, dB 4.2

Command Link Margin, dB 36.44

Table 1 - Software-Developed Mars Mission Telecom Link Budget

3.2.2.3 Command & Data Handling Results

 Command & Data Handling Subsystem Mass: 97 kg

 Command & Data Handling Subsystem Power: 214 W

60

3.2.2.4 Propulsion System Results

 Propulsion System Mass: 63.41 kg

 Propulsion System Power: 8.52 W

3.2.2.5 Attitude Control System Results

 Attitude Control System Mass: 113.41 kg

 Attitude Control System Power: 122.6 W

3.2.2.6 Power System Results

 Power Subsystem Mass: 309.44 kg

 Power Subsystem Power Requirements: 77.36 W

3.2.2.7 Structure Results

 Structure Mass: 213.89 kg

 Structure Power: 0 W

3.2.2.8 Thermal System Results

 Thermal Mass: 28.4 kg

 Thermal Power: 289.77 W

3.2.2.9 Fuel System Results

 Fuel System Dry Mass: 79.30 kg

 Fuel System Power: 0 W

3.2.2.10 Mars Reconnaissance Orbiter Case Study Results Summary

 Total Spacecraft Mass: 2191 kg

o Spacecraft Dry Mass: 1071 kg

o Spacecraft Wet Mass: 1120 kg

61

 Total Spacecraft Power Requirement: 2239 W

This spacecraft, as designed, was capable of being launched atop the Atlas V, just like the spacecraft’s

real-life counterpart [13].

Figure 3 - Launch Mass Breakdown for Software-Generated Spacecraft

Dry Subsystem Mass

Payload Mass

Wet Mass

Software-Generated Case Study Results (MRO Comparison)

62

Figure 4 - Subsystem Mass Breakdown for Software-Generated Spacecraft

Subsystem Mass Requirement (kg) Subsystem Percentage Expected Percentage

Telecom 45.5 5% 7%

C&DH 97 10% 7%

Propulsion 63.41 7% 8%

ACS 113.41 12% 10%

Power 309.44 33% 29%

Structure 213.89 23% 29%

Thermal 28.4 3% 3%

Fuel System 79.31 8% 8%

Table 2 - Subsystem Mass Percentage Comparison for Mars Spacecraft

Telecom

C&DH

Propulsion

ACS

Power

Structure

Thermal Fuel
System

Software-Generated Case Study Subsystem Mass Breakdown

63

Figure 5 - Subsystem Power Breakdown for Software-Generated Spacecraft

Subsystem Power Requirement Subsystem Percentage Expected Percentage

Telecom 126.78 W 15% 23%

C&DH 214 W 26% 17%

Propulsion 8.52 W 1% 1%

ACS 122.6 W 15% 20%

Power 77.36 W 9% 10%

Structure 0 W 0% 1%

Thermal 289.77 W 35% 28%

Fuel System 0 W 0% 1%

Table 3 - Subsystem Power Percentage Comparison for Mars Spacecraft

Telecom

C&DH

PropulsionACS

PowerStructure

Thermal

Fuel System

Software-Generated Case Study Subsystem Power Breakdown

64

3.3 Case Study 2 – Unrealistic Spacecraft Estimate

In order to demonstrate whether the script will develop realistic spacecraft estimates, a Case Study was

developed which feeds the software a set of unrealistic (with current technology) mission requirements.

While the resulting spacecraft requirements should be realistic and reasonable, they should not be

feasible, due to the infeasible nature of the mission requirements being imposed on the spacecraft

requirements in this case.

To demonstrate the software, a series of unrealistic (but still hypothetically possible without current

technology constraints) mission requirements is assembled. These mission requirements should strongly

stress the spacecraft requirements so that a realistic but infeasible set of spacecraft requirements is

developed. The mission requirements will include a very high spacecraft delta-v (to stress the propulsion

and fuel systems, as well as raise the required spacecraft mass, which in turn will stress the attitude

control system and structure), unreasonably stringent payload requirements (high mass and power

requirements, narrow thermal constraints), a long primary mission length at the destination, and an

unreasonably low science orbit altitude (stressing the thermal and attitude control subsystems).

In short, the requirements to be levied on the spacecraft system by the mission requirements are:

 Mission Delta-V: 15 km/s

 Mission Destination: Uranus

 Payload Mass Requirement: 750 kg

 Payload Power Requirement: 2500 Watts

 Payload Count: 5

 Spacecraft Thermal Maximum: 30 degrees Celsius

 Spacecraft Thermal Minimum: 25 degrees Celsius

 Primary Mission Length at Destination: 3,650 days

65

 Science Orbit Altitude: 25 kilometers

All other values are set to their defaults, and all assumptions made in the software remain unchanged

for this case.

3.3.1 Software Generated Spacecraft Requirements

3.3.1.1 Destination Results

 Requirements.Destination.IR = 0.63

 Requirements.Destination.Albedo = 0.51

 Requirements.Destination.Radius = 25559

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (2.98 * 10^9)

 Requirements.Destination.SolarFlux = 4

 Requirements.Destination.mu = 5.793 * 10^6

 Requirements.Destination.SolarPressure = 1.24 * 10^-8

All of these requirements pertaining to the input Destination were passed successfully to the Master

Controller script for inclusion in further subfunction analysis.

3.3.1.2 Telecommunications Results

 Telecommunications Subsystem Mass Requirement: 141.35 kg

 Telecommunications Subsystem Power Requirement: 739.66 W

66

3.3.1.2.1 Link Budget

Parameter Value

Frequency, GHz 8.4

Bit error rate 1.0E-5

Range, km 3.129 * 109

Symbol rate, ksps 0.125

Transmitter Power, dB 650.17

Cable loss, dB 0

Antenna gain, dBi 67

EIRP, dB 717.17

Free space path loss, dB 300.83

Atmospheric attenuation, dB -0.17

Polarization loss, dB -1

S/C antenna gain, dBi 50.98

Pointing Loss, dB -5

Receiver cable loss, dB -1.95

Total Received Power, dB 459.19

System noise temperature, K 18

System noise density, dB/Hz -216.05

Carrier power/total power, dB -5.347

Carrier Power Received, dB -453.84

Carrier noise band width, dB-Hz 13

Carrier/noise ratio received, dB 656.89

Carrier/noise ratio required, dB 6

Carrier margin, dB 650.89

Command power/total power, dB -1.499

Command power received, dB 457.69

Command symbol rate, dB-Hz -20.97

Eb/N0 achieved, dB 652.77

Eb/N0 required, dB 4.2

Command Link Margin, dB 648.57

Table 4 - Unrealistic Spacecraft Estimate Link Budget

3.3.1.3 Command & Data Handling Results

 Command & Data Handling Subsystem Mass: 63.25 kg

 Command & Data Handling Subsystem Power: 71 W

67

3.3.1.4 Propulsion System Results

 Propulsion System Mass: 63.41 kg

 Propulsion System Power: 20.26 W

3.3.1.5 Attitude Control System Results

 Attitude Control System Mass: 252.09 kg

 Attitude Control System Power: 122.6 W

3.3.1.6 Power System Results

 Power Subsystem Mass: 317.07 kg

 Power Subsystem Power Requirements: 156.31 W

3.3.1.7 Structure Results

 Structure Mass: 309.3 kg

 Structure Power: 0 W

3.3.1.8 Thermal System Results

 Thermal Mass: 34.45 kg

 Thermal Power: 244.41 W

3.3.1.9 Fuel System Results

 Fuel System Dry Mass: 286.17 kg

 Fuel System Power: 0 W

3.3.1.10 Unrealistic Spacecraft Case Study Results Summary

 Total Spacecraft Mass: 6259 kg

o Spacecraft Dry Mass: 2217 kg

o Spacecraft Wet Mass: 4042 kg

68

 Total Spacecraft Power Requirement: 3854 W

There are currently no existing spacecraft that could potentially launch a spacecraft of this weight on a

direct transfer to Uranus. Significant weight reductions and refinements of the trajectory would be

necessary [14].

Figure 6 - Launch Mass Breakdown for the Unrealistic Mission Spacecraft

Payload

Dry Mass

Wet Mass

Software-Generated Case Study Results (Unrealistic Uranus
Orbiter)

69

Figure 7 - Subsystem Mass Breakdown for the Unrealistic Mission Spacecraft

Subsystem Mass Requirement (kg) Subsystem Percentage Expected Percentage

Telecom 141.35 10% 7%

C&DH 63.25 4% 7%

Propulsion 63.41 4% 8%

ACS 252.09 17% 10%

Power 317.07 22% 29%

Structure 309.3 21% 29%

Thermal 34.45 2% 3%

Fuel System 286.17 20% 8%

Table 5 - Subsystem Mass Percentages Comparison for the Unrealistic Mission Spacecraft

Telecom

C&DH Propulsion

ACS

Power

Structure

Thermal

Fuel System

Software-Generated Case Study Subsystem Mass Breakdown
(Unrealistic Uranus Orbiter)

70

Figure 8- Subsystem Power Breakdown for the Unrealistic Mission Spacecraft

Subsystem Power Requirement Subsystem Percentage Expected Percentage

Telecom 739.66 55% 23%

C&DH 71 5% 17%

Propulsion 20.26 1% 1%

ACS 122.6 9% 20%

Power 156.31 12% 10%

Structure 0 0% 1%

Thermal 244.41 18% 28%

Fuel System 0 0% 1%

Table 6 - Subsystem Power Percentages Comparison for the Unrealistic Mission Spacecraft

Telecom

C&DH
Propulsion

ACS

Power

Structure

Thermal

Fuel System

Software-Generated Case Study Subsystem Power Breakdown
(Unrealistic Uranus Orbiter)

71

4 Discussion

After the completion of each of the case studies, we can now compare the results between the actual

Mars Reconnaissance Orbiter spacecraft and the software-generated spacecraft designed to the same

mission requirements. We will also examine the “Unrealistic Uranus Orbiter” spacecraft requirements to

judge their feasibility in developing a spacecraft to meet these unrealistically high mission requirements.

