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ABSTRACT 

Link travel time plays a significant role in traffic planning, traffic management and 

Advanced Traveler Information Systems (ATIS). A public probe vehicle dataset is a 

probe vehicle dataset that is collected from public people or public transport. The 

appearance of public probe vehicle datasets can support travel time collection at a large 

temporal and spatial scale but at a relatively low cost. Traditionally, link travel time is the 

aggregation of travel time by different movements. A recent study proved that link travel 

time of different movements is significantly different from their aggregation. However, 

there is still not a complete framework for estimating movement-based link travel time. 

In addition, probe vehicle datasets usually have a low penetration rate but no previous 

study has solved this problem. 

To solve the problems above, this study proposed a detailed framework to 

estimate movement-based link travel time using a high sampling rate public probe vehicle 

dataset. Our study proposed a k-Nearest Neighbors (k-NN) regression method to increase 

travel time samples using incomplete trajectory. An incomplete trajectory was compared 

with historical complete trajectories and the link travel time of the incomplete trajectory 

was represented by its similar complete trajectories. The result of our study showed that 

the method can significantly increase link travel time samples but there are still 

limitations. In addition, our study investigated the performance of k-NN regression under 

different parameters and input data. The sensitivity analysis of k-NN algorithm showed 

that the algorithm performed differently under different parameters and input data. Our 

study suggests optimal parameters should be selected using a historical dataset before 

real-world application. 
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1. INTRODUCTION 

1.1 Background 

Travel time plays a significant role in traffic planning, traffic management, and Advanced 

Traveler Information Systems (ATIS). While variables such as occupancy, speed and 

flow are popular in transportation engineering field, travel time is a more intuitive 

concept and can be easily understood by non-experts. Travel time is defined as the total 

time for a vehicle to travel from one point to another over a specified route, including 

stops and delay (Zhu et al., 2009). Link travel time is widely used to measure corridor 

performance and monitor traffic conditions. It also is used to provide accurate traffic 

information to travelers to enable them to make a better route choice and thereby 

contribute to road network balance. Traditionally, travel time is either collected from 

fixed sensors (loop detectors, microwave sensors, cameras, Bluetooth devices, etc.) or by 

mobile sensors and surveyors (manual collection, floating cars, Global Positioning 

System, etc.). However, in most of these cases the travel time estimation is relatively 

inaccurate because of the limited time and location information provided. In addition, 

travel time data can only be collected on some individual links or time periods due to the 

high cost of devices and labor. 

 Recently, there has been an increasing trend of using large public probe vehicle 

datasets (taxis, transits, navigation app data, etc.) for travel time estimation. One 

advantage of using public probe vehicle datasets is that they provide the possibility for 

real-time travel time estimation due to their large amount of data. In addition, because 

large public datasets can cover most of the links in a city, the travel time estimation could 
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be expanded to a city level. Furthermore, using public probe vehicle datasets has a lower 

cost compared to traditional methods since expensive sensors and labor expenses are not 

required. 

1.2 Problem Statement 

While probe vehicle travel time estimation has plenty of advantages over 

traditional methods, it has several limitations. First, accurate travel time estimation 

requires a relatively high penetration rate and sampling rate. The penetration rate is 

defined as “the flow fraction of vehicles (unique devices) reporting to the probe data set 

as compared to the total flow of vehicles along a road and sampling rate is the average 

rate at which any device reports its position and velocity” (Patire et al., 2015). Since 

probe vehicles are samples from all vehicles on the road, the travel time estimation result 

may not be statistically significant if the penetration rate is low. Also, a low sampling rate 

will lower the accuracy of travel time estimation. Most current probe vehicle datasets 

have a relatively low sampling rate and penetration rate, which limit their applications. 

Public probe vehicle datasets also suffer from uneven temporal-spatial sample 

distribution. For example, more data is collected on major arterials but less on low-grade 

sections; and more data is collected during peak hours but less collected during non-peak 

or even none may be collected in the late night. 

As a result of the limitation of current probe vehicle datasets, most of the current 

studies can be classified into two research areas. The first research area aims to estimate 

travel time when the sampling rate or the penetration rate is low (Zheng et al., 2013; Wan 

et al., 2016; Jenelius et al., 2013; Partsinevelops et al., 2005; Bucknell et al., 2014; 

Argote-Cabañero et al., 2015; Zhan et al., 2013). Another research area focuses on 
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improving the accuracy of travel time estimation (Zhang et al., 2015; Cao et al., 2014; 

Seo et al., 2015; Hellinga et al., 2002). Although there are already a large number of 

reports of research on travel time estimation using probe vehicle data, most of the 

previous studies focused on the individual link travel time estimation, only a few 

previous studies estimated travel time by different movements (e.g., go through the link, 

left turn, right turn). In addition, most of the previous studies were built on the scenario in 

which the probe vehicle data has a relatively high penetration rate but low sampling rate. 

Only a few studies focused on travel time estimation when probe vehicle data had a good 

sampling rate but poor penetration rate. Finally, most of the previous studies focused on 

how to utilize probe vehicle data, but only a few studies tried to increase the sample size 

of the study. 

Accurate urban link travel time estimation can provide more accurate information 

to agencies, researchers and travelers. The methods in this study can be used for different 

scenarios, including short-term traffic management, long-term traffic planning, among 

other applications. Specifically, the travel time information by different movements can 

be used for signal timing system evaluation, corridor before-and-after study, navigation, 

etc. Furthermore, the implementation of k-nearest neighbors regression algorithm can 

increase the sample size of the travel time estimation as well as improve the accuracy of 

link travel time estimation. 

1.3 Research Objectives 

The objectives of this study include: 
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(1) To investigate the travel time estimation method when the dataset has a low 

penetration rate and high sampling rate; 

(2) To develop a movement based travel time estimation method using probe vehicle 

data; 

(3) To utilize algorithm to increase the sample size or penetration rate for probe vehicle 

based travel time estimation; 

(4) To investigate the performance of the algorithm that increases sample size. 

1.3 Thesis Organization 

This thesis is organized as follows: The next chapter discusses related literature on urban 

arterial travel time estimation and k-nearest neighbors algorithm. Chapter 3 introduces 

the study corridor and the dataset of the study. Chapter 4 first discusses the movement 

based travel time estimation method, and introduces the implementation of the k-nearest 

neighbors algorithm in increasing travel time estimation sample size, then presents the 

sensitivity analysis method for the k-nearest neighbors algorithm. Chapter 5 describes the 

case study of various scenarios using the framework discussed in the Chapter 4. The case 

studies were conducted on Grant Road in Tucson, Arizona. In the first case study, the 

movement based travel time estimation result is described and the sample size of travel 

time estimation before and after using k-nearest neighbors (k-NN) algorithm is discussed. 

Then, the sensitivity analysis of the algorithm was conducted using leave-one-out cross 

validation method. Chapter 6 summarizes the research results, discusses the deficiency of 

the study, and proposes potential future work. 
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2. LITERATURE REVIEW 

There are many travel time estimation frameworks according to the varieties of data 

source and travel time estimation methods. This section systematically reviews prior 

studies of travel time estimation from three aspects, including the data source, probe 

vehicle travel time estimation methods, and k-nearest neighbors algorithm. 

2.1 Travel Time Estimation Data Source 

Traditionally, travel time estimation for an urban area is relied mainly on fixed sensors, 

including: loop detectors (Coifman, 2002; Robinson and Polak, 2005; Wu et al. 2004), 

automated vehicle identification (AVI) (Park and Rilett, 1998; Li and Rose, 2011; Sherali 

et al., 2006), Bluetooth devices (Wang et al., 2011; Haghani et al. 2010; Park et al. 2016), 

microwave sensors (Yeon et al., 2008) and so on. All the above-mentioned data 

collection methods require corresponding sensors installed to retrieve data. Once the 

sensor is installed, it can continuously record data on the monitored road section. 

However, the cost of installing and maintaining fixed sensors is relatively high because a 

large number of sensors are needed to achieve the appropriate accuracy level or cover a 

large research area.  

An alternative approach is to measure travel times by mobile traffic sensors, e.g., 

floating cars (Byon et al., 2006), probe vehicles (Boyce et al., 1994), cellular data and so 

on. Vehicles equipped with tracking devices (GPS or mobile phone) can be used for 

collecting travel times at any location without roadside equipment. However, mobile 

sensors are still costly because stabilized data collection needs operational vehicles 

running on the study area all the time. Hence, they can only cover a limited number of 
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routes for a limited duration of time (Jenelius and Koutsopoulos, 2013). Due to the cost 

consideration, there are only a small number of traffic studies using mobile sensors. 

 Recently, many public vehicles (e.g., taxis, transit, etc.) are equipped with GPS 

devices. These public vehicles, to some extent, are probe vehicles and they can collect 

travel time on most of the network links during their service time with a low cost. In 

addition, with the popularity of mobile phones, trajectory data that is collected from 

mobile phones can also be used for travel time estimation. The appearance of the new 

data sources provides the possibility for a large-scale and long-term travel time 

estimation. Along with the growth and availability of probe vehicle dataset, numerous 

studies have been conducted on travel time estimation using public datasets. Zhan et. al 

(2013) successfully estimated hourly travel time using NYC taxicab origin and 

destination (OD) trip data. Jenelius et. al (2013) discussed a statistical model for urban 

road network travel time estimation using vehicle trajectories obtained from low 

frequency GPS probes. A case study was conducted on an arterial network in Stockholm, 

Sweden using taxi fleets data.  

 Data fusion technique provides an approach to combine different data together to 

increase the accuracy of the travel time estimation result. Nantes et. al developed a 

framework to estimate travel time by a combination of heterogeneous data sources, 

especially loop detectors, probe vehicles and Bluetooth sensors (Nantes et al., 2016). 

Mehran et al. reconstructed the trajectory of sparse probe vehicle data in order to get 

travel time information by a data fusion of probe vehicle, fixed sensor and signal timing. 
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According to the location where travel time is collected, travel time can be 

classified into travel time on freeways or travel time on arterials. While vehicular flow on 

freeways is often treated as uninterrupted flow, flow on arterials is much more 

complicated since it can be affected by signal delay, queue delay, pedestrians and entry 

vehicles. There is plenty of travel time estimation research on freeways (Moorthy and 

Ratcliffe, 1988; Lee and Fambro, 1999; Lin, 2001; Abdulhai et al., 2002), but the travel 

time estimation research on urban areas is very limited. In any case, on highway or urban 

environments, since travel time depends on the origin and destination, ATIS normally use 

methods that calculate travel time at a link or section level, which change the research 

object from trips to road sections (Cheu et al. 2002). Feng et al. proposed that the 

distribution of link travel time in an urban area can be approximated using mixtures of 

normal distributions. While historical travel time data is available, probe vehicle data can 

be used to identify current traffic statement based on Bayes Theorem (Feng et al., 2014).  

