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Abstract—Two-dimensional magnetic recording (TDMR) is a
promising technology for boosting areal densities using sophisti-
cated signal processing algorithms within a systems framework.
The read/write channel architectures have to effectively tackle
2D inter-symbol interference (ISI), 2D synchronization errors,
media and electronic noise sources as well as thermal asperities
resulting in burst erasures. 1D low-density parity check (LDPC)
codes are well studied to correct large 1D burst errors/erasures.
However, such 1D LDPC codes are not suitable for correcting 2D
burst errors/erasures due to the 2D span of errors. In this paper,
we propose construction of a native 2D LDPC code to effectively
correct 2D burst erasures. We also propose a joint detection-
decoding engine based on the generalized belief propagation
(GBP) algorithm to simultaneously handle 2D ISI, as well as
correct bit/burst errors for TDMR channels. Our work is novel
in two aspects: (a) We propose the construction of native 2D
LDPC codes to correct large 2D burst erasures, (b) We develop
a 2D joint signal detection-decoder engine that incorporates 2D
ISI constraints, modulation code constrains along with LDPC
decoding. The native 2D LDPC code can correct > 20% more
burst erasures compared to the 1D LDPC code over a 2D page
of detected bits. Also, the proposed algorithm is observed to
achieve a signal-to-noise ratio (SNR) gain of > 0.5 dB in bit
error rate (BER) performance (translating to 10% increase in
areal densities around the 1.8 Tb/in2 regime with grain sizes
of 9 nm) as compared to a decoupled detector-decoder system
configuration. The efficacy of our proposed algorithm and system
architecture is evaluated by assessing areal density (AD) gains
via simulations for a TDMR configuration comprising of a 2D
generalized partial response (GPR) over the Voronoi media model
assuming perfect 2D synchronization.

I. INTRODUCTION

Two dimensional magnetic recording (TDMR) aims at im-
proving areal densities beyond 1 Tb/in2 by packing tracks
closely, allowing for 2D inter-symbol interference (ISI) [1].
The effects of bit-size reduction is handled using sophisticated
signal processing algorithms. Along with the random errors
due to channel impairments, we also observe burst erasures in
magnetic recording channels due to thermal asperities, inherent
defects on the recording medium, scratches on the recording
surface or due to external mechanical shocks/vibrations [2].
This requires sophisticated signal detection and strong error
correcting codes (ECC), to meet stringent (sector failure rate
(SFR) ~ 1e-15) reliability requirements.

A. Burst Erasure Correction for TDMR

Low density parity check (LDPC) codes have been widely
studied and are successfully deployed in hard disk drives due

to excellent error correction abilities and amenable to Sili-
con implementation. Systematically constructed quasi-cyclic
(QC) LDPC codes [3] using permutation matrices help in
efficient implementation of the LDPC decoder architectures
using variants of the belief propagation (BP) algorithm. QC
LDPC codes are also observed to give good 1D burst erasure
correction capability [2]. The LDPC decoders are aided by
defect detectors in the read channel for estimating the locations
of erasures which are flag to the LDPC decoder for burst
erasure correction [4], [5].

Matcha and Srinivasa [6] have proposed a 2D defect detector
using 1D QC LDPC codes with various interleaving schemes
for 2D burst erasure correction in TDMR. The 1D LDPC
code is populated into a 2D page in the raster scan order.
Study of ECCs for 2D burst error/erasure correction has been
restricted to algebraic codes that can correct a predefined
pattern of errors with guaranteed error correction ability [7],
[8]. These 2D codes are not suitable for correction of large
burst errors/erasures.

1D burst erasure correction capability of LDPC codes can be
studied using zero-spans in the parity check matrix. Fossorier
[9] has proved that most LDPC codes can achieve burst erasure
correction capability achieving the Roger bound i.e., a (n, k)
code correcting up to (n− k − 1) length of burst erasure.
In this paper, we extend the idea of 1D QC LDPC code
construction and propose a native 2D LDPC code with good
2D burst erasure correction capability. We also study the burst
erasure correction capability of the proposed code using the
zero-spans in the parity check matrix.

B. Efficient Detection and Decoding Architectures

Two-dimensional signal detection algorithms can be broadly
classified into trellis based approaches and those derived using
the generalized belief propagation (GBP) algorithm. Examples
to the trellis class of algorithms include [10]–[12] etc. Trellis
based approaches achieve maximum likelihood performance
locally (i.e., over a multi-rows and columns). Near optimal
2D MAP performance can be achieved by coupling 2D soft
equalizers with iterative multi-row/column detectors within an
iterative set up using 2D generalized partial response (GPR)
targets. On the other hand, the GBP algorithm operates over
an entire 2D page using a region based hierarchy. This algo-
rithm is empirically observed to provide marginal estimates,
close to true marginals at the expense of huge computational



complexity. The state-of-the-art work on coding and detection
for TDMR channels includes coupling soft detectors with 1D
iterative error correcting codes such as LDPC codes to realize
significant SNR gains [6]. It must be noted that the signal
detectors and ECC decoders are optimized separately using
different criterion even though they are coupled through a
turbo loop.

