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Abstract: Computer-generated hologram (CGH) has been widely used as a wavefront 
compensator in symmetric aspheric metrology. As a diffractive element, it generates different 
diffraction orders, but only the 1st-order diffraction is used to test aspheric surface. The light 
from spurious diffraction orders (SDO) will produce many high-frequency fringes in 
interferogram and reduce measurement accuracy. In this paper, we regard the CGH null 
system as an imaging system and develop an aberration model in Seidel formalism to analyze 
the SDO. This model has the advantage to address the difference between the SDO (k1, k2) 
and (k2, k1). We consider the effect of the pupil distortion so that our model can analyze the 
SDO with a large pupil distortion. We derive the condition to ensure the 2nd-order and 4th-
order aberrations have the same sign and calculate the minimum defocused distance (power 
carrier frequency) of CGH. According to the marginal-ray heights ( 1h and 3h ) on the CGH in 

the first and second passes, we determine the condition that the SDO covers the whole CGH 
in the second pass. We analyze the SDO of 4 CGH designs and compare the results from our 
aberration model with these from real ray trace. These results validate that our aberration 
model is feasible whether the aspheric part is convex or concave and whether CGH is inside 
or outside the focus of the transmission sphere. 
©2017 Optical Society of America 

OCIS codes: (220.1250) Aspherics; (120.6650) Surface measurements, figure; (120.2880) Holographic 
interferometry. 
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1. Introduction 

Compared with spherical surface, aspheric surface can improve the performance of the optical 
system and reduce its complexity, so it is widely used in modern optical systems, such as 
astronomical telescopes and photolithographic lenses. However, since aspheric surface is not 
self-collimated under spherical wavefront, i.e., the testing rays do not impinge normally on 
aspheric part, it cannot be directly tested under standard interferometer. Computer-generated 
hologram (CGH) is often inserted between the aspheric part and the transmission sphere to 
transfer spherical wavefront to match the aspheric one [1–3]. 

As a diffractive element, CGH generates many diffraction orders, but only the first 
diffraction order is used to test aspheric part. The rays from the spurious diffraction orders 
(stray rays) will produce many high-frequency fringes in interferogram and reduce 
measurement accuracy [4]. Since the stray rays pass through CGH twice, we denote the 
spurious diffraction orders (SDO) as (k1, k2), where k1 and k2 is the diffraction order of CGH 
in the first and second pass, respectively. To decrease the effect of SDO, power and tilt carrier 
frequency are usually added to CGH, so SDO can be separated large enough and then be 
blocked by the inner pinhole filter. However, excessive carrier frequency also results in small 
line space on CGH and drives up the cost [5]. 

The SDO has been investigated in past 20 years. In 2001, N. Lindlein derived the 1st-
order ray model to analyze the SDO of symmetric CGH when testing convex aspheric part 
and CGH was laid close to convex aspheric part [6]. They argued the SDO (−1, 3) and (3, −1) 
has the most significant effect on measurement accuracy and calculated the minimum amount 
of power carrier frequency to separate SDO. In 2012, P. Zhou et al [7] developed the 
parameter model to describe the CGH null system in power carrier frequency and calculated 
the distance from the pinhole to its paraxial image. This distance was used to evaluate the 
separation of SDO. In 2015, J. Peng et al. [8] introduced a tilt quantity into Zhou’s parameter 
model, so it can be used to describe the CGH null system with tilt carrier frequency. On the 
other side, they included a scale factor between CGH size and aspheric part in Lindlein’s 
model, so Lindlein’s model can analyze SDO whether CGH is close to aspheric part or not. 
Using these two models, they analyzed the SDO of non-symmetric CGH and calculated the 
minimum amount of tilt carrier frequency when testing conic surfaces with a large F# (larger 
than 4). They proposed the necessary condition to separate SDO by tilt carrier frequency 
when testing paraboloid: the paraxial center of the paraboloid should be inside the focus of 
transmission sphere. They observed that the SDO (2, 0) has a better agreement of ray error on 
pinhole with the real ray error than the SDO (0, 2). They also observed one of the SDO (k1, 
k2) and (k2, k1) cannot cover the CGH in the second pass. 

