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Quantum tomography is a critically important tool to evaluate quantum hardware, making it essential to
develop optimized measurement strategies that are both accurate and efficient. We compare a variety of
strategies using nearly pure test states. Those that are informationally complete for all states are found to be
accurate and reliable even in the presence of errors in the measurements themselves, while those designed
to be complete only for pure states are far more efficient but highly sensitive to such errors. Our results
highlight the unavoidable trade-offs inherent in quantum tomography.
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Progress in quantum information science has now
reached the point where rudimentary quantum computers
are appearing in the laboratory [1–8]. As these devices
grow in complexity it becomes more difficult to verify that
their building blocks perform as required and to identify
physical sources of error so they can be countered. In this
situation quantum tomography seems an ideal diagnostic
tool, capable of providing complete estimates of quantum
states [9], processes [10], and measurements [11]. In
practice, however, its use has been limited by its own
inherent challenges: tomography is based on measurement
data and the process of collecting these is itself subject to
error. As a result there has been great interest in optimized
measurement strategies that make tomography as efficient
and accurate as possible.
In this Letter we present a comprehensive experimental

study of different measurement strategies for quantum state
tomography (QST), each corresponding to a particular
choice of positive-operator valued measure (POVM). The
notion of an optimal POVM is nuanced and context depen-
dent. For example, two different POVMs, the symmetric
informationally complete (SIC) POVM [12] and mutually
unbiased bases (MUB) [13], provide optimally accurate
reconstruction on average [14], but the theoretical assump-
tions for this to be true may not hold in the laboratory. Other
notions of optimality arise when one employs prior infor-
mation. Of particular interest are POVMs that are optimally
efficient, requiring a minimal number of measurement out-
comes given some prior knowledge about the state, e.g., that
it is close to pure [15–23]. While efficient, these strategies
can be compromised by experimental imperfection in ways
not usually considered in theoretical analyses.
A number of experiments have provided proof-of-prin-

ciple demonstrations of various measurement strategies for
QST [24–31], but the diversity of experimental platforms
has made it difficult to compare their performance. As a

result, one of the central questions is still to be addressed:
What are the relative merits of different POVMs in a real-
world scenario where the assumptions underlying optimal-
ity and/or priors may or may not apply? We address that
question by implementing a comprehensive collection of
POVMs and using them for QST on a common physical
platform. This test bed consists of the d ¼ 16 dimensional
Hilbert space formed by the coupled electron-nuclear spins
of individual 133Cs atoms in the electronic ground state
[32,33]. As expected for a well-behaved system, we find
that accurate and efficient QST can be achieved across a
large sample of arbitrarily chosen nearly pure test states.
More significantly, our results provide new insight into the
trade-offs between efficiency, accuracy, and robustness
inherent in different POVMs.
A key concept for QST is that of an informationally

complete (IC) POVM. A fully IC POVM allows one to
identify an arbitrary unknown density matrix from meas-
urement data (in the absence of noise and errors). The most
efficient fully IC POVM is the SIC POVM, which has the
minimal number of POVM outcomes d2 [12]. Other exam-
ples of fully IC POVMs include the dþ 1mutually unbiased
bases (MUB) [13], and the 2d − 1 generalized Gell-Mann
bases (GMB) [17], with d2 þ d and 2d2 − d outcomes,
respectively. Additional notions of IC become relevant for
QST on restricted subsets of states. Notably, quantum
information processing tends to employ pure states, and
diagnostic tools such as randomized benchmarking [34,35]
can verify that an experiment operates close to this regime.
We thus test several efficient strategies for QST of rank-1
density operators: rank-1 IC (R1-IC) POVMs, which
uniquely identify a pure state only from other pure states
[15–17], and rank-1 strictly IC (R1S-IC) POVMs, which
uniquely identify a pure state from all physical density
matrices of any rank [16–18]. Strictly IC POVMs are
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particularly useful because they allow state estimation via
convex optimization [17].
The notion of efficient tomography given prior informa-