Intuitively, improved performance can be accomplished by
fusing a signal detector with an error correction decoder using
message passing equations over the joint detection-decoder
engine. The message passing equations are derived from
the same cost function, unlike earlier approaches. Kurkoski,
Siegel and Wolf [13] considered the idea of fusing the partial
response channel with parity check constraints to form joint
factor graphs and obtained message passing decoders that
showed better performance than individually optimized detec-
tors and decoders over the perpendicular magnetic recording
channel. In this work, we extend the notion of joint 2D
detection and decoding towards TDMR channels. It must be
noted that there are several significant differences between
the 1D joint detector-decoder engine [13] and the 2D case.
First, we introduce a novel 2D LDPC code with parity check
equations represented by a 3D tensor using a composition
of tiles of permutations matrices in 2D. This code is in-
herently 2D and resilient to 2D burst erasures and random
errors. Second, we introduce the parity check constraints
directly into the formulation of the Gibbs free energy. Using a
constrained optimization framework, we derive the message
passing equations using the same cost function from first
principles by tracking the ancestors of all bits within a region
using ancestors corresponding to the ISI and the parity check
constraints. We study the efficacy of our new algorithm and
joint detector-decoder architecture over individual detector and
decoder engines coupled via a turbo loop. This framework can
be extended for fusing a broad class of signal detectors and
code constraints towards a hybrid architecture.

C. Paper Organization

The paper is organized as follows: In Section II, we propose
a novel 2D LDPC code construction for correcting burst
erasures in TDMR. In Section III, we formulate GBP for
joint detection and decoding by considering 2D ISI and LDPC
code constraints. In Section IV, we present and discuss our
simulation results using a Voronoi based TDMR channel
model. Section V concludes the paper.

II. LDPC CODE FOR 2D BURST ERASURE CORRECTION

LDPC codes are observed to give near Shannon-capacity
performance. These codes are successfully deployed in mag-
netic storage as well as in other storage technologies such as
flash memories and optical storage devices due to amenable
hardware architectures for realizing the algorithms in practice.

For magnetic recording channels, the error correcting code
should be able to correct random errors as well as burst
erasures that are often seen due to thermal asperities [14]. This
requires us to construct LDPC codes that can correct large
burst erasures along with a mix of random errors. Fossorier

[9] proved that LDPC parity check matrices can be written
in burst correction form (BCF) that enables us to correct 1D
burst erasures achieving the Roger bound i.e., a (n, k)-code
that can correct erasures of length up to n − k. However,
the BCF of the parity check matrix has a large number of
parity check equations that makes it unsuitable for practical
decoding using the BP algorithm. QC LDPC codes provide a
regular construction of the LDPC parity check matrix, and are
observed to give a good 1D burst erasure correction perfor-
mance. Other techniques to improve burst erasure correction
capability of LDPC codes include permuting the codeword
using simulated annealing [15], or by studying trapping sets
of the code [16], [17].

For TDMR, we model the burst erasures as a random 2D
connected shape. Algebraic code construction for 2D burst
error correction are studied by Yoon and Moon in [8] and by
Roy and Srinivasa in [7]. However, these codes are designed
for very small burst errors of predefined shapes. Cassuto and
Shokrollahi [18] have have proved existential results of 2D
LDPC codes based on the ideas of array codes. However,
LDPC code construction to correct 2D burst erasures is not
explicitly provided. Matcha and Srinivasa [6] have used 1D
LDPC codes for 2D burst erasure correction by rasterizing 1D
codewords into a 2D page along with interleavers. However,
these codes are not constructed and optimized to correct large
2D burst erasures. In this section, we extend the ideas of 1D
QC-LDPC code construction towards a native 2D LDPC code
that can effectively correct 2D burst erasures than without it.

A. 2D LDPC Code Construction

1D QC LDPC codes [3] are constructed using parity check
matrices realized as a tiling of permutation matrices. If I is an
identity matrix of size p× p and P is a permutation matrix of
the same size, an example parity check matrix with row-weight
r and column weight c is given by

H1D =




I I I · · · I
P P2 P · · · Pr

P2 P4 P6 · · · P2r

...
...

...
. . .

...
Pc−1 P2c−2 P3c−3 · · · Pr(c−1)



. (1)

A typical choice of the permutation matrix is a unit-circular
shift matrix given by

P =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0



. (2)

The powers of P in the construction of H1D give tiles with
different shifts. The choice of the permutation matrix and the
shifts provide us with a variety of QC-LDPC codes.

The burst erasure correction capability of 1D QC-LDPC can
be explained using the zero-span of the code: a code will be
able to correct burst erasure of length l if for every position
j in the codeword, there exists an ith row in H1D such that



hij = 1 and hi(j+1) = hi(j+2) = · · · = hi(j+l−1) = 0. The
condition essentially ensures that the jth bit erasure can be
corrected using ith parity check equation.

We extend these ideas to construct 2D LDPC codes. The
codeword of a 2D LDPC code is a 2D page of bits. Therefore,
the words orthogonal to the 2D LDPC codes are also 2D page
of bits. The parity check equations will be represented by a
3D parity check tensor obtained by stacking these orthogonal
words one below the other. Each layer of the parity-check
tensor represents a single parity check equation.