Lindlein’s model has made a great advance in the analysis of SDO. However, because of 
the 1st-order approximation, this model shows no difference between the SDO (k1, k2) and (k2, 
k1). Usually only one of the SDO (k1, k2) and (k2, k1) agrees well with the real ray trace. The 
function between the CGH coordinate and the ray error on pinhole in this model is single-
valued while in reality, because of the negative distortion, this function could be multi-valued, 
i.e., it is possible that two rays pass the CGH at the same point. Therefore, we develop a new 
aberration model in Seidel formalism to analyze the SDO. This model has the advantage to 
address the difference between the SDO (k1, k2) and (k2, k1). Since our model considers the 
effect of the pupil distortion, even if there are two rays passing the same point on the CGH in 
the second pass, the ray error calculated by our model also agrees well with that calculated by 
real ray trace. In our model, we derive the condition to ensure the 2nd-order and 4th-order 
aberrations have the same sign, so we can avoid the risk that the outer annular of CGH is 
disturbed by spurious diffraction orders. We also calculate the minimum defocused distance 
(power carrier frequency) of CGH. According to the marginal-ray heights on the CGH in the 
first and second pass, we provide an equation to determine what kinds of SDO can cover the 
whole CGH in the second pass. 
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In this paper, we first introduce three basic layouts of CGH when testing concave and 
convex aspheric part. Then we derive the principles of our aberration model in Section 3. The 
aberration model is furtherly simplified in Section 4 so the qualitative analysis can be 
conducted. The qualitative analysis provides the guidance for CGH design. According to the 
three basic layouts of CGH in Section 2, we design four different CGHs and analyze their 
SDO in Section 5. The ray error on pinhole calculated by our model is compared with that 
calculated by real ray trace to validate our model. 

2. Three basic layouts of CGH to test concave or convex aspheric part 

 

Fig. 1. Three basic layouts of CGH. 

There are three basic layouts of CGH to test concave or convex aspheric part, shown in Fig. 1. 
The layouts in Figs. 1(a) and 1(b) are used to test concave part while the layout in Fig. 1(c) is 
used to test convex one. CGHs in Figs. 1(a) and 1(b) are outside and inside the focus 0I of the 

transmission sphere, respectively. The equivalent pinhole filter is an image of the inner 
pinhole filter. 1 2,k k are the diffraction orders in the first and second pass through CGH, 

respectively. 0s is the distance from CGH to the focus 0I , 0's  is the distance from CGH to the 

paraxial center C of the testing part and r is the base-sphere radius of the testing part. The 
negative sign means the point C or 0I  is at the left side of CGH. Since 0'd s r= −  ( d is the 
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distance from CGH to the testing part), for a specified aspheric part ( r is given), the layout of 
CGH is determined by the variables 0s  and 0's . It is easy to have 0 0r s< < and 0' 0r s< < in 

Fig. 1(a), 0 0s > , 0' 0s > and 0r < in Fig. 1(b), and 00 r s< <  and 00 'r s< < in Fig. 1(c). In 

Section 5, we will show how the quantities 0s , 0's and r  affect the CGH design and its SDO in 

these three layouts. 

3. The aberration model in Seidel formalism 

The interferometer images the CGH to its CCD plane, so the disturbed area on CGH is also 
the disturbed area of testing data on CCD. On the other side, CGH null system can be treated 
as three imaging subsystems shown in Fig. 2. The focus 0I  of the transmission sphere is first 

imaged to 1I by CGH (the first subsystem), then 1I is imaged to 2I by the testing part (the 

second subsystem), and 2I  is finally imaged to 3I by the CGH again (the third subsystem). 

For convenience in discussing the disturbed area on CGH, we assume the exit pupil of the 
CGH null system is placed on CGH in the image space of the third subsystem. Its semi-
diameter in the objective and image space of the ith subsystem is iλ  and 'iλ , respectively. The 

focal lengths of the first and third subsystems are determined by the diffraction order and the 
added optical path of CGH phase function. For the diffraction orders ( + 1, + 1), 3I is the 

perfect image of 0I  and coincides with 0I , which can be used to gain the added optical path 

of CGH phase function in the following discussion. 

0I 1I 2I 3I

3'λ

 

Fig. 2. The imaging schematic of the CGH null system. 