tion is related to compressed sensing tomography [36,37],
with some subtle differences. The compressed sensing
protocol involves a specific class of measurements and a
specific form of convex optimization [38,39]. While we
have shown that all compressed sensing measurements for
pure states are R1S-IC [23], the converse is not true.
Nevertheless, as we will see, QSTwith a R1S-IC POVM is
similar to compressed sensing insofar as the two protocols
achieve high accuracy from similar amounts of data, in both
cases much less than required for a fully IC POVM.
Our experiments explore a variety of POVM construc-

tions that have been studied in the literature. Flammia et al.
introduced a R1-IC POVM that contains 3d − 2 elements,
each of which are rank-1 (nonprojective) operators [15]. We
refer to this POVM as pure state informationally complete
(PSI), and it can be shown to be R1S-IC by the method
proposed in Ref. [17]. The PSI POVM has the best known
scaling with d of any R1S-IC POVM that consists of rank-1
elements. We implement two additional R1S-IC POVMs:
the first of which we refer to as 5 Gell-Mann bases (5GMB),
originally proposed in Ref. [19] and proven to be R1S-IC in
Ref. [17], and the second of which we refer to as 5
polynomial bases (5PB) [20]. We further implement two
R1-IC POVMs, which we refer to as 4 Gell-Mann bases
(4GMB) [19] and 4 polynomial bases (4PB) [21]. The
minimum number of orthonormal bases needed to recon-
struct a pure state is four (for d ≥ 5) [21]; such POVMs are
R1-IC but not R1S-IC. Details on how we construct the
various POVMs can be found in Ref. [40] and Refs. [50,51].
Our experimental test bed has been described elsewhere

[32,33] and only the most important features are summa-
rized here. A 133Cs atom in the 6S1=2 electronic ground
state has electron and nuclear spins S ¼ 1=2 and I ¼ 7=2,
resulting in two hyperfine manifolds with spin F¼I�S¼
3, 4 and a total of 16 magnetic sublevels jF;mi. The system
is controllable in this d ¼ 16 dimensional Hilbert space H
with a static magnetic field and phase modulated radio-
frequency and microwave magnetic fields. The phase
modulation (control) waveforms used to implement a given
unitary are found though numerical optimization; these
control waveforms are not unique and it is straightforward
to find several high-performing ones. In previous experi-
ments we have verified through randomized benchmarking
that we can implement a variety of control tasks with high
accuracy, ranging from arbitrary quantum state-to-state
maps [average infidelity 0.005(1)] to arbitrary SU(16)
maps [average infidelity 0.018(2)].
A typical experimental sequence begins with an

ensemble of ∼106 laser cooled atoms released into free
fall. We use optical pumping to prepare the ensemble in
jψ0i ¼ jF ¼ 3; m ¼ 3i and then implement a state map
jψ0i → jψ ti ¼

P
F;mcF;mjF;mi to obtain a desired test

state. In practice, errors and imperfections in the prepara-
tion sequence cause the actual state ρa to deviate slightly
from the intended target, with an average infidelity 1 −
hψ tjρajψ ti ≈ 0.005 (see the Supplemental Material [40]).
This is our starting point for QST.
The basic resource for measurement in our experiment is

Stern-Gerlach analysis, implemented by letting the atoms fall
in a magnetic field gradient until they reach an optical probe
∼5 cm below the preparation volume [52]. Figure 1 shows a
typical time-of-flight (TOF) signal for a statewith support on
all 16 magnetic sublevels. Given the partial overlap between
the arrival distributions for some jF;mi such a signal is not
by itself a projectivemeasurement. Nevertheless, we can fit it
to a weighted sum of arrival distributions STOFðtÞ ¼P