We propose the construction of the parity check tensor by
stacking 3D permutation tensors in a 3D fashion. We use the
indexing notation such that the position (i, j, k) represents
the (j, k) bit in the ith layer of the parity check tensor. We
consider an identity tensor I of size p× p× p given by

I = [Ii,j,k]
p
i,j,k=1 , Ii,j,k =

{
1, i = j = k,

0, otherwise.

The tensor I can be permuted in two directions. Let
P : {1, 2, · · · , p} → {1, 2, · · · , p} and Q : {1, 2, · · · , p} →
{1, 2, · · · , p} be the permutation operations defined on any
tensor T = [Ti,j,k]

p
i,j,k=1 as

P (T) =
[
Ti,P (j),k

]p
i,j,k=1

, and Q (T) =
[
Ti,j,Q(k)

]p
i,j,k=1

.

The following proposition proves the properties of row and
column permutations described in this section.

Proposition 1. If P (T) =
[
Ti,P (j),k

]p
i,j,k=1

and Q (T) =[
Ti,j,Q(k)

]p
i,j,k=1

are row and column permutations operating
on a tensor, the following properties hold true:

1) P ◦Q (T) = Q ◦ P (T).
2) In general, any order of m permutations of P and n

permutations of Q on T can be written as Pm ◦Qn (T).

Proof: From the definitions of P and Q, we have

P ◦Q (T) = P
([
Ti,j,Q(k)

]p
i,j,k=1

)
=
[
Ti,P (j),Q(k)

]p
i,j,k=1

.

Similarly,

Q ◦ P (T) = Q
([
Ti,P (j),k

]p
i,j,k=1

)
=
[
Ti,P (j),Q(k)

]p
i,j,k=1

.

This proves the first property that the order of row and col-
umn permutations can be interchanged. The second property
follows from the first by exchanging adjacent P and Q in such
a way that all P s appear on the left and all Qs appear on the
right.

Similar to the 1D QC-LDPC code construction, we can con-
struct the 2D LDPC tensor H2D using various permutations
of the identity tensor I using the permutations P and Q. Each
permutation of I gives us a cube. A H2D can be obtained by
stacking c×h×w cubes along (i, j, k) directions respectively.

Similar to the permutation in (2), we choose the permuta-
tions P and Q to be circular shifts given by

P (i) = Q (i) =

{
1, i = p

i+ 1, otherwise.

The identity tensor along with its row column permutations
are shown in Figure 1.

We can also construct H2D similar to H1D in (1), where the
(x, y, z)

th cube in the stack is given by P x(z−1) ◦Qx(y−1) (I).

Figure 2 shows the pictorial representation of an example
H2D constructed using the above idea.

B. Design of 2D LDPC Code for TDMR

The shifts/powers of the permutations used in the construc-
tion of H2D for our purpose are chosen as follows. The H2D

is constructed by stacking c×h×w cubes, each of size p×p×p
such that c is a multiple of p.

In our code construction, the (i, j, k)
th cube is given

by P a(i,j,k) ◦ Qb(i,j,k) (I), where the powers a (i, j, k) and
b (i, j, k) are chosen as

a (i, j, k) = i mod p, (3)

b (i, j, k) =

⌊
i− 1

p

⌋
jk. (4)

Notice that each cube in H2D contributes only to p bits for
the column weight. Therefore, it is important to choose the
shifts such that every bit position in the codeword has sufficient
column weight for good error correction. The following lemma
shows that the above choice of shifts give a uniform column
weight of c

p .

Lemma 2. Stacking c× h× w cubes with the shifts given in
(3) and (4) gives a parity check tensor with uniform column
weight of c

p .

Proof: We prove this by showing that the
column weight contributed by the stack of cubes
{(i, j, k) | (p− 1)n < i ≤ np} is uniformly 1 at all codeword
positions within the stack for all (j, k) ∈ {1, 2, · · · p}2 and
n = 1, 2, · · · , cp .

The set of positions contributing to column weight by
identity cube is given by

P (i,j,k) = {(x, x) | 1 ≤ x ≤ p}

The set of positions contributing to column weight by
(i, j, k)

th cube is given by

P (i,j,k) =
{(
P i mod p (x) , Qb i−1

p cjk (x)
)
| 1 ≤ x ≤ p

}
.

The set of positions contributing to column weight by the



(a) Identity tensor I (b) One row shift: P (I) (c) Two row shifts: P 2 (I) (d) One column shift: Q (I) (e) Two column shifts:
Q2 (I)

Figure 1: Identity tensor and the row and column permutations of the tensor.