4.1 Case Study 1 Discussion

The first case study compared the real-life Mars Reconnaissance Orbiter with a software-developed

spacecraft that was designed to the same mission requirements. While there were many significant

differences between the two spacecraft, the software-developed spacecraft requirements were similar

to the subsystems on the Mars Reconnaissance Orbiter in many ways [12].

 Mars Reconnaissance Orbiter Software-Developed Spacecraft

Payload Mass (kg) 120 120

Dry Mass (kg) 805 951

Wet Mass (kg) 1075 1120

Total Spacecraft Mass (kg) 2000 2191

Power Requirement (W) 2000 2239

Table 7 - Comparison of Launch Mass Breakdown between MRO and Software-Generated Mars Spacecraft

With similar payload requirements, the remaining top-level requirements of the two spacecraft look

very similar. The non-payload dry mass of each spacecraft has some deviation from the actual non-

payload dry mass (about an 18% error), the wet mass is within 50 kilograms (about a 5% error), and the

total mass is within 200 kg (about a 10% error). The power requirement is within 250 W, an error of

about 10%. In general, the software-developed spacecraft appears to slightly overestimate the

72

requirements of the real Mars Reconnaissance Orbiter. However, in systems that can be directly

compared, there appear to be some key differences.

4.1.1 Error Due to Thruster Specific Impulse Differences

One notable difference between the two spacecraft is the fact that the wet fuel mass is similar between

both spacecraft, even though the dry mass of the software-developed spacecraft requirement is higher

than that of the Mars Reconnaissance Orbiter. This is due to the fact that the thruster specific impulse

was not a specifiable parameter. The Mars Reconnaissance Orbiter design used a thruster specific

impulse value of about 190 seconds, while the software utilizes a default parameter value of 230

seconds (considered a safe estimate). Due to this difference, the software slightly underestimated the

fuel that would be required to complete the mission. An improvement to the software to rectify this

error would be for the software to accept thruster specific impulse as a mission requirement when

designing the spacecraft. This is part of a larger future effort to further improve the propulsion

subfunction for improved user customization and greater fidelity in meeting mission requirements.

4.1.2 Error Due to Insufficient Antenna Requirements

The Telecommunications subsystem designed a telecommunications systems that met requirements

with positive link margin, but the High-Gain Antenna is undersized in the software-generated spacecraft

when compared to the Mars Reconnaissance Orbiter. There are a number of potential root causes that

are not accounted for in the software. The first could be that the Mars Reconnaissance Orbiter utilizes a

larger-than-required High Gain antenna in order to serve as a communications relay between the Earth

and NASA’s landers and rovers on the Martian surface. This was not accounted for when inputting the

mission requirements, but it is an option for the user to do so. This would require knowledge of the

communications bandwidth necessary to accomplish this secondary goal. This knowledge could then

trivially be included in the telecommunications downlink rate, which would size the antenna

73

appropriately. However, it is important to note that under the current set of requirements levied by the

mission design, the spacecraft’s link budgets and margins are appropriate to complete the mission as

specified.

4.1.3 Power Requirements Error

The Power Systems requirements of the two spacecraft have some non-negligible differences. The Mars

Reconnaissance Orbiter requires 2000 W of power at Mars, [12] while the software-developed Mars

orbiter requires a total of 2,239 Watts. There are a number of possibilities as to why this could be the

case. The first is that the orbit of the Mars Reconnaissance Orbiter is not perfectly circular [12]. This

could change the spacecraft’s eclipse time, resulting in a smaller overall power requirement. This orbit

different would also result in a longer orbit, with the spacecraft spending more time in full sun. Both of

these factors could contribute to the spacecraft requiring a smaller power system in reality as compared

to the software-developed spacecraft. Additionally, the subsystem design of the software-developed

spacecraft does not exactly match MRO. Namely, the telecommunications system does not match

between the real spacecraft and the software-developed spacecraft. The telecommunications

subfunction optimizes between high gain antenna size and power required to maintain a positive link

margin. It is possible that the engineers for MRO made a decision to include a larger antenna in

exchange for reduced power requirements on the telecom system.

Lastly, it is possible that the lack of specificity in power requirements resulted in a larger-than-necessary

power system. As mentioned elsewhere, the power requirements for each subsystem are assumed to all

draw upon the power system simultaneously, when this may not be the case in reality. Improved

specificity in the power needs from various subsystems at different times may reveal that the peak

power requirements are not the sum of the power requirements for each individual subsystem. If this

74

were the case, it would explain why the power requirements on the hypothetical software-developed

spacecraft were higher than its real-world counterpart.

4.1.4 Other Sources of Error

There are a number of other potential error sources that could account for the differences between the

two spacecraft designs. One such potential error source is the lack of specificity in other, less driving,

requirements. There is significant documentation in regards to payload mass and power requirements,

as well as spacecraft features such as solar panel area, power system capability, antenna diameter, and

science orbit characteristics. However, there is little documentation on other constraints upon the

spacecraft design, such as thermal limits and telecommunications subsystem design.

It is possible that the thermal constraints placed upon the spacecraft were poor assumptions, resulting

in a spacecraft design estimation that cannot match the real-life orbiter. In order to improve this

comparison for the purposes of validating the software, the best course of action would be determine

what all of the necessary mission requirements were for the real-world spacecraft design, and use those

requirements as inputs for the software. The software estimations could then be improved to better

match real-world design choices and trade studies. An attempt to complete this process was made to

validate the software at this stage, but more data is needed.

4.1.5 Other Unaccounted Assumptions

The real-world Mars Reconnaissance Orbiter was designed with a series of assumptions that are harder

to quantify and account for in this software at the current time. One such example is the impact of the

launch vehicle to the design of the spacecraft structure. The placement and layout of the launch vehicle

adapter could have significant impact on the design of the structure, as well as the placement of many

vehicle payloads and subsystems. Future work aims to minimize this uncertainty by including launch

vehicle data in the analysis, improving this section of the requirements estimation. Additional launch

75

vehicle data would also assist in determining the impact on the structure design of the launch vehicle g-

loading profile.

Another example is the design impact of the fact that the real-world Mars Reconnaissance Orbiter

performed a number of aerobrake maneuvers in order to circularize the orbit at Mars [12]. These

maneuvers could have had significant impact on the layout of the spacecraft which cannot be easily

quantified in this software. Further analysis of the realistic spacecraft layout would be necessary prior to

finalizing the overall design.

4.1.6 Differences in Expected vs Actual Subsystem Breakdowns

4.1.6.1 Differences in Subsystem Mass Breakdown

Brown’s Elements of Spacecraft Design textbook contains data regarding expected breakdowns of

subsystem mass for interplanetary spacecraft [1]. This breakdown is detailed in the ‘Expected

Percentage’ column of each of the subsystem mass breakdown comparisons. While not a hard rule or

expectation, this breakdown of mass expectations allows us to examine whether the spacecraft as

designed fits in with general spacecraft design practices. In general, the spacecraft subsystem mass for

each of the subsystems closely compares with the expected percentages. These values are close enough

to the statistical expectations that there is little likelihood of error or need for justification of these

values. The most significant deviation is in the Structure subsystem. The spacecraft structure subsystem

as designed requires 23% of the final spacecraft mass, while a typical spacecraft structure subsystem

would require about 29% of the final spacecraft mass. This 6% difference may be a sign of the

subfunction underdesigning the structure for high-stress instances, but could also potentially be

explained by other subsystems having a higher-than-normal mass.

The power system exceeds mass expectations by about 4%, while the telecommunications subsystem

falls under mass expectations by about 2%. Since the antenna diameter is computed as an optimization

76

between the antenna mass and transmitter power, this expectation could be more closely matched (if

desired by the software user) by reducing the transmitter power and increasing the antenna diameter.

4.1.6.2 Differences in Subsystem Power Breakdown

Brown’s Element of Spacecraft Design textbook contains data regarding expected breakdowns of

subsystem power requirements for interplanetary spacecraft [1]. This breakdown is specifically detailed

in the ‘Expected Percentage’ column of each of the subsystem power breakdown comparisons. While

not a hard rule or expectation for the power requirements of the spacecraft subsystems, this breakdown

of expectations allows us to examine whether the spacecraft’s power subsystem requirements are

similar to those found in other spacecraft. Unlike the spacecraft mass, the subsystem power

requirements vary more significantly from the expected norms. The Propulsion, Power, Structure, and

Fuel System subsystems vary between 0-1% of expectations, but the Telecom, C&DH, Attitude Control,

and Thermal subsystems vary 5-8% from their expected values. The C&DH and Thermal subsystem

power estimates are 7% above a typical interplanetary spacecraft. The Attitude Control subsystem

power requirement is about 5% below what is expected in a typical spacecraft, while the

Telecommunications power requirement is about 8% below what is expected in a typical interplanetary

spacecraft.

The Command & Data Handling subsystem estimate is likely off due to the fact that the subfunction

estimating this subsystem does not capture enough detail. A number of parameters are hard-coded, and

improving this subfunction’s power requirement calculations would likely bring this subsystem more in

line with power requirement expectations.

