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Abstract

The Kepler survey provides a statistical census of planetary systems out to the habitable zone. Because most
planets are non-transiting, orbital architectures are best estimated using simulated observations of ensemble
populations. Here, we introduce EPOS, the Exoplanet Population Observation Simulator, to estimate the
prevalence and orbital architectures of multi-planet systems based on the latest Kepler data release, DR25. We
estimate that at least 42% of Sun-like stars have nearly coplanar planetary systems with seven or more exoplanets.
The fraction of stars with at least one planet within 1 au could be as high as 100% depending on assumptions about
the distribution of single transiting planets. We estimate an occurrence rate of planets in the habitable zone around
Sun-like stars of η⊕=36±14%. The innermost planets in multi-planet systems are clustered around an orbital
period of 10 days (0.1 au), reminiscent of the protoplanetary disk inner edge, or which could be explained by a
planet trap at that location. Only a small fraction of planetary systems have the innermost planet at long orbital
periods, with fewer than ≈8% and ≈3% having no planet interior to the orbit of Mercury and Venus, respectively.
These results reinforce the view that the solar system is not a typical planetary system, but an outlier among the
distribution of known exoplanetary systems. We predict that at least half of the habitable zone exoplanets are
accompanied by (non-transiting) planets at shorter orbital periods, hence knowledge of a close-in exoplanet could
be used as a way to optimize the search for Earth-size planets in the Habitable Zone with future direct imaging
missions.

Key words: methods: statistical – planetary systems – planets and satellites: formation – protoplanetary disks –
surveys

1. Introduction

The Kepler exoplanet survey has revolutionized our under-
standing of planetary systems around other stars (e.g.,
Borucki 2017). During the first four years of the mission,
hereafter Kepler, thousands of exoplanets and exoplanet
candidates were discovered, the majority of which are smaller
than Neptune and orbit close to their hosts stars. Because transit
surveys can detect only a small fraction of the exoplanets, a
completeness correction is necessary to understand the true
population of exoplanets (e.g., Batalha 2014).

The planet occurrence rate, defined as the average number of
planets per star, is typically found to be of order unity for
planets in the orbital period and planet radius range detectable
with Kepler (Youdin 2011; Fressin et al. 2013). Much progress
has been made in recent years in understanding the survey
detection efficiency of the Keplermission (e.g., Christiansen
et al. 2015, 2016). While Earth-sized planets in the habitable
zone of Sun-like stars are just below the detection limits of
Kepler (Thompson et al. 2018), occurrence rates of Earth-sized
planets in the habitable zone, η⊕, can be estimated by
considering smaller M and K dwarf stars (Dressing &
Charbonneau 2013, 2015) or by extrapolating from shorter
orbital periods and/or larger planet radii (Petigura et al. 2013a;
Foreman-Mackey et al. 2014; Burke et al. 2015).

The exoplanet population discovered by the Keplermission
has been characterized in great detail. Key findings are that
planet occurrence rates increase with decreasing planet size
(Howard et al. 2012) and remain roughly constant for planets

smaller than 3 R⊕ (Petigura et al. 2013b; Morton & Swift 2014;
Mulders et al. 2015b). Recently, a gap in the planet radius
distribution has been identified around 1.5–2.0 R⊕ (Fulton
et al. 2017; Van Eylen et al. 2017). The occurrence of sub-
Neptunes increases with distance from the host star up to an
orbital period of ∼10 days, after which it remains roughly
constant (Howard et al. 2012; Mulders et al. 2015a), in contrast
to planets larger than Neptune whose occurrence increases with
the orbital period (Dong & Zhu 2013).
The presence of multiple transiting planets around the same

star provides important additional constraints on planetary
orbital architectures. The large number of observed systems
with multiple transiting planets indicate that planets are
preferentially located in systems with small mutual inclinations
(Lissauer et al. 2011, 2012; Fang & Margot 2012). Their orbital
spacings follow a peaked distribution without a clear
preference for being in orbital resonances (Fabrycky
et al. 2014). However, the majority of planets in multi-planet
systems are not transiting, and modifying planetary occurrence
rates from those based on the observed planetary architectures
to account for non-transiting or otherwise undetected planets is
not straightforward. The true multiplicity of planetary systems
can only be constrained from the observed multiplicity and by
making assumptions about their mutual inclination distribution
(Tremaine & Dong 2012, see also Brakensiek & Ragozzine
2016). Ensemble populations of systems with six or more
planets with mutual inclinations of a few degrees provide a
good match to the observed population of multi-planet systems
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(Lissauer et al. 2011; Fang & Margot 2012; Fabrycky
et al. 2014; Ballard & Johnson 2016). However, these
simulations underpredict the number of single transiting
systems by a factor of 2, indicating that additional populations
of planets must be present that are either intrinsically single or
have high mutual inclinations.

The occurrence rates and planetary architectures place strong
constraints on planet formation models (e.g., Hansen &
Murray 2013; Dawson et al. 2016). However, the quantitative
comparison of planet formation and orbital evolution models
and the observed exoplanet population has been greatly
complicated by observational biases. Therefore, published
comparisons resorted to trying to explain the presence of
specific planet sub-populations by identifying processes that
can give rise to such planets. While these studies are essential,
such qualitative comparisons can not make full use of the
wealth of information represented by the overall exoplanet
population statistics. To address this limitation we introduce
EPOS,6 the Exoplanet Population Observation Simulator, that
provides a Python interface comparing planet population
synthesis models to exoplanet survey data, taking into account
the detection biases that skew the observed distributions of
planet properties. EPOSuses a forward modeling approach to
simulate observable exoplanet populations and constrain their
properties via Markov Chain Monte Carlo simulation using
emcee(Foreman-Mackey et al. 2013), and has already been
employed in two different studies (Kopparapu et al. 2018;
Pascucci et al. 2018).

In this paper, we verify this approach using parametric
models of planet populations, that we compare to the final data
release of the Keplermission, DR25. From this, we are able to
make a statistical evaluation of the properties of exoplanetary
systems. Among other results, we report on the location of the
innermost planet in planetary systems to place our Solar

System in the context of exoplanet systems. We examine how
the innermost planets in most of the Keplersystems are located
much closer in than Mercury and Venus. In an upcoming paper,
we will use EPOSto make a direct comparison between planet
formation models and exoplanet populations.

2. Code Description

The Exoplanet Population Observation Simulator, EPOS,
employs a forward modeling approach to constrain exoplanet
populations through the following iterative procedure:

Step 1: Define a distribution of planetary systems from analytic
forms for planet occurrence rates and planetary architec-
tures or from a planet population synthesis model.

Step 2: From this, derive a transiting planet population by
assigning random orientations to each system and
evaluating which planets transit their host stars.

Step 3: Determine which of the transiting planets would be
detected by Kepler, accounting for detection efficiency.

Step 4: Compare the detectable planet population with
exoplanet survey data using a summary statistic.

Step 5: Repeat steps 1–4 until the simulated detectable planet
population matches the observed planet population to
constrain the intrinsic distribution of planetary systems.

In this section we will describe each step in greater detail.
Steps 1–4 take less than a second to run on a single-core CPU,
allowing for an efficient sampling of the parameter space using
MCMC methods. Figure 1 summarizes these steps and their
quantitative implementation in a flowchart. A description of all
the mathematical symbols used in this paper can be found in
the appendix, Table 3.

2.1. Step 1: Planet Distributions

Planet populations are generated using a Monte Carlo
simulation by random draws from a multi-dimensional

Figure 1. Flowchart of the Exoplanet Population Observation Simulator. A description of all the mathematical symbols can be found in Table 3.

6 https://github.com/GijsMulders/epos

2

The Astronomical Journal, 156:24 (20pp), 2018 July Mulders et al.

https://github.com/GijsMulders/epos


probability distribution function, f, which represents the
intrinsic distribution of planets and planetary systems. We
simulate a planet survey equal in size to the Keplersurvey,
roughly 160,000 stars. The parametric descriptions of f are
based on studies of planet occurrence rate and planet multi-
plicity from Kepler. Distributions based on planet formation
models will be described in an upcoming paper.