3.1 The Seidel variable and its relationship with the ray vector 

A general imaging system is shown in Fig. 3. The object plane, image plane, entrance pupil, 
and exit pupil are located at the on-axis point A, B, D, and E, respectively. The ray intersects 
with the object plane, image plane, entrance pupil and exit pupil at '' , '' , '' , ''A B D E   , 
respectively. The perpendicular foot from A, B to the ray is ' , 'A B , respectively. The heights 
of the object plane and its image plane are τ  and 'τ , respectively; the heights of the entrance 
pupil and exit pupil are λ  and 'λ , respectively; the distance from the principal plane to the 
object plane is s and its conjugated distance is 's ; the distance from the principal plane to the 
entrance pupil is t  and its conjugated distance is 't ; the distance from the object plane to the 
entrance pupil is g and its conjugated distance is 'g . The Seidel variables of the paraxial ray 

are defined as 

 

'
, '

'
'

, '
'

o o

e e

x x

x x

χ ψ χ ψ
τ τ

ξ ξ
λ λ

= = 

= =


 (1) 
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where ox , 'ox , ex  and 'ex are the X-axis coordinates of paraxial ray on the object plane, 

image plane, entrance pupil and exit pupil, respectively (for the ray in Fig. 3, ox , 'ox , ex  and 

'ex are the X-axis coordinates of '' , '' , '' , ''A B D E  , respectively); the Lagrange-Helmholtz 

invariable ψ  is 
' ' '

=
'

n n

g g

τλ τ λψ =  [9]. From the definition, the Seidel variable ξ  is the 

normalized pupil coordinate and the Seidel variable ox
n

g
χ λ=  is the intersection 

angle ''A DA , multiplied by the refractive index and entrance pupil height. The advantage of 
using the Seidel variables, not the regular pupil coordinates, is that the aberration coefficient 
of the total system is the sum of the aberration coefficients of its subsystems only when using 
the Seidel variables [9]. 

The ray vector is defined as ( , )=( cos , cos )p m n nα γ , where n  is the refractive index and 

( , )α γ  is the direction angle of the ray along X and Z axis, shown in Fig. 3. The ray vector 

can be expressed by the Seidel variables 

 

2

2

( ), 1

' ' '
' '( ' '), ' ' 1

' ' '

h H p
p n m n

s t n

h H p
p n m n

s t n

ξ χ

ξ χ

  = − = −    

 = − = −  

  

 (2) 

where
' ' '

, ' , , '
' ' '

s s t t
h h H H

g g n n

λ λ
λ λ

= = = = ; n  and 'n  are the refractive indices in the 

object and image spaces, respectively. It is easy to see h  and 'h are the heights of the 
principal plane in the object and image space, respectively. For the thin imaging element, the 
principal plane coincides with the imaging element, so h is also the paraxial height of the 
marginal ray on the imaging element (the marginal ray is the ray passing the edge of exit 
pupil and the center of the field). In Gaussian optics, we have ', ', ', 'h h H Hχ χ ξ ξ= = = = . 

'A

A

'B

B

''D

D

''E

E
'ss−

t−
't

( , )p m ( ', ')p mτ λ 'λ

g
'g−

α

γ

F
X

Z

'τ''A

''B

 

Fig. 3. A general imaging system. 

3.2 Relationship between the 4th-order angular characteristic function and the 4th-
order aberration 

For a general imaging system in Fig. 3, B  is the Gaussian image point of A . The sphere EF  
is centered at B  point and called the Gaussian reference sphere. The angular characteristic 
function (ACF) of ray ' 'A B  is defined as the optical path difference (OPD) between ray 

' 'A B  and chief ray AB , i.e., ' ' ( ', ') ( , )A BT op A B op A B= − , where ' 'A BT  is the ACF of ray 
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' 'A B and ( , )op A B  is the optical path between A and B . Assuming there is a ray linking A  

and F , the aberration FW  at F  point is defined as the OPD between ray AF  and chief ray 

AE , i.e., ( , ) ( , )FW op A F op A E= − . When 'A  coincides with A , we have 

 ' ' 'A B F FB EBT W l l= + −  (3) 

where EBl  is the distance between E  point and B  point. Since B  is the Gaussian image 

point of A , 'FB EBl l−  is a quantity with its order higher than 4, which means 

 (4) (4)
' ' ,A B FT W=  (4) 

where (4)T  and (4)W  are referred to as the 4th-order parts of T  and W . 

3.3 The angular characteristic functions of three subsystems 

3I 2I

2'I

3 3( , )p m
3'I

3 3( ' , ' )p m
3M

CGH

3X

3Z

0I 1I

1'I

1 1( ' , ' )p m
0'I

1 1( , )p m
1M

CGH

1X

1Z

1s−

1's−

3's−

3s−

a b  

Fig. 4. The schematic to calculate ACF of two subsystems. (a): the first subsystem; (b): the 
third subsystem. 

