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Abstract

Because of their intense incident stellar irradiation and likely tidally locked spin states, hot Jupiters are expected to
have wind speeds that approach or exceed the speed of sound. In this work, we develop a theory to explain the
magnitude of these winds. We model hot Jupiters as planetary heat engines and show that hot Jupiters are always
less efficient than an ideal Carnot engine. Next, we demonstrate that our predicted wind speeds match those from
three-dimensional numerical simulations over a broad range of parameters. Finally, we use our theory to evaluate
how well different drag mechanisms can match the wind speeds observed with Doppler spectroscopy for HD
189733b and HD 209458b. We find that magnetic drag is potentially too weak to match the observations for HD
189733b, but is compatible with the observations for HD 209458b. In contrast, shear instabilities and/or shocks
are compatible with both observations. Furthermore, the two mechanisms predict different wind speed trends for
hotter and colder planets than currently observed. As a result, we propose that a wider range of Doppler
observations could reveal multiple drag mechanisms at play across different hot Jupiters.

Key words: hydrodynamics – methods: analytical – methods: numerical – planets and satellites: atmospheres –
planets and satellites: individual (HD 189733b, HD 209458b)

1. Introduction

Hot Jupiters provide a unique laboratory for testing our
understanding of planetary atmospheres. Showman & Guillot
(2002) were the first to consider the atmospheric circulations of
these planets. Using numerical simulations, Showman &
Guillot predicted that hot Jupiters should develop strongly
superrotating equatorial jets, with wind speeds up to several
kilometers per second. This prediction was confirmed by
subsequent observations, which showed that the thermal
emission peak on many hot Jupiters is shifted eastward from
the substellar point, consistent with heat being advected
downwind by a superrotating jet (e.g., Knutson et al. 2007;
Crossfield et al. 2010).

More recent observations have started to directly constrain
the wind speeds of these jets. High-resolution transmission
spectra have found Doppler shifts in molecular absorption lines
for HD 209458b (Snellen et al. 2010) as well as HD 189733b
(Louden & Wheatley 2015; Wyttenbach et al. 2015; Brogi
et al. 2016). The significant (∼several km s−1) blueshifts
detected for both planets imply rapid dayside-to-nightside
winds that are broadly consistent with the wind speeds
predicted by a range of numerical simulations (Showman &
Guillot 2002; Showman et al. 2009; Heng et al. 2011a;
Showman et al. 2013; Komacek et al. 2017).

Although it is qualitatively understood why hot Jupiters
develop equatorial jets, there is still no general theory that
explains the jets’ magnitude. Hot Jupiters are very likely tidally
locked. This orbital spin state creates a strong day–night
forcing which excites standing waves that flux angular
momentum toward the equator and drive equatorial super-
rotation (Showman & Polvani 2011). The strength of super-
rotation should therefore depend on the ratio between
horizontal wave propagation and radiative cooling timescales
(Koll & Abbot 2015; Komacek & Showman 2016; Zhang &

Showman 2017). This basic expectation is complicated,
however, by results that show that the jet’s state depends on
both horizontal standing waves and vertical eddies (Tsai
et al. 2014; Showman et al. 2015), and it is still unclear how the
two mechanisms jointly determine the jet’s magnitude.
In this paper, we constrain the wind speeds of hot Jupiters by

modeling their atmospheric circulations as planetary heat
engines. The utility of this approach has previously been
demonstrated for hurricanes on Earth (Emanuel 1986) and
rocky exoplanets (Koll & Abbot 2016). Atmospheric circula-
tions can be considered as heat engines because parcels of fluid
tend to absorb heat at a high temperature (e.g., on the dayside
of a hot Jupiter) and emit heat at a low temperature (on the
nightside). The differential heating and cooling allows parcels
to generate work, and thus kinetic energy, which in steady state
has to be balanced by the dissipation of kinetic energy via
friction.
In contrast to hurricanes and the atmospheres of rocky

exoplanets, however, it is still poorly understood how hot
Jupiters dissipate kinetic energy (Goodman 2009). Potential
mechanisms include magnetic drag in partially ionized atmo-
spheres (Perna et al. 2010; Menou 2012; Rauscher &
Menou 2013; Rogers & Showman 2014), shocks in supersonic
flows (Li & Goodman 2010; Heng 2012; Perna et al. 2012;
Dobbs-Dixon & Agol 2013; Fromang et al. 2016), and
turbulence induced by fluid instabilities such as the Kelvin–
Helmholtz instability (Li & Goodman 2010; Fromang
et al. 2016).
Our goal is to evaluate these proposed mechanisms and to

test which of them are able to match current observations. To
do so, we first describe our numerical simulations (Section 2).
Next, we develop the heat engine framework and test it with the
numerical simulations (Section 3). Finally, we apply our
framework to observations (Section 4) and state our conclu-
sions (Section 5). Our results show that current observations
favor shear instabilities and/or shocks as the dominant drag
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mechanism for HD 189733b, and motivate extending similar
observations across a wider range of planets.