Here we describe two parametric descriptions for the planet
population f that correspond to two different modes in EPOS:

Occurrence rate mode: Simulates only the distribution of planet
radius, R, and orbital period, P, as f= fpl (R, P). This
mode is similar to occurrence rate calculations that
estimate the average number of planets per star, η, in a
certain period and radius range. This mode can also be
used to estimate the planet mass distribution for compar-
ison with microlensing data, see Pascucci et al. (2018) for
details.

Multi-planet mode: Simulates multiple planets per system,
taking into account their relative spacing and mutual
inclination, Δi, to estimate orbital architectures. The
properties of each planet in the system are drawn from a
distribution f=fk(R, P, i), where i is the planet’s orbital
inclination and k is an index for each planet in the system.

2.1.1. Occurrence Rate Mode

The central assumption we use in this paper is that the planet
occurrence rate distribution is a separable function in the planet
radius and orbital period,

µ( ) ( ) ( ) ( )f P R f P f R, . 1P Rpl

The distribution is normalized such that the integral over the
simulated period and planet radius range equals the number of
planets per star, η:

ò òh = ( ) ( )f P R d P d R, log log 2
P R

pl

The planet orbital period distribution is described by a
broken power law
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where the break reflects the observed flattening of sub-Neptune
occurrence rates around an orbital period of ten days (e.g.,
Howard et al. 2012; Mulders et al. 2015a). In this example we
use aP=1.5 for the power law index of the increase interior to
Pbreak=10 days, and a flat occurrence rate bP=0, at longer
periods but we will refine these values later.

The planet radius distribution function is similarly described
by a broken power law

=
<⎧⎨⎩( )

( )
( )

( )f R
R R R R

R R

, if

, otherwise
4R

a

b

break break

break

R

R

reflecting the observed increase of small planets with
decreasing radius (bR=−4), and the “plateau” (aR=0) of
constant occurrence rates for planets smaller than Rbreak=
3 R⊕ (e.g., Howard et al. 2012; Petigura et al. 2013b).

The probability distribution function of planet occurrence
thus has seven free parameters (η, Pbreak, aP, bP, Rbreak, aR, bR).
An example for η=2 is shown in Figure 2.

2.1.2. Multi-planet Mode

In its multi-planet mode EPOSsimulates a planetary system
for each star. Each planet in the system, denoted by subscript k,
is characterized by its radius, orbital period, and orbital
inclination with respect to the observer, i, and there are m
planets per system. Because the properties of planets in multi-
planet systems tend to be correlated, we draw a typical set of
planet properties for each system (Rs, Ps, is) on which the
properties of each planet in the system (Rk, Pk, ik) are
dependent:

µ( ∣ ) ( ∣ )
( ∣ )
( ∣ ) ( )

f R P i R P i f R R

f P P

f i i

, , , ,

, 5

k s s s R k s

P k s

i k s

pl, ,

,

,

where we make the assumption that distributions of planet size,
period, and inclination are not interdependent. Previous studies
have shown that planets in multi-planet systems tend to be
more similar in size and more regularly spaced than random
pairings from the overall distribution (Millholland et al. 2017;
Weiss et al. 2018) and have low mutual inclinations of a few
degrees (e.g., Fabrycky et al. 2014). This motivates our choice
to not draw the properties of each planet independently from a
distribution fpl (R, P, i).
The system properties (Rs, Ps, is) are drawn from a

distribution

µ( ) ( ) ( ) ( ) ( )g R P i g R g P g i, , 6s s s R s P s i spl

where once again we have made the assumption that the
distributions of planet size, period, and inclination are
separable functions of each variable. The distribution of g is
normalized such that the integral over the simulated parameter
range is equal to the fraction of stars with planetary systems, hs:

ò ò òh = ( ) ( )g P R i d P d R di, , log log 7s
P R i

pl

The parameterization of the system and planet properties are
described below. The system architecture is illustrated in
Figure 3.

Figure 2. Example planet probability distribution function, fpl (P, R). The color
indicates the planet occurrence rate in percent per unit area of d ln P d ln R. The
side panels show the marginalized distributions, fP(P) in units of d ln P and
fR(R) in units of d ln R.
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Orbital Inclination—A planet’s orbital inclination with the
respect to the line of sight, ip, is dependent on the inclination of
the system, is, the mutual inclination of the planet with respect
to that system, δi, and the longitude of the ascending node, δΩ.

We assume that the planet’s mutual inclinations, δi, follow a
Rayleigh distribution:

d d= Dd
d- D( ) ( )( )f i i ie , 8i k
i i

,
22 2

where Δi is the mode of the mutual inclination distribution
of planetary orbits, which is typically 1°–3°(Fabrycky et al.
2014). The distribution of system inclinations with respect to
the observer, is, is proportionate to cos(i).

µ( ) ( ) ( )g i icos 9i s s

where is=0 is an edge-on orbit. The distribution of planet
inclinations with respect to the observer is then

d pd= + Wd( ∣ ) ∣ ( ) ( )∣ ( )f i i i f i cos 10i k s s i k, ,

where δΩ is the longitude of the ascending node with respect to
the observer.

Orbital Period—We assume that the planets are regularly
spaced in the logarithm of the orbital period, with the location
of the first planet (k=0) defining the location of additional
planets (k=1...m) in the system. The period ratio of adjacent
planets is denoted by  º +P Pk k k1 , where Pk+1 is always the
planet with the larger orbital period.

The location of the first planet in the system, (P0≡Ps), is
parameterized by the broken power law distribution described
by Equation (3), but with a steeper decline in planet occurrence
with orbital period (bP0) that we will constrain in the fitting
process.

Observed orbital spacings follow a broad range in period
ratios, and we follow Malhotra (2015) in parameterizing the

distribution of dimensionless spacings,



= -

+
D 2k

1

1
k

k

2 3

2 3 , as a log-

normal distribution. The orbital period distribution of the kth
planet in the system is then given by

ps
=- s

-

( ∣ ) ( )
( )

f P P e
1

2
11P k k, 1

Dk Dlog 2

2 2

with respect to the orbital period of the previous planet, Pk−1. D
and σ are free parameters that characterize the median and

width of the distribution, with typical values of D≈−0.4
and σ≈0.2.
Planet Radius—We assume all planets in the system are of

equal size

=( ∣ ) ( ) ( )f R R g R 12R k s R s,

where we assume the radius distribution follows Equation (4).
We choose equal-sized planets over randomly assigned sizes
because planets in multi-planet systems tend to be of similar
size (Lissauer et al. 2011; Millholland et al. 2017; Weiss
et al. 2018). While there are observed trends of increasing
planet size with the orbital period, these trends are strongest at
short orbital periods (e.g., Carrera et al. 2018) and for large
planet sizes (Ciardi et al. 2013; Huang et al. 2016), which we
will exclude from our observational comparison, see
Section 2.4.
Thus, the number of free parameters describing the

population of planetary systems is 11 (η, m, Δi, Pbreak, aP,
bP, D, σ, Rbreak, aR, bR).

2.2. Step 2: Transiting Planet Populations

The synthetic planet population is simulated using a Monte
Carlo approach by sampling the distribution function of planet
properties (Equation (1) or (5)) np times. We simulate planetary
systems in the period range [0.5, 730] days and [0.3, 20]R⊕
(Figure 4). For each planet, 2 random numbers are drawn to
determine its properties. The first random number is used to
determine the planet orbital period from the cumulative
distribution function of Equation (3). The second random
number is used to determine the planet radius from the
cumulative distribution function of Equation (4).
The total number of draws in the synthetic survey is

np=ηnå, where nå is the number of stars in the survey
(nå≈160,000), multiplied by the average number of planets
per star, η. In occurrence rate mode, with η≈2, the simulated
sample {R, P}p consists of ns≈240,000 planets. In multi-
planet mode, with ηs≈0.35 and m≈6, the simulated sample
{R, P, i}s consists of the same number of planets distributed
across ns≈40,000 systems. Each star in the survey is assigned
a unique identifier, ID, to keep track of the observable planet
multiplicity.