How to calculate the ACF of the first subsystem is shown in Fig. 4(a). The ray 0 1' 'I I  

intersects with CGH at M1 and the point 0'I  and 1'I  is the perpendicular foot from 0I  and 1I  

to the ray, respectively. The coordinates of 0I , 1I  and M1 are 1(0, )s , 1(0, ' )s  and 1( ,0)x , 

respectively and 1s  is always equal to 0s . It is easy to have 

 0 1' ' 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

( , ) ( ' , ' ) ( )

( ) ( ) ' ' ' ( )

I IT I M p m M I p m k x

x p s m x p s m k x

ϕ
ϕ

= ⋅ + ⋅ +

= + − + − + +

 

        
 (5) 

where 
0 1' 'I IT  is the ACF of the ray 0 1' 'I I , 1( )xϕ  is the added optical path of CGH phase 

function and the symbol ⋅  is the scalar product. In the 4th-order approximation, we have 

 

2 4
1 1

1 3

2 2 4
1 1 1

1 1
1

2 2 4
1 1 1

1 1
1

( )
2 8

1 1 ,
2 8

' ' '
' ' 1 1

' 2 8

x x
x

a b

p p p
m n

n

p p p
m n

n

ϕ

= − −


  = − = − −  

  

 

= − = − −  
  

 (6) 
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where the refractive indices 1 1' 1n n= =  in this subsystem. According to eikonal equation, we 

have 

 
3

1 1 1
1 1 1 1 3

1

' ( ).
2

x x
k p p k

x a b

ϕ∂
= − = − −

∂
 (7) 

Solving Eq. (7) in the 4th-order approximation, we have 

 
4

3
1 1 1 1 13 3

1 1

( ' ) ( ' ) .
2

a a
x p p p p

k k b
= − − + −  (8) 

Substituting Eq. (6), 8) into Eq. (5), the ACF of the first subsystem in the 4th-order 
approximation is 

 
0 1

4
(4) 4 4 4

' ' 1 1 1 1 1 13 3
1

1
( ' ) ( ' ' ).

88I I

a
T p p s p s p

b k
= − − − −  (9) 

With a similar procedure, the 4th-order ACF of the third subsystem in Fig. 4(b) is 

 
2 3

4
(4) 4 4 4

' ' 3 3 3 3 3 33 3
2

1
( ' ) ( ' ' ),

88I I

a
T p p s p s p

b k
= − − + −  (10) 

where the positive sign is because of 3 0m <  and 3' 0m < . 

The aspheric surface in the second subsystem is regarded as a deformed mirror, shown in 
Fig. 5. In the 4th-order approximation the aspheric surface can be expressed as 

 
2 4
2 2

2 3
(1 ),

2 8 m

x x
z b

r r
= + +  (11) 

where mb  is the deformed factor of the aspheric surface. 

The ACF of a deformed mirror has been discussed in [9] as 

 
1 2

4 4
(4) 4 2 2 22 2 2 2

2 2 2 2 2 2' '

(1 ) ' '
( ' ) ( ' ) ( ' ).

64 8 16
m

I I

b r s p s p r
T p p p p p p

+ +
= − + − − +  (12) 

1I2I
1'I

2'I

2 2( , )p m

2 2( ' , ' )p m

2M
2X

2Z

2's−

2s−

 

Fig. 5. The schematic of the second subsystem to calculate ACF 

3.4 The total 4th-order aberration coefficient 

The 4th-order aberration is equal to the 4th-order ACF shown in Eq. (4). Since the aberration is 
expressed with the exit pupil variable, not the ray direction, to obtain the aberration 
coefficients, these ray-direction variables in Eqs. (9), (10), and (12) should be replaced by the 
exit pupil variables. Besides, the imaging equation is 
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1 2

1 1 2 2 3 3

1 2

1 1 2 2 3 3

1 1 1 1 2 1 1
, ,

' ' '
,

1 1 1 1 2 1 1
, ,

' ' '

k k

s s a s s r s s a

k k

t t a t t r t t a

− = + = − = 

− = + = − =


 (13) 

where , ' , , 'i i i is s t t    have the same definition as , ', , 's s t t   in Section 3.1 and the subscript i  

indicates the quantities belong to the thi  subsystem. 

Substituting Eqs. (2) and (13) into Eqs. (9), (10) and (12) and only considering the 4ξ  

term, the total 4th-order aberration is 

 

0 3 0 1 1 2 2 3

(4) 4 (4) (4) (4) (4)
040 ' ' ' ' ' ' ' '

4 4 4 41
1 13 3 3

1 1

4 4 4 42
3 33 3 3

3 3

2 4 4
23

2

1 1 1
( )

88 '

1 1 1
( )

88 '

1 1 1 1
            [ ( ) ]

4

I I I I I I I I

m

W w T T T T

k
h h

b s s

k
h h

b s s

b
h

r r sr

ξ

ξ ξ

ξ ξ

ξ

= = = + +

= − − −

− + −

+ + −

        

           
 (14) 

where ih  has the same definition as h  in Section 3.1 and the subscript i  indicates the 

quantity belongs to the thi  subsystem. Using the definition of h , we have 1 1

'
i i

i i

h s

h s
+ += . 