2. Numerical Simulations

We compare our theory with the GCM simulations that were
previously described in Komacek et al. (2017). In summary, the
simulations use the MITgcm (Adcroft et al. 2004) to solve the
atmospheric fluid dynamics equations coupled to double-gray
radiative transfer with planetary parameters relevant for a
typical hot Jupiter, HD 209458b. The double-gray approx-
imation divides the spectrum into an incoming collimated and a
thermal diffuse part. The absorption coefficients were chosen to
match more detailed radiative transfer calculations; the
absorption coefficient for incoming stellar radiation is set to a
uniform value, 4 10SW

4k = ´ - m−2 kg−1, the thermal absorp-
tion coefficient varies approximately with the square root of
pressure, 2.28 10LW

6k = ´ - m−2 kg−1 p 1 Pa 0.53´ ( ) , where
the power-law exponent comes from fitting the analytic model
of Parmentier & Guillot (2014) and Parmentier et al. (2015) to
radiative transfer models with realistic opacities. With these
values, the photosphere (where the optical thickness equals
unity) for stellar radiation lies at about 0.23 bar and the
photosphere for thermal radiation lies at 0.28 bar.

The model’s resolution is C32 in the horizontal (roughly
corresponding to a global resolution of 128× 64 in longitude
and latitude) and 40 levels in the vertical, which are evenly
spaced in log pressure, with the uppermost layer extending to
zero pressure. Table 1 summarizes the physical and numerical
parameters used in our suite of models.

Most GCMs do not explicitly resolve the mechanisms that
are thought to dissipate kinetic energy in hot-Jupiter atmo-
spheres, such as Lorentz drag or shocks (see Section 1). Our
GCM includes two potential sources of drag, which can be
thought of as parametrizing these mechanisms. First, the
simulations include a Rayleigh drag that linearly damps winds
over a prescribed timescale dragt . Simulations with 10 sdrag

5t
use a timescale that is spatially uniform. Simulations with

10 sdrag
5t > additionally include a “basal” drag term that

allows the model to equilibrate within reasonable integration
times. The basal drag strength increases as a power law with
pressure, from no drag at 10 bar to a timescale of 10 days at
200 bar (Komacek & Showman 2016). Second, to enforce
numerical stability, the model includes a fourth-order Shapiro
filter that damps wind and temperature variations at the model
grid scale. The Shapiro filter acts as numerical drag at small
spatial scales and, in simulations without any other sources of
drag, eventually helps to equilibrate the kinetic energy of the
flow. The potential issue with relying on numerical drag is that
it relies on parameters that are generally chosen for modeling
convenience, not because they are physically motivated. This
raises the question of which source of drag is dominant in our
simulations.

We find that numerical drag can play a key role in our GCM
simulations. Although the potential importance of numerical
drag has repeatedly been pointed out in the hot-Jupiter
literature (Goodman 2009; Li & Goodman 2010; Thrastarson
& Cho 2010; Heng et al. 2011a; Liu & Showman 2013; Mayne
et al. 2014; Polichtchouk et al. 2014; Cho et al. 2015), no work
has previously quantified its effect relative to explicitly
parametrized drag. Figure 1 compares the rates at which our
GCM is dissipating kinetic energy via numerical drag from the
Shapiro filter versus the dissipation rate due to Rayleigh drag as

a function of pressure. Figure 1(a) shows the relative global
root-mean-square dissipation due to numerical drag versus
Rayleigh drag, while Figure 1(b) shows the absolute global
root-mean-square value of kinetic energy dissipated by both
drag mechanisms. We compute the root-mean-square change in
kinetic energy as K t K trms

2 1 2¶ ¶ = á ¶ ¶ ñ( ) ( ) , where the
angle brackets denote an area average. We find that all
simulations with moderately long Rayleigh drag timescales,

10 sdrag
6t , dissipate most kinetic energy through numer-

ical drag.
Moreover, even in the simulations with the strongest

Rayleigh drag (yellow curve in Figures 1(a), (b)) numerical
drag dominates the dissipation of kinetic energy near the top
and bottom of the model domain. Although the model includes
a basal drag, we find that it contributes less toward kinetic
energy dissipation than numerical drag near the bottom of the
domain. This is likely due to the Shapiro filter acting as a
sponge for waves that are excited in the upper atmosphere.
However, wind speeds at pressures greater than 10 bar are
small, so kinetic energy dissipation near the domain bottom
contributes relatively little to the overall dissipation (see
Figure 1(b)).

Table 1
Range of Physical and Numerical Parameters Used in Our Suite of Simulations