Figure 3. Illustration of the planetary system architecture. Pin denotes the
orbital period of the innermost planet, while  denotes the period ratio between
adjacent planets. The system is inclined with respect to the observer by an
angle is, and each planet has a mutual inclination δi with respect to this system
inclination. Note that each planet has a different mutual inclination and
therefore a different inclination with respect to the line of sight. All orbits are
assumed to be circular and the ellipiticity of the projected orbits are due to their
respective inclinations. The probability distributions for is, δi,  , and Pin are
described in the text.

Figure 4. Simulated sample of transiting (pink) and detectable (blue) planets
generated in occurrence rate mode, see Figure 2.
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In occurrence rate mode, the subset of transiting planets can
be simulated by considering the geometric transit probability

= ( )f R a. 13geo

The semimajor axis a is calculated using Kepler’s third law.
The stellar mass and radius are the average values of the
surveyed stars (see next section). A planet is transiting if

c < ( )f 14geo

where χ is a continuous random variable between 0 and 1. The
transiting planet sample, {R, P}t, typically contains 10,000
planets. An example is shown in Figure 4.

2.2.1. Multi-planet Transit Probability

The Monte Carlo simulation of transiting planetary systems
goes as follows. First, the system inclination, is, is drawn
according to Equation (9). The draw from a distribution is
performed by generating a random number between 0 and 1
and then we interpolates the parameter value from the
normalized cumulative distribution. Next, the mutual inclina-
tion of the orbit of each planet in the system, δip,k, is drawn
from Equation (8). Then the longitude of the ascending node
with respect to the observer, δΩ, is randomly drawn for each
planet from a uniform distribution, δΩ=χ. The inclination, ik,
of each planet’s orbit with respect to the line of sight can then
be calculated from Equation (10). The transiting planet
population, {R, P}t, is defined by planets that traverse the
stellar limb, given by

< ( ) ( )i farcsin , 15k geo

where fgeois the geometric transit probability from
Equation (13). We note that for a single planet (δip,k=0),
this expression is equivalent to the geometric transit probability
of Equation (13). This expression is only valid for small mutual
inclinations.

To account for the Kepler dichotomy, the apparent excess of
single transiting systems (e.g., Ballard & Johnson 2016), we
assume that a fraction fiso of planetary systems has an isotropic
distribution of orbits described by Equation (13) instead of
Equation (15). Typically, fiso≈0.5, but we will treat it as a
free parameter to be constrained from the data.

2.3. Step 3: Survey Detection Efficiency

We simulate a detectable planet sample, {R, P}d, from the
simulated sample of transiting planets, {R, P}t, by taking into
account the survey detection efficiency, fS/N(R, P), and the
vetting completeness, fvet(R, P), described below and displayed
in Figure 5. A planet is detectable if:

c < ( )f f 16S N vet

where χ is a continuous random variable between 0 and 1.
fS/N(R, P) is the detection efficiency based on the combined
signal-to-noise ratio of all planet transits. fvet(R, P) is the
detection efficiency of the KeplerRobovetter for a planet
candidate sample with high reliability.
We calculate detection efficiency contours for each indivi-

dual star observed by Keplerusing KeplerPORTs7 (Burke &
Catanzarite 2017). We included all stars that were fully
searched by the Kepler pipeline, for which stellar properties
were available in the Mathur et al. (2017) catalog, and for
which all detection metrics were available on the exoplanet
archive.8

The detection efficiencies were evaluated on a grid with 20
logarithmically spaced orbital period bins between 0.2 and 730
days assuming planets on circular orbits, and 21 logarithmi-
cally spaced planet radius bins between 0.2 and 20 R⊕. After
removing giant and sub-giant stars according to the effective
temperature dependent surface gravity criterion in Huber et al.
(2016), the sample consists of nå=159,238 stars, with a
median mass of Må=0.95Me and median radius of
Rå=0.94 Re. We calculate the survey detection efficiency,
fS/N(R, P), by averaging the individual contributions of each
star, displayed in the upper panel of Figure 5.
Not all transiting planets that are detectable based on the

detection efficiency are vetted as planet candidates by the
KeplerRobovetter (Coughlin et al. 2016). Including only
reliable planet candidates, here defined with a disposition score
larger than 0.9, further reduces the vetting completeness. The
vetting efficiencies were calculated following Thompson et al.
(2018) based on the Keplersimulated data products.9 The
vetting efficiency was evaluated on the same radius and period
grid as the detection efficiency and using the same criterion to

Figure 5. Planet detection efficiency for dwarf stars from the Keplermission for the DR25 data release as a function of the orbital period and planet radius. Left Panel:
The detection efficiency, fS N, the probability that a planet candidate is detected based on the signal-to-noise of the transit. Middle Panel: The vetting efficiency, fvet,
the probability that a planet is classified as a reliable planet candidate (a Robovetter disposition score of �0.9). Right Panel: The survey completeness, fdet, which
includes both the detection and vetting efficiency as well as the the geometric transit probability, fdet = fgeo fS N fvet.

7 https://github.com/nasa/KeplerPORTs
8 https://exoplanetarchive.ipac.caltech.edu/docs/Kepler_completeness_
reliability.html
9 https://exoplanetarchive.ipac.caltech.edu/docs/KeplerSimulated.html
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select main-sequence stars. We use a power law in the planet
radius and a broken power law in the orbital period to obtain a
smooth function for the vetting completeness fvet

=
<⎧⎨⎩

( )
( )

( )f c R
P P P P

P P

, if

, otherwise
17R

a
a

bvet
break break

break

P

P

with c=0.63, aR=0.19, Pbreak=53, aP=−0.07,
bP=−0.39 (see Appendix B for details). The best-fit vetting
efficiency is shown in Figure 5. The vetting efficiency varies
between close to 100% for Neptune-sized planets at short
orbital periods to 25% near the habitable zone. The break in the
power law is needed to match the reduced vetting efficiency for
planets at orbital periods larger than ∼100 days as described in
Thompson et al. (2018).

The detectable planet sample, {R, P}d, typically contains
about 4000 planets (Figure 4). In multi-planet mode,
EPOSalso keeps track of which planets are observable as part
of multi-planet systems (Figure 6). From the observed multi-
planet systems we generate a set of summary statistics: Nk, the
number of stars with k detectable planets;  , the orbital period
ratio between adjacent planets (Figure 7); Pin, the orbital period
of the innermost planet in the system (Figure 8).

It is worth noting that the properties of the observable multi-
planet systems are significantly different from the distributions
from which they are generated. When the intrinsic population
contains only planetary systems with m�7 planets, the
majority of systems have k=2–6 transiting detectable planets.
In addition, the observable period and period ratio distributions
are skewed by detection biases.

The geometric transit probability favors the detection of
planets at shorter orbital periods. The distribution of the
location of the innermost observed planet in the systems peaks
at Pin∼ 6 days, compared to Pin= 10 days in the intrinsic
distribution (Figure 8). We also find that planetary systems at
very short orbital periods (Pin∼1 day) are overrepresented in
the detectable distribution by an order of magnitude, while
systems with orbital periods similar to the terrestrial planets
(Pin∼100 days) are underrepresented by an order of magni-
tude, due to the same detection biases (Figure 8).

Pairs of planets with smaller orbital period ratios are more
likely to be both transiting, shifting the peak of the observable
orbital period ratio distribution to smaller period ratios
(Figure 7). The hatched area in the bottom panel of Figure 7
shows simulated planet pairs that are observable as adjacent but
have a non-transiting planet between them. These planet pairs
dominate the period ratio distribution at large orbital period
ratios (  4).