2.2 Probe Vehicle Travel Time Estimation Methods 

As explained in the previous section, travel time estimation models strongly depend on 

the data. Since each type of traffic sensor provides different traffic information, only 

probe vehicle based estimation models are reviewed. 

 Probe vehicles equipped with GPS systems can collect position, speed and time 

stamp data every few seconds (Li and McDonald, 2002). Theoretically, probe vehicles 

can provide all the information needed to calculate travel time on any area at any time. 

However, due to the shortcoming of current probe vehicle datasets, this approach still has 

many limitations with respect to applications of probe vehicle travel time estimations. 
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The limitations mainly come from two aspects: low sampling rate and/or low penetration 

rate.  

 Low sampling rate has made it difficult to measure travel time directly because 

few information is known between every two continuous data points. Since most current 

datasets have a low sampling rate, there are many papers that seek to calculate accurate 

travel time using a sparse probe vehicle dataset. Wan et al. proposed a method to 

reconstruct maximum likelihood trajectory of probe vehicles between sparse updates 

based on Expectation Maximization algorithm (Wan et al., 2016). Another method is to 

use models to estimate travel time (neural networks, etc.). Zheng et al. built a three-layer 

neural network model to estimate complete link travel time for individual probe vehicle 

traversing the link and both simulation data, and real-world data were used to verify the 

result of the model (Zheng et al., 2017).  

When penetration rate is low, probe vehicle samples cannot represent the entire 

population and the estimation is not accurate. There is much research on the relationship 

between sample size and estimation error. Patire et al. analyzed the estimation error when 

sampling rate and penetration rate are different by a data fusion approach (Patire et al., 

2015). Bucknell et al. analyzed estimation error of different combinations of penetration 

rate and sampling rate on highways using NGSIM dataset (Bucknell et al., 2014). 

However, until now, there is no research investigation on how to increase the sample size 

of probe vehicle datasets. To some extent, the appearance of public probe vehicle datasets 

can increase the penetration rate, which is important for the application of probe vehicle 

data. However, the problem of low penetration rate is still very common, and this means 

a way to increase probe vehicle sample size based on existing datasets is required. 
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Finally, link travel time estimation in most of the previous studies is the time 

difference from upstream to downstream and the movement of vehicles are not 

considered. However, travel time is highly related with the movement of vehicle. For 

example, typically, left turn vehicles experience a longer travel time than through 

movement vehicles. Travel time estimation by movements is essential because it can 

provide more accurate information for agencies and travelers. Additionally, there are 

several studies on the penetration rate requirement for the probe vehicle travel time 

estimation (Patire et al., 2015; Srinivasan and Jovanis, 1996; Argote-Cabañero et al., 

2015; Bucknell et al., 2014), but only very few studies focus on increasing penetration 

rate (Liu et al., 2009). Increasing the penetration rate can effectively reduce the cost of 

data collection and increase the accuracy of travel time estimation. In addition, there is 

few valid methods to increase probe vehicle samples without adding new data source. 

2.3 K-Nearest Neighbors Regression Algorithm 

The K-Nearest Neighbors regression algorithm (k-NN) is a non-parametric technique and 

it has been widely used in travel time estimation. Handley et al. (1998) used flow, 

occupancy and other variables as inputs of k-NN algorithm to estimate travel time on 

freeways. Robinson and Polak (2005) successfully used single loop detector data as 

inputs of k-NN to estimate travel time within an urban area. They compared different 

parameters of k-NN algorithm and the result of k-NN algorithm with other algorithms 

such as Neural Network. They also inferred that there is a high potential to use the probe 

vehicle GPS data as the input of the k-NN algorithm.  Zhou et al. (2016) applied sparse 

probe vehicle data as the input of k-NN algorithm to estimate link travel time in an urban 
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area. The study suggested that the k-NN algorithm performed better than the Neural 

Network model. 

 k-NN has many advantages over other regression algorithms, which makes it 

suitable for probe vehicle data. The assumption under k-NN regression is that target value 

is represented by k closest samples. Compared with parametric techniques like linear 

regression, k-NN has no target function, which is more suitable to probe vehicle data 

concerning an urban area. Probe vehicles are greatly affected by surrounding 

environment (road geometry, signal timing, time of day, and other vehicles, etc.) so that a 

fixed target function may not be able to fit the data well. Compared with other non-

parametric techniques like Neural Network, k-NN is not only simple but also contains 

transportation engineering theory. The training process of k-NN can be explained but 

other models, like neural network, are hard to explain.  
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3. DATA 

Typically, probe vehicle based travel time estimation requires two types of data: probe 

vehicle trajectory data and road network data. In order to better illustrate the method, the 

public probe vehicle dataset used in this study is introduced first. Then, detailed data 

fields and the study area are discussed. After that, the detailed process of data cleaning 

and processing is presented. Finally, processed data, which is the input of travel time 

estimation and k-nearest neighbor algorithm, is introduced. 

 3.1 Data Source 

Two main types of data were used in this study. The first type was second-by-second 

probe vehicle data collected from a smartphone navigation app1. The probe vehicle data 

included location, speed and acceleration information. The GPS module in the phone 

begins to collect data when a user starts navigation and send collected data back to the 

server in real time. When users reach to their destination, navigation and data collection 

will finish automatically. 

The other type of data was road network data. Road network data was consisted 

of links, defined as a straight one-direction road segment from one point to another point. 

Road network data contained the road geometry information (location, length, direction, 

etc.) and topological information (i.e., the topological relationship between different 

links). 

                                                           
1 The smartphone app named “Metropia” (http://www.metropia.com/) 
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 Probe vehicle data that is collected from the navigation app has many advantages 

over the data collected from taxis or public transportation. Probe vehicle trajectory from 

navigation app is typically not affected by passengers. For example, the trajectory of taxis 

includes traveling time and dwell time of passengers, which introduce error to travel time 

estimation. 

3.2 Data Description 

3.2.1 Study Corridor 

The study corridor mainly focused on Grant Road between I-10 and Swan Road in 

Tucson, Arizona, and data collection was conducted in both directions. Grant Road is a 

major east-west direction arterial with annual average daily traffic (AADT) of 36,000 per 

day (Pima Association of Governments, 2014). The study corridor is shown in Figure 1 

with primary cross-streets labeled. Most of the road was five-lane in total, with two lanes 

in each direction and one lane in the center for left turns. At the time of data collection, 

the only six-lane sections extended from Fairview Ave. to Stone Ave. and starting at 

Swan Ave. heading eastward. All study links have a speed limit of 40 mph (64 km/h). 

The links in the study refer to the one direction segment between each contiguous 

primary cross-streets on Grant Road. For example, the eastbound Oracle-Stone link refers 

to the road on Grant Road between Oracle Road to Stone Road in the east direction. 
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Figure 1 Study Corridor 

3.2.2 Probe Vehicle Trajectory 

Vehicle trajectory data were used to extract travel time information and further to build a 

historical database for the K-NN algorithm. The data was collected by the smartphone 

app when a user starts a trip using the app, the internal GPS module built into the 

smartphone is activated and starts to record the second-by-second data. These data, 

including detailed position such as latitude, longitude, heading, timestamp, velocity and 

corresponding link in the roadway network are collected at a fine time interval and sent 

back to the cloud server, where they are stored and will be used for further analysis. 

 The original data was collected from January 1st to December 31th, 2015. There 

were 57,645,478 GPS points collected from 1837 users and 43,315 trips in Tucson. The 

example of probe vehicle trajectory data is shown in Table 1 and visualization of partial 

data is shown in Figure 2.  
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Table 1 Example of Probe Vehicle Data 

 

Figure 2 Original Probe Vehicle Data Visualization 

 The detailed description of data fields is shown in Table 1. Each record or each 

row is one GPS point.  

Table 2 Original Probe Vehicle Data Fields 

MetropianID TrajectoryID ReservationID LinkID Longitude Latitude Altitude direction unixtime speed accuracy

3593 4707 73 6839 -110.940369 32.250275 2420 90 1437554419363 36 16

3593 4708 73 6839 -110.940193 32.250275 2421 90 1437554420045 36 16

3593 4709 73 6839 -110.940018 32.250275 2422 89 1437554421067 37 16

3593 4710 73 6839 -110.939842 32.250271 2421 90 1437554422045 36 16

3593 4711 73 6839 -110.939674 32.250271 2420 89 1437554423052 37 16

3593 4712 73 6839 -110.939491 32.250271 2420 89 1437554424039 37 16

3593 4713 73 6839 -110.939308 32.250267 2418 89 1437554425042 38 16

3593 4714 73 13262 -110.939117 32.250263 2418 89 1437554426053 39 16

3593 4715 73 13262 -110.938934 32.250267 2416 89 1437554427049 39 16

3593 4716 73 13262 -110.938751 32.250267 2416 89 1437554428064 39 16

Attributes Description 

MetropianID ID of app users (unique) 

ReservationID ID of trips (unique) 

TrajectoryID ID of GPS points (unique) 
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The distribution of accuracy is shown in Figure 3. The accuracy of the most of 

original data was lower than 32 feet. 

 

Figure 3 Histogram of Original Probe Vehicle Accuracy 

LinkID ID of the link that GPS point was on. The value was 

given when GPS data was collected. 

Longitude Longitude 

Latitude Latitude 

Altitude Altitude 

Direction Moving direction of the vehicle. The value increases 

clockwise from north direction and range from 0 to 

360 

Unixtime Unixtime timestamp of the GPS points 

Speed Speed of the vehicle (MPH, mile per hour) 

Accuracy Spatial accuracy (feet), means error that reported 

coordination is within. 
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3.2.3 Road Geometry Data 

Roadway geometry data included the location of the intersections and links, type of road 

segment (e.g., freeway, highway, arterial), speed limit, link length, turn connections 

between links (e.g., left turn, right turn, etc.) and so on. This roadway geometry data is 

originally used for routing purposes. As a result, links are relatively short (sometimes 200 

feet or less) and they cannot be used directly for travel time estimation. This occurs 

mainly because the length of the links in the data is relatively short and it will cause low 

accuracy of travel time estimation if they combined with the GPS data with a sampling 

rate of one point per second. 

 

Figure 4 Road Geometry Data, Tucson 
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The example of road geometry data is shown in Table 3 and detailed data description is 

shown in Table 4. 