Physical Parameter Parameter Value(s) Unit

Equilibrium temperature
Teq

500, 1000, 1500, 2000,
2500, 3000

K

Visible absorption
coefficient SWk

4 10 4´ - m−2 kg−1

Thermal absorption
coefficient LWk

2.28 10 6´ - p 1 Pa 0.53´ ( ) m−2 kg−1

Drag timescale dragt 10 , 10 , 10 , 10 , 10 ,3 4 5 6 7 ¥ s

Gravity g 9.36 m s 2-

Rotation rate Ω 2.078 10 5´ - s 1-

Planet radius a 9.43 107´ m

Heat capacity Cp 1.3 104´ J kg K1 1- -

Specific gas constant R 3700 J kg K1 1- -

Numerical parameter Parameter Value(s) Unit

Horizontal resolution (Nx) C16(64), C32 (128), C64 (256) n/a

Vertical resolution Nz 40 n/a

Timestep dt 1.5, 7.5, 15 s

Shapiro filter timescale
dtnum

1.5, 7.5, 15, 25 s

Shapiro filter length
scale l a N2 xnum p=

a2 64p , a2 a 128, 2 256p p m

Shapiro filter order n 4 n/a

Note. Numerical parameters in bold show fiducial values used for our main
suite of simulations with varying physical parameters, and physical parameters
in bold highlight fiducial values used for our secondary suite of simulations
with varying numerical parameters. Numbers in parentheses for horizontal
resolution show the approximate number of horizontal grid points.
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Though numerical drag is a dominant factor in how our
GCM dissipates kinetic energy, atmospheric circulations
additionally depend on how the GCM resolves the angular
momentum budget. We do not expect a priori that numerical
effects will dominate the global angular momentum budget,
because the Shapiro filter is designed to not affect large-scale
flow (Shapiro 1971). To check this insight, we explicitly
compute the change in zonal angular momentum by numerics
and Rayleigh drag as in Peixoto & Oort (1992):

M

t

u

t
a cos . 1f

¶
¶

=
¶
¶

( ) ( )

In Equation (1),M is the zonal angular momentum per unit mass,
M t¶ ¶ is the rate of change of angular momentum, which we

compute in our simulations from the acceleration u t¶ ¶ due to
the Shapiro filter or Rayleigh drag, a is the planetary radius, and
f is latitude. Rayleigh drag always acts as a sink of angular
momentum whereas the Shapiro filter can accelerate parts of the
flow so we compare both terms via the root-mean-square change
in momentum, M t M trms

2 1 2¶ ¶ = á ¶ ¶ ñ( ) ( ) , where the angle
brackets as before denote an area average.
We find that numerical effects play a relatively minor role in

the zonal angular momentum budget. Figure 2 shows the
change in angular momentum from numerics and Rayleigh
drag relative to the change in angular momentum from the
Coriolis force, as a function of pressure. We compare both
terms against the Coriolis force because it is a small term in the
zonal momentum budget of hot Jupiters due to their slow
rotation and winds that peak at the equator (Showman &
Polvani 2011; Showman et al. 2015). In relative terms, we find
that the numerical change in angular momentum becomes

Figure 1. Kinetic energy dissipation in many of our GCM simulations is
dominated by numerical drag. Panel (a) shows the ratio between the global
root-mean-square rate of kinetic energy dissipation by numerical drag,
dK dt num,rms( ) , vs. the global root-mean-square rate of kinetic energy
dissipation by explicit Rayleigh drag, dK dt Rayleigh,rms( ) , as a function of
pressure for models with an equilibrium temperature of T 1500 Keq = . The
colored lines show simulations with different Rayleigh drag timescales, with
darker lines representing longer drag timescales. The dashed vertical line shows
the divide between dissipation dominated by numerical drag (to the right of the
line) and Rayleigh drag (to the left). Except for short Rayleigh drag timescales,

10 sdrag
4t , numerical dissipation dominates. Note that the case with

dragt = ¥ still includes basal drag, so the ratio of numerical to Rayleigh drag
dissipation is not infinite at depth. Panel (b) shows the absolute contribution of
Rayleigh drag and numerical effects to the kinetic energy dissipation. Only a
subset of the simulations are shown for visual convenience. The dissipation rate
increases with decreasing pressure, largely due to the stronger wind speeds at
lower pressures.

Figure 2. Numerical effects are small relative to physical terms in the zonal
angular momentum budget of our simulations. This plot shows the global root-
mean-square of the change in zonal momentum due to Rayleigh drag (solid
lines) and numerics (dashed lines) relative to the change in zonal angular
momentum due to the Coriolis force (i.e., rotation). Plots have the same color
scheme as in Figure 1. For visual convenience, we only show a subset of all
simulations. The acceleration from numerics is smaller than either the Coriolis
force (if 10 sdrag

5t ) or Rayleigh drag (if 10 sdrag
4t ). As a result, numerics

do not significantly affect the angular momentum budget of our simulations.
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larger than Rayleigh drag once 10 sdrag
5t > (blue curves).

However, in absolute terms, the momentum change from
numerics remains one to two orders of magnitude smaller than
the Coriolis term at most pressure levels. We conclude that
numerical effects likely do not play a dominant role in the
angular momentum budget of our simulations.

Given that many published simulations of hot Jupiters do not
include Rayleigh drag, our results indicate that many of these
simulations rely on numerical drag to equilibrate kinetic
energy. Further work is needed to ensure that this kind of
dissipation in hot-Jupiter GCMs is physically motivated and
that its effects are robust with respect to changes in numerical
parameters. At the same time, the angular momentum budget in
our simulations is not dominated by numerics. We therefore
expect that GCMs are robust in simulating the qualitative
features of hot-Jupiter circulations (e.g., equatorial jets), but
that the absolute kinetic energy and thus wind speeds in these
simulations might be affected by numerical details. Our results
agree with previous work, which has shown that the
equilibrated flows in hot-Jupiter GCMs largely conserve
angular momentum, are independent of initial conditions, and
the magnitude of winds is only weakly sensitive to changes in
numerical parameters (e.g., Heng et al. 2011b; Liu &
Showman 2013; Mayne et al. 2014). In the remainder of this
paper, we focus on existing GCMs to test our theoretical
framework. To do so, we develop a theory in the next section
that can account for both explicit and numerical drag.