F;mνF;mSF;mðtÞ, and from those weights get a good
estimate of the probability of each outcome νF;m ≈ pF;M ¼
hF;mjρajF;mi. This is functionally equivalent to finding the
frequency of outcomes νF;m from separate, projective mea-
surements on the individual atoms in the ensemble. A
significant advantage of working with ∼106 atoms is that
measurement statistics plays a negligible role. We typically
average TOF signals from ten repetitions of the experiment,
so that the number of atoms detected permagnetic sublevel is
of orderN ¼ 107=16, and the statistical fluctuation

ffiffiffiffi
N

p
=N is

of order ∼10−3. Fluctuations in the probe power and
electronic noise in the detector contribute roughly 1% in
statistical uncertainty for the estimated frequencies.
With the basic Stern-Gerlach measurement in place,

our ability to perform SU(16) maps in H makes it straight-
forward to implement additional POVMs. Specifically,
we can perform a 16-outcome measurement in an arbitrary
basis fjϕμig in H, by mapping each jϕμi onto a magnetic
sublevel jðF;mÞμi through a unitary transformation
U ¼ P

μjðF;mÞμihϕμj. An arbitrary POVM consisting of
a collection of different bases, e.g.,MUB, can be constructed

T
O

F 
Si

gn
al

T
O

F 
Si

gn
al

(a) F = 4

(b) F = 3

0 20 40 60
Time (ms)

80 100

FIG. 1. Stern-Gerlach analysis of 133Cs atoms in a hyperfine
state with support on all 16 magnetic sublevels. (a) Time-of-flight
signal from atoms in the F ¼ 4manifold. (b) Same from atoms in
the F ¼ 3 manifold. The black lines are measured signals; the
light red lines are fits.
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from a series of such measurements in different
runs of the experiment, yielding POVM elements
fEμ;α ¼ jϕμ;αihϕμ;αjg, where α ¼ 1; 2;…; αmax labels the
basis. Furthermore, by restricting the test state to a subspace
H0 ⊂ H, we can use the Neumark extension [53] to imple-
ment nonorthogonal POVMs with up to 16 outcomes, each
specified by a rank-1 POVM element. To do so, all that is
required is an orthogonal measurement in H chosen such
that the projection of its measurement operators onto H0

yields the desired POVM elements ~Eμ;α ¼ ΠH0Eμ;αΠ
†
H0 .

The above approach to measurement has one very
important consequence: the performance of QST is domi-
nated by systematic errors in the POVMs, rather than
statistical noise from working with a finite number of
copies of the state as is often the case. Our unitary maps are
subject to a roughly 2% error arising mainly from a fixed
inhomogeneity of the control Hamiltonian across the
ensemble, and repeated implementations of a given map
with the same control waveform therefore yield the same
fixed measurement errors. As a result, the fidelity of QST
cannot be improved significantly by averaging data from
repeated, identical runs of the experiment, which is
precisely what we observe. At the same time, different
unitary maps, or even the same map implemented with
different control waveforms, will have systematic errors
that are largely uncorrelated. We note that errors of this type
are present (if not necessarily dominant) in most imple-
mentations of QST regardless of the physical platform,
since detectors are generally designed to measure in a fixed
basis and additional POVMs are performed by preceding
the measurement with unitary maps.
The final element of QST is the data processing

algorithm used to obtain a state estimate. Standard estima-
tors include maximum-likelihood [54], least-squares [55],
Bayesian [56], and trace-minimization [36]. Because our
focus is on the relative performance of the various POVMs,
it suffices to pick one estimator and apply it consistently
across all our data sets. We chose here the maximum-
likelihood estimator (MLE):

ρ̂¼ argmin
ρ

−
X

j

νj logpj; s:t:∶ Tr½ρ� ¼ 1; ρ≥ 0;

where the summation is over measurement outcomes.
Efficient solution of this numerical optimization problem
is achieved by convex optimization using the Matlab
package CVX [57].
Our experimental study covers eight POVMs (SIC,