Table 3 Example of Road Geometry Data 

 

Table 4 Data Description of Road Geometry Data 

 

3.3  Data Preprocessing 

The raw data was processed in several steps to be used in travel time estimation. First, 

since our research area focused only on Grant Road from I-10 to Swan Road, original 

data was selected only in the research area. In addition, low accuracy data and some data 

that have missing values was cleaned in order to increase the accuracy of the study. In 

WKT LinkID reverseID_parade length(feet) speed(mph) ltype FFTT(sec) primaryName numLanes

LINESTRING (-110.89313 32.25066,-110.8936 32.25066) 4 3338 147.6 40 5 2.5 E Grant Rd 3

LINESTRING (-110.95978 32.25031,-110.95988 32.25032) 111 2594 29.5 40 5 0.5 E Grant Rd 2

LINESTRING (-110.9618 32.25039,-110.96099 32.2504) 324 16000 252.6 40 5 4.3 E Grant Rd 2

LINESTRING (-110.94223 32.25029,-110.94105 32.25029) 377 8218 364.2 40 5 6.2 E Grant Rd 2

LINESTRING (-110.97326 32.25031,-110.97344 32.25031) 462 2780 52.5 40 5 0.9 W Grant Rd 2

LINESTRING (-110.97359 32.25031,-110.97344 32.25031) 860 12097 45.9 40 5 0.8 W Grant Rd 2

LINESTRING (-110.90974 32.25063,-110.90911 32.25063) 1000 20297 193.6 40 5 3.3 E Grant Rd 2

LINESTRING (-110.98046 32.25014,-110.98014 32.25013) 1046 -1 101.7 40 5 1.7 W Grant Rd 3

LINESTRING (-110.96334 32.25038,-110.96254 32.25039) 1066 17898 246.1 40 5 4.2 E Grant Rd 2

Attributes Description 

WKT Shape of the link 

LinkID ID of link (unique) 

ReverseID_parade ID of link that is in the reverse direction (unique) 

Length(feet) Length of the link in feet 

Speed(mph) Speed limit of the link in miles per hour 

Ltype The road type of the link, e.g., Arterial 

FFTT(sec) Free flow travel time to pass the link 

PrimaryName The name of the road that the link is on 

numLanes The number of lanes of the link 
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addition, since our research area focused on Grant Road only from I-10 to Swan Road, 

the original data needed to be filtered by spatial location. Then, probe vehicle data was 

linked to road geometry by map matching. After that, road links were combined to 

corridor level. Finally, the movement table was built to estimate corridor travel time in 

different directions. 

3.3.1 Data Selection 

The original data covered the range of city. however, only data within the research 

corridor is needed. Data selection is a process that extract data that is related to our 

research from original dataset. There are two kinds of data were selected: road geometry 

data and probe vehicle data. Road geometry data was selected manually in QGIS2 and 

only those links within the research area were selected from original data. Probe vehicle 

data was selected by trips. Only the trip that passed one or more links within the research 

area was selected. Selected road geometry data is shown in Figure 5, where the different 

colors represent different links. After data selection, there were 247 links within the 

research area.  

As Figure 5 shows, the length of links is relatively short. In contrast, the research 

objective of travel time study is the corridor between adjacent intersections. The corridor 

travel time can be calculated by adding the travel time of all the links. However, since the 

sampling rate is about one point per second, the accuracy will be low. Thus, links need to 

be converted to corridors and the logical relations of the corridors needs to be rebuilt. 

                                                           
2 QGIS is an open-source GIS toolkit. (http://www.qgis.org/en/site/) 
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Figure 5 Selected Road Geometry Data 

3.3.2 Data Cleaning 

The GPS data should satisfy the following requirements in order to be used in our study:  

(1) High sampling rate. Sampling rate means the GPS data collection frequency. 

This study required a high sampling rate to maintain the accuracy of the corridor travel 

time estimation. The recommended sampling rate is one GPS point per second.  

(2) High spatial accuracy. The GPS accuracy here refers mainly to the accuracy 

with respect to the location of the vehicles because corridor travel time is estimated 

mainly by location and timestamp. The longer the study corridors, the lower the accuracy 

of GPS data required. When collecting data, the accuracy of GPS data is not guaranteed 

and the reasons can be varied. Low data accuracy can be caused by the effect of tall 

buildings, imperfections of the GPS module, satellite positions, etc. Since GPS data is 

collected by apps, there are built-in functions to know the accuracy of that GPS data, e.g., 

location.getAccuracy() function in the Android system and similar functions in the iOS 

system. The accuracy value returned by those functions means the accuracy is guaranteed 

to be within X distance with a 68% confidence level. In this study, only data having an 

accuracy of 32 feet or lower was used. 

(3) Large historical dataset. A large historical dataset is required for the K-NN 

algorithm to find the trajectories that are most similar to an incomplete trajectory. If there 
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is insufficient historical data, the accuracy of the k-NN algorithm may be affected or the 

algorithm may not be conducted at all. The details are discussed in the following 

chapters. 

According to the requirements, low accuracy GPS points (accuracy larger than 

32) and GPS points that have missing value and abnormal values were cleaned. After 

that, the sampling rate was checked at the trip level. The accuracy distribution is shown 

in Figure 6. 

 

Figure 6 Histogram of Probe Vehicle Accuracy After Data Cleaning 

3.3.3 Map Matching 

Map Matching is a process that pairs probe vehicle data with the road geometry data. 

Although probe vehicle data and road geometry data were matched by the data collection 

application during the data collection process, issues arose due to the real-time nature of 

data collection. Only location was considered in the original map matching process but 

speed and direction are also critical to the accuracy of the map matching process. The 
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accuracy of the map matching process directly relates to the accuracy of travel time 

estimation since corridor travel time is the time difference between when the vehicle 

entered the corridor and when it left the corridor. 

 A hidden markov chain algorithm (Zheng et al., 2011) was used, and location, 

speed, the direction of movement of probe vehicle data was used in the map matching 

process. The final map matching accuracy was over 95%. The map matching accuracy 

was calibrated by partial selecting map matched probe vehicle data points and manually 

judged. 

3.3.4 Link to Corridor 

Since the purpose of the study is to estimate travel time from an upstream intersection to 

a downstream intersection, a.k.a. corridor travel time, the road geometry data was 

converted to corridor level. The relationship of links and corridors was manually created 

in QGIS (Quantum GIS Development Team, 2017). The converted road geometry data is 

shown in Table 5. 

Table 5 Example of Corridor Data 

Corridor 
ID 

Corridor Name 
Road 
Name 

Link ID 

1 
Oracle Rd to 

Stone Ave 
Grant Road 

462 860 1490 2780 4270 6311 6721 7545 10938 
12097 12652 13480 14290 20072 22050 22695 
23305 25112 25286 26600 26781 27046 

2 
Stone Ave to 

First Ave 
Grant Road 

324 1066 2399 4607 4997 7567 8000 9171 10995 
11863 12537 13149 13462 14863 16000 16200 
16869 17099 17309 17898 18464 20974 21443 
21458 24223 27491 

3 
Grant to 
Alturas 

Stone Ave 
5177 7395 9864 10310 17729 19677 24504 27788 

4 
Grant to 
Sahuaro 

Stone Ave 
11009 12538 15171 25826 
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5 
Grant to 
Alturas 

1st Ave 
2098 3243 4465 6136 14591 24472 

 

3.3.5 Corridor to Movement 

In order to estimate travel time in different directions, a movement table was built. The 

movement table is shown in Table 6; a movement is the sequence of corridors to justify, 

or explain, the movements of the probe vehicles. If the upstream and downstream 

corridors are known, the movement of probe vehicle can be justified. For example, if a 

vehicle passed corridor 1, corridor 8 and corridor 9 continuously, we know the vehicle is 

moving westbound. 

Table 6 Example of Movement Data 

3.4 Processed data 

After data preprocessing, there are 10,054,193 GPS points collected from 9849 trips that 

were used in the case study. All the GPS points are within the research area and at least 

have an accuracy of 32 feet. Probe Vehicle data was matched with links, which finally 

converted to corridors. Processed Data is shown in Figure 7 with GPS data categorized 

by corridors and each color in the figure means different corridors. 

Movement 

ID 
Corridor Name Direction 

From 

Corridor ID 

To  

Corridor ID 

Self-

Corridor ID 

1 Fairview Ave to Oracle WB 1 8 9 

2 Oracle Rd to Stone Ave WB 2 9 1 

3 Stone Ave to First Ave WB 6 1 2 

4 First Ave to Park WB 10 2 6 

5 Park to Mountain WB 11 6 10 
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Figure 7 Processed Probe Vehicle Data, Categorized by Corridors 

An example of processed data is shown in Table 7 and detailed data description is 

shown in Table 8.  

Table 7 Example of Processed Data 

 

Table 8 Data Description of Processed Data 

MetropianID ReservationID TrajectoryID LinkID Longitude Latitude Altitude direction unixtime speed accuracy MMLinkID CorridorID

3593 73 4707 6839 -110.940369 32.250275 2420 90 1437554419363 36 16 6839 12

3593 73 4708 6839 -110.940193 32.250275 2421 90 1437554420045 36 16 6839 12

3593 73 4709 6839 -110.940018 32.250275 2422 89 1437554421067 37 16 6839 12

3593 73 4710 6839 -110.939842 32.250271 2421 90 1437554422045 36 16 6839 12

3593 73 4711 6839 -110.939674 32.250271 2420 89 1437554423052 37 16 6839 12

3593 73 4712 6839 -110.939491 32.250271 2420 89 1437554424039 37 16 13262 12

3593 73 4713 6839 -110.939308 32.250267 2418 89 1437554425042 38 16 13262 12

3593 73 4714 13262 -110.939117 32.250263 2418 89 1437554426053 39 16 13262 12

3593 73 4715 13262 -110.938934 32.250267 2416 89 1437554427049 39 16 13262 12

3593 73 4716 13262 -110.938751 32.250267 2416 89 1437554428064 39 16 13262 12

Attributes Description 

MetropianID ID of app users (unique) 

ReservationID ID of trips (unique) 

TrajectoryID ID of GPS points (unique) 

LinkID ID of the link that the GPS point was on. The value was 

given when GPS data was collected. 

Longitude Longitude 

Latitude Latitude 

Altitude Altitude 
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Direction Moving direction of the vehicle. The value increases 

clockwise from the north direction and ranges from 0 to 

360 

Unixtime Unixtime timestamp of the GPS points 

Speed Speed of the vehicle (MPH, mile per hour) 

Accuracy Spatial accuracy (feet), means error that reported 

coordination is within. 