3. Hot Jupiters as Heat Engines

In steady state, the rate W at which a heat engine performs
work is given by

W Q, 2h= ( )

where η is the engine’s thermodynamic efficiency and Q is the
rate at which the engine absorbs heat.

First, the heating rate Q is equal to the average absorbed
stellar flux,

Q T , 3eq
4s= ( )

where Teq is the planetary equilibrium temperature.
Second, we constrain the work output rate W. We assume

that work goes entirely toward generating and dissipating
kinetic energy. If Rayleigh drag dominates, the rate at which
kinetic energy is dissipated equals

v
W

dp

g
, 4Rayleigh

2

drag
ò t

= ´ ( )

where v is the velocity vector and the angle brackets denote an
area average. If numerical drag dominates, kinetic energy is
dissipated by the Shapiro filter, which damps the highest
wavenumber components of the flow. Because the highest
wavenumber in the GCM is set by the model’s grid spacing

xD , we scale the Shapiro filter’s damping timescale as
x Ut ~ D . This means the rate at which numerical drag

dissipates kinetic energy is equal to

W
U

x U

p

g

U

x

p

g
. 5num

2 3
~

D
´ =

D
´ ( )

Third, we constrain the efficiency η. Previous work on
hurricanes and the atmospheres of rocky planets constrained

this quantity by modeling atmospheric circulations as Carnot
cycles (Emanuel 1986; Koll & Abbot 2016). Unfortunately, it
is difficult to argue that hot Jupiters should also resemble
Carnot cycles. In a Carnot cycle, parcels of fluid expand and
contract adiabatically between heating and cooling. This model
is physically motivated by the fact that hurricanes and rocky
planets undergo convection, so fluid parcels move rapidly and
quasi-adiabatically. In contrast, the upper atmospheres of hot
Jupiters are strongly irradiated by their host stars. The
irradiation creates a stable stratification and suppresses
convection, which means the vertical temperature structure is
approximately in radiative equilibrium and lapse rates are small
(Iro et al. 2005; Guillot 2010). As the temperature profiles from
a reference simulation in Figure 3 illustrate, temperatures are
indeed far from adiabatic, which underlines that the Carnot
cycle is a poor model for hot Jupiters.
Here we constrain the efficiency η by modeling hot Jupiters

as Ericsson cycles (McCulloh 1876). The Ericsson cycle is
shown in Figure 3: a parcel of fluid starts deep in the nightside
atmosphere (Figure 3, point a). It moves at constant pressure
toward the dayside (b), where the stellar heating causes it to
rise (c). The parcel then moves to the nightside (d), before
cooling and sinking back to its starting position (a). Even
though the assumption of isothermal vertical motions is an
idealization, Figure 3 shows that the Ericsson cycle provides a
physically motivated model for hot Jupiters.
The efficiency of the Ericsson cycle is given by

Q

Q

Tds

Tds
. 6

a

c

a

c
ò ò

h
d

d
= =

∮ ∮
( )

Here Qd is a change in a parcel’s heat content, and ds is a
change in entropy. From the first law of thermodynamics,

Tds c dT
dp

c dT RTd pln , 7p p
r

= - = - ( )

Figure 3. Diagram of the Ericsson cycle, overlaid on dayside- and nightside-
averaged temperature profiles of a reference simulation (T 1500 K,eq dragt= =
10 s6 ) and an adiabatic profile. The Ericsson cycle works as follows: a parcel of
fluid starts at depth on the nightside (a), moves toward the dayside (b), where it
rises (c), moves back toward the nightside (d), and sinks (a). We assume that
rising and sinking motions (b–c, d–a) are isothermal and that motions between
hemispheres (a–b, c–d) are isobaric. The isothermal assumption is motivated by
the GCM profiles, which show that hot Jupiters are much closer to vertically
isothermal than to adiabatic.
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where we have used the ideal gas law in the second step. We
can then evaluate the numerator Tds∮ as

c dT RTd p c dT RTd p

c T T RT p p

c T T RT p p

R T T p p

ln ln ,

ln

ln ,

ln .

8

a

b

p
b

c

c

d

p
d

a

p

p

day night day lo hi

night day night hi lo

day night hi lo

ò ò ò ò- + -

= - -
+ - -

= -

( ) ( )
( ) ( )

( ) ( )
( )

Similarly, the denominator Tds
a

c
ò in Equation (6) is

c dT RTd p

c T T RT p p

ln ,

ln . 9
a

b

p
b

c

p day night day hi lo

ò ò-

= - +( ) ( ) ( )

The ratio of these two terms gives the efficiency, which we
write as

p p

p p

ln

ln
. 10

T T

T
R c

T T

T
R c

hi lo

hi lo

p

p

day night

day

day night

day

h =
´

+

-

-

[( ) ]

[( ) ]
( )

Importantly, the efficiency η is always lower than the
efficiency of a Carnot cycle, T T TCarnot day night dayh = -( ) ,
which is the maximum efficiency a heat engine can reach.
The lower efficiency arises because heat is radiated to space as
a parcel passes from the dayside to the nightside (c–d). If,
instead, this heat could be stored and used later to heat up the
parcel as it passes back from the nightside to the dayside (a–b),
the Ericsson cycle’s efficiency would equal that of a Carnot
cycle.4