The Thermal subsystem estimate is likely off from the textbook expectation due to the subfunction’s

reliance on heaters, when improved insulation would serve the spacecraft design better. Additionally,

the constraints on thermal conditions for the spacecraft were set arbitrarily, and may not reflect the

77

actual needs of the spacecraft subcomponents. An improved knowledge of the actual thermal

constraints of the spacecraft subsystems would allow us to determine a more accurate thermal

subsystem, potentially reducing the thermal subsystem power requirements.

The Attitude Control subsystem estimate is likely below expectations because the current low-fidelity

nature of the attitude control subsystem subfunction is likely resulting in a slight underestimate of the

power requirements for the attitude control system. Improved fidelity in the hardware needs of the

Attitude Control system may result in an improved subsystem design.

Lastly, the Telecommunications subsystem estimate falls well below the power expectations for this

subsystem. This may be due to the fact that some of the components typically allocated under

Telecommunications may be allocated under Command & Data Handling, reducing the power

requirement of telecom and raising the power requirement for C&DH. Additionally, it is possible that the

power requirement expectation is set assuming the usage of multiple antennae simultaneously, which is

now assumed under the current telecommunications subsystem subfunction.

4.2 Case Study 2 Discussion

While this case study did not have a real-world equivalent spacecraft to compare to, this study provided

value by demonstrating that when the software was given infeasible mission requirements, the software

would generate realistic but infeasible spacecraft requirements. Due to the fact that there is no real-

world spacecraft to compare this estimation to, we cannot perform a direct comparison to assess

whether a realistic spacecraft was generated. However, we can examine the sizing of the subsystems

and fuel requirements relative to the mission requirements to determine whether they are reasonable.

78

 Software-Developed Spacecraft

Payload Mass (kg) 750

Dry Mass (kg) 1288

Wet Mass (kg) 2014

Total Spacecraft Mass (kg) 4052

Power Requirement (W) 3854

Table 8 - Launch Mass Breakdown for Unrealistic Mission Spacecraft

This mission required a spacecraft capable of meeting a large payload power requirement, a large

payload mass requirement, tight thermal margins, a long primary science mission, and a significantly

high spacecraft delta-v. The results of the spacecraft requirements for this mission match these

stringent expectations.

4.2.1 Excessive Telecommunications Link Budget Margin

The current Telecommunications system has significant excess link budget margin that is not necessary

to meet the mission requirements. This is likely due to the optimization between antenna mass and

transmitter power. Reducing the transmitter power (by considering trade studies beyond optimizing

between mass and power, or even favoring a heavier telecommunications subsystem in exchange for

reduced power requirements) would reduce the unnecessary power requirement necessary to operate

the telecommunications subsystem. In turn, this would also reduce the mass of the power system itself,

further improving the feasibility of the spacecraft. This reduction in mass would also result in reduced

mass for the ACS, fuel tanks, and total wet mass, solving additional problems currently present in the

estimated design.

79

4.2.2 Excessive Fuel Requirements

The mission has excessive and unreasonable delta-v requirements, causing multiple issues with this

spacecraft design. The high delta-v requirement requires an enormous wet mass, over 4000 kg! This is

not a reasonable expectation for the spacecraft, and the user should consider reducing the overall

spacecraft mass as well as refining the trajectory to reduce the delta-v requirement. The addition of

gravity assists or the utilization of low-energy trajectories would significantly improve the feasibility of

this mission. Reducing the wet mass would reduce the mass requirements of the fuel tanks necessary to

store this fuel, as well as reduce the requirements of the attitude control system in order to maintain

pointing requirements while maneuvering such a heavy spacecraft. Reducing mass will also allow that

mass to be re-allocated to the telecommunications subsystem, reducing the power requirements and

easing the expectations on the power system as well.

4.2.3 Unreasonable Mass Requirements for Launch Vehicle

As it stands, the current mass requirements for the spacecraft are too high for any existing launch

vehicle to successfully launch to Uranus [14] [15]. The user should consider reducing the mission

requirements most responsible for increasing the spacecraft mass, specifically the payload mass and

power requirements, as well as the unrealistically high delta-v requirements. This will serve the dual

purpose of reducing the spacecraft volume while also bring the mass down enough to consider existing

launchers for this mission.

4.2.4 Differences in Expected vs Actual Subsystem Breakdowns

4.2.4.1 Differences in Subsystem Mass Breakdown

The Telecom, C&DH, Propulsion, and Thermal subsystems all were designed with mass requirements

well in line with the mass expectations set forth in the Brown textbook. All of these subsystems had

allocations with 4% of the expected value. However, the Attitude Control, Power, Structure, and Fuel

80

subsystems all were designed with mass requirements differing significantly from typical interplanetary

subsystem mass breakdown expectations.

The Attitude Control System was designed with a mass allocation of 17%, 7% more than expected. This

may be due to the large mass requirements imposed by the spacecraft payload. This requires a larger

attitude control system to maintain the pointing requirements, resulting in an increased mass.

Additionally, the mission design requires the spacecraft to orbit very close to the atmosphere of Uranus.

This results in additional torques that require the Attitude Control system to correct, increasing the fuel

mass necessary to maintain a steady attitude throughout each orbit.

The Power subsystem was designed with a mass allocation of 22%, 7% less than expected. This Power

subsystem mass allocation is likely due to the fact that the Fuel subsystem is cannibalizing the mass

percentage allocation in order to store the large amount of fuel necessary to meet the mission delta-v

requirements. The mass of the Power subsystem is reasonable given the mission requirements imposed

upon the subsystem.

The Structure subsystem was designed with a mass allocation of 21%, 8% less than expected. Like the

power subsystem, the mass percentage allocation is likely being cannibalized by the Fuel subsystem. The

Structure subsystem mass allocation is in line with expectations.

The Fuel subsystem was designed with a mass allocation of 20%, 12% more than expected. This is likely

due to the very large wet fuel mass required to meet mission delta-v requirements. This results in a

large fuel tank necessary to hold the fuel, much larger than typically expected. However, this mass

allocation is reasonable given the large amount of fuel the system must store.

4.2.4.2 Differences in Subsystem Power Breakdown

The percent allocations for power requirements on the software-design spacecraft are far off from many

expectations. The Telecommunications subsystem is designed with an allocation totaling 55% of the

81

spacecraft’s subsystem power. A typical interplanetary spacecraft usually requires only about 23% of the

subsystem power. This is likely due to the fact that the telecommunications subsystem is designed to

optimize between antenna mass and transmitter power. This optimization at long range back to Earth

likely required a large antenna, and this optimization resulted in significantly overpowering the

communications system. Upon completing this automated analysis, the user should return to the design

and reduce the Telecommunications subsystem capabilities so a reasonable link budget is utilized. This

will reduce the power requirements of the Telecommunications subsystem and bring the power

percentage allocations for the entire spacecraft more in line with expectations.

The Command & Data Handling, Attitude Control, and Thermal subsystems all have power percentage

allocation requirements far below what is expected. This is likely due to the Telecommunications

subsystem cannibalizing all of the percent allocations to meet a large power requirement. The overall

power requirements of these systems are reasonable when the mission requirements levied upon the

spacecraft are considered.

The Power Requirement power allocation is within 2% of the expected allocation, the power

requirement for the Power system is reasonable.

5 Future Work

While the software suite so far represents a step forward in using software to perform spacecraft initial

design estimation tasks, there is substantial work to go to improve this tool to further automate these

early estimation tasks and perform mission feasibility studies.

5.1 Command and Data Handling Subsystem Estimation Improvement

Currently, the subfunction responsible for handling the Command and Data Handling subsystem could

be improved in order to better match the subsystem to the spacecraft being designed. Currently, this

82

subfunction has fixed parameters for many aspects of the Command and Data Handling subsystem,

which may not fully anticipate spacecraft needs. Several improvements could be made, namely

accounting for designing a command and data handling subsystem that is lightweight (for very small

spacecraft) or allowing for user input of requirements that would drive the overall subsystem design.

These improvements would be integrated with the telecommunications subsystem subfunction to

better develop both subsystems more accurately for a spacecraft design.

5.2 Structure Power Improvements

The current Structure subsystem script assumes that any power requirements for the structure

subsystem would be less stringent than the overall power requirements for the rest of the spacecraft

during nominal operations. This also necessitates the assumption that the structure subsystem will only

draw power while other subsystems do not need to do so. This does not reflect potential realistic

scenarios, such as actuation of various structural elements such as booms or antenna deployments.

These improvements could also be implemented in the mission planner improvement (see below) which

would allow the user to set requirements at different phases of the mission with more granularity.

5.3 SPICE Toolkit Integration

Integration of the SPICE Toolkit would greatly expand the accuracy of the spacecraft development

estimation as well as further automate many analysis tasks that are still left to the user. The inclusion of

SPICE integration would allow the software to automatically determine many values (such as range to

sun, or range to destination) that may constrain the spacecraft design. In conjunction with loading a

potential mission trajectory, SPICE Toolkit integration would allow for analysis of potential constraining

circumstances that the user had not initially considered. Additionally, SPICE Toolkit integration would

slim down much of the software’s source code, as it would no longer have to perform analysis for many

small pieces of data that SPICE could perform on its own.

83

5.4 Trajectory

The addition of trajectory information to the software would better allow the software to estimate

spacecraft requirements more realistically given the mission constraints. Currently, the software only

knows the final destination of the spacecraft, which may not be the most stressing case on the

spacecraft. For example, a trajectory could be designed that would take the spacecraft very close to the

sun, or very far past the destination’s orbit of the sun during outbound cruise. (The most apparent case

of this flaw would be a low-energy trajectory with a very long time-of-flight, well past the destination’s

orbit of the sun). The addition of trajectory information into the script would combine well with the

future implementation of the mission planner feature, which would allow the user to specify

constraining requirements during each phase of a specific trajectory. Ideally, this trajectory would be

input into the system as an ephemeris file, and the software suite would use SPICE to feed information

into the subfunctions for thermal and power system constraints.