MMlinkID The link ID that the GPS point was matched 

CorridorID The corridor ID that GPS point was matched  
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4. METHODOLOGY 

The framework of link travel time estimation is shown in Figure 8. Raw probe vehicle 

trajectory data was pre-processed before any further analysis. As mentioned in the section 

of “Data Description” (section 3.2), the data pre-processing consists of data selection, 

data cleaning, map matching, link to corridor and corridor to movement.  

 

Figure 8 Study Framework 
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The travel time estimation framework was mainly consisted of two modules: 

direct travel time measurement and travel time estimation using incomplete trajectories to 

simulate complete trajectories. Link travel time was estimated by combining directly 

measured travel time samples and travel time samples that estimated from incomplete 

trajectories. Finally, statistical indicators (mean, average, and confidence interval) can be 

calculated based on these samples. Note that the framework can work with use of only 

the direct travel time measurement module. The travel time estimation using incomplete 

trajectories to simulate complete trajectories module can increase the sample size but the 

module is not required. 

A probe vehicle trajectory stems from a series of time-stamped points, each of 

which contains the position information. The trajectory that has passed through the whole 

study link is a “complete trajectory” for that link. However, sometimes a probe vehicle 

only passes part of the link, in which case travel time cannot be directly calculated 

because there is no data at the downstream location or upstream location. The trajectory 

in this condition is called “incomplete trajectory.” The comparison of a complete 

trajectory and an incomplete trajectory is shown in Figure 9. For better visualization, 

probe vehicle trajectories are shown by lines but they are actually series of GPS points. 

The red line that passed both the downstream and upstream locations is a complete 

trajectory. There are three types of incomplete trajectories: a trajectory that enters the link 

from the upstream location and leaves before downstream location (type 1); a trajectory 

that enters the link after upstream location and leaves before downstream location (type 

2); and a trajectory that enters the link after the upstream location and leaves after passing 

the downstream location (type 3). In urban travel time estimation, a study link usually 
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starts from an intersection and ends by the next intersection so that a vehicle typically 

experiences an accelerating process and a smooth traveling process and may or may not 

be affected by the downstream intersection. Since different types of incomplete trajectory 

travel different parts of the link, their traffic information contained in the data is different. 

 

Figure 9 Complete Trajectory and Incomplete Trajectory 

An incomplete trajectory cannot be used directly to calculate link travel time, but 

it does contain traffic information. To increase the sample size of travel time estimation, 

there is another module to calculate travel time using incomplete trajectories. An 

incomplete trajectory was compared with historical complete trajectories to find several 

of the most similar complete trajectories. The simulated travel time of incomplete 

trajectory was represented by its similar complete trajectories, whose travel time can be 

directly calculated. The assumption here was the incomplete trajectory would experience 

similar traffic as that experienced by its similar complete trajectory. 

The framework in Figure 8 mainly addressed the following technical issues:  
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(1) The study proposed a complete framework of travel time estimation using 

probe vehicle data. The framework can analyze link travel time by 

movements. Comparing with traditional link travel time, in which link travel 

time is the aggregation of all the movements, link travel time obtained using 

the proposed framework can provide more precise evaluation of the link and 

provide more accurate travel time information for travelers. 

(2) The method proposed in the framework can increase link travel time samples 

size by a large extent. The framework discussed the potential and 

implementation of travel time calculation using incomplete trajectories, which 

have never been used before. Since incomplete trajectories can constitute a 

huge amount of a public probe vehicle dataset, using the incomplete 

trajectories can greatly increase the information available for travel time 

estimation. 

To better illustrate the framework used in this study, the direct link travel time 

measurement module is introduced in the following section of this chapter. Then, in the 

next section, the principle and module of travel time estimation using incomplete 

trajectories to simulate complete trajectories is explained. The sensitivity analysis of the 

travel time estimation using incomplete trajectories to simulate complete trajectories 

module is presented in the last section of this chapter. In the sensitivity analysis, different 

parameters and input data are tested to verify the applicability and the accuracy of the 

algorithm. The pseudo code of direct travel time measurement and travel time estimation 

using incomplete trajectory is in Appendix B. 



38 
 

4.1 Direct Link Travel Time Measurement 

4.1.1 Link Travel Time measurement 

Since different definitions of links will lead to different travel time results, the definition 

of a link in this study was explained first. As shown in Figure 10, there are two 

intersections: intersection A and intersection B. Intersection A is the upstream 

intersection and intersection B is the downstream intersection. The link is defined as the 

road segment from the center of the upstream intersection (intersection A) to the center of 

the downstream intersection (intersection B) going in one direction. There are three 

trajectories shown and all of them traveled the whole link. The first GPS points after the 

vehicle enters the link (hereinafter, the First point) is defined as point 𝐹 for each 

trajectory 𝑖. The last GPS points before the vehicle leaves the link (hereinafter, the Last 

point) is defined as point 𝐿 for each trajectory 𝑖. The movement-based travel time for 

each trajectory TT𝑖 is defined as: 

𝑇𝑇𝑖 =  𝑡𝑖,𝐿 − 𝑡𝑖,𝐹                                                        (1) 

where 𝑡 is the timestamp of GPS point, 𝑖 represents different trajectories, the first GPS 

point after the vehicle enters the link is defined as point 𝐹 and the last point before the 

vehicle leaves the link is defined as Point 𝐿.  
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Figure 10 Complete Trajectory of Different Movements 

As link travel time is the time difference between the point F and the point L, then 

it is necessary to know which points are the first and the last point. Therefore, the 

relationship between the GPS points and the link needs to be built. In the map matching 

part of data pre-processing, each point was matched with the link it belongs to. Until 

now, each trajectory has a sequence of link IDs that represent the links that the probe 

vehicle has traversed. However, even the most accurate map matching algorithm is not 

entirely accurate and the error of map matching needs to be eliminated to prevent error in 

travel time calculation. In addition, as mentioned before, direct travel time measurement 

can use only the trajectory that passed the whole link; thus, the completeness of trajectory 

needs to be verified. To remove the map matching error and verify the completeness of 

the trajectory in a link, the following process was taken: 

(1) Map matching errors were eliminated. Map matching error usually happens where 

links intersect and a point is matched with another link that is close to the correct 
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link. Map matching error can be eliminated by checking map matching continuity 

since map matching error only happens occasionally. For a map matched 

trajectory, if an unfamiliar link is matched with only very few points, it is highly 

possible that it is a map matching error and erroneous points are assigned with a 

correct value. 

(2) A complete probe vehicle trajectory must enter a link from its upstream 

successive links and exit through the downstream successive links; otherwise the 

trajectory is not complete and it was removed. 

(3) The distance between the upstream point of the link and the first point should be 

within a threshold value (e.g., 10 feet), so it goes with the last point. This is to 

prevent error that may be generated from a low sampling rate. The trajectory was 

abandoned if it cannot satisfy this criterion. 

After eliminating the map matching error and checking the completeness of the 

trajectory, an accurate link travel time sample can be calculated by Equation (1). The last 

step was to determine the movement of this travel time sample. The trajectory was 

compared with a predefined movement table. A movement was consisted of a series of 

link IDs. For example, as shown in the Figure 11, if a vehicle pass link 1, link 4 and link 

6 consecutively and it pass a full link 4, then the vehicle makes a left turn. Similarly, if 

the vehicle pass link 1, link 4 and link 7 consecutively, then the calculated link travel 

time belongs to through movement. 
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Figure 11 Movement Determination 

4.2 Travel Time Estimation Using Incomplete Trajectory to Simulate 

Complete Trajectory 

A widespread problem in most of the current probe vehicle datasets is a low penetration 

rate (in other words, small sample size). A public vehicle dataset is mostly contributed by 

application users or specific groups of people (e.g., taxi drivers) and the penetration rate 

of data fluctuates largely based on data contributors’ spatial and temporal characters. 

There are two ways to increase the sample size of link travel time estimation: collecting 

more data or better utilizing the current data. However, as it is not economical efficient to 

collect more data over a long period or in a large region, extracting more information 

from current dataset becomes a better choice. 

In the travel time estimation using incomplete trajectories to simulate complete 

trajectories module, the incomplete trajectories, which were usually discarded before, 

were instead utilized to generate additional link travel time samples. The main idea 

behind the module is that probe vehicle trajectories under the same traffic condition have 

similar characters. Assume a virtual probe vehicle is traveling the whole link at the same 
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time as the probe vehicle of an incomplete trajectory. The trajectory of the virtual probe 

vehicle has characteristics similar to those of the incomplete trajectory since they are 

subject to the same traffic. An incomplete trajectory is compared with historical dataset to 

find the most similar complete trajectories. Thus, the travel time for the virtual probe 

vehicle to pass the whole link is represented using these similar complete trajectories. 

4.2.1 K-Nearest Neighbor Algorithm  

The K-Nearest Neighbors algorithm (k-NN) is a non-parametric technique that has the 

assumption that similar objects have similar characters, which is as same as the 

assumption in transportation field. Finding several similar complete trajectories for an 

incomplete trajectory, link travel time for the incomplete trajectory can be replaced by 

these complete trajectories. Since the incomplete trajectory has similar characters as its 

similar complete trajectories, the traffic environment is similar. 

4.2.2 Dimension Reduction 

Probe vehicle trajectory needs to be processed before implementing the k-NN method. 

Probe vehicle data has many attributes and not all of them are meaningful in travel time 

estimation. Only longitude, latitude and timestamp were selected as the inputs of the k-

NN algorithm. The longitude and latitude attributes of probe vehicle data represent only 

the shape of the trajectory and they are not related with travel time. In order to build the 

relationship between trajectory data and link travel time, three-dimensional probe vehicle 

trajectory data was reduced to two-dimensional distance-time data, where distance is the 

distance between GPS points and the upstream intersection and timestamp is the 

timestamp for each of the GPS points (e.g., 2015-03-01 12:01:34).  



43 
 

The dimension reduction for six hypothetical trajectories is shown in Figure 12, 

each with different characteristics. The green trajectory is a complete trajectory under 

free flow condition and its travel time is free flow travel time. The yellow trajectory is a 

complete trajectory in non-peak hour and it is slightly affected by the downstream 

intersection. The red line is a complete trajectory in peak hour. Compared with the 

trajectory in non-peak hour, it has a lower driving speed, a longer queue length, and a 

longer delay. The blue line, black line and brown line represent three types of incomplete 

trajectories. Note that each dot in the diagram is a GPS point and they are connected by a 

line. The line is smoothed using spline method in case the interval between consecutive 

GPS points is too long. 