Figure 2: An example of a parity check tensor for a 2D LDPC code. The building blocks are the identity tensor and its row
and column permutations.

stack {(i, j, k) | (p− 1)n < i ≤ np} cube is given by

P (j,k)
n =

np⋃

i=(p−1)n+1

{(
P i mod p (x) , P b i−1

p cjk (x)
)
(5)

| 1 ≤ x ≤ p} (6)

=

p⋃

i′=1

{(
P i′ (x) , Qnjk (x)

)
| 1 ≤ x ≤ p

}
(7)

=
{(
P i′ (x) , Qnjk (x)

)
| 1 ≤ x ≤ p, (8)

1 ≤ i′ ≤ p} (9)

=

p⋃

x=1

{(
P i′ (x) , Qnjk (x)

)
| 1 ≤ i′ ≤ p

}
(10)

=

p⋃

x=1

{(
i′, Qnjk (x)

)
| 1 ≤ i′ ≤ p

}
(11)

=

p⋃

x=1

{(i′, x) | 1 ≤ i′ ≤ p} (12)

= {(i′, x) | 1 ≤ i′ ≤ p, 1 ≤ x ≤ p} . (13)

Step (11) uses the fact that the row permutations are complete
i.e.,

{
P i (x) | 1 ≤ i ≤ p

}
= {1, 2, · · · p} ∀1 ≤ x ≤ p.

Step (12) uses the fact that the column permutation is a one-
to-one mapping i.e.,

{
Qi (x) | 1 ≤ x ≤ p

}
= {1, 2, · · · p} ∀1 ≤ i ≤ p.

Therefore, we have proven that each p−stack at position
(j, k) given by {(i, j, k) | (p− 1)n < i ≤ np} contributes to a
column weight of 1 at every corresponding codeword position.
Since there are c

p such p−stacks, the constructed code has a
uniform column weight of c

p .

Remarks:
1) Each cube contributes to a row weight of exactly 1.

Therefore, the row weight of the code constructed by
stacking c× h× w cubes is hw.

2) If c is not a multiple of p, the column weights can be
bounded as

⌊
c
p

⌋
≤ r ≤

⌈
c
p

⌉
.

C. Burst Erasure Correction Capability of the 2D LDPC Code

Similar to the 1D QC-LDPC code, we analyze the burst
error correction capability of the code using the zero-spans on
the parity check tensor H2D using the following lemma.

Lemma 3. A 2D error correcting code with parity check
tensor H2D = [hi,j,k] can correct up to a 2D burst of size
Bh ×Bw if for every position (j, k), there exists ith layer in
H2D such that

hi,a,b :=





1, (a, b) = (j, k) ,

0, (a, b) ∈ {(j + x, k + y) | −Bh < x < Bh,

|−Bw < y < Bw} \ {(j, k)} .
(14)

Proof: The condition in (14) means that the ith parity
check equation uses only the (j, k)

th bit within the erasure
region.

Let the Bh × Bw burst erasure occur with the starting
position of (sh, sw) i.e., the erasure locations are given by

R = {(sh + x, sw + y) | 0 ≤ x < Bh, 0 ≤ y < Bw} .

We prove the result by showing that each bit in the burst
erasure can be corrected independently using the condition
given in (14). For the position (sh, sw), the condition in (14)
ensures that there is a parity check equation such that the bits



in

R(sh,sw) = {(sh + x, sw + y) | −Bh ≤ x < Bh,

−Bw ≤ y < Bw} \ {(sh, sw)} .
are not involved. Since R\{(sh, sw)} ⊂ R(sh,sw), none of the
bits in the erasure location except for (sh, sw)

th bit is used
in this parity check equation. This allows us to correct the
(sh, sw)

th bit using this parity check equation.
Similarly, for any location (sh + j, sw + k), 0 ≤ j < Bh,

0 ≤ k < Bw, the condition in (14) ensures that there is a
parity check equation such that the bits in
R(sh+j,sw+k)

= {(sh + j + x, sw + k + y) | −Bh ≤ x < Bh,

−Bw ≤ y < Bw} \ {(sh + j, sw + k)}
= {(sh + x, sw + y) | −Bh + j ≤ x < Bh + j,

−Bw + k ≤ y < Bw + k} \ {(sh + j, sw + k)}
are not involved. For 0 ≤ j < Bh, 0 ≤ k < Bw, it is easy to
verify that R ⊂ R(sh+j,sw+k) \{(sh + j, sw + k)}. Therefore,
the parity check equation can be used to correct the bit at
location (sh + j, sw + k) . This is illustrated in Figure 3c.

This proves that every bit in the erasure location can be
independently corrected.

Theorem 4. The 2D LDPC code constructed using the shifts
in (3) and (4) can correct a 2D burst erasure of size at least
p× p.

Proof: The first layer of cubes in the constructed H2D

is a stack of identity tensors of size p× p× p. Therefore, the
position of ones in the first parity check layer is given by

{((j − 1) p+ 1, (k − 1) p+ 1) | 1 ≤ j ≤ h, 1 ≤ k ≤ w} .
Similarly, the position of ones in ith parity check layer is given
by

{((j − 1) p+ i, (k − 1) p+ i) | 1 ≤ j ≤ h, 1 ≤ k ≤ w} .
Therefore, the relative positions of ones in the first p layers
of H2D is same as the first layer.