MUB, GMB, PSI, 5GMB, 5PB, 4GMB, 4PB) as described
above, applied in a randomly chosen subspace H0 (d ¼ 4);
this is the largest subspace for which we can apply the
Neumark extension to implement the 16-outcome SIC
POVM and the 10-outcome PSI POVM. The remaining
six POVMs are also applied to states in the full Hilbert
space H (d ¼ 16) along with a POVM consisting of
5 mutually unbiased bases (5MUB) that is expected to

be R1S-IC [50]. In each case the performance of QST
was evaluated by applying the protocol to a set of 20

randomly chosen test states fjψ ðjÞ
t ig, and calculating for

each the infidelity between the input and the MLE

reconstruction, Δj ¼ 1 − hψ ðjÞ
t jρ̂jψ ðjÞ

t i.
Table 1 and Fig. 2 show the mean and variance of the set

fΔjg observed for each POVM. Several immediate obser-
vations can be made from these data. First, the average error
(infidelity) of the estimates varies considerably with meas-
urement strategy, ranging from 0.02(2) to 0.10(15) in
d ¼ 4, and from 0.06(3) to 0.32(4) in d ¼ 16. Second,
there is a very clear trade-off between the accuracy and
efficiency of QST: the fully IC POVMs tend to perform
better than R1S-IC POVMs, which in turn tend to perform
better than R1-IC POVMs. Finally, the SIC and PSI
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FIG. 2. Average QST infidelities Δ for nine POVMs in three IC
categories (data from Table 1). (a) QST in d ¼ 4. (b) QST in
d ¼ 16. POVMs consisting of multiple orthogonal measurements
are shown in (dark) blue; POVMs consisting of a single non-
orthogonal measurement with > d outcomes are shown in
(light) red.

TABLE I. Average QST infidelities Δ achieved for nine differ-
ent POVMs in three different IC categories, in Hilbert spaces with
dimensions d ¼ 4 and d ¼ 16. Parentheses indicate variations of
one standard deviation.

Average infidelity (Δ)

IC class POVM d ¼ 4 d ¼ 16

Fully IC SIC 0.0625 (73) …
MUB 0.0181 (21) 0.0602 (23)
GMB 0.0092 (15) 0.0595 (30)

R1S-IC PSI 0.0923 (164) …
5MUB … 0.1564 (96)
5GMB 0.0173 (28) 0.2442 (173)
5PB 0.0267 (47) 0.2384 (215)

R1-IC 4GMB 0.0764 (221) 0.2759 (217)
4PB 0.0853 (360) 0.3200 (366)
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POVMs perform significantly worse than other POVMs
from within the same IC class.
The difference in QST performance achieved with

different POVMs can be ascribed to a variety of factors.
Most importantly, the fact that systematic errors dominate
in our experiment will favor POVMs such as MUB and
GMB that use many orthogonal measurements with many
outcomes. The reason is twofold. First, when applied to
pure states specified by 2d − 2 real-valued parameters,
the large number of outcomes provide redundant informa-
tion. And second, each orthogonal measurement uses a
unitary map with distinct errors, in which case a larger
number of measurements provides better averaging over
experimental imperfections and improves the accuracy
of QST. We believe this largely accounts for the superior
performance of fully IC POVMs relative to R1S-IC
POVMs (5GMB, 5PB).
Similar considerations play out for the nonorthogonal