 

Figure 12 Dimension Reduction Result of Different Trajectories 

 Figure 13 shows the time and distance diagram of real world complete trajectories 

and incomplete trajectories. There were 955 complete trajectories and 40 incomplete 

trajectories. In the figure, X-axis shows the time spent after vehicle entering the link and 
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Y-axis shows the distance from upstream intersection. Although complete trajectories 

may not share the same origin point with incomplete trajectories since they may enter the 

link by different location, however, the derivative (speed) of the complete trajectories and 

incomplete trajectories may similar at the same location. The similarity of the derivative 

of trajectories can reflect the traffic condition of the vehicle has experienced since if 

derivative of two trajectories are same everywhere then these two trajectories are 

identical. This similarity is used to find similar complete trajectories of incomplete 

trajectory, then link travel time of incomplete trajectory can be inferred from its similar 

complete trajectories.  

 

Figure 13 Real World Complete Trajectory and Incomplete Trajectory 

4.2.3 K-Nearest Neighbors Regression 

k-NN regression algorithm map patterns to continuous labels. The problem in regression 

is to predict labels 𝑦′  ∈  ℝ𝑑 for new patterns 𝑥′  ∈  ℝ𝑞 based on a set of N observations, 
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i.e., labeled patterns {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}. For an unknown pattern 𝑥′, k-NN regression 

computes the mean of the function values of its K-nearest neighbors: 

𝑓𝑘−𝑁𝑁(𝑥′) =  
1

𝐾
 ∑ 𝑦𝑖𝑖∈𝒩𝑘(𝑥′)                                                    (2) 

where 𝒩 is neighborhood set, set 𝒩𝑘(𝑥′) containing the indices of the k-nearest 

neighbors of 𝑥′ (Kramer, 2013).   

 Here is how Equation (2) used in our study. As mentioned before, we aimed to 

estimate link travel time when the vehicle of incomplete trajectories travelling on the 

link. Since incomplete trajectory not pass the whole link, link travel time cannot be 

directly calculated. However, link travel time of complete trajectory can be measured. 

Assuming the vehicle of incomplete trajectory pass the whole link under the same traffic, 

it has a simulated link travel time, the simulated link travel time is 𝑓𝑘−𝑁𝑁(𝑥′). Using 

Equation (2), the simulated link travel time of the incomplete trajectory can be 

represented by the travel time of its k most similar complete trajectories, which are y in 

Equation (2). If the link travel time of the k most similar complete trajectories are 

𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3, 𝑦𝑖4, 𝑦𝑖5 separately, the simulated link travel time of the incomplete trajectory 

is 
(𝑦𝑖1+ 𝑦𝑖2+𝑦𝑖3+𝑦𝑖4+𝑦𝑖5)

5
. 

The distance between incomplete trajectory and complete trajectories are used to 

find nearest neighbors. The procedure to calculate the distance between an incomplete 

trajectory and a complete trajectory is shown in Figure 14. The distance between an 

upstream point and a downstream point is 𝐿; in other words, the length of the study link is 

𝐿. There are two trajectories, the longer one is a complete trajectory and the shorter one is 

an incomplete trajectory. The study link is divided into 𝑛 segments (n is 8 in Figure 14) 
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on average and each segment has a length of  
𝐿

𝑛
. The complete trajectory passed all the 

segments and the incomplete trajectory passed 5 segments in Figure 14, 3 of which were 

fully passed. 𝑇𝑖 is the segment travel time for segment 𝑖 that complete trajectory has fully 

passed, and 𝑡𝑖 is the segment travel time for segment 𝑖 that incomplete trajectory has fully 

passed. Segment travel time is only calculated when a trajectory is fully passed. For 

example, the red line in Figure 14 is the trajectory that did not fully pass any segments 

and those red portions are not used to calculate segment travel time. 

 

Figure 14 Trajectory Similarity Calculation 

The distance between two trajectories 𝑆 is  

 𝑆 =  ∑ (𝑇𝑖 − 𝑡𝑖)2
𝑖 ∈ 𝑀                                                       (3) 

Where S is the distance between two trajectories, 𝑇𝑖 is the time interval for a 

complete trajectory to pass the 𝑖𝑡ℎ segment; 𝑡𝑖  is the time interval for an incomplete 
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trajectory to pass the 𝑖𝑡ℎ segment; 𝑖 is the sequence of segments; and 𝑀 is the set of 

segments that an incomplete trajectory has fully passed. 

Here is an example of using Equation (3) to calculate the distance between an 

incomplete trajectory and a complete trajectory. As shown in Figure 14, assume a link 

has a length of 1000 feet and it is divided into 8 segments separately. The travel time of a 

complete trajectory to pass each segment are 2.3s, 3s, 2.4s, 2.3s, 2.6s, 2.4s, 5s, 4.3s 

separately. There is an incomplete trajectory passed 5 segments and 3 out of 5 segments 

are fully passed, the travel time of the incomplete trajectory to fully pass the segments are 

2.6s, 3s, 4s, separately. The distance of incomplete trajectory and complete trajectory is 

(2.6 − 2.3)2 +  (3 − 2.6)2 +  (4 − 2.4)2 = 2.81. 

4.2.4 Parameters and Input Data 

Many factors can affect the performance of the algorithm. These can be summarized in 

two categories: algorithm parameters and input data. Algorithm parameters can be 

manually selected, and different parameters may adapt to different analysis purposes. 

Input data cannot be selected, but different types of input data can lead to different 

results.  

The algorithm parameters mainly include the number of similar samples 𝑘 and the 

number of divided link segments 𝑛. The number of similar samples are mainly correlated 

with the variance and bias of the estimator. If the number of similar samples is small, 

then the estimator will have a large bias but a small variance. If the number of similar 

samples is large, then the estimator will have a small bias and large variance. There is 
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always a trade-off between variance and bias and the appropriate 𝑘 depends on the 

project requirements. 

Another parameter in the k-NN algorithm is the number of divided link segments 

𝑛. As mentioned before, incomplete trajectories are divided into several segments and the 

part that not passed any full segment is removed (see the red part in Figure 14). When a 

vehicle is entering a link or leaving a link, it always has an adaptive process. In this 

adaptive process, vehicles need to adjust their speed to adapt to the new link and this 

process, i.e., accelerating or braking, and it likely does not reflect the traffic status for the 

link. The trajectory of this process needs to be removed to avoid systematic error. More 

segments can provide better data granularity but less of the trajectory in the adaptive 

process is removed, which may induce more systematic error. 

There are three key characteristics of input data: 

(1) Length of an incomplete trajectory. The length of an incomplete trajectory is 

directly corrected to the dimensions of the data. The longer the trajectory, the 

higher the chance that a found trajectory is similar.  

(2) Incomplete trajectory types. As mentioned before, different types of trajectories 

may contain different information. For example, incomplete trajectory type 3 may 

reflect the effect of intersection delay since it has the queueing information. 

(3) Time of day. Feng et. al (2013) compared the distribution of link travel time 

during peak hour and non-peak hour and they found that the distribution of travel 

time is different for different times of day. 
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4.3 Sensitivity Analysis 

Sensitivity analysis can help engineers and agencies understand algorithm performance in 

different scenarios so that best parameters can be chosen and the prediction error can be 

approximated. To evaluate the k-NN module under different parameters and input data, 

leave-one-out cross validation and variable control method was used. Several 

experiments were designed to evaluate algorithm performance in different scenarios. 

Since there are many factors that may affect the result of the algorithm – such as the 

number of similar samples and the length of incomplete trajectory – the cross-validation 

process controlled only one factor at a time and kept all the other factors the same. 

Cross validation is a model evaluation method that is commonly used to assess 

the stability of a parameter estimate, the accuracy of a classification algorithm, the 

adequacy of a fitted model, and in many other applications. The principle of cross 

validation is to evaluate the model or parameters multiple times using different data to 

avoid the estimator being affected by over-fitting. Cross validation divides the training 

set into a set of 𝑛 equal-sized groups. For each group, cross validation uses the other (𝑛 −

1) groups for training and that group for testing; there are, thus, 𝑛 rounds in total. Leave-

one-out cross validation (LOOCV) is a special case of cross validation: the model is 

trained on all the data except for the one point and a prediction is made for that point. The 

number of LOOCV rounds is the same as the number of complete trajectories in the 

dataset. Compared with other cross validation methods, LOOCV can reduce the bias of 

the estimator. 

Theoretically, there is no ground truth for an incomplete trajectory since the link 

travel time for the incomplete trajectory cannot be calculated. However, we developed a 
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method to evaluate the algorithm, by using an incomplete trajectory generated from a 

complete trajectory as the input. The complete trajectory was cut-off to become an 

incomplete trajectory to simulate real world condition. Since link travel time can be 

calculated from a complete trajectory and the incomplete trajectory has been converted 

from a complete trajectory, the ground truth is the travel time of the complete trajectory 

before conversion. Using this method, the performance of the algorithm can be evaluated. 

The dataset used in LOOCV is a historical complete trajectory dataset. In each round of 

LOOCV, one complete trajectory is converted into an incomplete trajectory and this 

incomplete trajectory is used as the input of the algorithm.  

The input of the algorithm is the incomplete trajectory that converted from a 

complete trajectory and the output of the algorithm is the average travel time of complete 

trajectories that are similar to the converted incomplete trajectory. Since the incomplete 

trajectory is cut off from the complete trajectory, the ground truth is the link travel time 

of the original complete trajectory. Two measures of accuracy were used to verify the 

algorithm’s performance: mean absolute error (MAE) and mean absolute percentage error 

(MAPE). MAE shows the average error of each round in LOOCV. Since link travel time 

is related to link length, MAE shows an average time difference between algorithm 

output and ground truth but it cannot reflect the performance difference between links. 

MAPE shows the error as a percentage and the performance can be compared between 

links. The definitions of the two measures are shown in Equations (4) and (5). 

𝑀𝐴𝐸 =  
1

𝑁
 ∑ |𝑔𝑖 − 𝑒𝑖|𝑁

𝑖=1                                                           (4) 

𝑀𝐴𝑃𝐸 =  
1

𝑁
 ∑

|𝑔𝑖−𝑒𝑖|

𝑔𝑖

𝑁
𝑖=1                                                             (5) 
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where N is the number of LOOCV times and,  𝑔𝑖 is the ground truth of link travel 

time in the 𝑖𝑡ℎ LOOCV, and 𝑒𝑖 is the estimated link travel time in 𝑖𝑡ℎ LOOCV. 
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5. RESULTS 

As discussed, the link travel time estimation result is the combination of direct link travel 

time measurement and link travel time estimation using incomplete trajectory. In this 

chapter, the result of direct travel time measurement is introduced first. Then, the result 

of travel time estimation using incomplete trajectories to simulate complete trajectories is 

discussed. Afterwards, sensitivity analysis of k-NN algorithm under different parameters 

and input data is presented. 