5.5 Mission Planner

The addition of a mission planner would improve the software suite by allowing the user to set mission

requirements with improved granularity. This would allow the software to better determine what the

driving requirements of the mission are on the spacecraft design. For example, there are many obvious

and common scenarios where a subsystem will have a large power draw, but this draw would not be

necessary during many nominal science operations when the science payload will be drawing power.

Currently, the software suite has no way of knowing whether a particular subsystem will draw power

while other subsystems are also drawing power. Due to this lack of knowledge, the assumptions must be

made. Either the power requirement will be higher than is truly required, or the software must make a

potentially incorrect assumption that the subsystems will not need power at the same time, and set the

power requirements to match accordingly. The mission planner would allow the user to set a series of

84

low-fidelity mission phases, specifying requirements for specific mission subsystems during each of

these mission phases. These phases would be identified by specifying the start and end date for each of

these phases. These could be as short as an insertion maneuver, all the way up to long-term outbound

cruise operations. This mission planner would also allow for gravity assists or flybys of other objects,

potentially allowing the user to set additional mission constraints based on the environment of a flyby

on the way to the final destination.

5.6 Launch Vehicle Selection

With the implementation of the mission planner and trajectory features into the software suite, the next

step of automating the spacecraft requirements process would be to identify potential launch vehicles

that would be suitable to the spacecraft and trajectory. This feature would consist of a look-up table

(much like the Destination subfunction) which would then rule out any launch vehicles unsuited to the

spacecraft (ie, unable to lift a heavier spacecraft into the desired orbit). This would allow the user to

rapidly determine whether the mission requirements are feasible given current launch vehicle

technology and cost constraints. This feature would also allow the structure subfunctions to make subtle

improvements to the structure design to meet the requirements of the launch vehicle adapter, while

also redesigning the structure to meet the requirements imposed on the spacecraft by the g-loading of

the launch vehicle. This addition would be accomplished by determining which launch vehicles had a

shroud volume sufficient for accommodating the volume of the spacecraft. The subfunction would then

search for minimum departure C3s for the launch date range specified by the user to the destination,

and determine which launchers (if any) were capable of delivering that C3 with the current spacecraft

mass. Any launch vehicles that could accommodate the spacecraft volume as well as meet the C3

requirements would be presented to the user for further analysis outside the software.

85

5.7 Spacecraft Development and Operations Cost Estimate

Another feature to be developed in the future would be the addition of a cost estimating tool. During

this phase of proposal development, the proposal developers are acutely concerned with the potential

cost of their spacecraft design. A cost estimating model would allow the user to rapidly estimate the

potential cost of a mission design and the spacecraft that would be able to meet that mission’s

constraints. This cost estimating tool would compare the cost of the designed spacecraft with the cost of

subsystems on other spacecraft with similar capability. These estimates for each subsystem would then

be summed for a design and development estimate for the overall spacecraft. Once the spacecraft

development cost has been estimated, the cost estimating subfunction could work in conjunction with

the mission planner subfunction to estimate the staffing levels (and thus cost) of operating the

spacecraft during all phases of the mission. This tool could accept a specific budget input from the user,

and assess potential budget risk based on the spacecraft and mission design, as well as inputs from the

user specifying factors that could affect budget risk.

5.8 Project Management

With the addition of some assumptions about subsystem complexity and cost, a subfunction for the

software could be developed which would estimate schedule needs for design and development of the

spacecraft. This would allow the user to determine whether a particular launch date for a specific

trajectory is feasible given the schedule risk for developing the spacecraft as estimated. Working in

conjunction with the trajectory subfunction, the Project Management subfunction could assess schedule

risk for meeting a specific launch date. This would be supported by additional inputs from the user to

determine factors that could affect schedule risk.

86

5.9 Fuel and Propulsion Subsystem Development Improvements

There are a number of potential improvements that could be made to the Fuel and Propellant

subfunctions to better estimate a series of spacecraft requirements. Specific potential improvements

are allowing the user to select a preferred fuel type (currently, hydrazine is assumed for both the

attitude control system and the main thrusters), more realistically model the power requirements for

the fuel system, and implement alternative propulsion methods such as electric propulsion.

5.9.1 User Options to Select Fuel Types

Currently, hydrazine is assumed to be the fuel of choice for the attitude control systems and main

engines. In future updates, the user would be allowed to select different fuel types (both

monopropellants and bipropellants, with appropriate tankage and plumbing design). This would be

accomplished with a look-up table similar to the Destination subfunction, which would contain pertinent

data on each of the fuel types for the other subfunctions to utilize.

5.9.2 Improving Power Requirements for Particular Fuel Subsystems

The current subfunction designing the fuel subsystem does not compute any power requirements for

the fuel subsystem. This is rationalized by assuming that the fuel subsystem will not require peak power

needs at the same time as nominal science operations (ie, the spacecraft will likely not perform a

maneuver or other critical fuel tasks while in the midst of science operations and peak power needs

from the payload). With this in mind, it is assumed that the power system will be able to deliver power

to the fuel system as needed when other subsystems do not require this power. This could be improved

by adding logic that would calculate the power requirements for a fuel subsystem, as well as

determining when those power requirements occurred. This would work in tandem with the future

implementation of the Mission Planner subfunction which would allow the user to more accurately

constrain the needs of the spacecraft over the life of the mission.

87

5.9.3 Implementation of Electric Propulsion

Another future implementation for the fuel and propulsion subsystems would be the inclusion of

electric propulsion. Currently, the software only allows for the inclusion of chemical propulsion. Not all

missions or mission proposals call for chemical propulsion, and the addition of electric propulsion to the

software suite would allow for more robust and realistic analysis of a greater number of use cases. This

addition would require substantial rework on many of the subsystem subfunctions, as this change would

affect the design of many of the spacecraft subsystems and would greatly change many constraining

cases.

5.10 Improved Antenna Customization

The current Telecom subfunction allows for limited customization of the antennae to be used on the

spacecraft. The low and medium gain antennae are chosen by default, with no options for customization

by the user. The High Gain Antenna design is an optimization of the EIRP (Equivalent Isotropically

Radiated Power) between antenna size and power requirements. Providing the user with additional

customization options would allow them to further refine the spacecraft requirements to better support

the intended mission design. For example, customizing the telecommunications subsystem could allow

the user to implement requirements secondary to the primary science mission, such as serving as a

communications relay for other spacecraft in the vicinity of the intended destination of the spacecraft

being designed.

5.11 Automatic Thermal Constraints

A future implementation for the Thermal subfunction will be the addition of automatic thermal

constraints for various spacecraft subsystems. The current implementation of the software requires the

user to know the thermal constraints of the hardware they will be using. Expecting the user to know this

information or to perform the analysis to arrive at that information is not always a safe assumption. In

88

the future, one of the outputs of each of the subsystem subfunctions would be the implementation of

thermal constraints being driven by hypothetical components being used for that subfunction. This

would better inform the decisions made by the thermal subsystem subfunction, while reducing the

workload on the user. The user would still have the option to override the thermal constraints as set by

the software in the event the software analysis does not meet the fidelity requirements for the specific

mission.

5.12 Graphical User Interface

The addition of a Graphical User Interface (GUI) would allow users to more easily implement their

mission designs prior to running the software. This would assist in preventing errors, and would reduce

the amount of time spent inputting data into the code. The current software requires knowledge of

MATLAB and how it handles data. With a GUI, a user with potentially some to zero knowledge of

MATLAB could input the necessary constraints and mission requirements with ease. The addition of a

GUI could also allow the user to easily pull data from the software for further manual analysis or

inclusion in a proposal. This data would include the spacecraft requirements, telecommunications link

budgets, Mass Equipment Lists, and Power Equipment Lists.

5.13 Improved Margin Determination

Further refinement of spacecraft mass and power margins must be included in a future build of the

software. This addition of margin would allow for growth of mass and power needs as the spacecraft

design is further developed. The current software does not assume mass growth in all subsystems, only

in the fuel requirements. Inclusion of user-definable mass and power growth margins will allow the user

to more confidently predict the final requirements of the spacecraft.

89

6 Conclusion

The development and testing of a software suite for streamlining the spacecraft proposal process is

discussed. Justification for the source code is detailed, with an explanation of how each subfunction

serves the overall spacecraft design process. Two case studies are explored, with each showing that the

software demonstrates the ability to accurately meet spacecraft requirements when compared to a real-

world example, as well as demonstrating that the software will not generate a feasible spacecraft design

if it is not provided a reasonable mission concept as an input. Potential errors revealed by the analysis

performed for the case studies are also discussed. The software has the potential to assist spacecraft

scientists and engineers in the rapid development of spacecraft requirements to assess potential

mission feasibilities.

7 Appendices

7.1 APPENDIX A - Software Code

7.1.1 Master Controller Script

function [Requirements] = AutomatedSpacecraftDesign(Requirements)

%This script calls many other subfunctions in an effort to prepare a

%preliminary spacecraft design document.