As an example, we consider the efficiency of WASP-18b,
whose phase curve is consistent with zero heat redistribution
from dayside to nightside (Maxted et al. 2013). We assume
that a parcel of fluid moves two scale heights in the vertical
every time it traverses the planet horizontally,5 so

p p R cln 2R c
phi lo

p ~[( ) ] . In this case, WASP-18b’s Carnot
efficiency would be unity, 1Carnoth = , whereas its actual
efficiency is smaller by a factor of three, 0.36h = . Hot Jupiters
can therefore be thought of as comparable to, but less efficient
than, ideal Carnot engines. Their efficiency can be reduced
even further by molecular diffusion and irreversible phase
changes (Pauluis & Held 2002), so Equation (10) should be
considered an upper limit.

We are now able to test the extent to which hot Jupiters
resemble heat engines. A key prediction of our theory is that
wind speeds are sensitive to whether winds are damped by
Rayleigh drag or numerical drag. Based on Equations (2)–(5),
we expect that winds should scale as the square root of the
modified heat input for Rayleigh drag, U Tdrag eq

4 1 2t hsµ ( ) ,
whereas they should scale as the one-third power of the heat
input for numerical drag, U x Teq

4 1 3hsµ D( ) . To compare both

scalings in a single plot and because xD depends on numerical
parameters, we first use the quantity Tdrag eq

4t hs .
Figure 4(a) shows that our simulations indeed exhibit a

dichotomy between Rayleigh and numerical drag. The x-axis
shows the scaled heat input Tdrag eq

4t hs , while the y-axis shows the

root-mean-square wind speed, U p u v dprms
1 2 2 1 2
ò= á + ñ-( ) ,

where u and v are the zonal and meridional wind speeds and
where we average horizontally and over the meteorologically
active region above p=1 bar (see Figure 1). To evaluate η, we
use the dayside and nightside brightness temperatures that would
be seen by an observer and assume that a parcel crosses two scale
heights, p p R cln 2R c

phi lo
p ~[( ) ] .

We find that wind speeds in most strongly damped
simulations with 10 sdrag

5t increase according to Rayleigh
drag (Figure 4(a)). In contrast, winds in simulations with

10 sdrag
6t increase more slowly and approximately follow

the one-third slope predicted for numerical drag. A notable
exception to the Rayleigh scaling is given by the hottest
simulations with 10 sdrag

3t = (yellow dots), in which winds
increase with a one-third slope instead. This is due to the
relative increase of numerical dissipation in strongly damped
simulations. At 10 sdrag

3t = , winds are so weak that Rayleigh
drag, which is proportional to wind speed, becomes small
relative to numerical drag in parts of the model domain.
Similarly, our numerical scaling performs worst for simulations
with 10 sdrag

7t = (purple dots), in which wind speeds flatten
out at high Teq even though the heat input keeps increasing.
Given that our theory performs well in the strongly damped
limit, deviations from it are likely due to inaccuracies in our
numerical scaling, which we discuss below.
We now constrain the wind speeds inside a hot-Jupiter

atmosphere. If the atmospheric circulation is primarily
balancing Rayleigh drag, then wind speeds should scale as

U k T
g

p
, 11Rayleigh 0 drag eq

4
1 2

t hs=
⎛
⎝⎜

⎞
⎠⎟ ( )

whereas if the circulation is balancing numerical drag, then
winds should scale as

U k x T
g

p
. 12num 1 eq

4
1 3

hs= D
⎛
⎝⎜

⎞
⎠⎟ ( )

Here k0 and k1 are fitting constants of the order of unity that
account for various approximations, in particular, our assump-
tion that temperature profiles are isothermal. We use k0= 0.3
and k1= 1.1 to match the simulations at T 3000eq = K with

10 sdrag
4t = and dragt = ¥, respectively. We combine

Equations (11) and (12) by demanding that a GCM’s work
output equals whichever is stronger, Rayleigh or numerical
drag, so

U U Umin , . 13Rayleigh num= ( ) ( )

To evaluate Equation (12), we use the model’s grid spacing at
the equator x a2 128pD ~ , where a is the planetary radius.
We find that our theory matches the GCM simulations well.

Figure 4(b) compares our predicted winds with the simulated
root-mean-square wind speeds Urms, defined above. As in
Figure 4(a), we find that our scaling works best in the strongly
damped limit, particularly for the simulations with dragt =
10 10 s4 5– , which our scaling matches to better than 33%. These

4 If the heat lost during (c–d) could be captured and used to heat the parcel during
(a–b), then Equation (9) becomes Tds Tds RT p pln

a

c

b

c
day hi loò òd d= = ( ) and

Equation (10) becomes T T Tday night dayh = -( ) .
5 A parcel travels a vertical distance d Wa

Uz ~ , where a is the planet radius and
W is the vertical wind speed. Using characteristic values from a simulation with
T 1500 Keq = and no drag, W 10 ms 1~ - ,U 10 ms3 1~ - , and a aHD 209458b= ,
we find d H2vert ~ , where H is the scale height. In agreement with this
estimate, we mapped streamfunctions in our simulations and found that the
vertical extent of both zonal and meridional flows is normally confined to 1 3~ –
scale heights.