5.1 Direct Travel Time Measurement 

Direct travel time measurement is the process that to measure the travel time using 

complete trajectory. Table 9 shows the distribution of direct measurement link travel time 

result in 2015. There were 10,072 link travel time samples distributed on 13 links. 

Eastbound Oracle Rd to Stone Ave, eastbound Stone Ave to First Ave, westbound First 

Ave to Park Ave, and westbound Stone Ave to First Ave are selected to calculate 

movement-based link travel time. Comparing the sample size of through movement, it 

can be found on the one hand that the sample size of through movement was much more 

than the sample size for turning movements. On the other hand, since the data was 

collected from the public, the ratios reflected the proportion of through movements and 

turning movements. On boundary conditions (red rows in Table 9), e.g., Freeway to 

Fairview Ave westbound through movement and Columbus to Swan Ave eastbound 

through movement, the sample size was low. The reason is that, when a vehicle leaving 

the study network, the movement of the vehicle is hard to identify since there is no data 

of the downstream intersection. 
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 The boundary condition of a link is when link located at the edge of the road 

network or the link itself is a dead-end. Since there is no downstream link for boundary 

conditions, the movement of the vehicle is unknown. Figure 15 shows the boundary 

condition in the figure, when vehicle leaves the network, the movement of vehicle cannot 

be determined. 

 

Figure 15 Boundary Conditions (Black arrow in the Figure) 

 

Table 9 Distribution of Direct Calculated Link Travel Time Samples, 2015 

Link Name Direction Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum 

Freeway to Fairview 
Ave 

WB 
Through 

0 0 0 1 0 0 1 0 0 0 13 1 16 

Fairview Ave to Oracle WB 
Through 

15 3 24 74 66 36 42 38 32 32 35 26 423 

Oracle Rd to Stone Av WB 
Through 

15 1 25 67 59 33 40 40 32 32 32 29 405 

Stone Ave to First Ave WB 
Through 

13 0 18 58 39 28 30 30 23 17 29 15 300 

First Ave to Park WB 
Through 

4 0 16 52 35 20 29 34 24 19 30 22 285 

Park to Mountain WB 
Through 

5 0 25 64 57 36 31 46 33 28 32 43 400 

Mountain to Campbell WB 
Through 

2 1 19 51 40 28 26 44 30 22 33 37 333 

Campbell to Tucson WB 
Through 

3 1 22 45 29 25 30 48 34 27 46 37 347 

Tucson to Country Club WB 
Through 

2 2 25 63 33 21 26 48 43 23 40 27 353 

Country Club to Dodge WB 
Through 

2 1 24 64 31 23 27 48 47 31 42 34 374 

Dodge to Alvernon WB 
Through 

1 1 27 72 42 36 25 53 61 44 54 45 461 

Alvernon to Columbus WB 
Through 

1 1 24 72 31 29 25 35 55 37 45 43 398 

Columbus to Swan WB 
Through 

1 1 36 89 50 28 28 52 63 43 49 53 493 

Freeway to Fairview 
Ave 

EB Through 19 5 68 140 101 72 75 66 69 68 88 80 851 

Fairview Ave to Oracle EB Through 20 5 63 130 100 71 74 59 57 64 82 77 802 

Oracle Rd to Stone Av EB Through 15 1 20 57 67 44 57 36 35 38 33 41 444 

Stone Ave to First Ave EB Through 12 1 15 39 40 23 28 22 21 28 38 29 296 

First Ave to Park EB Through 4 0 17 36 40 27 34 33 24 37 49 38 339 

Park to Mountain EB Through 3 0 12 50 58 36 28 34 23 39 58 46 387 
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Mountain to Campbell EB Through 3 1 7 30 42 23 24 28 21 34 52 36 301 

Campbell to Tucson EB Through 3 2 18 31 35 23 23 29 26 27 49 33 299 

Tucson to Country Club EB Through 2 1 18 27 23 15 22 26 26 28 48 39 275 

Country Club to Dodge EB Through 2 1 19 22 21 14 24 31 27 23 47 40 271 

Dodge to Alvernon EB Through 0 2 19 30 30 22 31 32 34 32 56 40 328 

Alvernon to Columbus EB Through 0 1 15 31 33 16 31 27 29 29 52 37 301 

Columbus to Swan EB Through 0 0 0 1 1 1 5 7 3 3 17 4 42 

Oracle Rd to Stone Av EB Left 0 0 4 36 18 18 10 8 13 17 23 29 176 

Oracle Rd to Stone Av EB Right 1 0 3 14 1 0 0 1 2 1 5 2 30 

Stone Ave to First Ave EB Left 2 0 2 14 17 22 24 15 12 9 2 11 130 

Stone Ave to First Ave EB Right 0 0 1 5 9 4 7 0 1 0 4 0 31 

First Ave to Park WB Left 2 0 3 9 20 10 3 5 6 7 5 14 84 

First Ave to Park WB Right 0 0 5 7 7 8 2 4 1 5 3 8 50 

Stone Ave to First Ave WB Left 2 0 1 8 2 3 4 7 4 3 4 2 40 

Stone Ave to First Ave WB Right 0 0 1 2 1 0 1 0 0 0 1 1 7 

Sum 
 

15
4 

32 596 149
1 

1178 795 867 986 911 847 1196 101
9 

10072 

Link Name Direction Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum 

 

5.2 Travel Time Estimation using Incomplete Trajectory to Simulate 

Complete Trajectory 

As stated before, the k-NN regression method requires a large historical dataset. 

According to the sample distribution in Table 9, the sample size of turning movements 

was not sufficient to effectively implement the k-NN algorithm, so the k-NN module was 

applied only to through movements in the case study. Incomplete trajectories in 

November 2015 were used as the input and complete trajectories from January to October 

2015 were used as the training set. The travel time and sample size comparison is shown 

in Figure 16 and Table 10. After the implementation of the k-NN algorithm, the sample 

size was increased 42% averagely and the maximum increase was 153%. There were two 

links that have no improvements, westbound through movement from First Ave to Stone 

Ave and eastbound through movement from Dodge Blvd to Alvernon Way. By analyzing 
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these two links, we find that the performance of the algorithm is related to link geometry 

characteristics and land use around the link. Land use on the north side from First Ave to 

Stone Ave was mostly residential, which may explain the shortage of incomplete 

trajectories. The link of Dodge Blvd to Alvernon Way was very short and there were very 

few access points and this could be the reason why incomplete trajectories were not 

captured.
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Figure 16 Travel Time Estimation Result, November 2015 
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Table 10 Link Travel Time Estimation Result, November 2015 

Link Name Direction Complete Trajectory 
Sample Size  

Incomplete Trajectory 
Sample Size  

Sample Size 
Increase 

Total Sample 
Size  

Freeway to Fairview 
Ave 

WB Through 13 17 131% 30 

Fairview Ave to Oracle WB Through 35 15 43% 50 

Oracle Rd to Stone Ave WB Through 32 12 38% 44 

Stone Ave to First Ave WB Through 29 0 0% 29 

First Ave to Park WB Through 30 12 40% 42 

Park to Mountain WB Through 32 11 34% 43 

Mountain to Campbell WB Through 33 9 27% 42 

Campbell to Tucson WB Through 46 2 4% 48 

Tucson to Country Club WB Through 40 24 60% 64 

Country Club to Dodge WB Through 42 3 7% 45 

Dodge to Alvernon WB Through 54 8 15% 62 

Alvernon to Columbus WB Through 45 12 27% 57 

Columbus to Swan WB Through 49 59 120% 108 

Freeway to Fairview 
Ave 

EB Through 88 93 106% 181 

Fairview Ave to Oracle EB Through 82 3 4% 85 

Oracle Rd to Stone Ave EB Through 33 34 103% 67 

Stone Ave to First Ave EB Through 38 25 66% 63 

First Ave to Park EB Through 49 5 10% 54 

Park to Mountain EB Through 58 6 10% 64 

Mountain to Campbell EB Through 52 6 12% 58 

Campbell to Tucson EB Through 49 9 18% 58 

Tucson to Country Club EB Through 48 4 8% 52 

Country Club to Dodge EB Through 47 21 45% 68 

Dodge to Alvernon EB Through 56 0 0% 56 

Alvernon to Columbus EB Through 52 10 19% 62 

Columbus to Swan EB Through 17 26 153% 43 

 

5.3 Sensitivity Analysis 

Sensitivity analysis was conducted to evaluate the performance of the k-NN module. 

Leave-one-out cross validation and the variable controlling method was used to measure 

the performance of the module in different scenarios. Five factors were analyzed and they 

fall into two categories: algorithm parameters and input data. The category of algorithm 

parameters includes the number of similar samples and the number of road segments. 
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Input data includes the length of incomplete trajectory, different type of incomplete 

trajectory, and time of day of incomplete trajectory. In each round of the LOOCV 

process, one complete trajectory that was not used before was cut off as an incomplete 

trajectory, which is the input of the algorithm. Other complete trajectories were used as 

the training set. The incomplete trajectory was compared with the training set to find the 

most similar trajectories. The ground truth is the link travel time that calculated by the 

complete trajectory before conversion and the algorithm output is the average link travel 

time of the k most similar complete trajectories. 

 Eastbound through movement of Grant Road from Fairview to Oracle in 2015 

was selected as the study link for the sensitivity analysis. There were 955 link travel time 

samples – in other words, there were 955 complete trajectories. There were 470 samples 

in peak hour and 485 samples in non-peak hour. The peak hours in this study were 

defined as 7:30 AM to 9:30 AM and 4:00 PM to 6:00 PM on weekdays. The non-peak 

hours were defined as the rest of time except for the defined peak hours. 

5.3.1 Parameters 

There were two main parameters that were varied in the study: the number of similar 

samples (𝑘) and the number of road segments (or the dimension of data, 𝑛). The number 

of similar samples is the number of the most similar complete trajectories and the average 

travel time of these complete trajectory samples is the output of the algorithm. As 

discussed before, the input of the algorithm was the time for a vehicle to pass each 

segment of the link. Thus, the number of road segments is the dimension of input data. 

High dimension data can show smaller changes of speed but may make it hard to find 
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similar trajectories. A case study was designed to investigate the influence of these two 

parameters.  

As mentioned before, it is not only algorithm parameters that may affect the 

performance of the algorithm, but also different input data that may influence the result. 