When the diffraction orders are ( + 1, + 1), 3I  point is the perfect image of 0I  point and 

coincides with 0I , which means 

 1 0 1 0 2 2 3 0 3 0, ' ' , ' , ' , ' .s s s s s s r s s s s= = = = = =  (15) 

Substituting Eq. (15) into Eq. (14) and using 040 0w = and 1 1

'
i i

i i

h s

h s
+ += , we obtain the 4th-order 

coefficient of the added optical path ( )xϕ of CGH phase function 

 
3 3 3 4

0 0 0

1 1 1
.

' 'm

r
b

b s s s
= − +  (16) 

3.5 The change of the reference sphere 

As shown in Fig. 6, the sphere 1sp , centered at the Gaussian image point 3I , is the Gaussian 

reference sphere and the sphere 2sp , centered at the focus 0I  (cat eye), is the cat-eye 

reference sphere. The ray intersects with 1sp  and 2sp  at 1N  and 2N , respectively. The 

aberration in Eq. (14) is observed at the sphere 1sp , but to analyze the spurious diffraction 

orders, we need to obtain the aberration coefficients at the sphere 2sp . This change of the 

reference sphere results in an extra aberration 
1 2N Nl  that mainly consists of the 2nd-order 

aberration: 

 
1 2

2
(2) 2 23

020
3 0

1 1
( ) .

2 'N N

h
l W w

s s
ξ ξ≈ = = −  (17) 
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Fig. 6. The change of the reference sphere 

3.6 The total aberration up to four orders and its ray error 

By summing Eqs. (14) and (17), we have the total wavefront aberration of CGH null system: 

 2 4
020 040 .W w wξ ξ= +  (18) 

The ray error raye  of the spurious diffraction orders is calculated from the differentiation of 

the wave-front aberration: 

 0
3

.
'ray

W
e s

λ ξ
∂= −

∂
 (19) 

When the ray error is larger than the semi-diameter of the equivalent pinhole filter, the stray 
ray cannot disturb the testing results. 

3.7 The pupil distortion 

We assume the height of ray on the exit pupil is 3x  in paraxial ray trace and 3x  in real ray 

trace. According the Seidel theory, we have 

 0 3

(4)
' 'I IT

ξ ξ
χ

∂
− =

∂
 (20) 

where ξ  and ξ  are the Seidel variables of real ray and paraxial ray and 3 3

3 3

,
x xξ ξ
λ λ

= = . 

Therefore the pupil distortion is 

 0 3

(4)
' '

3 3 3 .I IT
x x λ

χ
∂

− =
∂

 (21) 

Substituting Eqs. (2) and (13) into Eqs. (9), (10), and (12), and only considering the 3χξ  

term, the pupil distortion in Eq. (21) is expressed as 

 

3 3 3 31 2
3 3 1 1 3 3 3 33 2 2 3 2 2

1 1 1 1 3 3 3 3

3 3
2 2 33

2 2

1 1 1 1 1 1
( ) ( )

2 2' ' ' '

1 1 1 1 1
[ ( )( )]m

k k
x x h H h H

b s t s t b s t s t

b
h H

r r s r tr

ξ λ ξ λ

ξ λ

− = + − + − +

− + − −               

 (22) 
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where iH  has the same definition as H  in Section 3.1 and the subscript i  indicates the 

quantities belong to the thi  subsystem. 

4. The qualitative discussion of spurious diffraction order 

4.1 The expansion of the aberration coefficients 

To discuss what kinds of spurious diffraction orders have the most significant disturbing on 

testing data, we expand these coefficients in Eqs. (14) and (17) into a series of i
i

i

c

a
  in the 

following procedure. 
Firstly, we calculate the deviation of the Gaussian image point of SDO from the testing-

ray image point. Using Eq. (13), it is easy to obtain 

 
2 3

21 1 1 1
1 2 1 0 1 1 2 3

1
11

1
' ' ' (1 ) (1 ) ( )

1
11

s s s s
s s s s k k

k a a ass
aa

οΔ = Δ = − = − = − − − +
++

 (23) 

where 
3

1
( )
a

ο  is a small quantity having the same order with 
3

1

a
. Similarly, we have 

 