POVMs in d ¼ 4. The SIC POVM is fully IC and its
d2 ¼ 16 outcomes are redundant for pure states, whereas
the PSI POVM is R1S-IC and slightly less redundant with
3d − 2 ¼ 10 measurement outcomes. As one might expect
on this basis, the SIC POVM performs somewhat better
than the PSI POVM. At the same time, because each is
implemented with a single unitary map and subsequent
Stern Gerlach measurement, there is no averaging over
errors in the POVMs and both perform significantly worse
than POVMs that measure several orthogonal bases. The
comparison between SIC and MUB POVMs is especially
instructive: these POVMs are equally optimal when QST is
limited solely by measurement statistics [14], but MUB
performs much better when systematic errors dominate.
While averaging over systematic errors in the POVMs

explains much of the observed variation in QST per-
formance, other considerations also come into play. The
number of orthogonal measurements does not differ
greatly between R1S-IC POVMs and R1-IC POVMs.
However, R1-IC POVMs can correctly identify the state
only from within the restricted set of pure states. This is
a problem in our protocol because the measurement
record may be better matched by a distant mixed state
than by the actual, nearly pure state present in the
experiment. In that situation the MLE algorithm will
identify the distant state as the best estimate. As seen in
Fig. 2, this leads to a significant increase in average
infidelity.
Yet another issue in the performance of R1-IC and

R1S-IC POVMs is the possibility of “failure sets.” Some of
these POVMs are designed to give an analytic relationship
between the state and the probabilities associated with the
measurement outcomes, e.g., the relationship shown in
Ref. [15]. This inversion fails on a known set of measure
zero, which corresponds to states that have zero probability
of certain outcomes. In practice, the presence of noise and
errors will extend the failure set to a finite measure, and

there will be a finite probability that a randomly chosen
state will fall within it [22]. Among the POVMs examined
here, only PSI and 5GMB have failure sets. Comparing
5GMB against 5PB we see no significant difference in
performance, indicating that the presence of a failure set
has little effect. As already discussed, PSI performs poorly
for other reasons and it is difficult to isolate the effect of its
failure set. Overall, the consequence of failure sets is
inconclusive in our data, and further work is needed to
understand how they affect QST in the presence of noise
and errors.
A final, vivid illustration of the trade-off between

efficiency and robustness can be had by considering
POVMs that fall between R1S-IC and fully IC POVMs.
Figure 3 shows how the average infidelity of QST in
d ¼ 16 improves when using an increasing number N of
the bases making up the MUB and GMB POVMs. In both
cases we see a clear “compressed-sensing effect” with an
infidelity that drops rapidly until the POVM becomes
R1S-IC at N ¼ 5, and then slowly improves as additional
measurements provide redundancy and help average out
systematic errors. Measuring more bases improves
performance, but for an application that can tolerate a
certain level of infidelity it may be preferable to use
something short of a fully IC POVM with its large data-
taking overhead.
Looking ahead, there are several important aspects of

QST that might be addressed. Most importantly, the use of
QSTas a diagnostic tool puts a premium on its accuracy and
on systematic ways to improve it. Consider the fairly typical
scenario exemplified by our experiment, in which the
average fidelity of state preparation is significantly better
than that of QST. In principle, this means we can use known
input states to perform POVM tomography [11], which
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FIG. 3. QST of nearly pure test states in d ¼ 16, using data
from POVMs that are less than fully IC. (a) Infidelity versus the
numberN of mutually unbiased based used (fully IC forN ¼ 17).
(b) Infidelity versus number of Gell-Mann bases used (fully IC
for N ¼ 31). Both POVMs become R1S-IC at N ¼ 5
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should allow us to correct or account for systematic errors in
our POVMs and thereby improve our QST fidelity—which
in turn might allow us to further optimize our state
preparation. This suggests the possibility of a virtuous cycle
of improvements to state preparation, POVM implementa-
tion, and QST. Other questions pertain to the role of
estimators in QST. It is possible in principle to combine
R1-IC POVMs with an estimator that searches only over
pure states; preliminary results from our experiment suggest
this approach can be very successful at diagnosing state
preparation errors that are coherent in nature, while at the
same time largely ignoring the presence of other types of
error [50]. This in turn raises the issue of bias in QST, which
has been previously discussed in the context of compressed
sensing approaches [58]. Such questionsmight be studied in
experiments using known mixed test states, a prospect
within the current capabilities of our cold-atom test bed.
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