To eliminate the influence of different input data, in each round of LOOCV, a complete 

trajectory was converted into a 50% length, type 2 incomplete trajectory (i.e., a trajectory 

that enters the link after the upstream location and leaves before downstream location) as 

the input – and the ground truth was calculated link travel time of the complete trajectory 

before conversion. All the complete trajectories had converted into incomplete 

trajectories once and the LOOCV evaluated average performance of each round. The 

LOOCV result may not be the same as real-world performance since the incomplete 

trajectory input was converted from complete trajectory. However, it can still be a great 

references indicator for the real-world condition and can also show the impact of 

different parameters. 

The experimental conditions of different parameters are shown below: 

• Scenario 1:  The link was divided into 4 road segments and the number of similar 

samples varied between 2 and 50.  

• Scenario 2: The link was divided into 20 road segments and the number of 

similar samples varied between 2 and 50. 

• Scenario 3: The link was divided into 50 road segments and the number of 

similar samples varied between 2 and 50. 
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Figure 17 and Figure 18 show the performance of k-NN algorithm using different 

parameter combinations. In the case study, the algorithm reached its best performance 

when the link was cut into 4 road segments and used 5 similar samples. It can be found 

that there is a negative relationship between the performance of the algorithm and the 

number of road segments. With the increase in the number of road segments, the 

performance of the algorithm got worse. However, decreasing the number of road 

segments significantly reduces the utilization rate of incomplete trajectory since the part 

of an incomplete trajectory that has not fully passed a link will be removed. In real-world 

applications, a small number of road segments is not suggested. 

With the increase in the number of similar samples, the performance of the 

algorithm improved at first. When the number of similar samples reached a threshold, the 

algorithm performed worse with the increase of the number of similar samples. The result 

was similar that is found in many other k-NN applications. We suggest that an 

appropriate number of similar samples needs to be selected before real-world application 

of the algorithm.  
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Figure 17 k-NN Performance under Different Parameters - MAPE 

 

 

Figure 18 K-NN Performance Under Different Parameters - MAE 
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5.3.2 Input Data 

There were three main characteristics of input data: the length of incomplete trajectory, 

types of incomplete trajectories, and time of day of incomplete trajectory. To eliminate 

the influence of algorithm parameters, the number of similar samples was selected as 5 

and the number of divided link segments was selected as 20. Complete trajectories were 

cut-off so as to become incomplete trajectories and used as input data. The experimental 

conditions with respect to different input data are shown below: 

• Scenario 1 (incomplete trajectory length): Complete trajectories were converted 

into different lengths of incomplete trajectories from 5% to 90% of the link 

length. Complete trajectories were converted as type 2, which is the type of 

incomplete trajectories that enter after the upstream intersection and leave before 

the downstream intersection. Only complete trajectories that were in peak hours 

were used. 

• Scenario 2 (incomplete trajectory types): Complete trajectories were converted 

into different types of incomplete trajectories. Complete trajectories were 

converted into 50% of the link length. Only complete trajectories that were in 

peak hours were used. 

• Scenario 3 (time of day): Complete trajectories were converted into 80% of the 

link length as incomplete trajectory type 2. Complete trajectories that occurred at 

different times of day were compared. Note that time of day of the complete 

trajectories only affects the number of cross validation rounds, but the training set 

was still composed of complete trajectories from all times of day. 
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The result of scenario 1 is shown in Table 11, Figure 19 and Figure 20. It can be 

found that incomplete trajectory length has an impact on the performance of k-NN 

module. The performance of the algorithm continuously drops with the shortening of 

incomplete trajectory length. Both MAPE and MAE reach to their minimum values when 

incomplete trajectory length is 90% of the link length. The minimum and maximum value 

of MAPE is 6.8% and 33.3% respectively and the minimum and maximum value of MAE 

is 5.7s and 22.1s respectively. MAPE and MAE were negatively associated with 

incomplete trajectory length. Since long incomplete trajectories are similar to complete 

trajectories, it is easier for long incomplete trajectories to find complete trajectories that 

experienced the same traffic. 

Table 11 LOOCV Result of Different Incomplete Trajectory Length 

Incomplete Trajectory Length / Link Length MAPE MAE(seconds) 

5% 33.3% 22.1 

10% 32.0% 20.9 

15% 32.2% 21.3 

20% 30.8% 20.0 

25% 30.1% 19.5 

30% 28.7% 18.9 

35% 28.0% 18.6 

40% 27.9% 18.7 

45% 28.9% 18.9 

50% 28.0% 18.3 

55% 26.3% 17.5 

60% 23.9% 16.6 

65% 23.1% 16.1 

70% 20.5% 14.5 

75% 20.5% 14.4 

80% 14.7% 11.1 

85% 13.7% 10.6 

90% 6.8% 5.7 
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Figure 19 LOOCV Result of Different Trajectory Length – MAE 

 

Figure 20 LOOCV Result of Different Trajectory Length – MAPE 

 

 Table 12 shows the result of the algorithm under different trajectory types. 

Incomplete trajectory type 1 performed worst with an MAE of 18.3s and an MAPE of 

39.1%. Incomplete trajectory type 2 and type 3 performed almost the same with an MAE 
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around 7s and an MAPE around 20.7%. Incomplete trajectory type 2 and type 3 

performed better than type 1 on average. It can be inferred from the result that incomplete 

trajectory that contains queue information performs better. 

Table 12 LOOCV Result of Different Incomplete Trajectory Types 

Incomplete Trajectory Types Type 1 Type 2 Type 3 

MAE/Seconds 18.3 6.5 7.5 

MAPE 39.10% 20.50% 20.90% 
 

 Table 12 shows the comparison of the result by different time of day. Since the 

attribute of time of day cannot be simulated, input data was classified into several 

categories by time of day. Morning peak is defined as 7:30 AM to 9:30 AM on weekdays 

and evening peak is defined as 4:00 PM to 6:00 PM on weekdays. Peak hour is defined as 

the combination of morning peak and evening peak. Non-peak is all the time except peak 

hours. The definition of peak hour and non-peak came from the real-world traffic 

conditions. Note that, even though the input data is classified as being at peak, the 

training set still covers all time periods because the assumption is that a trajectory can 

reflect all traffic conditions. 

 The result shows that the algorithm performed better during peak hours. The 

average of MAPE during peak hour is around 14% and the average of MAE during peak 

hour is about 10s. The algorithm performed worse during non-peak hour with a MAPE of 

26.4% and a MAE of 12.4s. The reason why the algorithm performed better during peak 

hour may be because vehicles have similar trajectories during peak hour since traffic is 

more congested. Vehicles trajectories during non-peak hour may depend more on drivers’ 
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behavior. Similar trajectories during non-peak hour may be due to similar driving 

behavior rather than traffic condition. 

Table 13 LOOCV Result of Different Time of Day 

Time of Day Morning Peak Evening Peak Peak Non-Peak All 

Sample Size 372 113 485 470 955 

MAPE 13.6% 15.6% 14.0% 26.4% 20.1% 

MAE/seconds 10.3 9.49 10.1 12.4 11.2 
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6. CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions 

Link travel time plays a significant role in traffic planning, traffic management and 

Advanced Traveler Information Systems (ATIS). Previously, travel time was mainly 

collected from fixed sensors or small-scale surveys (probe vehicle, floating cars, etc.). 

Large scale data collection is expensive due to the cost of devices and labor. A public 

probe vehicle dataset is the probe vehicle dataset that is collected from public people or 

public transport. The appearance of a public probe vehicle dataset can support travel time 

collection at a large temporal and spatial scale but at a relatively low cost. 

Traditionally, link travel time is the aggregation of travel time by different 

movements. A recent study proved that link travel time of different movements is 

significantly different from their aggregation. Movement-based link travel time has not 

been popular previously mainly because most fixed sensors cannot identify the 

movement of traffic. Further, there is not a complete framework for large scale 

movement-based travel time estimation using mobile sensors. This study proposed a 

detailed framework to estimate movement-based link travel time using high sampling rate 

of a public probe vehicle dataset. The result of the case study shows that the framework 

can successfully calculate movement-based link travel time. The framework performs 

well on most links, but not so well with respect to movement on the boundary of the road 

network since the movement of a vehicle cannot be identified. 

The quality of a probe vehicle dataset is mainly decided by its sampling rate and 

its penetration rate. Sampling rate is the collecting frequency of GPS points; penetration 
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rate is the ratio of probe vehicles out of all vehicles on the research corridor. When 

sampling rate is low, link travel time is hard to estimate because adjacent GPS points may 

be located on different links. When penetration rate is low, link travel time samples may 

not be able to represent the entire population. Some research exists concerning travel time 

estimation using probe vehicle data with a low sampling rate, but very few concerning 

travel time estimations when penetration rate is low. Our study proposed a method to 

calculate travel time samples using incomplete trajectory, which had not been utilized 

before. Incomplete trajectory is the trajectory that does not pass fully through the study 

link, so link travel time cannot be directly calculated from incomplete trajectory.  

Our study proposed a k-NN based travel time calculation method using 

incomplete trajectories to generate additional travel time samples. Incomplete trajectories 

were compared with historical complete trajectories and link travel times of incomplete 

trajectories were represented by these similar complete trajectories. The result of our 

study shows that the method can significantly increase link travel time samples. 

However, there are still some limitations. One limitation is that the algorithm requires a 

large historical dataset. Thus, through movements were more suitable to implement k-NN 

algorithm than turning movements since the historical dataset of through movements is 

larger than for turning movements. Another limitation is that the accuracy of the 

algorithm cannot be estimated in real world since the ground truth of link travel time for 

the real world incomplete trajectory is unknown. 

Our study also evaluated the performance of the k-NN algorithm in different 

scenarios. In sensitivity analysis, incomplete trajectory that was converted from a 

complete trajectory was used as input of the algorithm. The sensitivity analysis of the k-
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NN algorithm shows that the algorithm performed differently under different parameters 

and input data. In real world application, optimal parameters need to be selected for an 

accurate result. It is suggested that these optimal parameters should be selected using a 

historical dataset before real-world application. In the case study reported here, the 

research into the key parameters and input data concluded the following: 

• Both the number of similar samples and the number of road segments 

influence the accuracy of the algorithm. Although a small number of road 

segments can improve the performance of the algorithm in the case study, 

in a real-world application, a small number of road segments would also 

reduce the number of incomplete trajectories that can be used for the 

algorithm. 

• The length of incomplete trajectory has a positive correlation with 

performance of the algorithm. A long incomplete trajectory is similar to a 

complete trajectory, so that length makes it easier to find similar complete 

trajectories.  

• The performance of the algorithm is correlated with the time of day. 