From (3) and (4), we have the next p layers
(p+ 1 ≤ i ≤ 2p) obtained by a single row-shift of the
top p layers. Similarly, layers from p + 1 ≤ i ≤ p2 are all
obtained by row shifts of the first p layers. Therefore, the
relative positions of ones in each of these layers 1 ≤ i ≤ p2

remain the same.
We can easily see that if a one is located at (j, k) in the

first layer, then the following locations contain all zeros:

{(j + a, k + b) | −p ≤ j ≤ p,−p ≤ k ≤ p} \ {(j, k)} .
This is same as the condition (14) in Lemma 3 with Bh = p

and Bw = p.
Since the relative positions of ones remain the same for the

first p2 layers, the condition (14) is satisfied for every position
where a one is present in the first p2 layers. From Lemma 2,
we have that the column weight contributed by the first p2

layers is uniformly 1 at all positions. Therefore, the condition
(14) is satisfied by every position (j, k).

Therefore, using Lemma 3, the code constructed in Section
II-B can correct burst erasure of at least p× p in size.

III. JOINT DETECTION AND DECODING USING GBP
Generalized belief propagation (GBP) algorithm [19] is a

graph based decoding/detection algorithm that passes mes-
sages between regions instead of messages between nodes
as in the traditional BP algorithm. GBP can be formulated
as a convex optimization problem that minimizes the Gibbs
free energy, and provides a method to approximate marginal
distributions which makes it suitable for MAP detection with
soft outputs.

The GBP algorithm is known to give exact marginals if and
only if the region based graph has no loops [19]. When used
for 2D ISI signal detection, the region based graphs always
contain loops. However, the GBP algorithm provides a method
to approximate the marginals that are empirically observed to
be close to the actual marginals [20].

In order to achieve high fidelity rates (SFR ~ 1e-15) in
magnetic recording, the detection engine is followed by an
ECC decoder for error correction. The detector and the decoder
often operate in a turbo loop to achieve significant gains in
the performance. The BP algorithm that is used for LDPC
decoding is shown to be a special case of the GBP algorithm
[19]. Since the GBP based 2D ISI detector and the BP
decoder are separately optimized, the overall performance is
not guaranteed to be the best and depends on the number of
turbo iterations.

In this section, we reformulate the GBP algorithm by
incorporating the ECC parity-check constraints in addition to
the ISI constraints towards joint detection and decoding of the
readback samples. We achieve an improvement in the overall
performance by incorporating ISI and LDPC constraints into
a single instance of the algorithm instead of handling the con-
straints in two separate instances of the same GBP algorithm.

Let xi,j ∈ {0, 1} , (i, j) ∈ Z2 represent bits written onto the
medium post bipolar mapping and x = [xi,j ] ∈ {0, 1}n×m
represent a n×m page of bits. Let yi,j ∈ R, (i, j) ∈ Z2 rep-
resent the read-back samples obtained from the channel model
and y = [xi,j ] ∈ Rn×m represent the corresponding page of
read-back samples. Let xi,j represent the set of bits that con-
tribute to the read-back sample yi,j . For a channel with 3× 3
ISI span, xi,j contains 9 bits {xi+k,j+l | k, l ∈ {−1, 0, 1}}.
Let xk represent the set of bits that are involved in the kth

parity check constraint of the LDPC code for k = 1, 2, · · · , np.

A. Gibbs Free Energy

Assuming uniform distribution of the input bits and additive
white Gaussian noise (AWGN) in the channel model, the a-
posteriori probability of x given read-back samples y is given
by

p (x | y) = p (y | x) p (x) p (y)−1 ∝ p (y | x)
p (y | x) =

∏

i,j

fi,j (xi,j) (15)

where fi,j (xi,j) = p (yi,j | xi,j) is a Gaussian function
representing the distribution of noise sample at location (i, j).
Therefore, we have

p (x | y) = 1

Z

∏

i,j

fi,j (xi,j) , (16)
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Figure 3: A span of (2Bh − 1)× (2Bw − 1) zeros around a 1 in each parity check layer can help in correcting a burst of size
at least Bh × Bw. The burst erasure region is indicated using a rectangle relative to various locations within erasure region.
This condition ensures that every location within the burst erasure can be corrected using the parity check equation since the
remaining bits are not involved in the corresponding parity check equation.

Figure 4: An example of a region graph used by the GBP algorithm for joint-detection decoding is shown. The regions are
chosen based on 2D ISI as well as LDPC code parity check constraints.

for some Z(y). Let b(x) represent the belief of the a-posterior
probability of x. Using the properties of KL-divergence, the
belief b (x) = p (x | y) can be achieved by minimizing the
free energy given by

F = E −H = D (b (x) ‖ p (x | y))− lnZ(y), (17)

average energy E = −
∑

i,j

∑

xi,j

b(xi,j) ln fi,j(xi,j), (18)

entropy H =
∑

x

b (x) ln b(x). (19)

Let a region r ⊂ R2 be defined as a set of positions within a
page and R represent a collection of such regions. We choose
R such that

1) each of xi,j is included in at least one region,

2) each of xk is included in at least one region.
For each r ∈ R, let xr be the vector of bits in the

region r. Let b (xr) and p (xr) be the corresponding marginal
beliefs and probabilities within the region r. The regions graph
can be formed by partial ordering of regions based on the
containment of one region inside another [19]. Figure 4 shows
an example region graph containing regions corresponding to
2D ISI constraints as well as the LDPC constraints.