5

The Astrophysical Journal, 853:133 (9pp), 2018 February 1 Koll & Komacek



are also the simulations in which numerical drag is not yet
dominant, and for which we scale winds using Equation (11).

Our scaling additionally matches the weakly damped
simulations that are dominated by numerical drag
( 10 sdrag

5t > ), even though the fit is less good than in the
strongly damped regime. This is likely due to the approxima-
tions we made in deriving Equation (12). To test this point, we
performed additional simulations in which we varied the model
resolution and timestep. We found that Equation (12) over-
predicts the sensitivity of wind speeds to numerical resolution
(see the Appendix). Further work is needed to understand
exactly how hot-Jupiter simulations equilibrate through num-
erical drag.

Nevertheless, given that our scaling captures the basic
dependence of wind speeds on a planet’s heat input
(Figure 4(a)) and additionally matches the GCM to better than
a factor of two even when the models are dominated by
numerical drag (Figure 4(b)), we argue that the main
shortcoming in Figure 4 is due to our imperfect description
of numerical drag, not due to the heat engine framework. We
therefore sidestep the intricacies of numerical simulations and
in the last section apply the heat engine framework directly
to data.

4. Evaluating Drag Mechanisms with Observations

In this section, we use the heat engine framework to predict
how strong winds would have to be to balance the two main
proposed drag mechanisms on hot Jupiters, namely magnetic
drag and shear instabilities. We then evaluate our predictions
by comparing them to observed wind speeds obtained from
Doppler spectroscopy.

For magnetic drag, we combine Equation (11) with a
kinematic scaling for the effective Lorentz drag timescale
(Perna et al. 2010; Menou 2012; Rauscher & Menou 2013). To

be consistent with Section 3, we use k0= 0.3 in Equation (11).
The drag timescale is

H

B

4
, 14e

mag 2
t

p r
= ( )

where B is the dipole field strength, He is the atmospheric
electrical resistivity, and ρ is the gas density. The electrical
resistivity is inversely related to the ionization fraction xe,
H T xe eµ , where xe is calculated from the Saha equation
(Perna et al. 2010). For hot Jupiters, the ionized gas is largely
potassium, for which we assume a solar abundance.6 We
expect that most dissipation occurs somewhere between the
upper levels probed by Doppler observations (∼10−3 bar) and
the photosphere, so we calculate winds over the range

p10 1 bar3  - . Note that Equation (14) does not include
induced atmospheric fields. In strongly ionized atmospheres,
induced fields can be significant (Rogers & Showman 2014;
Rogers & Komacek 2014; Rogers & McElwaine 2017), which
means winds could decrease faster with equilibrium temper-
ature than implied by Equation (14).
For shear instabilities, we predict wind speeds analogous to

Equation (12). We assume that instabilities have a spatial extent
L and damp the flow over a timescale L/U, so wind speeds
scale as

U k L T
g

p
. 15shear 1 eq

4
1 3

hs=
⎛
⎝⎜

⎞
⎠⎟ ( )

Figure 4. Our heat engine scaling captures the strength of wind speeds across a wide range of hot-Jupiter GCMs. (a) Hot-Jupiter simulations fall into two regimes in
which bulk wind speeds either scale following Rayleigh drag or numerical drag (black lines show the two different slopes). (b) Our combined scaling predicts the
GCM wind speeds in both regimes. The y-axis corresponds to the root-mean-square wind speed averaged over pressures less than 1 bar in different hot-Jupiter
simulations, the x-axis is the wind speed predicted from Equation (13). Each dot represents a different GCM simulation with varying T 500 3000 Keq = – , where
different colors represent different Rayleigh drag timescales used in the simulations. The black line indicates a 1:1 fit between theory and simulations. Circles show
simulations for which we use the Rayleigh drag scaling (Equation (11)), squares show simulations for which use the numerical drag scaling (Equation (12)). Note that,
to display simulations without Rayleigh drag (blue dots), for which dragt = ¥, we use 5 10 sdrag

6t = ´ in the left panel instead.

6 For a planet with the equilibrium temperature of HD 209458b,
T 1450 Keq = , the ionization fraction is x 4.4 10e

11= ´ - , which is much
smaller than the solar abundance of neutral potassium and thus consistent with
the approximations made in Perna et al. (2010). The corresponding magnetic
resistivity is H 2.0 10 cm se

14 2 1= ´ - .
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For consistency, we use k1= 1.1, as in Section 3. We note that
Doppler observations probe the upper atmosphere only whereas
our theory constrains large-scale dissipation and thus should be
representative of the bulk flow. Observable wind speeds could
potentially deviate from the bulk flow in atmospheres with
large vertical shear. Nevertheless, we expect that the compar-
ison between our theory and observations is warranted, given
that a wide range of hot-Jupiter GCMs produce equatorial jets
that are strongly vertically coherent (Showman et al. 2009;
Heng et al. 2011a; Liu & Showman 2013; Mayne et al. 2014;
Polichtchouk et al. 2014; Cho et al. 2015).