%Mission Requirements

Requirements = struct;

Requirements.Maneuver.DeltaV = 4.3; %km/s

Requirements.Destination.Name = input('Enter a destination.','s');

Requirements.DestinationMinRange = 200; %Orbit/Flyby Minimum Altitude, km

Requirements.Payload.Mass = 80; %Payload Mass, kg

Requirements.Payload.Power = 70; %Payload Power, W

Requirements.Payload.Volume = 20000; %Payload Volume, cm^3

Requirements.Payload.Count = 2;

Requirements.Payload.DataStorage = 25; %Gbit

Requirements.Pointing = 6; %degrees/sec

Requirements.SpacecraftMass = Requirements.Payload.Mass;

Requirements.SpacecraftPower = Requirements.Payload.Power;

Requirements.OIThrust = 1200; %N

Requirements.PrimaryMissionLength = 360; %days

Requirements.Thermal.Max = 25; %degrees C

90

Requirements.Thermal.Min = 2; %degrees C

Requirements.SpecificImpulse = 230; %sec

Requirements.Prop.LargeThruster = 170; %N

Requirements.Prop.MediumThruster = 22; %N

Requirements.Prop.SmallThruster = 0.9; %N

Requirements.FlybyFlag = 0;

%Fetch destination information.

[Requirements] = Destination(Requirements);

Requirements.SunMaxRange = Requirements.Destination.TransmitterMaxRange - 1.496 * 10^8;

Requirements.EarthMaxRange = Requirements.Destination.TransmitterMaxRange;

%Calculate telecommunications system

[TelecomMass, TelecomPower] = Telecom(Requirements);

Requirements.SpacecraftMass = Requirements.SpacecraftMass + TelecomMass;

Requirements.SpacecraftPower = Requirements.SpacecraftPower + TelecomPower;

%Calculate command & data handling

[CDHMass, CDHPower] = CDH(Requirements);

Requirements.SpacecraftMass = Requirements.SpacecraftMass + CDHMass;

Requirements.SpacecraftPower = Requirements.SpacecraftPower + CDHPower;

%Calculate propulsion system

[PropMass, PropPower] = Prop(Requirements);

Requirements.SpacecraftMass = Requirements.SpacecraftMass + PropMass;

Requirements.SpacecraftPower = Requirements.SpacecraftPower + PropPower;

%Calculate attitude control

[AttitudeMass, AttitudePower] = Attitude(Requirements);

Requirements.SpacecraftMass = Requirements.SpacecraftMass + AttitudeMass;

Requirements.SpacecraftPower = Requirements.SpacecraftPower + AttitudePower;

%Calculate power system

[PowerMass, PowerPower] = Power(Requirements);

Requirements.SpacecraftMass = Requirements.SpacecraftMass + PowerMass;

Requirements.SpacecraftPower = Requirements.SpacecraftPower + PowerPower;

%Calculate structure

[StructureMass, StructurePower, SpacecraftVolume] = Structure(Requirements);

Requirements.SpacecraftMass = Requirements.SpacecraftMass + StructureMass;

Requirements.SpacecraftPower = Requirements.SpacecraftPower + StructurePower;

Requirements.SpacecraftVolume = SpacecraftVolume;

%Calculate thermal system

[ThermalMass, ThermalPower] = Thermal(Requirements);

Requirements.SpacecraftMass = Requirements.SpacecraftMass + ThermalMass;

Requirements.SpacecraftPower = Requirements.SpacecraftPower + ThermalPower;

%Calculate fuel system

[FuelSystemMass, FuelSystemPower, WetFuelMass] = Fuel(Requirements);

Requirements.SpacecraftMass = Requirements.SpacecraftMass + FuelSystemMass;

Requirements.SpacecraftPower = Requirements.SpacecraftPower + FuelSystemPower;

TotalSpacecraftMass = Requirements.SpacecraftMass + WetFuelMass;

91

TotalSpacecraftPower = Requirements.SpacecraftPower;

end

7.1.2 Destination Subfunction

function [Requirements] = Destination(Requirements)

if strcmp(Requirements.Destination.Name,'Mercury') == 1

 Requirements.Destination.IR = 4150;

 Requirements.Destination.Albedo = 0.106;

 Requirements.Destination.Radius = 2439.7;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (6.156 * 10^7);

 Requirements.Destination.SolarFlux = 9228;

 Requirements.Destination.mu = 2.2032 * 10^4;

 Requirements.Destination.SolarPressure = 3.05 * 10^-5;

elseif strcmp(Requirements.Destination.Name,'Venus') == 1

 Requirements.Destination.IR = 153;

 Requirements.Destination.Albedo = 0.65;

 Requirements.Destination.Radius = 6051.8;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (1.087 * 10^8);

 Requirements.Destination.SolarFlux = 2586;

 Requirements.Destination.mu = 3.24859 * 10^5;

 Requirements.Destination.SolarPressure = 8.77 * 10^-6;

elseif strcmp(Requirements.Destination.Name,'Earth') == 1

 Requirements.Destination.IR = 231;

 Requirements.Destination.Albedo = 0.367;

 Requirements.Destination.Radius = 6378.14;

 Requirements.Destination.TransmitterMaxRange = 30000;

 Requirements.Destination.SolarFlux = 1353;

 Requirements.Destination.mu = 3.986 * 10^5;

 Requirements.Destination.SolarPressure = 4.59 * 10^-6;

elseif strcmp(Requirements.Destination.Name,'Mars') == 1

 Requirements.Destination.IR = 162;

 Requirements.Destination.Albedo = 0.15;

 Requirements.Destination.Radius = 3397;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (2.438 * 10^8);

 Requirements.Destination.SolarFlux = 586;

 Requirements.Destination.mu = 4.282 * 10^4;

 Requirements.Destination.SolarPressure = 2 * 10^-6;

elseif strcmp(Requirements.Destination.Name,'Jupiter') == 1

 Requirements.Destination.IR = 13.5;

 Requirements.Destination.Albedo = 0.52;

 Requirements.Destination.Radius = 71492;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (8.155 * 10^8);

 Requirements.Destination.SolarFlux = 50;

 Requirements.Destination.mu = 1.266 * 10^8;

92

 Requirements.Destination.SolarPressure = 1.7 * 10^-7;

elseif strcmp(Requirements.Destination.Name,'Saturn') == 1

 Requirements.Destination.IR = 4.6;

 Requirements.Destination.Albedo = 0.47;

 Requirements.Destination.Radius = 60268;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (1.505 * 10^9);

 Requirements.Destination.SolarFlux = 15;

 Requirements.Destination.mu = 3.794 * 10^7;

 Requirements.Destination.SolarPressure = (Requirements.Destination.SolarFlux)/(2.998*10^8);

elseif strcmp(Requirements.Destination.Name,'Uranus') == 1

 Requirements.Destination.IR = 0.63;

 Requirements.Destination.Albedo = 0.51;

 Requirements.Destination.Radius = 25559;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (2.98 * 10^9);

 Requirements.Destination.SolarFlux = 4;

 Requirements.Destination.mu = 5.793 * 10^6;

 Requirements.Destination.SolarPressure = 1.24 * 10^-8;

elseif strcmp(Requirements.Destination.Name,'Neptune') == 1

 Requirements.Destination.IR = 0.52;

 Requirements.Destination.Albedo = 0.41;

 Requirements.Destination.Radius = 24764;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (4.48 * 10^9);

 Requirements.Destination.SolarFlux = 2;

 Requirements.Destination.mu = 6.809 * 10 ^ 6;

 Requirements.Destination.SolarPressure = (Requirements.Destination.SolarFlux)/(2.998*10^8);

elseif strcmp(Requirements.Destination.Name,'Pluto') == 1

 Requirements.Destination.IR = 0.5;

 Requirements.Destination.Albedo = 0.3;

 Requirements.Destination.Radius = 1195;

 Requirements.Destination.TransmitterMaxRange = (1.496 * 10^8) + (7.38 * 10^9);

 Requirements.Destination.SolarFlux = 1;

 Requirements.Destination.mu = 9 * 10^2;

 Requirements.Destination.SolarPressure = (Requirements.Destination.SolarFlux)/(2.998*10^8);

elseif strcmp(Requirements.Destination.Name,'Moon') == 1

 Requirements.Destination.IR = 430;

 Requirements.Destination.Albedo = 0.12;

 Requirements.Destination.Radius = 1737.4;

 Requirements.Destination.TransmitterMaxRange = 390836;

 Requirements.Destination.SolarFlux = 1353;

 Requirements.Destination.mu = 4902.79;

 Requirements.Destination.SolarPressure = 4.59 * 10^-6;

elseif strcmp(Requirements.Destination.Name,'DeepSpace') == 1

 Requirements.Destination.IR = 0;

 Requirements.Destination.Albedo = 0;

 Requirements.Destination.Radius = 0;

 Requirements.Destination.TransmitterMaxRange = input('What is the maximum range of the

destination to Earth in km?');

 Requirements.Destination.SolarFlux = (3.828 *

93

10^26)/(Requirements.Destination.TransmitterMaxRange^2);

 Requirements.Destination.SolarPressure = (Requirements.Destination.SolarFlux)/(2.998*10^8);

else

 %Ask user to specify IR, Albedo, and Radius.