2 3 4
2 21 1 1

2 3 2 1 1 12 2 3

2 4 3
2 2 21 1 1

3 3 0 1 2 1 2 1 22 2 3

2 1
' ' =( 1) ( 1) ( 1) ( )

.
2 1

' ' ( 2) ( 1) +[2( -1) ( ) ] ( )

s s s
s s s r k k k

a a ra a

s s s
s s s k k k k k k

a ra a a

ο

ο


Δ = Δ = − − − − + − + 


Δ = − = + − + − − − + 

(24) 

Substituting Eqs. (23) and (24) into Eqs. (14) and (17) and using 1 0=s s , the 2nd-order and 4th-

order aberration coefficients can be expressed as 
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3

040 1 2
1 24 4

3 0

2
2040 0

1 1 24 4 2
03 0

2 1
( ) at 2

2

1
=(1 ) (1 ) + ( ) at =2

.
(2 ) 1

+ ( ) at 2
8 '

1
(1 ) (1 ) + ( ) at =2

' '

m

m

w k k
k k

ah a

w s s
k k k

rh a a

w k k r
b k k

ah s

w sr
k b k k

sh as a

ο

ο

ο

ο

− − = + − ≠ 



− − − 

− − = − ≠


= − − − − 


  

  

  

  

,

,

,

,

 (25) 

Using 1 1

'
i i

i i

h s

h s
+ += , we derive 

 1 1 2
2 1 0 0 1

3 3 2 0 0

' ' 1 1 1 1
= 1 ( )( ' ' ) 1 2( )( ' )( 1).

' '

h s s
s s s s k

h s s r s r s
≈ + − Δ − Δ ≈ + − − −  (26) 

According to the discussion in Section 3.1, 1h  and 3h  are the marginal-ray heights on the 

CGH in the first and second passes, respectively, so the ratio 1

3

h

h
 determines whether the 

CGH in the second pass is completely covered. 
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4.2 The qualitative discussion of SDO in three different CGH layouts 

We carry out the qualitative discussion from the following four aspects: the ray error on 

equivalent pinhole filter, the sign of aberration coefficients, the ratio 1

3

h

h
 and the minimum 

amount of power carrier frequency. 
Firstly, the ray error on equivalent pinhole filter. For the SDO 1 2( 1, 1)k k≠ ≠ , if the ray 

error is smaller than the semi-diameter of the pinhole filter, the ray could not be blocked and 

would disturb the corresponding testing area. Because of
2 1 0

1 1 1

a a a
, from Eq. (25) we 

find the SDO with 1 2 2k k+ =  has the smaller aberration coefficients and ray error than those 

with 1 2 2k k+ ≠ , i.e., the SDO with 1 2 2k k+ =  is more difficult to separate than these SDO 

with 1 2 2k k+ ≠ . Besides, in practice, the CGH is usually the Ronchi phase grate with the 

duty cycle 
1

2
, which makes the even diffraction orders have zero diffractive efficiency. 

Therefore, the SDO (−1, 3) and (3, −1) are the most difficult SDO to separate and should be 
given more attention by optical designers. 

Secondly, the signs of the 2nd-order and 4th-order aberration coefficients. If the signs of the 
2nd-order and 4th-order aberration coefficients are opposite, i.e., 020 040 0w w < , it is possible 

that the rays from an outer annular of CGH has the zero ray error and cannot be blocked by 
the pinhole filter. For the SDO with 1 2 2k k+ = , using Eq. (25), the condition to ensure 

020 040 0w w >  is 

 0 0

0 0

(1 )(1 )(1 ) 0.
' ' m

s sr
b

r s s
− − − >  (27) 

Thirdly, the ratio 1

3

h

h
. When 1

3

1
h

h
≤ , the CGH in the second pass would be totally 

covered by the spurious diffraction order and 3 3 chλ λ= =  where cλ  is the semi-diameter of 

the CGH. When 1

3

1
h

h
> , the CGH in the first pass would be total covered and 

3
3

1
c c

h

h
λ λ λ= < . 

Lastly, the minimum amount of power carrier frequency. Hypothetically, we have the 
target that the area 0.1ξ >  is free of the disturbing of SDO, which means only 1% area of 

testing part is disturbed. To meet the target, the ray error in Eq. (19) needs to comply with 

| |
2

f
ray

D
e >  at 0.1ξ = , where fD  is the aperture of equivalent pinhole filter. Using the 2nd-

order aberration in Eq. (25), we calculate that the minimum amount of power carrier 
frequency for the SDO (−1, 3) and (3, −1) is 

 0 0

0

5 ( #)
'

1 1
4 ( )

'

fD F
s s

s r

− >
−

 (28) 
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where #F  is the F number of the aspheric surface ( #
r

F
D

= , D  is the diameter of the 

aspheric part). 