Figure 5 compares the observed wind speeds of
1.9 km s0.6

0.7 1
-
+ - for HD 189733b (Louden & Wheatley 2015)

and 2 1 km s 1 - for HD 209458b7 (Snellen et al. 2010) with

our theoretical predictions for the two drag mechanisms.8 To
indicate that our scalings are not exact, the colored envelopes in
Figure 5 reflect the dominant sources of uncertainty in our
scalings. For magnetic drag, the uncertainty is dominated by
the pressure at which dissipation is assumed to occur. For shear
instabilities, we use the remaining mismatch between theory
and GCM simulations9 in Section 3. Because the magnetic drag
timescale is relatively sensitive to both temperature and
pressure, we additionally explored the impact of different
pressure–temperature profiles, and find that most features in
Figure 5 are robust (see the Appendix).
First, we find that the observations for HD 189733b can only be

matched with a very strong dipole field of 100 G~ (Figure 5, top
panel). Second, matching the observations for HD 209458b also
requires a strong dipole field, on the order of 30 G . Such a
dipole is broadly in agreement with predictions from dynamo
scaling laws for HD 209458b (Yadav & Thorngren 2017), which
predict a dipole component at the poles of 50 G~ (R. Yadav
2017, private communication). We conclude that magnetic drag is
a plausible drag mechanism for HD 209458b. In addition, given
the potentially large uncertainties in both the Lorentz drag
timescale (Equation (14)) and dynamo scaling laws, magnetic drag
cannot be ruled out for HD 189733b, even though the required
field strengths would be larger than currently expected. Further
theoretical work could help reduce these uncertainties. Our result
that Lorentz forces are potentially unimportant for HD 189733b
but may be important for HD 209458b therefore agrees with
previous estimates that magnetic drag could become significant at
T 1400 Keq  (Menou 2012; Rogers & Komacek 2014).

In contrast to magnetic drag, we find that shear instabilities
are a plausible mechanism to match the observations of both
planets (Figure 5, bottom panel). Our scaling predicts that wind
speeds increase moderately with Teq, in agreement with the
observations. We also find that the vertical scale height H,
which has been proposed as the characteristic scale of Kelvin–
Helmholtz instabilities in hot Jupiters (Goodman 2009; Li &
Goodman 2010), would yield wind speeds that are an order of
magnitude too slow to match the observed wind speeds.
Instead, a damping length a2p , where a is the planet radius, is
needed to match the observed wind speeds. Such a damping
length could be either due to a horizontal Kelvin–Helmholtz
instability or due to the steepening of day–night standing waves
into shocks. We note that the shock-resolving simulations in
Fromang et al. (2016) also found a dominant scale for
horizontal shear instabilities of L a2 5p~ , and are thus
consistent with our results. The upper end of our wind speed
estimate is additionally consistent with the bulk flow becoming
supersonic, and thus prone to dissipation via shocks (Figure 5).

5. Conclusion

We describe the large-scale atmospheric dynamics of hot
Jupiters by modeling them as planetary heat engines. Hot
Jupiters are comparable to, but less efficient than, ideal Carnot
engines because parcels lose heat to space as they move
between dayside and nightside. Our theory successfully
captures the intensity of winds in a large number of hot-Jupiter
simulations (Figure 4). Remaining differences between theory

Figure 5. Top: solid lines show the predicted wind speeds from Equation (11),
assuming dissipation is caused by magnetic drag. Colored envelopes indicate
that our theoretical scalings are subject to uncertainty. The uppermost line for
each magnetic field strength shows the wind speed predicted for dissipation
occuring at 1 bar, the lower line shows the wind speed predicted for dissipation
occuring at 10−3 bar, and the colored envelope shows intermediate pressures.
Dots show wind speeds constrained via Doppler spectroscopy for HD 189733b
and HD 209458b (Snellen et al. 2010; Louden & Wheatley 2015). Bottom:
solid lines show the predicted wind speeds from Equation (15), assuming
dissipation is caused by shear instabilities. Colored envelopes here indicate our
estimated uncertainty for our heat engine scaling (see the text). Winds faster
than the speed of sound (dashed black line—we assume solar composition and
that atmospheric temperature is equal to the equilibrium temperature) can also
develop shocks. Magnetic drag can match both observations, but doing so
requires a large dipole field ( 100 G ) for HD 189733b. In contrast, shear
instabilities and/or shocks can match the observed wind speeds of both planets.

7 Note that these are1s error bars and the detection itself was only significant
at 2s.

8 We assume p=1 bar, 0.2h = , and g 23 m s 1= - , with the last two values
motivated by the phase-curve amplitude and mass–radius measurements of HD
189733b.
9 We conservatively use 100% uncertainty (a factor of two) for winds
predicted with Equation (15).
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and simulations are likely due to our imperfect understanding
of numerical dissipation in the simulations, instead of a
fundamental shortcoming in our theory.

Applying our theory to observations, we find that either the
magnetic dipole field of HD 189733b could be stronger than
current estimates suggest, or that its atmosphere is dissipating
kinetic energy via shear instabilities and/or shocks. For HD
209458b, our results indicate that both drag mechanisms can
plausibly match the observations.

Looking toward future observations, we expect that magnetic
drag should become dominant on hotter exoplanets with Teq >
1400 K (Figure 5). Wind speeds on these planets should follow a
different trend with equilibrium temperature than wind speeds in
colder atmospheres. As a result, we propose that more Doppler
measurements over a wider range of planets could reveal a
diversity of drag mechanisms at work in hot-Jupiter atmospheres.