2.4. Step 4: Observational Comparison

In this step we compare the simulated planet populations to
the observed exoplanet properties to evaluate how well the
simulated planet population reproduces the collection of
observed planetary systems. We generate a set of summary
statistics for both the simulated data and the Keplersurvey. We

Figure 6. Simulated sample of detectable planetary systems. Planets with no
additional planets detected in the system are color coded in gray. Colors
indicate the number of observed planets per system.

Figure 7. Period ratio distribution of adjacent planets in multi-planet systems,
 = +P Pk k1 . The intrinsic distribution is shown with the red line while the
solid blue histograms show the distribution of detections in the simulated
survey. The observable distribution is skewed toward shorter orbital period
ratios by detection biases. The hatched region indicates the observable planet
pairs with at least one non-detected planet between them.

Figure 8. Orbital period distribution of the innermost planet in each system.
The intrinsic distribution is shown with the red line while the solid blue
histograms show the distribution of detections in the simulated survey. The
observable distribution is skewed toward shorter orbital periods by detection
biases.
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evaluate the survey as a whole, and do not consider
dependencies on stellar properties such as stellar mass
(Mulders et al. 2015a, 2015b) or metallicity (Mulders
et al. 2016; Petigura et al. 2018).

In occurrence rate mode, the summary statistics are the
planet radius distribution, {R}d, the orbital period distribution,
{P}d, and the total number of planets, N. In multi-planet mode,
additional summary statistics are calculated for the number of
stars with k planets, Nk, the period ratio distribution between
adjacent planets,  , and the period of the innermost planet in
the system, Pin. We evaluate this summary statistic in the range
of R=[0.5, 6]R⊕ and P=[2, 400] days. These ranges
exclude two regions where the assumptions of separability of
parameters clearly breaks down. The maximum planet size of
6 R⊕ is chosen to exclude giant planets, which have a different
distribution of orbital periods than sub-Neptunes (Dong &
Zhu 2013; Santerne et al. 2016), are less often part of multi-
planet systems (Steffen et al. 2012), or have dissimilar sizes
than other planets in the system (Huang et al. 2016). The
minimum orbital period of two days is chosen to exclude the
photo-evaporation desert (e.g., Lundkvist et al. 2016) where
the planet radius distribution deviates significantly from that at
larger orbital periods. The other bounds are chosen because
there are very few planet detections outside this range.

We then generate a summary statistic from the Kepler DR25
catalog. The planet candidate list is taken from Thompson et al.
(2018). We include only the main-sequence planet hosts by
removing giant and sub-giant stars according to the effective
temperature dependent surface gravity criterion (in Huber
et al. 2016). We also use a disposition score cut of 0.9 to select
a more reliable sample of planet candidates (see Thompson
et al. 2018 for details). We account for the lower completeness
of this high-reliability planet sample by explicitly taking into
account the vetting completeness in the calculation of the
survey detection efficiency.

The final list containing 3041 planet candidates is shown in
Figure 9. The list contains 1840 observed single systems and
324 double, 113 triple, 38 quadruple, 10 quintuples, and two
sextuple systems within the region where the summary statistic
is evaluated.

2.4.1. Occurrence Rate Mode

Figure 10 shows how the summary statistics of planet radius
and orbital period are generated from the detectable planet
population (blue) and from the Keplerexoplanet population
(orange). We compare the planet radius distributions and
orbital period distributions separately. While this approach
ignores any covariances between planet radius and orbital
period that are present in the Keplerdata, it is consistent with
the assumption made in Equation (1) that these functions are
separable. We quantify the distance between the two distribu-
tions using the two-sample Kolmogorov–Smirnoff (KS) test
and calculated the associated probabilities, pP and pR, that the
observed and simulated distributions are drawn from the same
data. We will minimize the differences between these
distributions in the fitting step.

Figure 9. Observed sample of planetary systems. Planets with no additional
planets detected in the system are color coded in gray. Colors indicate the
number of observed planets per system.

Figure 10. Comparison of simulated planets for the example model (blue) with
detected planets (orange). The comparison region (black box) excludes hot
Neptunes (P<2 days) and giant planets (R>6 R⊕).

Figure 11. Simulated vs. observed frequency of multi-planet systems. The blue
histogram shows the example model with an average mutual inclination of
Δi=2. Multi-planet statistics from Kepler derived in the same radius and
period range are shown in orange. The hatched region indicates the excess of
single transiting planets, here 40% of systems ( fiso=0.4). Crosses indicate a
population of planetary systems on coplanar orbits (green, Δi=0) and on
isotropic orbits (red, fiso=1.0).
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2.4.2. Multi-planet Statistics

We calculate three additional summary statistics for multi-
planet systems: the frequency of multi-planet systems
(Nk, Figure 11); the period ratio of adjacent planet pairs
( , Figure 12); and the distribution of the locations of the
innermost planet in each system (Pin, Figure 13), all evaluated
within R=[0.5, 6]R⊕ and P=[2, 400]. As discussed in the
previous section, the observed planet populations are subject to
detection biases, and a proper comparison requires a compar-
ison of the observed distribution to the simulated distribution,
which is what EPOSdoes. All summary statistics are calculated
in the same way for observed planets (orange lines) and
simulated planets (blue histograms) from the set of orbital
periods and host star IDs. We use 2-sample KS tests to
calculate the probabilities that the distribution of inner planet
orbital periods (pin) and orbital period ratios ( p ) are drawn
from the same distribution as the observations. We use a
Pearson χ2 test to calculate the probability, pN, that the multi-
planet frequencies of the simulated sample are drawn from the
same distribution as the observations.

The frequency distribution of planets in multi-planet systems
is shown in Figure 11 for a model with m=7 planets per
system, a mode for the mutual inclination of Δi=2°, and
fiso=0.4. The hatched region indicates simulated planets that
are on isotropic orbits to match the excess of single transiting
systems. We also show a model with only coplanar orbits
(i=0°and fiso=0, green) that overpredicts the frequency of
multi-planet systems, particularly at high numbers of planets
per system. A model with planets on isotropic orbits ( fiso=1,
red) underpredicts the frequency of all multi-planet systems.

The period ratio of adjacent planet pairs is shown in
Figure 12. The blue histogram shows the observable period
ratios of the example model where planets are regularly spaced
according to the period ratio distribution of Equation (11). The
shape of the period ratio distribution qualitatively reproduces
the observed distribution (orange), with a peak near a period
ratio of  » 2 and a tail toward large orbital period ratios. For
comparison, the red line shows a simulation where planetary
systems are not regularly spaced, which is constructed by
randomly drawing m=7 planets from the period-radius

distribution of Equation (1) (Figure 2). These simulated
systems have an observable period ratio distribution that is
much wider than observed, indicating that planetary systems
are regularly spaced (See also Weiss et al. 2018).
The distribution of the location of the innermost detected

planet in each of the multi-planet systems is shown in
Figure 13. We only focus on the innermost planet of a detected
multi-planet system, as for observed single-planet systems it
can not be derived from the observable if they are intrinsically
single or part of a multi-planet system with non-transiting
planets. The distribution of innermost detected planets
constrains the fraction of planetary systems without planets at
short (�20 days) orbital periods.

2.5. Step 5: Fitting Procedure

With the framework to compare the parameterized distribu-
tions of exoplanets to observables we proceed to constrain the
parameters to provide the best match to the observed planetary
systems. The runtime of steps 1–4 is less than a tenth of a
second in occurrence rate mode and less than a second in multi-
planet mode, allowing for a comprehensive sampling of
parameter space. We use emcee(Foreman-Mackey
et al. 2013), an open-source Pythonimplementation of the
algorithm by Goodman & Weare (2010) to sample the
parameter space and estimate the posterior distribution of
parameters.