 Requirements.Destination.IR = input('What is the Orbit-Average IR of the destination in

W/m^2?');

 Requirements.Destination.Albedo = input('What is the Geometric albedo of the destination?');

 Requirements.Destination.Radius = input('What is the radius of the destination in km?');

 Requirements.Destination.TransmitterMaxRange = input('What is the maximum range of the

destination to Earth in km?');

 Requirements.Destination.SolarFlux = input('What is the solar flux of the destination?');

 Requirements.Destination.mu = input('What is the standard gravitational parameter of the

destination in km^3-s^-2?');

 Requirements.Destination.SolarPressure = (Requirements.Destination.SolarFlux)/(2.998*10^8);

end

7.1.3 Telecommunications Subfunction

function [TelecomMass, TelecomPower] = Telecom(Requirements)

AntennaEfficiency = 0.65;

AntennaFrequency = 8.4 * 10^9;

c = 2.98 * 10^8;

if Requirements.Payload.Mass > 160

syms x

f(x) = (AntennaEfficiency * (0.5*Requirements.Payload.Mass - 80 - 4 * x ^2) * (pi * x / ((3 *

10^8) / AntennaFrequency)^2));

df = diff(f,x);

AntennaRoots = solve(0 == df,x);

ARootsPos = double(AntennaRoots(AntennaRoots>0));

AntennaDiameter = max(0.4,ARootsPos);

LightweightAntennaMode = 0;

elseif Requirements.Payload.Mass < 27.999

 AntennaDiameter = 0.4;

 LightweightAntennaMode = 1;

else

 AntennaDiameter = 0.68;

 LightweightAntennaMode = 2;

end

if LightweightAntennaMode == 0

 %Calculate weight using formula

 HGAAntennaWeight = max(2.1,2.89 * AntennaDiameter ^ 2 + 6.11 * AntennaDiameter - 2.59);

elseif LightweightAntennaMode == 1

 HGAAntennaWeight = 2.1;

94

elseif LightweightAntennaMode == 2

 HGAAntennaWeight = 7;

else

 %An error has occurred.

end

PowerTransmitted = Requirements.Payload.Mass - 80 - 4 * AntennaDiameter;

TransponderWeight = 7.6;

ControlUnitWeight = 10.9;

TWTAWeight = 6.2;

RFSComponentsWeight = 8;

MediumGainAntennaWeight = 2.1;

CoaxCableWeight = 7.8;

ControlUnitPower = 12.2;

XExciterPower = 1.4;

ReceiverPower = 6.8;

TWTAPower = 67;

XSDownConvertPower = 2.1;

TelecomPower = ControlUnitPower + XExciterPower + ReceiverPower + PowerTransmitted + TWTAPower +

XSDownConvertPower; %W

TelecomMass = TransponderWeight + ControlUnitWeight + TWTAWeight + RFSComponentsWeight +

HGAAntennaWeight + MediumGainAntennaWeight + CoaxCableWeight;

ModulationIndex = 1; %radians

Frequency = AntennaFrequency/10^9; %GHz

BitErrorRate = 1 * 10^-5;

Range = Requirements.Destination.TransmitterMaxRange; %km

SymbolRate = 0.125; %bps

TransmitterPower = PowerTransmitted;

CableLoss = 0;

AntennaGain = 67; %34 m DSN

EIRP = TransmitterPower + CableLoss + AntennaGain;

FreeSpacePathLoss = 92.44 + (20*log10(Frequency)) + (20*log10(Range));

AtmosphericAttenuation = -0.17; %dB

PolarizationLoss = -1; %dB

SCAntennaGain = 10 * log10(AntennaEfficiency * ((pi *

AntennaDiameter)/((c)/(AntennaFrequency)))^2); %dBi

PointingLoss = -5; %dB

ReceivedCableLoss = -1.95; %dB

TotalReceivedPower = EIRP + (-1*FreeSpacePathLoss) + AtmosphericAttenuation + PolarizationLoss +

SCAntennaGain + PointingLoss + ReceivedCableLoss;

SystemNoiseTemperature = 18;

SystemNoiseDensity = -228.6 + 10 * log10(SystemNoiseTemperature); %dB/Hz

CarrierPowerTotalPower = 20 * log10(cos(ModulationIndex)); %dB

CarrierPowerReceived = TotalReceivedPower + CarrierPowerTotalPower; %dB

CarrierNoiseBandWidth = 13; %dB-Hz

CarrierNoiseRatioReceived = CarrierPowerReceived - SystemNoiseDensity - CarrierNoiseBandWidth;

%dB

CarrierNoiseRatioRequired = 6; %dB

CarrierMargin = CarrierNoiseRatioReceived - CarrierNoiseRatioRequired; %dB

95

CommandPowerTotalPower = 20 * log10(sin(ModulationIndex)); %dB

CommandPowerReceived = TotalReceivedPower + CommandPowerTotalPower; %dB

CommandSymbolRate = -10 * log10(SymbolRate) - 30; %dB-Hz

EbNoAchieved = CommandPowerReceived + CommandSymbolRate - SystemNoiseDensity; %dB

EbNoRequired = 4.2; %dB

CommandLinkMargin = EbNoAchieved - EbNoRequired; %dB

end

7.1.4 C&DH Subfunction

function [CDHMass, CDHPower] = CDH(Requirements)

IndependentDataRateEquipmentMass = 30;

IndependentDataRateEquipmentPower = 20;

ComputerMass = 2;

ComputerPower = 10;

ScienceDataProcessorMass = 15;

ScienceDataProcessorPower = 2 * Requirements.Payload.Count + 1;

EngineeringDataProcessorMass = 10;

EngineeringDataProcessorPower = 5;

DataStorageMass = 0.25 * Requirements.Payload.DataStorage;

DataStoragePower = 1 * Requirements.Payload.DataStorage;

CDHMass = IndependentDataRateEquipmentMass + ComputerMass + ScienceDataProcessorMass +

EngineeringDataProcessorMass + DataStorageMass;

CDHPower = IndependentDataRateEquipmentPower + ComputerPower + ScienceDataProcessorPower +

EngineeringDataProcessorPower + DataStoragePower;

end

7.1.5 Propulsion Subfunction

function [PropMass, PropPower] = Prop(Requirements)

LargeThrusterWeight = 0.34567 * Requirements.Prop.LargeThruster^0.55235;

MediumThrusterWeight = 0.34567 * Requirements.Prop.MediumThruster^0.55235;

SmallThrusterWeight = 0.4;

OIThrust = Requirements.OIThrust;

LargeThrusterCount = ceil(OIThrust/Requirements.Prop.LargeThruster);

TCMThrust = 22 * 6;

MediumThrusterCount = ceil(TCMThrust/Requirements.Prop.MediumThruster);

SmallThrusterCount = 12;

96

PropMass = LargeThrusterCount * LargeThrusterWeight + MediumThrusterCount * MediumThrusterWeight

+ SmallThrusterCount * SmallThrusterWeight;

PropPower = 0.01 * ((Requirements.SpacecraftPower - Requirements.Payload.Power)/0.4);

end

7.1.6 Attitude Control System Subfunction

function [AttitudeMass, AttitudePower] = Attitude(Requirements)

SpacecraftMass = 1/0.39 * Requirements.SpacecraftMass;

SubsystemPacking = 320.4; %kg/m^3

PackingEnvelopeHeight = 0.254; %meters

SubsystemVolumeWithoutEnvelope = ((Requirements.SpacecraftMass -

Requirements.Payload.Mass))/(SubsystemPacking);

SubsystemRadiusWithoutEnvelope = ((0.75 * SubsystemVolumeWithoutEnvelope)/(pi))^(1/3);

SubsystemVolume = (4/3) * pi * (SubsystemRadiusWithoutEnvelope + PackingEnvelopeHeight)^3;

SpacecraftVolume = SubsystemVolume + Requirements.Payload.Volume;

SpacecraftRadius = ((3 * SpacecraftVolume)/(4 * pi)) ^ (1/3);

%Determine the thruster capability

MOI = 0.5 * (SpacecraftMass * SpacecraftRadius^2);

theta = 180;

n = 2;

LeverArm = SpacecraftRadius;

t_b = 30;

F = (8 * MOI * theta)/(n * LeverArm * t_b^2);

%Determine the amount of solar torque acting on the spacecraft

SolarPressure = Requirements.Destination.SolarPressure;

Area = (1/2) * (4 * pi * SpacecraftRadius ^ 2); %Area facing sun

L = SpacecraftRadius; %Spacecraft moment arm

q = 0.5; %Spacecraft reflectivity

SolarTorque = SolarPressure * Area * L * (1 + q);

%Determine the momentum buildup over one orbit

OrbitPeriod = ((2 * pi)/(sqrt(Requirements.Destination.mu))) * ((Requirements.Destination.Radius

+ Requirements.DestinationMinRange) ^ (3/2));

MomentumBuildup = SolarTorque * OrbitPeriod;

%Time Between Desats

WheelStorage = 100;

WheelSaturate = WheelStorage/MomentumBuildup;

DesatTime = OrbitPeriod * WheelSaturate;

DesatCount = (Requirements.PrimaryMissionLength * 86400)/DesatTime;

%Desat Force

F = WheelStorage/(n * L);

%Desat Prop Usage

BurnTime = WheelSaturate/F;

PropMass = DesatCount * (n * F * BurnTime)/290;

97

SunSensorPower = 1;

SunSensorMass = 0.5;

StarTrackerCount = 2;

StarTrackerPower = StarTrackerCount * 18;

StarTrackerMass = StarTrackerCount * 7;

ReactionWheelCount = 4;

ReactionWheelPower = ReactionWheelCount * 21.4;

ReactionWheelMass = ReactionWheelCount * 8.5;

AttitudeMass = SunSensorMass + StarTrackerMass + ReactionWheelMass + PropMass;

AttitudePower = SunSensorPower + StarTrackerPower + ReactionWheelPower;

end

7.1.7 Power Subfunction

function [PowerMass, PowerPower] = Power(Requirements)

SciencePowerRequirement = (Requirements.SpacecraftPower - Requirements.Payload.Power) / 0.61;

SolarRange = Requirements.Destination.TransmitterMaxRange - (1.496 * 10^8);

if SolarRange < (9.652 * 10^8)