The free energy is approximated using the entropy of
individual regions as

F̂ = −
∑

i,j

∑

xi,j

b (xi,j) ln fi,j (xi,j)

+
∑

r∈R
cr
∑

xr

b (xr) ln b (xr) , (20)



where cR are overcounting numbers given by cr =
∑

p∈Pr
1−

cp, and Pr are parents of region r in the region graph. This is
called Kikuchi approximation, or region based approximation
(RBA).

B. Joint Detection and Decoding

When GBP is used for 2D ISI detection as in [21], the
Gibb’s free energy in (20) is minimized under the edge-
constraints given by

∑

u∈xp\r

b (xp) = b (xr) ∀p ∈ Pr,∀r ∈ R, (21)

and the normalization constraints given by
∑

xr

b (xr) = 1, ∀r ∈ R. (22)

These constraints ensure that the belief of a sub-region can be
obtained by marginalizing the beliefs of their parents [22]. The
GBP algorithm is obtained from the constrained optimization
of F̂ using Lagrange multipliers.

The regions and cr are chosen [22] to 1) strict convexity
of the free energy, 2) closely approximate the marginals 3)
reduce computational complexity.

For the joint detection and decoding using GBP, we ensure
that the parity checks are satisfied using the LDPC constraints
given by

b (xk) = 0, if parity (xk) = 1, k = 1, 2, · · · , np. (23)

C. Derivation of the Joint Detection Decoding Algorithm

In order to minimize the free energy in (20) under the
constraints in (21), (22) and (23), we define the hierarchy of
regions as follows:

1) Ar: Ancestors of the region r

AR = {r′ ∈ R | r ⊂ r′} .
2) Dr: Descendants of the region r

DR = {r′ ∈ R | r ⊃ r′} .
3) Pr: Parents of the region r

Pr = {r′ ∈ R | r ⊂ r′, @r′′ ∈ R, r ⊂ r′′ ⊂ r′} .
4) Cr: Children of the region r

Cr = {r′ ∈ R | r ⊃ r′, @r′′ ∈ R, r ⊃ r′′ ⊃ r′} .
5) A(ISI): All ancestors of R arising out of ISI constraints.

A(ISI) =
⋃

(i,j)

{xi,j} .

6) A(LDPC): All ancestors of R arising out of LDPC
constraints.

A(LDPC) =
⋃

p

{xp} .

7) A: All ancestors of R
A = A(ISI)∪A(LDPC) = {r ∈ R | @r′ ∈ R, r′ ⊃ r} .

Figure 5: An example of a region graph is shown with the
relations between different regions in terms of their hierarchy.
Ancestors of a region r are the set of regions that contain
r. Descendants of a region r are the set of regions that are
contained in r. Children of a region r are its immediate
descendants. Parents of a region r are its immediate ancestors.
Ancestors and descendants of the region marked in green are
shown. Parents and children for the region marked in red are
also shown.

Figure 5 shows an example region graph illustrating the
relations between different regions in terms of their hierarchy.

We assume that none of the regions defined by LDPC
constraints and ISI constraints are inclusive of each other. This
implies that the bits involved in a 2D ISI constraint are not all
included in the same parity check equation. Similarly, all bits
involved in a parity check equation are fully contained within
the 2D ISI span. LDPC code constructions usually satisfy this
assumption and is useful for a good burst erasure correction.

Enforcing the parity constraints, we rewrite the free energy
in (20) using the above definitions as

F̂ = −
∑

r∈A(ISI)

cr
∑

xr

b (xr) ln fr (xr)

+
∑

r∈R\A(LDPC)

cr
∑

xr

b (xr) ln b (xr)

+
∑

r∈A(LDPC)

cr
∑

xr:parity(xr)=0

b (xr) ln b (xr) .

(24)

The edge constraints between a region r and its parent p in
(21) can be equivalently written [19] as

crbr (xr) +
∑

a∈Ar\({p}∪Ap)

ca
∑

xa\r

ba (xa) = 0. (25)



We solve the constrained minimization of free energy [19]
using Lagrange multipliers λpr (xr), and γr by defining the
cost function as

C = −
∑

r∈A(ISI)

cr
∑

xr

b (xr) ln fr (xr)

+
∑

r∈R\A(LDPC)

cr
∑

xr

b (xr) ln b (xr)

+
∑

r∈A(LDPC)

cr
∑

xr:parity(xr)=0

b (xr) ln b (xr)

−
∑

r∈R

∑

p∈Pr

∑

xr

λpr (xr) (crbr (xr)

+
∑

a∈Ar\({p}∪Ap)

ca
∑

xa\r

ba (xa)




−
∑

r∈R\A(LDPC)

crγr

(∑

xr

b (xr)− 1

)

−
∑

r∈A(LDPC)

crγr


 ∑

xr:parity(xr)=0

b (xr)− 1


 (26)

We have incorporated the parity check constraints in (23)
by restricting the summation of xr to the words satisfying
parity (xr) = 1, ∀x ∈ A(LDPC).