2.5.1. Occurrence Rate Mode

In occurrence rate mode, we explore the seven-dimensional
parameter space consisting of the number of planets per star, η,
the orbital period distribution, Pbreak, aP, bP, and the planet
radius distribution, Rbreak, aR, bR. The summary statistics to
evaluate the model given the observations are the number of
detected planets, N; the planet orbital period distribution, {P};
and the planet radius distribution {R}. We use Fisher’s method
(Fisher 1925) to combine the probabilities from the summary
statistic into a single parameter:

=-
+ +

( ( )
( ) ( )) ( )

L p

p p

2 ln

ln ln , 18
N

P R

occ

Figure 12. Simulated (blue) vs. observed (orange) period ratio between
adjacent planets in multi-planet systems. The red line shows, for comparison, a
simulation where planet orbits are randomly drawn from the period-radius
distribution (Figure 2) instead of regularly spaced.

Figure 13. Simulated (blue) vs. observed (orange) location of the innermost
planet in each system.
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which we use as the likelihood of the model given the data
in emcee, e.g.,   hµ ( { } { }∣N P R P a b, , , , , ,P Pbreak Rbreak,
aR, bR).

We run emceewith 200 walkers for 5000 iterations,
allowing for a 1000-step burn-in to reach convergence. For
the initial positions of the walkers we use the parameters of the
example model, see Table 1. The MCMC chain and parameter
covariances are shown in the appendix (Figures 22 and 23).
The best-fit values and their 1σconfidence intervals are
calculated as the 50%, and 16% and 84% percentiles,
respectively. The simulated model for the best-fit parameters
and for 30 samples of the posterior is shown in Figure 14.

The posterior distribution of planet radius and orbital period
are shown in Figure 15. As a sanity check, we calculate
occurrence rates as a function of planet radius and orbital
period using the inverse detection efficiency method. The
occurrence per bin is calculated as



h = S ( )
n

1 1

comp
19j

n

j
bin

p

where compj is the survey completeness evaluated at the radius
and orbital period of each planet in the bin (Figure 16). The
posterior distributions provide a decent match to the binned
occurrence rates, with three notable deviations. At P50 days
and R1.4 R⊕ occurrence rates are lower than the posterior.
We attribute this to the bins including regions where
Keplerhas not detected planet candidates (see Figure 16) and
occurrence rates are therefore underestimated. The broken
power law in planet radius does not describe the population of
giant planets at ∼10 R⊕, and therefore, in the following, we
restrict our observational comparison to <6 R⊕.

2.6. Multi-planet Systems

In multi-planet mode, we explore the nine-dimensional
parameter space consisting of: the fraction of stars with
planetary systems, ηs; the mode of the mutual inclination
distribution, Δi; the orbital period distribution of the inner
planet, Pbreak, aP, bP; the period ratio distribution, D and σ; and
the fraction of isotropic systems, fiso. The summary statistics to
evaluate the model given the observations are the frequency of
multi-planet systems, {Nk}; the orbital period distribution, {P};
the planet orbital period ratio distribution, { }; the distribution
of the innermost planet in the system,{Pin}. We use Fisher’s
method to combine the probabilities from the summary statistic

into a single parameter:

=- +
+ + +

( ( ) ( )
( ) ( ) ( )) ( )

L p p
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ln ln ln , 20
N N k
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which we use as the likelihood of the model given the data in
emcee, e.g.,    hµ ( { } { } { }∣N P P P, , , , ,k in break aP, bP, D,
σ, Δi, fiso).
The planet radius distribution is fixed to minimize the

amount of free parameters, and we use the best-fit values
constrained in the previous section and listed in Table 2. The
number of planets per system, m, is fixed to 10 because it is not
well constrained in the fitting: Systems with fewer than six
planets do not reproduce the observed multiplicity distribution
as there are two detected sextuple systems (N6=2). Systems
with more than seven planets have the same observation
signature as the 8th, 9th, etc., planet in the system and will
typically remain undetected, as the combined likelihood of
detecting all the planets in such systems is too small to allow
detection given the size of the Kepler sample.
We sample the parameter space with emceeusing 100

walkers for 2000 iterations, allowing for a 500-step burn-in.
The MCMC chain and parameter covariances are shown in the
appendix (Figure 24). The simulated observables of the best-fit
models and of 30 samples from the posterior are shown in
Figure 17. We will discuss the results in the next section.

3. Results

By using EPOSin parametric mode we find that the planet
occurrence rates of the Keplermission are well described by a
broken power law in the orbital period and planet radius in the
region 2<P<400 days and 0.5< R⊕<6. We estimate the
planet occurrence rate, the average number of planets per star,
to be h = -

+2.4 0.5
0.5 in this regime and h = -

+4.9 1.2
1.3 in the

simulated range (0.4<P<730 days and 0.3< R⊕<20).
This number is higher than the occurrence rate calculated from
inverse detection efficiencies (ηinv=1.40±0.03), which
underestimate the occurrence rates for small planets at long
orbital periods. These results are largely consistent with

Table 1
Fit Parameters for the Example Model and the Best-fit Solutions with

1σConfidence Intervals

Parameter Example Best-fit

η 2.0 -
+4.9 1.2

1.3

Pbreak(days) 10 -
+12 3

5

aP 1.5 -
+1.5 0.3

0.5

bP 0.0 -
+0.3 0.2

0.1

Rbreak(R⊕) 3.0 -
+3.3 0.4

0.3

aR 0.0 - -
+0.5 0.2

0.2

bR −4 - -
+6 3

2

Figure 14. Period-radius distribution of the detected planets in occurrence rate
mode. The green population shows the population generated from the best-fit
parameters. The black box and dashed lines indicate the range of orbital periods
and planet sizes that is included in the observational comparison. The side
histograms show the marginalized simulated distributions compared with the
observed populations in orange. The blue lines show 30 samples from the
posterior.
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previous occurrence rate studies collected in the SAG1310

literature study on planet occurrence rates (see Kopparapu
et al. 2018 for details).

The observed population of exoplanets is well described by a
population of regularly spaced planetary systems with seven or
more planets that orbit h = -

+67 %s 12
17 of stars. We find that the

mutual inclinations are consistent with the Kepler dichotomy:
Half the planet population is in planetary systems that have
nearly coplanar orbits, here described by a Rayleigh distribu-
tion withD = -

+i 2.1 0.8
1 , consistent with previous estimates that

find ranges between 1°and 3°(Lissauer et al. 2011; Fang &
Margot 2012; Fabrycky et al. 2014; Ballard & Johnson 2016).
The other half of planets appear as single-planet transiting
systems, which we model as multi-planet systems with
isotropically distributed orbital inclinations. The typical orbital
period ratio between adjacent planets is  = 1.8 but with a
wide distribution, consistent with previous analysis of spacings
between planets (Fang & Margot 2013).

We discover that the inner edge of planetary systems are
clustered around an orbital period of 10 days (Figure 18),
reminiscent of the protoplanetary disk inner edge which is
located at ∼0.1 au for pre-main-sequence Sun-like stars
(Millan-Gabet et al. 2007). While the break in planet
occurrence rate around 10 days has been previously connected
to the disk inner edge (Mulders et al. 2015a; Lee &
Chiang 2017), this is the first time a peak in the occurrence
rate distribution of sub-Neptunes has been identified. The
posterior distribution of the innermost planet peaks at an orbital
period of 12±2 days and decays toward shorter and longer
orbital periods with a power law index of = -

+a 1.6P 0.2
0.4 and

= - -
+b 0.9P 0.5

0.4, respectively. The decay toward long orbital
periods is surprising, since planet occurrence rates are constant
or slightly increasing in this range (green line). Planets exterior
to the break are therefore mostly the 2nd, 3rd, etc., planet in the
system. We also show that systems with inner planets at orbital
periods of100 days are intrinsically rare, and we discuss the

Figure 15. Posterior orbital period distribution (top) and planet radius
distribution (bottom). The red bars show the occurrence rates estimated using
the inverse detection efficiencies for comparison. Note that the occurrence rates
underestimate the true distribution in bins that include regions where
Keplerhas not detected any planet candidates, in particular R<1.5 R⊕ and
P>50 days (see Figure 16).