 SolarFlag = 1;

else

 SolarFlag = 0;

end

if SolarFlag == 1

 %Use solar panels

 Solar2Loads = 0.95;

 Solar2Battery = 0.7;

 Battery2Load = 0.96;

 if strcmp(Requirements.Destination,'DeepSpace') %Deep space will never meaningfully eclipse,

NightMax = 0

 NightMax = 0;

 else

 %Nighttime

 alpha = asin(Requirements.Destination.Radius/(Requirements.Destination.Radius +

Requirements.DestinationMinRange));

 OrbitPeriod = (2 * pi * sqrt((Requirements.Destination.Radius +

Requirements.DestinationMinRange)^3/(Requirements.Destination.mu)))/60;

 NightMax = (OrbitPeriod * ((alpha)/pi))/60;

 end

 %%Solar Array Requirements

 T_sun = OrbitPeriod - (NightMax * 60);

 P_sa = ((SciencePowerRequirement * NightMax)/(Solar2Battery * Battery2Load * T_sun)) +

((SciencePowerRequirement)/(Solar2Loads));

98

 %%Battery System Requirements

 DOD = 0.4;

 DischargeVoltage = 28; %volts

 BatteryCapacity = (SciencePowerRequirement * NightMax) / (Battery2Load * DOD *

DischargeVoltage);

 %%Calculate size and mass of solar panels

 RadiationDegradation = 0.18;

 ArrayTemp = 120;

 ArrayError = 5;

 CellOutput = 0.172; %W/cell

 UVDegradation = 0.98;

 ThermalDegradation = 0.99;

 CellMismatchLoss = 0.975;

 CellResistanceLoss = 0.99;

 ContaminationLoss = 0.99;

 ShadowLoss = 1;

 TempAdjustment = 1;

 SolarIntensity = SolarRange/(1.496 * 10^8);

 PointingLoss = cos(ArrayError);

 PowerCellActual = CellOutput * (UVDegradation * ThermalDegradation * CellMismatchLoss *

CellResistanceLoss * ContaminationLoss * ShadowLoss * (1 - RadiationDegradation) * TempAdjustment

* SolarIntensity * PointingLoss);

 NumberOfCells = P_sa/PowerCellActual;

 CellDensity = (10000/8) * 0.88;

 SolarArrayArea = NumberOfCells/CellDensity;

 %%Mass and power estimates for subsytems

 SolarArrayMass = 4 * SolarArrayArea;

 BatteryMass = BatteryCapacity / 24;

 PowerMass = SolarArrayMass + BatteryMass + 63.7 + 55.5;

 PowerPower = 0.1 * SciencePowerRequirement;

else

 %Use RTGs

 PowerMass = SciencePowerRequirement / 4.93;

 PowerPower = 0.1 * SciencePowerRequirement;

end

end

7.1.8 Structure Subfunction

function [StructureMass, StructurePower, SubsystemVolume] = Structure(Requirements)

%Compute subsystem volume

SubsystemPacking = 320.4; %kg/m^3

PackingEnvelopeHeight = 0.254; %meters

SubsystemVolumeWithoutEnvelope = ((Requirements.SpacecraftMass -

Requirements.Payload.Mass))/(SubsystemPacking);

SubsystemRadiusWithoutEnvelope = ((0.75 * SubsystemVolumeWithoutEnvelope)/(pi))^(1/3);

SubsystemVolume = (4/3) * pi * (SubsystemRadiusWithoutEnvelope + PackingEnvelopeHeight)^3;

99

%Aluminum Values

AlDensity = 2700;

%Fuel Needs Estimate

FuelEstimationFactor = 2;

MassEstimate = Requirements.SpacecraftMass/0.61;

FuelEstimate = (FuelEstimationFactor * MassEstimate) * (1 - exp(-

(Requirements.Maneuver.DeltaV*1000)/(9.81 * Requirements.SpecificImpulse)));

PropDensity = 1010;

PropVolume = (FuelEstimate/PropDensity);% * 3.531 * 10^-5;

%Total Spacecraft Volume

InstVolume = Requirements.Payload.Volume * 1 * 10^-6;% * 3.531 * 10^-5;

TotalSpacecraftVolume = SubsystemVolume + PropVolume + InstVolume; %m^3

%Estimate the structure mass.

R = (TotalSpacecraftVolume/pi)^(1/3);

SCThickness = 0.005;

StructureMass = AlDensity * ((pi * (R + SCThickness)^3) - TotalSpacecraftVolume);

StructurePower = 0;

end

7.1.9 Thermal Subfunction

function [ThermalMass, ThermalPower] = Thermal(Requirements)

%Establish requirements

ThermalMax = Requirements.Thermal.Max;

ThermalMin = Requirements.Thermal.Min;

alpha = 0.32;

epsilon = 0.8;

PowerDissipation = Requirements.SpacecraftPower;

SphereDiameter = 2 * (((3 * Requirements.SpacecraftVolume)/(4 * pi))^(1/3));

%Determine "worst-case" heating

if strcmp(Requirements.Destination,'Mercury') == 1

 WorstCaseIR = Requirements.Destination.IR;

 WorstCaseAlbedo = Requirements.Destination.Albedo;

 WorstCaseRadius = Requirements.Destination.Radius;

 WorstCaseSolarFlux = Requirements.Destination.SolarFlux;

 SpacecraftAltitude = Requirements.DestinationMinRange;

elseif strcmp(Requirements.Destination,'Venus') == 1

 WorstCaseIR = Requirements.Destination.IR;

 WorstCaseAlbedo = Requirements.Destination.Albedo;

 WorstCaseRadius = Requirements.Destination.Radius;

 WorstCaseSolarFlux = Requirements.Destination.SolarFlux;

 SpacecraftAltitude = Requirements.DestinationMinRange;

100

else %Use Earth as "worst case" heating otherwise

WorstCaseIR = 237;

WorstCaseAlbedo = 0.3;

WorstCaseRadius = 6378;

WorstCaseSolarFlux = 1371;

SpacecraftAltitude = 200;

end

WorstCaseViewFactor = 0.5 * (1 - (((SpacecraftAltitude^2 +

2*SpacecraftAltitude*WorstCaseRadius)^0.5)/(SpacecraftAltitude + WorstCaseRadius)));

ReflectanceFactor = 0.657 + 0.54 * (WorstCaseRadius/(WorstCaseRadius + SpacecraftAltitude)) -

0.196 * (WorstCaseRadius/(WorstCaseRadius + SpacecraftAltitude))^2;

sigma = 5.67 * 10^-8; %Stefan-Boltzman Constant

WorstCaseSpacecraftTemp = ((((WorstCaseSolarFlux * alpha)/4) + (WorstCaseIR * epsilon *

WorstCaseViewFactor) + (WorstCaseSolarFlux * WorstCaseAlbedo * alpha * ReflectanceFactor *

WorstCaseViewFactor) + (PowerDissipation/(pi * SphereDiameter^2)))/(sigma * epsilon)) ^ (1/4);

%Determine "best-case" heating

if strcmp(Requirements.Destination,'Mercury') == 1

Earth.IR = 237;

Earth.Albedo = 0.3;

Earth.Radius = 6378;

WorstCaseSolarFlux = 1371;

SpacecraftAltitude = 100;

elseif strcmp(Requirements.Destination,'Venus') == 1

Earth.IR = 237;

Earth.Albedo = 0.3;

Earth.Radius = 6378;

WorstCaseSolarFlux = 1371;

SpacecraftAltitude = 100;

else %Use Destination as "best case" heating otherwise

 BestCaseIR = Requirements.Destination.IR;

 BestCaseAlbedo = Requirements.Destination.Albedo;

 BestCaseRadius = Requirements.Destination.Radius;

 BestCaseSolarFlux = Requirements.Destination.SolarFlux;

 SpacecraftAltitude = Requirements.DestinationMinRange;

end

BestCaseViewFactor = 0.5 * (1 - (((SpacecraftAltitude^2 +

2*SpacecraftAltitude*BestCaseRadius)^0.5)/(SpacecraftAltitude + BestCaseRadius)));

ReflectanceFactor = 0.657 + 0.54 * (BestCaseRadius/(BestCaseRadius + SpacecraftAltitude)) - 0.196

* (BestCaseRadius/(BestCaseRadius + SpacecraftAltitude))^2;

sigma = 5.67 * 10^-8; %Stefan-Boltzman Constant

BestCaseSpacecraftTemp = ((((BestCaseSolarFlux * alpha)/4) + (BestCaseIR * epsilon *

BestCaseViewFactor) + (BestCaseSolarFlux * BestCaseAlbedo * alpha * ReflectanceFactor *

BestCaseViewFactor) + (PowerDissipation/(pi * SphereDiameter^2)))/(sigma * epsilon)) ^ (1/4);

Q_w1 = WorstCaseSpacecraftTemp - ThermalMax;

RadiatorArea = Q_w1/(sigma * epsilon * WorstCaseSpacecraftTemp ^ 4);

101

Q_w2 = BestCaseSpacecraftTemp - ThermalMin;

WorstCaseRadiatorTemp = (Q_w2/(RadiatorArea * sigma * epsilon))^(1/4);

HeaterCheck = WorstCaseRadiatorTemp - ThermalMin;

HeaterPowerReq = max(0,HeaterCheck);

if HeaterPowerReq == 0

 HeaterMass = 0;

else

 HeaterMass = 2;

end

r = (Requirements.SpacecraftVolume/pi)^(1/3);

h = r;

SurfaceArea = (2 * pi * r * h) + (2 * pi * r ^ 2); %m^2

InsulationMass = 0.03 * SurfaceArea; %kg

PaintMass = 0.24 * SurfaceArea; %kg

FoamMass = 64 * 0.075 * Requirements.SpacecraftVolume;

RadiatorMass = 0.03 * RadiatorArea;

ThermalMass = RadiatorMass + HeaterMass + InsulationMass + PaintMass + FoamMass;

ThermalPower = HeaterPowerReq;

end

7.1.10 Fuel Subfunction

function [FuelSystemMass, FuelSystemPower, WetFuelMass] = Fuel(Requirements)

SpacecraftVolume = Requirements.SpacecraftVolume;

Isp = Requirements.SpecificImpulse;

Isp_steady = 0.93 * Isp;

Isp_pulsing = 0.5 * Isp;

%Fuel requirements for spin-up to 5 RPM from 0 and back to 0.