We thank Vivien Parmentier, Dorian Abbot, and Malte
Jansen for insightful feedback on an early draft. We also thank
the reviewer for helpful comments that significantly improved
this manuscript. This work benefited from the Exoplanet
Summer Program in the Other Worlds Laboratory (OWL) at
the University of California, Santa Cruz, a program funded by
the Heising-Simons Foundation. D.D.B.K. was supported by
a James McDonnell Foundation postdoctoral fellowship. T.D.
K. was supported by a NASA Earth and Space Science
fellowship.

Appendix A
Sensitivity to Numerical Parameters

Our scalings suggest that, for simulations that are dominated
by numerical drag, large-scale wind speeds should be sensitive
to horizontal resolution (Equation (12)). To explore this
possibility, we performed additional simulations in which we
did not include any Rayleigh drag (including no basal drag) and
kept the equilibrium temperature fixed to 1500 K, while
varying different numerical parameters in the model. The two
parameters we considered are the model’s horizontal resolution
and its timestep dt. Table 1 summarizes the numerical
parameter variations for this suite of simulations. The Shapiro
filter timescale numt was always kept equal to the timestep.

Figure 6 shows that wind speeds are largely independent of
the GCM timestep. We only find a 3% variation in the rms
wind speed, while changing dt (and thus also numt ) over an
order of magnitude. Given that Equation (12) predicts that wind
speeds should be independent of dt, this implies a general
agreement between our theory and our GCM results.

In addition, Figure 6 shows that large-scale wind speeds are
less sensitive to horizontal resolution than our scaling would
suggest. Following Equation (12), wind speeds should scale
with resolution as U Nx

1 3µ - , where Nx is the number of
horizontal grid points. Our GCMs do not follow such a scaling
and instead we find that the wind speed is independent of
resolution to 10% over a factor of 4 change in horizontal
resolution, going from C16 to C64. One potential explanation
is that our weakly damped simulations develop a direct
turbulent cascade of energy to smaller scales, so that the
large-scale kinetic energy of the flow becomes insensitive to
the dissipation scale. Another explanation is that hot-Jupiter
GCM simulations are prone to developing shocks (see

Rauscher & Menou 2010; Perna et al. 2012; Dobbs-Dixon &
Agol 2013; Fromang et al. 2016), in which case the large-scale
kinetic energy might be less sensitive to how well the shock is
being resolved than Equation (12) suggests.
Our result is consistent with the suggestion of Heng et al.

(2011a) that changes in numerics can change wind speeds in
GCMs at the 10% level, but shows that our scaling does not
adequately capture the dependence of large-scale GCM wind
speeds on numerical resolution. As a result, a better description
of numerical drag than our scaling is needed to capture how
hot-Jupiter GCMs converge with numerical drag. Nevertheless,
although our numerical scaling overpredicts the sensitivity to
numerical parameters, it does correctly predict the sensitivity to
physical parameters, such as equilibrium temperature (see
Figure 4, left panel).

Appendix B
Sensitivity of Magnetic Drag Timescale to

Temperature–Pressure Profile

Because the magnetic drag timescale is highly sensitive to
temperature (Perna et al. 2010; Menou 2012; Rauscher &
Menou 2013), we explored the impact of the assumed
temperature–pressure profile on our results in Section 4. In
Section 4, we assume an isothermal atmosphere, here we
constrain the vertical temperature structure using the analytical
solutions from Guillot (2010) as follows: we use Equation (29)
from Guillot (2010) with parameters similar to those used
in that paper ( 10 cm gLW

2 2 1k = - - , 0.1g = , T 100 Kint = ,

Figure 6. Our scaling for how wind speeds depend on numerical parameters
(Equation (12)) matches the independence of Urms on timestep well, but does
not match the dependence of Urms on grid size. Shown are GCM results for
Urms as a function of horizontal resolution (black dots) and timestep (magenta
dots) from simulations with T 1500 Keq = and no Rayleigh drag. In this set of
simulations, the Shapiro filter timescale numt is kept equal to the timestep.
Dashed lines show our predicted dependence of Urms on timestep (magenta)
and resolution (black), using a value of k1 such that the theory matches the
intermediate GCM point. Equation (12) correctly predicts that the wind speed
is independent of timestep (accurate to the 3% level in our GCMs), but predicts
that the wind speeds should decrease steeply with increasing resolution, which
is not found in our GCM simulations.
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f= 0.25). With these temperature–pressure profiles, we eval-
uate the magnetic drag timescale (Equation (14)) at 1 bar and
10 bar3- , and compute wind speeds following Equation (11).

Figure 7 shows that our conclusions from Section 4 are
robust. The most significant difference in Figure 7 compared to
Figure 5 occurs above T 1500 Keq  , in which wind speeds
increase more slowly with temperature, whereas our scalings at
T 1500 Keq < are affected relatively little. The relatively small
effect of the temperature–pressure profile is largely due to a
trade-off between the effect of pressure and temperature on the
magnetic timescale (Equation (14)). Although He has an
exponential sensitivity to temperature, the absolute value of
temperature varies less than a factor of two between 1 bar and
10 bar3- . This compares to a three order of magnitude change
in pressure, which appears in both density ( pr µ ) and
resistivity (H x pe e

1 1 2µ µ- ) in Equation (14).
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