Figure 16. Kepler DR25 candidate list, color coded by survey completeness.
The sample includes only dwarf stars (log g<4.2) and planet candidates with
a disposition score larger than 0.9. The planet occurrence rate estimated from
Equation (19) is ηobs=1.40±0.03.

Table 2
Fit Parameters for the Example Model in Multi-planet Mode and the Best-fit

Solutions with 1σConfidence Intervals

Parameter Example Best-fit

ηs 0.4 -
+0.67 0.12

0.17

Pin (days) 10 -
+12 2

3

aP 1.5 -
+1.6 0.2

0.4

bP −1 - -
+0.9 0.5

0.4

Rbreak (R⊕) 3.0 3.3
aR 0.0 −0.5
bR −4 −6

log D 0.4 - -
+0.39 0.05

0.07

σ 0.2 -
+0.18 0.04

0.05

m 10 10
Δi (°) 2 -

+2.1 0.8
1.0

fiso 0.4 -
+0.38 0.08

0.08

Note.Parameters Rbreak, aR, and bR were fixed to their best-fit solutions from
the occurrence rate mode.

10 https://exoplanets.nasa.gov/system/internal_resources/details/original/
680_SAG13_closeout_8.3.17.pdf
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implications for planet formation theories and the origins of the
solar system below.

4. Discussion

4.1. How Rare is the Solar System?

Our modeling analysis indicates that multi-planet systems
without planets interior to Pin∼100 days are intrinsically
rare. We estimate, based on parametric distributions of
planet parameters, that -

+8 %5
10 of planetary systems have no

planet interior to the orbit of Mercury and -
+3 %2

5 have
no planet interior to Venus. This implies that the solar
system may simply be in the tail of the distribution of
exoplanet systems.
On the other hand, this comparison with the solar system is

made under the assumption that planet orbital architectures
(inclinations, spacings, inner planet location) are indepen-
dent of radius and orbital period. This assumption will need
to be verified with additional data. The orbital architectures
of the Kepler planetary systems are most constrained by

Figure 17. Posterior predictive plots of simulated planetary systems. The 30 samples from the posterior are shown in blue and the observed systems are shown in
orange. The top left panel shows the best-fit period-radius distribution in green (see Figure 14). The black box and dashed lines indicate the range of orbital periods
and planet sizes that is included in the observational comparison. The top right panel shows the frequency distribution of multi-planet systems with k planets. The
bottom left panel shows the period ratio distribution of the adjacent planets. The bottom right panel shows the orbital period distribution of the innermost planet in
each multi-planet system.

Figure 18. Marginalized orbital period distribution of the innermost planet in
the system. The green line indicates the distribution of all the planets in the
system.
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planets that are larger and closer in, typically P∼10 days
and R∼2 R⊕ (see Figure 14). A solar system analog, if
detected, would most likely appear as single transiting
systems in the Keplerdata due to the low probability that
multiple terrestrial planets transit (e.g., Brakensiek &
Ragozzine 2016). Hence, we can not rule out that the solar
system may be part of a population of planetary systems with
different orbital characteristics than those detected by the
Keplermission.

We make a direct estimate of how many planetary systems
without planets interior to Mercury or Venus could be present
in the Kepler data, without extrapolating the distribution of
orbital periods from closer-in planets. We generate a population
of planetary systems with similar orbital properties as the solar
system where we place the innermost planet at the orbital
period of Mercury (or Venus) but otherwise keep the same
parameters as in the best-fit model. Such a simulated planet
population with ηs=67% and fiso=0 matches planet
occurrence rates exterior to P=50 days for Pin=88 days.
The simulated observations predict30 multi-planet systems
with an innermost planet exterior to P=50 days, while only 4
are observed. This indicates that if a population of planetary
systems without planets interior to Mercury existed it would be
detectable in the Kepler data. We do note that most detectable
planets in this range are larger than one Earth radius, so the data
do not directly constrain true solar system analogs. Using a
mixture of coplanar systems and highly inclined systems
(which appear as intrinsically single), we can rule out that more
than 10% of systems ( fiso=0.9) have Pin=88 days
and Δi=2.

We repeat this exercise for systems where the innermost
planet shares the orbital period of Venus (P=225 days). None
of these simulated systems would be detectable as multi-planet
systems, and no planetary systems with an orbital period larger
than 150 days are detected with Kepler. Hence, we can not rule
out that the Kepler exoplanet population contains a significant

population of multi-planet systems without planets interior to
Venus, though we do not find evidence that such a population
exists.
Overall, the solar system seems to be a typical planetary

system in most diagnostics of orbital architectures (planetary
radii, periods, period ratios, inclinations, and planets per
system, Figure 19). The only clear difference is in the period
of the innermost planet where the solar system is an outlier.
While the lack of super-Earths/mini-Neptunes in the solar
system is also notable (Martin & Livio 2015), Earth-sized
planets are not intrinsically rare, and the size of the terrestrial
planets does not make the solar system an outlier in the
exoplanet distribution.

4.2. Systems with Habitable Zone Planets

We also estimate η⊕, the number of Earth-sized planets with
Earth-like orbital periods (“habitable zone” planets), here
defined as 0.9 P⊕<P<2.2 P⊕ and 0.7 R⊕<R<1.5 R⊕
based on the Kopparapu et al. (2013) conservative habitable
zone for a Sun-like star that is representative of the most
common star in the Keplersample. By integrating the posterior
distribution over the radius and orbital period range we find
h =Å -

+36 %14
14 or G = =

h
Å -

+Å 53 %
d P d Rln ln 21

20 . These results are
consistent with the estimate of Γ⊕=60% for GK dwarfs by
Burke et al. (2015), though we note that there is a large
dispersion in the literature11 on habitable zone planet
occurrence rates based on the adopted completeness correction,
the method of extrapolation into the habitable zone, and the
planet sample selection. The confidence intervals on hÅ include
counting statistics and systematic uncertainties in extrapolating
the planet radius and orbital period distribution out to the
habitable zone. They do not include systematic uncertainties on
the adopted stellar parameters, in particular the stellar radii
which directly impacts the planet radii. For example, large
uncertainties in the stellar radius of unresolved stellar binaries
lead to over-estimating the occurrence of small planets (Ciardi
et al. 2015; Silburt et al. 2015). Better observational constraints
on the stellar properties are expected based on parallax
measurements from the ESO Gaia mission. As a consistency
check, we have repeated all of the calculations in this paper
with the improved stellar radii and giant star classification from
(Berger et al. 2018). The best-fit parameteric distributions are
consistent with those in Table 1 within errors, and the habitable
zone planet occurrence rate of h =Å -

+40 %14
14 is not significantly

different.
The habitable zone planet occurrence rate we estimate is

consistent with that of Burke et al. (2015) based on the Q1–Q16
catalog, but about a factor four higher than that of the earliest
estimate based on Keplerdata from Petigura et al. (2013a),
which we attribute to an improved understanding of detection
efficiency of Kepler. This rate is comparable to that of M dwarfs
estimated with inverse detection efficiency methods (Dressing &
Charbonneau 2015), though we leave a comparison between M
dwarfs and FGK stars with consistent methodology for a future
paper.
The majority of simulated planets at long orbital periods

(P∼100 days) are not intrinsically single, but are part of
multi-planet systems where the innermost planets are
typically at an orbital period of P∼10 days. While the

Figure 19. Best-fit distribution of planetary system properties from Kepler
(blue) compared to the solar system terrestrial planets (red letters). The
inclinations of the terrestrial planets are with respect to the invariable plane.
The orbital periods, radii, inclinations, and period ratios of the terrestrial
planets lie near the peak of the distribution of Kepler systems. The only notable
exception is the orbital period of the innermost planet, where Mercury (93th
percentile) and Venus (97th percentile) lie in the tail of the distribution.

11 https://exoplanets.nasa.gov/system/internal_resources/details/original/
680_SAG13_closeout_8.3.17.pdf
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multi-planet statistics do not directly constrain planetary
systems of Earth-sized planets in the habitable zone of Sun-
like stars, the presence of planets on orbital periods of 10 days
does provide a way to identify targets for future direct
imaging missions, such as the HabEx and LUVOIR mission
concepts.