5. Simulation examples 

To validate our aberration model and its qualitative discussion, we calculate the ray error of 
SDO on equivalent pinhole filter by Eq. (19), calibrate the exit pupil distortion by Eq. (22) 
and compare our results with those from the real trace when testing different aspheric parts in 
different CGH layouts. These different aspheric parts and CGH layouts are shown in Table 1 
and the figure of the aspheric part is expressed by Eq. (11). All CGHs have the same 
thickness: 6mm and this thickness is regarded as an equivalent gas layer having the thickness 

6

cgh

mm
n

 in our aberration model where cghn  is the refractive index of CGH. We assume the 

size fD  of the equivalent pinhole filter is 0.2mm. 

Table 1. The basic information of these aspheric parts and CGH layouts 

Case 
number #

r
F

D
=  

( )r mm  bm PV 
deviation 

of 
aspheric 
part (um) 

0's (mm) 0 0's s− (mm) CGH semi-

diameter. cλ (mm) 

1 1.4 −140 −1 112.7 −52 5.38 21.8 

2 1.4 −140 −1 112.7 70 4 21.8 

3 2.8 140 −11 75 170 −23.5650 29.8 

4 1.4 −140 −1 112.7 70 −4 21.8 

5.1 Case 1 

The aspheric part in case 1 is a concave one ( 0r < ) with the deformed factor 0mb <  and the 

CGH is laid outside the focus of the transmission sphere ( 0' 0s < ), similar to the layout in 

Fig. 1(a). To ensure the testing data from the outer annular of CGH is not disturbed, we need 
to comply with Eq. (27). Since 0 0r s< <  and 0' 0r s< < , from Eq. (27), we derive 

0 0' 0s s− > .On the other sides, to keep the area ( 0.1ξ > ) free of the disturbing of SDO, we 

need to comply with Eq. (28), which means the minimum defocused distance is 

0 0' 5.38s s mm− = . Therefore, we have 0 0' 5.38s s mm− = , shown in Table 1. 

The ray error of SDO on equivalent pinhole filter is shown in Fig. 7. We can find the ray 
error calculated by our aberration model agrees well with the real ray-trace results and the 
coefficients of the 2nd-order and 4th-order aberration have the same sign. Besides our model 
shows the significant difference between the SDO (−1, 3) and (3, −1). 

Using Eq. (26), we have 1

3

1
h

h
>  at 1 1k > . This is the reason why the SDO (3, −1) only 

covers half area of CGH ( 3 10x mm< ) while the SDO (−1, 1), (−1, 3) and (1, −1) can cover 

the whole CGH in the second pass, as shown in Fig. (7). 
The ray error in the inner area of CGH ( 3 0.1 cx λ< ) is clearly shown in Fig. 8. We find 

that all spurious diffraction orders have the ray error larger than 0.1
2

fD
mm=  at 3 0.1 cx λ=  

and can be blocked by the pinhole filter, i.e., we meet the target that the area ( 0.1ξ > ) is free 

of the disturbing of SDO. 

                                                                                            Vol. 25, No. 17 | 21 Aug 2017 | OPTICS EXPRESS 20567 



3 ( m m )x 3 ( m m )x

3 ( m m )x3 ( m m )x
 

Fig. 7. The ray error vs. 3x in case 1. The ray error and 3x  are the X-axis coordinate of the 

real ray on equivalent pinhole filter and on the CGH in the second pass, respectively. 

3 ( m m )x

3 ( m m )x3 ( m m )x

3 ( m m )x

 

Fig. 8. The ray error vs. 3x  in case 1 (only plot the area with 3 2.1x mm< ). 
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5.2 Case 2 

The aspheric part in case 2 is the same as that in case 1 but CGH is laid inside the focus of the 
transmission sphere, as shown in Fig. 1(b). It is easy to find 0 00, ' 0s s> >  and 0r <  in this 

case. Similarly to the discussion in case 1, the condition to comply with Eq. (27), 28) is 

0 0' 0s s− >  and 0 0' 4s s mm− = , respectively. Therefore, we have 0 0' 4s s mm− = , shown in 

Table 1. 
From Fig. 9, we find the ray error calculated by our aberration model also agrees well 

with the real ray-trace results when laying the CGH inside the focus of the transmission 
sphere. The significant difference between the SDO 1 2( , )k k  and 2 1( , )k k  is clearly shown. 