For r ∈ R \ A(LDPC), we get

∂C

∂b (xr)
= −cr

∑

a∈Ar

ln fa (xa) + cr ln b (xr)

− cr
∑

p∈Pr

λpr (xr)− cr
∑

d∈Dr

∑

p′∈Pd\{r}

λp′d (xd)

− crγr. (27)

Setting ∂C
∂b(xr)

= 0, we have

ln b (xr) =
∑

a∈Ar

ln fa (xa) +
∑

p∈Pr

λpr (xr)

+ cr
∑

d∈Dr

∑

p′∈Pd\{r}

λp′d (xd) + γr. (28)

Defining mpr (xr) = exp (λpr (xr)), we have

b (xr) = exp (γr)
∏

a∈Ar

fa (xa)
∏

p∈Pr

mpr (xr)

×
∏

d∈Dr

∏

p′∈Pd\{r}

mp′d (xd) (29)

=⇒ b (xr) ∝
∏

a∈Ar

fa (xa)
∏

p∈Pr

mpr (xr) (30)

×
∏

d∈Dr

∏

p′∈Pd\{r}

mp′d (xd) . (31)

For r ∈ A(LDPC) and xr : parity (xr) = 1, we get

∂C

∂b (xr)
= cr ln b (xr)− cr

∑

p∈Pr

λpr (xr)

− cr
∑

d∈Dr

∑

p′∈Pd\{r}

λp′d (xd)− crγr. (32)

Using mpr (xr) = exp (λpr (xr)), we have

b (xr) = exp (γr)
∏

p∈Pr

mpr (xr)

×
∏

d∈Dr

∏

p′∈Pd\{r}

mp′d (xd) , (33)

=⇒ b (xr) ∝
∏

p∈Pr

mpr (xr)
∏

d∈Dr

∏

p′∈Pd\{r}

mp′d (xd) .

(34)

Since Ar = {} for r ∈ A(LDPC), the equation (34) is same
as (30).

Equation (30) gives us the belief-update rules and the
proportionality constant can be obtained by the normalization
constraints in (22). The message update rules can be obtained
using

∑

xp\r

b (xp) = b (xr) , ∀r ∈ R \ A, ∀p ∈ Pr,

=
∏

a∈Ar

fa (xa)
∏

p′′∈Pr

mp′′r (xr)

×
∏

d∈Dr

∏

p′∈Pd\{r}

mp′d (xd) . (35)

Writing
∏

p′′∈Pr

mp′′r (xr) = mpr (xr)
∏

p′′∈Pr\{p}

mp′′r (xr) , (36)

we can obtain mpr (xr) as in (37)
Equations (30) and (37) provide the update rules for the

joint-detection-decoding algorithm. Algorithm 1 summarized
the joint detection and decoding engine derived in this section.

D. Remarks
It must be noted that in the formulation of the joint

algorithm,
1) Regions corresponding to LDPC constraints are consid-

ered along with the 2D ISI constraints.
2) The beliefs of the regions corresponding to LDPC con-

straints are restricted to the words that satisfy the parity
checks.

The implementation differs in using more regions, but ignoring
the belief update equations in (30) for the words that do not
satisfy parity check constraints. Similarly, if a modulation code
is used for constraining 3×3 patterns, the algorithm is updated
to ignore the belief update equations for the corresponding
forbidden patterns.

The GBP algorithm for 2D ISI constraints is known to be
computationally very hard and is not suitable for large page
sizes. In the current formulation of the GBP algorithm for joint
detection and decoding, the size of the regions corresponding
to LDPC constraints is dictated by the row weight of the LDPC
code. Since the number of beliefs for each region depend on its
size, it is practically not feasible to use this formulation of the
algorithm with very large native codeword lengths where the
row weights are typically high. For our simulations, we have
considered a small 2D page with multiple small LDPC codes
interleaved for the to ensure the computational feasibility of
the GBP algorithm.



mpr (xr) =

∑
xp\r

b (xp)∏
a∈Ar

fa (xa)
∏

p′′∈Pr
mp′′r (xr)

∏
d∈Dr

∏
p′∈Pd\{r}mp′d (xd)

. (37)

Algorithm 1 GBP based Joint Detection and Decoding Algorithm.
Inputs: The input page size H ×W , the ISI span, LDPC code parity check matrix. Region graph formed based on the ISI
and LDPC constraints. R set of regions. A(LDPC) set of regions corresponding to LDPC constraints.
Initialization: Initialize all parent to child messages mpc to 1 and all beliefs to uniform distribution. Set the beliefs b (xr) = 0
for r ∈ A(LDPC) when parity (xf ). Set iteration count iter = 1.
Processing:
Loop until iter = threshold

• Message updates: For each r ∈ R, update messages as

mpr (xr) =

∑
xp\r

b (xp)∏
a∈Ar

fa (xa)
∏

p′′∈Pr
mp′′r (xr)

∏
d∈Dr

∏
p′∈Pd\{r}mp′d (xd)

• Belief updates:
– For each r ∈ R \ A(LDPC), update all beliefs

b (xr) =
∏

a∈Ar

fa (xa)
∏

p∈Pr

mpr (xr)
∏

d∈Dr

∏

p′∈Pd\{r}

mp′d (xd) .