Kipping & Lam (2017) have shown that the presence of
transiting planets at short orbital periods increases the chance
of finding transiting planets at larger orbital periods. Our
analysis indicates that, because most planets in multi-planet
systems are not transiting, the probability of finding any
planet (transiting or non-transiting) is even higher. For
example, the detection of an Earth-mass planet at an orbital
period of ten days with radial velocity measurements
indicates a higher probability of finding a planet in the
habitable zone. Depending on whether single transiting
planets are intrinsically single or highly inclined multiples,
50%–100% of systems with close-in planets may also have
planets in the habitable zone.

4.3. Protoplanetary Disk Inner Edges

The peak in the location of the innermost planet in the
system points to a preferred location of planet formation/
migration in protoplanetary disks. This location may reflect
either the inner edge of the region where planets form
(Chiang & Laughlin 2013; Mulders et al. 2015a; Lee &
Chiang 2017) or that of a planet trap where planet migration
stalls (Terquem & Papaloizou 2007). While the break in
planet occurrence at ∼10 days has been attributed to the disk
inner edge before (Mulders et al. 2015a; Lee & Chiang 2017),
the peak in the location of the innermost planet presents solid
evidence that there is a preferred location for planet
formation at 0.1 au, rather than a continuum of location
between 0.1 and 1 au. In particular, this result is inconsistent
with wide regions between 0.1 and 1 au acting as a trap for
individual planets (e.g., Dittkrist et al. 2014), and is more
reminiscent of the inward migration of multiple planets
where the first planet is trapped at the inner disk edge and

halts the migration of other planets (Cossou et al. 2014;
Coleman & Nelson 2016; Izidoro et al. 2017).

4.4. Do Most Stars Have Planets?

Our analysis confirms that the average number of planets per
(Sun-like) star is larger than one (Section 2.1.1). However, this
does not imply that most stars have planets, since planets can
be unevenly distributed among stars. In Section 2.1.1 we show
that h = -

+67 %s 12
17 of stars can host multi-planet systems. An

important assumption we made is that the apparent excess of
single transits is because fiso=38% of multi-planet systems
have high mutual inclinations. The inclination distribution of
exoplanets can not be uniquely constrained from transit survey
data (Tremaine & Dong 2012). Different assumptions on the
mutual inclination distribution lead to different estimates of the
fraction of stars with planets, illustrated in Figure 20.
On the conservative end, the highly inclined planets in

otherwise coplanar multi-planet systems could contribute to the
observed number of single transits (Figure 20, right panel). In
this case, the dichotomy is an artifact of the assumption that
mutual inclinations follow a Rayleigh distribution. A distribu-
tion with a larger tail toward higher inclinations could possibly
fit the multi-planet statistics with a single population. In this
case, the fraction of stars with planets drops to ∼41%.
Alternatively, a population of intrinsically single planets could
contribute to the observed single transiting systems (Figure 20,
right panel). In this case, the estimated fraction of stars with
planets increases to unity.
A way of discriminating between both scenarios may be the

use of stellar obliquity. Transiting planets with high mutual
inclinations or isotropic distributions have large obliquities
with respect to the line of sight. There are indications that the
stellar obliquity is larger for single-transit systems (Morton &
Winn 2014), indicating that they may have highly inclined
orbits. Several mechanisms have been proposed to disrupt
initially coplanar systems, reducing their multiplicity and/or
increasing their mutual inclinations, and giving rise to the
population of single transiting systems. These mechanisms

Figure 20. Illustration of how the estimated fraction of stars with planetary systems depends on the distribution of planets across stars. Nearly all coplanar systems
orbit 31% of stars (green) while the distribution of observed single transiting planets (purple) is less well constrained.
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include dynamical instabilities within systems (Pu & Wu 2015;
Volk & Gladman 2015), external perturbations from giant
planets or stars (Johansen et al. 2012; Hansen 2017; Izidoro
et al. 2017; Lai & Pu 2017; Cai et al. 2018) and host star
misalignment (Spalding & Batygin 2016). Alternatively,
planets may form as intrinsically single systems in half the
cases (Moriarty & Ballard 2016). Additional constraints on the
single planet population are needed to constrain these
scenarios. However, we stress that roughly half of the observed
single transiting systems are part of multi-planet systems and
have non-transiting or non-detected planets in the system, and
hence the sample of “singles” is diluted with multi-planets,
weakening any potential trends. Transit timing variations can
also be used to detect additional non-transiting planets in the
system (Nesvorný et al. 2012).

The Keplermission only detects planets out to ∼1 au and
down to ∼0.5 R⊕. Hence, any estimate of the fraction of stars
with planets is likely to be a lower limit. We do not see a clear
indication that planet occurrence rate decreases toward the
detection limits of Kepler. While planet occurrence rates
calculated using the inverse detection efficiency seem to
decrease for Earth-size and smaller planets (Figure 15), this is
also the region where the Keplerexoplanet list becomes
incomplete. The posterior planet size distribution does not
show this trend and is almost flat in log Rp, indicating that
planets below the detection efficiency of Keplercould be
extremely common. Since planetary systems tend to have
planets of similar size (Millholland et al. 2017; Weiss
et al. 2018), planetary systems with only planets smaller than
the detection limit would be missed. Extending the planet size
distribution down to the size of Ceres (0.07 R⊕) would increase
the fraction of stars with planets to 100%.

We find that the orbital period distribution of sub-Neptunes
is nearly flat in the logarithm of orbital period. However,
planets at long orbital periods are mostly members of systems
with planets also at shorter orbital periods: there is no evidence
for a large population of planetary systems with only long-
period planets. Extrapolating the distribution of planetary
systems to orbital periods larger than a year would add planets
to existing systems, increasing the number of planets per star
but not the fraction of stars with planets. Of course, such an
extrapolation does not take into account the presence of
additional populations of planets, which could be important, for
example, if planets form more frequently at the snow line
(exterior to 1 au). Giant planets orbit 10%–20% of Sun-like
stars (Cumming et al. 2008), most of them beyond 1 au.
Microlensing surveys hint at the existence of a population of
Neptune-mass planets around a significant fraction of M dwarfs
(Cassan et al. 2012; Suzuki et al. 2016). Since these
populations remain mostly undetected in the Kepler survey, it
is not clear if they belong to the same stars, though there are
some indications that they do (Huang et al. 2016).

5. Summary

We present the Exoplanet Population Observation Simulator,
EPOS, a Pythoncode to constrain the properties of exoplanet
populations from biased survey data. We showcase how planet
occurrence rates and orbital architectures can be constrained
from the latest Keplerdata release, DR25. We find that:

1. The Keplerexoplanet population between orbital periods
of 2–400 days and planet radii of 0.5–6 R⊕ are well

described by broken power-laws. The planet occurrence
rate in this regime is η=2.4±0.5 consistent with
previous works. The estimated planet occurrence rate in
the habitable zone is η⊕=36±14%.

2. The observed multi-planet frequencies are consistent with
ensemble populations that are a mix of nearly coplanar
systems and a population of planets whose orbital
architectures are unconstrained, consistent with the
previously reported Kepler dichotomy. 62±8% of
exoplanets are in systems with six or more planets,
orbiting 42% of Sun-like stars. The remaining 38±8%
of exoplanets could be intrinsically single planets or be
part of multi-planet systems with high mutual inclina-
tions, raising the fraction of stars with planets to
somewhere between 45% and 100%.

3. The mutual inclinations of planetary orbits can be
described by a Rayleigh distribution with a mode of
i=2°±1°. The spacing between adjacent planets
follows a wide distribution with a peak at an orbital
period ratio  = 1.8, though detection biases shift the
peak of the observed distribution to shorter orbital period
ratios.