However, instead of 1

3

1
h

h
>  at 1 1k >  in case 1, we have 1

3

1
h

h
>  at 1 1k <  by Eq. (26), so it is 

the SDO with 1 1k <  that cannot cover the whole CGH in the second pass in Fig. 9. 

The pupil distortion of SDO (−1, 3) is shown in Fig. 10. It is easy to see the 3rd-order 
distortion calculated by our aberration model agrees well with the actual distortion. In 
addition, there are two different 3x  corresponding to the same 3x , which means two rays pass 

through the exit pupil at the same 3x . This is also the reason why we find two ray errors at 

one 3x  in Fig. 9 for SDO (−1, 3). 

3 ( m m )x3 ( m m )x

3 ( m m )x3 ( m m )x

 

Fig. 9. The ray error vs. 3x  in case 2. The ray error and 3x  are the X-axis coordinates of the 

real ray on equivalent pinhole filter and on the CGH in the second pass, respectively. 
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Fig. 10. The pupil distortion of SDO (−1, 3) in case 2. 3x  and 3x  are the X-axis coordinates 

of the paraxial and real ray on the CGH in the second pass, respectively. The green marks are 
the actual distortion calculated by real ray trace and the red line is the 3rd-order distortion 
calculated by our aberration model with Eq. (22). 

5.3 Case 3 

The aspheric part in case 3 is a convex one ( 0r > ) with the deformed factor 0mb < , as 

shown in Fig. 1(c). Because of 00 r s< <  and 00 'r s< < , instead of 0 0' 0s s− >  in case 1 

and 2, we should keep 0 0' 0s s− <  to comply with Eq. (27) in case 3. By using Eq. (28), we 

calculate the minimum defocused distance 0 0's s−  is 23.5mm . Therefore, we have 

0 0' 23.5s s mm− = − , shown in Table 1. 

The ray error in Fig. 11 demonstrates our aberration model can also be used to analyze the 
SDO when testing convex aspherical part. 
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Fig. 11. The ray error vs. 3x  in case 3. The ray error and 3x  are the X-axis coordinates of the 

real ray on equivalent pinhole filter and on the CGH in the second pass, respectively. 

5.4 Case 4 

Case 4 is the same as case 2, except for the sign of the defocused distance 0 0's s− , as shown 

in Table 1. According to the discussion in case 2, if we want the 2nd-order and 4th-order 
aberrations have the same sign, 0 0's s−  needs to be larger than zero. In case 4, we 

intentionally set 0 0' 0s s− <  and check whether we have a failure in CGH design. According 

to the ray error of SDO (3, −1) in Fig. 12, we find the ray error is less than 0.1mm (
2

fD
) in a 

large area where the testing data also corrupt. Therefore, the case 4 is totally a failure in CGH 
design. 

amplified

3 ( m m )x3 ( m m )x
 

Fig. 12. The ray error vs. 3x  in case 3. The ray error and 3x  is the X-axis coordinates of the 

real ray on equivalent pinhole filter and on the CGH in the second pass, respectively. 
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6. Remarks 

In this paper, we treat the CGH null system as an imaging system. Based on the Seidel 
formalism, we build a new aberration model to analyze the effect of spurious diffraction 
orders of CGH. Compared with the N. Lindlein’s model, our model can analyze the difference 
between the SDO (k1, k2) and (k2, k1). Since our model considers the effect of the pupil 
distortion, even if there are two rays passing the same point on the CGH in the second pass, 
the ray error calculated by our model also agrees well with that calculated by real ray trace. 

To carry out the qualitative analysis easily, the 2nd-order and 4th-order aberration 

coefficients are expanded into a series of i
i

i

c

a
 . From this expansion, we argue that the SDO 

with 1 2 2k k+ =  has a larger disturbing on testing data than those with 1 2 2k k+ ≠ .We derive 

the condition to ensure that the 2nd-order and 4th-order aberrations have the same sign, which 
is important to design a successful CGH. We also calculate the minimum defocused distance 
(power carrier frequency) of CGH, based on the target that the region 0.1ξ >  is free of the 

disturbing of SDO. According to the marginal-ray height ( 1h  and 3h ) on the CGH in the first 

and second pass, we provide an equation to determine what kind of SDO will cover the whole 
CGH in the second pass. 

We provide four CGH designs and analyze their SDO. These cases demonstrate that our 
aberration model is feasible whether the aspheric part is convex or concave and whether the 
CGH is inside or outside the focus of the transmission sphere. 
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