– For each r ∈ A(LDPC), update beliefs only if parity (xr) = 0:

b (xr) =
∏

p∈Pr

mpr (xr)
∏

d∈Dr

∏

p′∈Pd\{r}

mp′d (xd) .

– Normalize the beliefs to satisfy ∑

xr

b (xr) = 1

• Set
iter = iter + 1.

Outputs: The beliefs of 1× 1 regions b (xi,j).

IV. SIMULATIONS AND RESULTS

We have simulated the TDMR channel using a Voronoi
based media model as proposed in [11]. The channel model
parameters include grain size of CTC = 9nm, bit-size =
18 × 18 nm, achieving a channel bit density of 1.8 Tb/in2.
2D pages of size 128×256 data corresponding to 4KB sector
are generated at a time. The readback signal is generated using
the Voronoi based media model and is equalized using a 5×5
PR equalizer for a 3 × 3 PR target designed under monic
constraint as in [11].

A. Burst Erasure Correction Performance of Proposed 2D
LDPC Code

We use the media defect model in [6] to introduce rectangu-
lar defects. The defect detector proposed in [6] is used at the
output of 2D SOVA to detect the location of the burst erasures
and to indicate the LDPC decoder using the BP algorithm.
The performance of the proposed 2D LDPC code is compared
against 1D QC LDPC code in the read channel architecture
as in [6].

The 2D LDPC code is constructed using a cube of size
p = 32. For a 2D codeword size of 128 × 256, we choose
to construct parity check tensor H2D by filling c× h× w =

128×4×8. This gives us a code-rate of 1− 128×32
128×256 = 0.875,

row weight of 32 and column weight of 4. The 1D LDPC code
of length 128× 256 = 32768 bits is designed with code rate
of 0.87 and a circulant size of 1024. 1D codes are populated
into the 2D page in the raster order. The code rates are chosen
such that the detector achieves BER of ∼ 1e−4. This detector
performance could achieve sector failure rate (SFR) of 1e−15
with a carefully designed LDPC codes.

Figure 7 compares the performance of the TDMR channel
using 1D LDPC codes as against the proposed 2D LDPC
codes. We can see that the proposed 2D LDPC codes is able
to correct burst erasures of size 42 × 42 with the similar
performance as 1D LDPC codes with erasures of size 38×38.
This is a significant (> 20%) improvement in the burst erasure
correction capability.

B. Performance of Joint Detection-Decoding Engine
To evaluate the performance of the joint detection and

decoding engine proposed in Section III, we compare the
performance of following architectures:

1) A GBP based detector followed by BP algorithm for
LDPC decoding. The detector and the decoder operate
in a turbo fashion [6] as shown in Figure 6a. The number
of turbo iterations is limited to 6.
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(a) A read channel architecture showing GBP based ISI detector operating in a turbo loop with LDPC decoder.
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(b) A read channel architecture where the proposed joint detection and decoding engine is used.

Figure 6: The performance of joint detection and decoding engine is compared against the performance of an architecture with
the detector operating in turbo loop with decoder. Same LDPC code and channel conditions are used.
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Figure 7: BER performance of the proposed 2D LDPC code
is compared against a 1D QC LDPC code for burst erasure
correction performance. The proposed 2D LDPC code is able
to correct bursts of > 20% larger than the 1D QC LDPC code
with a similar performance.

2) The PR equalized samples are jointly detected and
decoded using the proposed algorithm in Section III as
shown in Figure 6b.

Since the GBP algorithm is computationally not feasible for
large page sizes, we have evaluated the performance on a small
page size of 16× 16. We expect higher gains using the joint
detection-decoding engine for larger page sizes. Since the joint
detection engine is limited by the row-weight of the LDPC
code, we have designed a 2D LDPC code of size 8× 16 with
p = 4, c × h × w = 8 × 2 × 4. The rows of two codewords
are alternatively interleaved to obtain a 2D codeword of size
16× 16.

Figure 8 compares the performance of the two architectures
for a TDMR channel operating at 1.8 Tb/in2. We observe that
the proposed joint detection-decoder engine outperforms the
turbo loop architecture by about 0.5 dB.
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Turbo loop: GBP detector with BP decoder

Joint detection + decoding using GBP

Figure 8: BER performance proposed joint detection-decoder
engine is compared against a traditional architecture where
the detector and the decoder operate in a turbo loop with 6
iterations. The proposed joint detection engine outperforms the
turbo loop architecture by about 0.5 dB.

V. CONCLUSIONS

We have proposed the construction of a native 2D LDPC
code suitable for correction of 2D burst erasures. We have
looked into the zero-span of the codes and lower bounded
the burst erasure size that the code can correct. The proposed
code construction is observed to give a gain of > 20%
improvement in the burst erasure correction capability. We
have also derived the GBP algorithm for joint detection and
decoding by taking care of 2D ISI constraints as well as the
LDPC code constraints. The proposed joint detection-decoding
engine is observed to give a gain of about 0.5 dB over an
architecture where separate detector and decoder operate in
turbo fashion. It would be interesting to develop hardware
architectures using FPGA arrays and hardware acceleration
engines towards performance assessment for large page sizes.
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