4. The distribution of the innermost planet in the system
peaks at an orbital period of P≈10 days. Planetary
systems without planets interior to Mercury’s and Venus’
orbit are rare at 8% and 3%, respectively.

The EPOScode presented in this paper provides a first step
in a larger effort to constrain planetary orbital architectures
from exoplanet populations. The next step will be to use more
complex models of planetary system architectures based on
planet formation models. Future directions include incorporat-
ing additional exoplanet survey data from radial velocity,
microlensing, and direct imaging, as well as from transit
surveys such as K2 and TESS.

We thank an anonymous referee for a constructive review of
the manuscript. We also thank Shannon Dulz and Peter
Plavchan for feedback on an early manuscript draft, Ed Bedrick
for advice on statistical methods, and Daniel Huber for advice
regarding stellar properties. We acknowledge helpful conversa-
tions with Carsten Dominik, Eric Ford, Daniel Carrera, Renu
Malhotra, and Rachel Fernandes. This material is based upon
work supported by the National Aeronautics and Space
Administration under Agreement No. NNX15AD94G for the
program Earths in Other Solar Systems. The results reported
herein benefited from collaborations and/or information
exchange within NASAs Nexus for Exoplanet System Science
(NExSS) research coordination network sponsored by NASAs
Science Mission Directorate.
Software: NumPy (van der Walt et al. 2011) SciPy (Jones

et al. 2001) Matplotlib (Hunter 2007) Astropy (The Astropy
Collaboration et al. 2018) EPOS (Mulders 2018) emcee
(Foreman-Mackey et al. 2013) corner (Foreman-Mackey 2016)
KeplerPORTs (Burke & Catanzarite 2017).

Appendix A
Table of Mathematical Symbols

All mathematical symbols used in this paper are summarized
in Table 3.
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Appendix B
Vetting Completeness

The KeplerRobovetter (Coughlin et al. 2016; Coughlin 2017)
was designed to discriminate between real transiting events and
instrumental or astrophysical signals that mimic that of a
transiting planet, a process called “vetting.” For planets with
few transits and a low signal-to-noise ratio, vetting is a trade-off
between detecting planets (completeness) or removing false
positives (reliability). A planet candidate sample with high
completeness has a low reliability, and vice versa. The Robovetter
was calibrated by evaluating the ability to identify the signals of a
number of simulated transiting events to better quantify the
efficiency and confidence with which planets can be detected.

Each planet candidate is assigned a disposition score
between 0 and 1, which can be used to create a more reliable
sample (fewer false positives classified as planet candidates)
at the the cost of having a less complete sample (more planets
classified as false positives), see Thompson et al. (2018) for
details. For EPOSwe opt to use a planet sample with high
reliability by using a disposition score cut of 0.9, reducing
the sample completeness which, however, can be quantified
and corrected for as we discuss below. The score cut of 0.9
was chosen to eliminate the peak of false positives in the

habitable zone that coincides with the orbital period of the
spacecraft.
An empirical procedure for estimating the vetting complete-

ness is described in Thompson et al. (2018), based on the
injection of simulated transits into the Keplerdata (Christiansen
2017) and analyzed by the Robovetter (Coughlin 2017). We
downloaded the Robovetter results for simulated planet
injections (group 1) from the Keplersimulated data page.12

We removed all injections not on main-sequence stars according
to the prescription in Huber et al. (2016). We only considered
injections inside the orbital period and radius range where we
use EPOS(P=[0.5, 730] days and R=[0.3, 20]R⊕). There are
44981 injections, of which 77% (34558) are classified as planet
candidates and 43% (19247) have a disposition score >0.9.
The top left panel of Figure 21 shows the vetting

completeness, the fraction of injections classified as planet
candidates with a score larger than 0.9, binned to the same grid
as the survey detection efficiency. Planet injections are not
equally distributed across this parameter range, with the
majority of injections around sub-Neptunes at long orbital
periods, as shown in the top right panel. The vetting
completeness is ∼75% at orbital periods less than roughly
50 days and decreases below 25% at the longest orbital periods.
The completeness also drops below 25% for giant planets,
though this is most likely an artifact of those planets only being
injected around the most noisy stars, see Thompson et al.
(2018), and does not reflect a real decrease in the detectability
of giant planets in the Keplerpipeline.
We parametrize the vetting completeness to obtain a smooth

distribution of radius and orbital period that covers all of the
regions we are simulating with EPOS. We use a functional
form for the vetting completenss, fvet, that is a double broken
power law:

= ( ) ( ) ( )f c f P f R 21P Rvet vet, vet,

with

=
<⎧⎨⎩( )

( )
( )

( )f P
P P P P

P P
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R R R R

R R
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R

We find the best-fit parameters using scipy.optimize.
curve_fit, where we minimize the difference between the
measured and parametrized vetting completeness over all grid
cells. The best-fit solution is shown in the bottom left panel
of Figure 21 and the bottom right panel shows the residuals
per grid cell. The best-fit parameters are c=0.88±0.08,
Pbreak=53±8 days, aP=−0.07±0.03, bP=−0.39±
0.02,Rbreak=5.7±2.1 R⊕, aR=0.19±0.03, and bR=
−2.7±6.2. The break in the power law with orbital period
corresponds to the decreased detection efficiency at long orbital
periods as documented in Thompson et al. (2018), Coughlin
(2017). The break in the power law of planet radius corresponds
to a decreased detection efficiency for giant planets. However, as
mentioned above, this is likely an artifact of the way the injection
tests were defined, and there is no reason to assume that the low

Table 3
List of Mathematical Symbols used in this Paper

Parameter Unit Description

R R⊕ Planet radius
P day Planet orbital period
 Orbital period ratio of adjacent planets
i ° Orbital inclination

δi ° Planet mutual inclination
Δi ° Mode of mutual inclination distribution
Ω rad Longitude of ascending node

f Planet probability density function
g Planetary system probability density function

χ Continuous random variable
fdet Survey completeness

fgeo Geometric transit probability

fS N Detection efficiency

fvet Vetting efficiency

fiso Fraction of isotropic systems

η Average number of planets per star
ηs Fraction of stars with planets
m Planets per system (multiplicity)
ID Host star identifier

{} Ensemble of parameters
n Sample size
N Number of detected planets

s Subscript for planetary systems
p Subscript for planets
t Subscript for transiting planets
d Subscript for detectable planets
in Subscript for innermost planet
k Index for kth planet in system
a, b Power law indices
c Normalization factor
D, σ Dimensionless spacing parameters

12 https://exoplanetarchive.ipac.caltech.edu/docs/KeplerSimulated.html
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vetting efficiency for giant planets is a real feature (Thompson
et al. 2018). Therefore, we do not include the power law index
radius break in EPOS. Instead, we assume the planet radius
dependence of the detection is described by the power law in
planet radius that was fitted to the small planets. This yields a
vetting efficiency of

=
<-

-

⎧⎨⎩( ) ( )
( )

( )f R P R
P P P P

P P
, 0.63

, if

, otherwise
24vet

0.19 break
0.07

break

break
0.39

with Pbreak=53, which is shown in Figure 5.

Appendix C
Posterior Distributions

The MCMC chain and corner plots for the occurrence rate
mode are shown in Figures 22 and 23. The corner plots for the
multi-planet mode are shown in Figure 24.

Figure 21. The top left panel shows the vetting efficiency per grid cell for a Robovetter score larger than 0.9. The side panels show marginalized detection efficiency
(solid purple) compared to the best-fit double broken power law model (green dashed). The top right panel shows the locations of the planet injections from
Christiansen (2017). The bottom left panel shows the best-fit detection efficiency evaluated per grid cell. The bottom right panel shows the difference between the
measured and fitted vetting completeness per grid cell.
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Figure 22. Position in seven-dimensional parameter space of 200 walkers in the MCMC chain. The dashed line indicates the end of the burn-in phase.
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Figure 23. Corner plots for the parametric distribution, generated using an open-source Pythonpackage corner. Blue lines indicate the initial guess that was based
on previous studies.
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