Incomplete trajectory utilized during peak hours performed better than 

during non-peak hours. 

• Incomplete trajectories that contain queue information performed better 

than incomplete trajectories that did not contain queue information. Link 

travel time is the summary of free flow travel time and delay, in which 

delay is the key element that decides link travel time. Queue information 
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is highly correlated with delay so the algorithm performed better when the 

input data reflected queue information. 

6.2 Future Work 

Future studies could evaluate the performance of the k-NN algorithm on turning 

movements. Due to the limitation of there being only a small historical dataset 

concerning turning movement, the experiment with respect to the turning movement is 

not applicable until now. Study on turning movements can further evaluate the 

application of the algorithm and provide more samples for link travel time study.  

Future studies could also focus on performance evaluation of the framework 

under a connected or autonomous vehicle environment. Since the confidence level of the 

estimated travel time samples can only be measured when the whole set is known, the 

real-world performance of the framework can only be verified under connected vehicle 

environment.  
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APPENDIX A: DISTRIBUTION OF DIRECT 

CALCULATED LINK TRAVEL TIME 

Table 14 Through Movement Travel Time Distribution, 2015, Morning Peak (7:30 AM - 9:30AM) 

Link Name Direction 
2015

/1 
2015

/2 
2015

/3 
2015

/4 
2015

/5 
2015

/6 
2015

/7 
2015

/8 
2015

/9 
2015/

10 
2015/

11 
2015/

12 

Freeway to 
Fairview Ave 

WB 
Through 

0 0 0 0 0 0 0 0 0 0 2 0 

Fairview Ave 
to Oracle 

WB 
Through 

0 0 5 12 11 11 11 6 2 7 7 2 

Oracle Rd to 
Stone Ave 

WB 
Through 

0 0 6 13 9 13 9 6 3 8 5 1 

Stone Ave to 
First Ave 

WB 
Through 

1 0 6 13 7 12 9 4 2 3 5 1 

First Ave to 
Park 

WB 
Through 

0 0 8 17 8 13 10 7 5 3 5 2 

Park to 
Mountain 

WB 
Through 

0 0 9 25 20 14 12 11 7 4 4 5 

Mountain to 
Campbell 

WB 
Through 

0 0 6 25 16 17 13 9 5 3 4 6 

Campbell to 
Tucson 

WB 
Through 

0 0 7 19 8 11 16 10 7 4 6 6 

Tucson to 
Country Club 

WB 
Through 

0 1 9 28 10 9 10 9 7 0 5 5 

Country Club 
to Dodge 

WB 
Through 

0 0 8 30 9 10 8 10 9 3 6 6 

Dodge to 
Alvernon 

WB 
Through 

0 0 8 31 9 11 4 13 9 8 10 5 

Alvernon to 
Columbus 

WB 
Through 

0 0 5 31 6 10 4 7 6 7 9 5 

Columbus to 
Swan 

WB 
Through 

0 0 8 35 11 10 3 7 8 9 9 6 

Freeway to 
Fairview Ave 

EB 
Through 

2 2 8 41 29 25 33 38 44 36 38 40 

Fairview Ave 
to Oracle 

EB 
Through 

2 2 7 37 30 25 35 32 31 33 31 40 

Oracle Rd to 
Stone Ave 

EB 
Through 

2 0 0 18 23 23 33 17 18 23 5 20 

Stone Ave to 
First Ave 

EB 
Through 

1 0 0 10 9 5 12 3 6 11 9 16 

First Ave to 
Park 

EB 
Through 

1 0 0 8 9 5 13 8 7 15 11 18 

Park to 
Mountain 

EB 
Through 

0 0 0 6 3 1 8 8 4 15 9 15 

Mountain to 
Campbell 

EB 
Through 

0 0 0 3 3 2 7 5 4 14 9 11 

Campbell to 
Tucson 

EB 
Through 

0 1 0 3 5 2 8 5 3 14 9 11 

Tucson to 
Country Club 

EB 
Through 

0 0 1 3 5 1 8 6 3 15 10 11 

Country Club 
to Dodge 

EB 
Through 

0 0 1 3 5 0 9 8 3 13 11 10 

Dodge to 
Alvernon 

EB 
Through 

0 0 1 4 5 3 10 10 4 14 10 9 

Alvernon to 
Columbus 

EB 
Through 

0 0 1 4 5 2 11 12 4 15 11 10 

Columbus to 
Swan 

EB 
Through 

0 0 0 0 0 0 2 3 0 1 3 0 
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Table 15 Through Movement Travel Time Distribution, 2015, Evening Peak (4:00 PM - 6:00 PM) 

Link Name Direction 
201
5/1 

201
5/2 

201
5/3 

201
5/4 

201
5/5 

201
5/6 

201
5/7 

201
5/8 

201
5/9 

2015
/10 

2015
/11 

2015
/12 

Freeway to 
Fairview Ave 

WB 
Through 

0 0 0 0 0 0 0 0 0 0 5 0 

Fairview Ave 
to Oracle 

WB 
Through 

1 0 4 9 10 2 3 5 3 10 9 6 

Oracle Rd to 
Stone Ave 

WB 
Through 

0 0 4 8 10 2 4 5 3 9 9 6 

Stone Ave to 
First Ave 

WB 
Through 

0 0 4 2 3 1 1 4 0 2 6 4 

First Ave to 
Park 

WB 
Through 

0 0 2 2 3 1 4 3 0 0 4 4 

Park to 
Mountain 

WB 
Through 

0 0 6 3 6 7 4 2 1 2 3 9 

Mountain to 
Campbell 

WB 
Through 

0 0 2 1 5 2 4 2 1 0 6 6 

Campbell to 
Tucson 

WB 
Through 

0 0 3 4 4 0 2 2 1 0 7 4 

Tucson to 
Country Club 

WB 
Through 

0 0 3 4 2 0 2 2 2 3 7 4 

Country Club 
to Dodge 

WB 
Through 

0 0 3 4 2 0 3 4 4 5 11 6 

Dodge to 
Alvernon 

WB 
Through 

0 0 2 11 6 5 2 7 17 6 10 6 

Alvernon to 
Columbus 

WB 
Through 

0 0 2 10 3 1 4 6 19 5 11 6 

Columbus to 
Swan 

WB 
Through 

0 0 3 12 4 0 4 12 20 5 12 8 

Freeway to 
Fairview Ave 

EB 
Through 

6 0 9 19 15 7 9 14 5 7 11 4 

Fairview Ave 
to Oracle 

EB 
Through 

6 0 9 19 15 7 9 14 5 6 11 3 

Oracle Rd to 
Stone Ave 

EB 
Through 

6 0 4 6 9 3 4 3 2 2 8 1 

Stone Ave to 
First Ave 

EB 
Through 

5 0 4 5 7 4 3 3 3 2 8 0 

First Ave to 
Park 

EB 
Through 

1 0 4 8 10 5 4 7 4 4 8 1 

Park to 
Mountain 

EB 
Through 

0 0 2 8 11 5 3 8 4 4 9 6 

Mountain to 
Campbell 

EB 
Through 

0 0 1 6 8 3 4 9 3 2 8 5 

Campbell to 
Tucson 

EB 
Through 

0 0 4 10 6 4 4 9 4 2 6 4 

Tucson to 
Country Club 

EB 
Through 

1 0 5 11 5 2 5 6 4 3 7 5 

Country Club 
to Dodge 

EB 
Through 

1 0 6 9 3 2 6 5 3 1 6 5 

Dodge to 
Alvernon 

EB 
Through 

0 0 6 10 9 7 5 5 3 2 10 5 

Alvernon to 
Columbus 

EB 
Through 

0 0 3 6 9 4 5 4 4 2 12 5 

Columbus to 
Swan 

EB 
Through 

0 0 0 0 0 0 1 0 2 0 5 0 
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APPENDIX B: PSEUDO CODE 

B.1 Direct Travel Time Measurement 

For each trajectory that pass the study link { 
 // Eliminate map matching error 
 Calculate all the corridors that trajectory has entered; 
 For all corridors that trajectory has entered { 
  Find the timestamp when vehicle enter the corridor and leave the corridor; 
  If the time difference between vehicle enter the link and leave the link < a threshold (used 3 seconds) { 
   Match GPS points in this time period to the last corridor and the next corridor temporal evenly;  
  } 
 } 
  
 // Eliminate error generate from long GPS reporting time 
 Find the first GPS point when vehicle enter the study link (point F) and last GPS point before leaving the study link (point 
L); 
 If the distance of point F and upstream point of the link > a threshold (used 10 feet) { 
  continue; 
 } 
 If the distance of point L and downstream point of the link > a threshold (used 10 feet) { 
  continue; 
 } 
 
 // Calculate link travel time 
 Link_travel_time = time difference between point F and point L; 
 
 // Determine the movement of calculated link travel time 
 Find the corridor before the vehicle enter the study corridor (upstream corridor); 
 Find the corridor after the vehicle leave the study corridor (downstream corridor); 
 For corridor movement table { 
  Find if the sequence of (upstream corridor, study corridor, downstream corridor) appeared in the movement 
table; 
  If Yes { 
   Get a link travel time sample of that movement 
  } 
  else { 
   The trajectory is an incomplete trajectory 
  } 
 } 
} 
 
 

B.2 Travel Time Estimation using Incomplete Trajectory to Simulate 

Complete Trajectory 

// Parameters 
k = the number of similar samples; 
n = the number of road segments; 
spline_num = the number of smoothed spline points 
 
// Generate training set 
For each trajectory that has fully pass the study link { 
 Fit a smoothing spline for the trajectory using spline parameter; 
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 Divided smoothed spline into n segments according to the distance of GPS points and upstream point of the link; 
 Calculate travel time for each segment; 
 Generate a n dimension array of segment travel time;  
} 
 
// Deal with incomplete trajectory 
Fit a smoothing spline for the trajectory using spline parameter; 
Find the segments that incomplete trajectory that has fully passed, which is set M here and dimension is m; 
Calculate travel time for each segment that incomplete trajectory has fully passed; 
Generate a m dimension array of segment travel time that incomplete trajectory has fully passed; 
 
// Calculate Distance between incomplete trajectory and training set 
For each one in the training set { 
 Extract the corresponding travel time of the same segment that incomplete trajectory has fully passed and generate a m 
dimension array; 
 Calculate the Euclid distance between m dimension array of incomplete trajectory and complete trajectory; 
} 
 
// Calculate simulated travel time of incomplete trajectory 
Find k complete trajectories that has least Euclid distance to incomplete trajectory; 
Simulated travel time of incomplete trajectory = the average value of travel time of k complete trajectories 
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