F = Requirements.Prop.SmallThruster; %Thruster thrust value

n = 2; %Number of thrusters in the maneuver

L = ((3 * SpacecraftVolume)/(4 * pi)) ^ (1/3); %Spacecraft radius

omega_b = 5; %rpm

t_b = omega_b/((n*F*L)/(Isp_steady));

SpinUpDownProp = 2 * (n*F*t_b)/(Isp_steady);

%Fuel requirements for attitude control during orbit insertion

if Requirements.FlybyFlag == 0

 %Check if the mission will have an orbit insertion, or merely a flyby

 if strcmp(Requirements.Destination.Name,'DeepSpace')

 OIProp = 0;

 OIProp2 = 0;

 else

 %Calculate orbit insertion attitude control fuel

 F = Requirements.Prop.SmallThruster;

 omega = 60;

 t_b = sqrt((2 * Isp_steady * omega)/(n * F * L));

102

 OIProp = 2 * (n * F * t_b)/(Isp_steady);

 OrbitInsertionLength = 27; %minutes

 P_w = 60 * OrbitInsertionLength * 2;

 OIProp2 = 2*((n * F * P_w)/Isp_pulsing);

 end

else

 OIProp = 0;

 OIProp2 = 0;

end

%Fuel requirements for limit cycle characteristics

F = Requirements.Prop.SmallThruster;

Cycle_Duration = (8 * Isp_pulsing * 1)/(n * L * F * 0.5);

%%%Number of cycles over the course of the mission.

TotalCycles = Requirements.PrimaryMissionLength/Cycle_Duration;

%%%Mass of propellant requires to maintian three limit cycles

ThreeLimitCyclePropMass = 6 * ((n * F * 0.03)/(Isp_pulsing * 9.8067));

%Total ACS Fuel Inventory

ACSHydrazinePropInventory = (SpinUpDownProp + OIProp + OIProp2 + TotalCycles *

ThreeLimitCyclePropMass) * 1.035;

HydrazineBlowdownRatio = 4.5;

HydrazineInitialPressure = 625 * 6.89476;

ACSHydrazineVolume = ACSHydrazinePropInventory/1.01;

InitialACSUllageVolume = ACSHydrazineVolume/(HydrazineBlowdownRatio - 1);

BladderRadius = sqrt((0.75 * (ACSHydrazineVolume + InitialACSUllageVolume))/(3.141));

Area_Bladder = 2 * 3.141 * BladderRadius ^ 2;

BladderVolume = 0.075 * Area_Bladder;

TotalACSHydrazineVolume = ACSHydrazineVolume + InitialACSUllageVolume + BladderVolume;

%Tank Weight

ACSTankWeight = 0.0116 * HydrazineInitialPressure * TotalACSHydrazineVolume/1000;

DryMass = Requirements.SpacecraftMass + ACSTankWeight + ACSHydrazinePropInventory;

FuelEstimate = DryMass;

MainHydrazinePropInventory = (DryMass + FuelEstimate) * (1 - exp(-

(Requirements.Maneuver.DeltaV*1000)/(9.81 * Requirements.SpecificImpulse)));

MainHydrazineVolume = MainHydrazinePropInventory/1.01;

InitialMainUllageVolume = MainHydrazineVolume/(HydrazineBlowdownRatio - 1);

BladderRadius = sqrt((0.75 * (MainHydrazineVolume + InitialMainUllageVolume))/(3.141));

Area_Bladder = 2 * 3.141 * BladderRadius ^ 2;

BladderVolume = 0.075 * Area_Bladder;

TotalMainHydrazineVolume = MainHydrazineVolume + InitialMainUllageVolume + BladderVolume;

MainTankWeight = 0.0116 * HydrazineInitialPressure * TotalMainHydrazineVolume/1000;

Plumbing = 20;

FuelSystemMass = ACSTankWeight + MainTankWeight + Plumbing;

103

FuelSystemPower = 0;

WetFuelMass = ACSHydrazinePropInventory + MainHydrazinePropInventory;

end

7.1.11 Test Script

%This script will rapidly produce a series of test requirements.

Requirements = struct; %Test Requirements

Requirements.Maneuver.DeltaV = 4.3; %km/s

% Requirements.Destination.Name = input('Enter a destination.','s');

Requirements.DestinationMinRange = 200; %Orbit/Flyby Minimum Altitude, km

Requirements.Payload.Mass = 80; %Payload Mass, kg

Requirements.Payload.Power = 70; %Payload Power, W

Requirements.Payload.Volume = 20000; %Payload Volume, cm^3

Requirements.Payload.Count = 2;

Requirements.Payload.DataStorage = 25; %Gbit

Requirements.Pointing = 6; %degrees/sec

Requirements.SpacecraftMass = Requirements.Payload.Mass;

Requirements.SpacecraftPower = Requirements.Payload.Power;

Requirements.OIThrust = 1200;

Requirements.PrimaryMissionLength = 360; %days

Requirements.Thermal.Max = 25;

Requirements.Thermal.Min = 2;

Requirements.SpecificImpulse = 230;

Requirements.Prop.LargeThruster = 170;

Requirements.Prop.MediumThruster = 22;

Requirements.Prop.SmallThruster = 0.9;

Requirements.FlybyFlag = 0;

n = 0;

Requirements.Destination.Name = 'Mercury';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

104

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Venus';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Earth';

105

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Mars';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

106

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Jupiter';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

107

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Saturn';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Neptune';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

108

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Uranus';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

109

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Pluto';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

Requirements.Destination.Name = 'Moon';

DeltaVTest = 0.5;

while DeltaVTest < 10

 tic

 Requirements.Maneuver.DeltaV = DeltaVTest;

110

 PayloadMassTest = 10;

 while PayloadMassTest < 200

 Requirements.Payload.Mass = PayloadMassTest;

 PayloadPowerTest = 50;

 while PayloadPowerTest < 1000

 Requirements.Payload.Power = PayloadPowerTest;

 FlybyTest = 0;

 while FlybyTest < 2

 Requirements.FlybyFlag = FlybyTest;

 Requirements.SpacecraftMass = Requirements.Payload.Mass;

 Requirements.SpacecraftPower = Requirements.Payload.Power;

 [Requirements] = AutomatedSpacecraftDesign(Requirements);

 fileID = fopen('Mass.txt','a');

 fmt = '%5d\n';

 fprintf(fileID,fmt,Requirements.SpacecraftMass);

 fclose(fileID);

 fileID = fopen('Power.txt','a');

 fprintf(fileID,fmt,Requirements.SpacecraftPower);

 fclose(fileID);

 FlybyTest = FlybyTest + 1;

 end

 PayloadPowerTest = PayloadPowerTest + 100;

 end

 PayloadMassTest = PayloadMassTest + 25;

 end

 DeltaVTest = DeltaVTest + 2

 toc

end

111

8 References

[1] C. D. Brown, Elements of Spacecraft Design, Reston, VA: American Institute of Aeronautics and

Astronautics, 2002.

[2] MathWorks, "MATLAB," 01 08 2017. [Online]. Available:

https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab.

[3] P. K. Seidelmann, Explanatory Supplement to the Astronomical Almanac, Sausalito, CA: University

Science Books, 1992.

[4] J. R. Wertz, Space Mission Analysis and Design, El Segundo, CA: Microcosm Press, 1999.

[5] H. D. Young, Sears and Zemansky's University Physics with Modern Physics, San Francisco, CA:

Pearson Education, Inc, 2008.

[6] J. Wright, Space Sailing, Abingdon: Routledge, 1992.

[7] M. D. Griffin, Space Vehicle Design, Reston, VA: American Institute of Aeronautics and

Astronautics, 2004.

[8] R. Furfaro, Class Notes from SIE 552, 2/28/17, Tucson, 2017.

[9] H. D. Curtis, Orbital Mechanics for Engineering Students, Oxford: Elsevier, Ltd, 2014.

[10] G. P. Sutton, Rocket Propulsion Elements, Hoboken, NJ: John Wiley & Sons, Inc, 2010.

[11] National Aeronautics and Space Administration, "Mars Reconnaissance Orbiter Mission Overview,"

National Aeronautics and Space Administration, 2006. [Online]. Available:

https://mars.nasa.gov/mro/mission/overview/. [Accessed 1 August 2017].

[12] M. D. Johnston, "The Mars Reconnaissance Orbiter Mission," IEEE, Pasadena, CA, 2003.

[13] United Launch Alliance, "Atlas V Launch Services User's Guide," United Launch Alliance,

Centennial, CO, 2010.

[14] United Launch Alliance, Delta IV Launch Services User's Guide, Centennial, CO: United Launch

Alliance, 2013.

[15] J. Shan, Interplanetary Trajectories, Toronto: York University.

