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ABSTRACT

The V (D)J recombination process is the primary mechanism for generating a

diverse repertoire of T-cell receptors (TCRs) essential to the adaptive immune

system for recognizing a wide variety of diseases. The diverse set of TCR are

required by the immune system to increase the chance of accurate identification

of the foreign invaders, which results in successful recovery from diseases. Fur-

thermore, analysis of the TCR repertoire helps immunologists to understand

the functionality of immune system in presence of different diseases and find

the correlation between diseases and immune receptors. However, modeling

this diverse TCR repertoire is computationally challenging as the total num-

ber of TCRs to be generated and processed can exceed 1018 sequences. This

massive scale of data processing poses as the barrier for immunologists to suc-

cessfully understand the functionality of human immune system. Therefore,

reducing the timescale of modeling the TCR repertoire will help immunologists

to test their assumptions and solve their fundamental questions.

In this study, we propose FPGA and GPU-based implementation of V (D)J

recombination process for accelerating the analysis of TCR repertoire. For

the GPU-based implementation, we propose a bit-wise implementation of the

V (D)J recombination algorithm, which reduces the memory footprint and the

execution time by factors of 4 and 2 respectively compared to the current

state-of-the-art GPU-based implementation. We devise an encoding proce-

dure to convert the input data set from character based domain to binary

domain and pack a sequence of four characters into a single byte for the bit-

wise implementation. We also proposed new indexing scheme for addressing

input data that are not aligned with the byte-addressing. We present a multi-

GPU implementation, experimentally identify suitable workload partitioning

strategies for both single- and multi-GPU implementations, and finally expose

the relationship between workload size and limited scalability offered by the
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algorithm on a cluster with up to eight GPUs. We show that the bit-wise

implementation reduces the execution time from a time scale of 40.5 hours to

18.9 hours on a single GPU and to 4.3 hours on a 8-GPU configuration.

For the FPGA-based implementation, we first utilize the N-level paral-

lelization approach that is used for the GPU-based implementation. Simu-

lation results show that this approach does not perform as expected for the

FPGA-based implementation of V (D)J recombination process due to the com-

munication overhead between FPGA components. Therefore, we propose the

VJ level parallelization approach to reduce the communication among compo-

nents. We show that the VJ-level architecture reduces the execution time by

a factor of 2.34 in comparison with the N-level parallelization approach.
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CHAPTER 1

INTRODUCTION

Adaptive immune system protects vertebrates by detecting and neutralizing

foreign invaders (antigens) using T-cell receptors (TCRs), which are placed

on the surface of a T-cell [1]. A T cell is a sub-type of white blood cell that

plays a central role in recognizing and neutralizing fragments of antigen with

the TCRs. A TCR recognizes an antigen by detecting the small protein frag-

ments that are on the surface of that antigen, and then sends a massage to

the nucleus of its T-cell. This successful recognition induces a response for

eliminating antigens [2]. The diversity in the TCR pool increases the chance

of detecting a variety of antigens for the adaptive immune system, which is the

first step of a successful recovery from diseases. Analysis of TCR pool (reper-

toire) is crucial for understanding the functionality of healthy immune system,

determining the nature of successful and unsuccessful immune responses, and

understanding the immune mechanism in presence of different diseases such as

type I diabetes, various cancers (blood, breast, colorectal, etc.), rheumatoid

arthritis (autoimmune disease), and multiple sclerosis [3]. The response of im-

mune system to specific antigen often leaves evidence in the form of repertoire

sequence patterns (signatures) that are common across individuals and these

signature patterns can be associated with the corresponding antigen. Identifi-

cation of these signatures help biologists to understand the correlation between

the immune receptors and different disease, which provides researchers with

the ability to identify immune receptor clones that can be converted into pre-

cision vaccines [4–6].

A diverse set of TCRs is required for the adaptive immune system to suc-

cessfully detect wide variety of antigens. This diversity is achieved by the

immune systems of the vertebrates through the DNA recombination process,

which is known as the V (D)J recombination [7]. This process involves rear-

rangement of variable (V ), diversity (D), and joining (J) gene segments in a
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combinatorial way chosen from members of each gene family [7, 8]. The form

and length of each gene segment varies across different species, and it is more

complex in the human than vertebrates. For example, there are 20 different

V genes in the mice, while there are 50 different V genes in human [9].

In the clinical environment, ability to predict the repercussion of immune

system to different antigens is a challenging research problem [9–13]. For such

prediction capability, immunome researchers need a way to model all possible

unique TCR sequences (TCR repertoire) that can be generated through the

recombination process. This would allow the researchers count the number of

times each unique sequence is created through different recombination paths,

which forms the baseline for statistical analysis on correlating a specific TCR

chain with a specific antigen. However, modeling of all αβTCR sequences is

considerably complex, since the potential TCR repertoire of mouse contains

more than 1015 sequences [14]. Furthermore, the total number of paths ex-

hausted to generate all the sequences is expected to exceed 1018. This massive

scale of data processing poses as the barrier for immunologists, which has led

them to computationally tractable statistical methods [15], [16] with a trade

off in accuracy [15], [16] . Reducing the timescale of modeling all TCRβ chains

will enable immunologists to test the validity of their assumptions and solve

their fundamental questions rapidly such as: What is the real size of the TCRβ

repertoire? Is the procedure of generating TCRs random or biased? What can

we say about the frequency distribution of various TCR sequences? The most

exhaustive study on TCR synthesis to this date [17] models more than 1014

TCRβ chains by exploiting the data parallel nature of the recombination pro-

cess and mapping the algorithm entirely on a single graphic processor unit

(GPU). This study shows that the execution time can be scaled down to 13

days using an NVIDIA GTX 480 from 52 weeks on a single general purpose

processor. This is the first study that models all the potential TCRβ reper-

toire of the mouse in which the number of recombination pathways exceeds

4× 1014.

For the human system, diversity of the TCR repertoire shows variations

from one person to another and increases significantly such that there are
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more than 50 million TCRs in the immune system of 100 humans. From

mouse data set to human data set, the scale of the data increases from 105 to

107. Furthermore, in humans there are 50 basic V genes, 2 basic D genes, and

13 basic J genes, while in the mouse data set there are 20 V genes, 2 basic D

genes, and 12 J genes. From mouse to human, the TCR repertoire increases

by three orders of magnitude to 1018 [17]. To be able to cope with the scale

of the simulations at 1018 level, our aim in this study is to investigate ways to

reduce the execution time and memory footprint of the recombination process

so that we can rapidly model systems that are more complex than the mouse.

For this, we make the following contributions:

• Devising a bit-wise GPU-based implementation of the recombination

process, which consists of fine-grained shift, concatenation, comparison,

and counting over the binary domain input data set.

• Extending the bit-wise implementation to a multi-GPU environment and

evenly distributing workload across the GPUs being used.

• Utilizing the N-level parallelization approach that is used for the GPU-

based implementation and implementing the V (D)J recombination al-

gorithm on the field programmable gate array (FPGA).

• Devising a VJ-level parallelization method for the FPGA-based imple-

mentation to overcome the draw back of N-level parallelization method.

In order to utilize the bit-wise operations, we devise an encoding procedure

to convert the input data set from character based domain to binary domain

(2-bits per character) and pack a sequence of 4 characters into a single byte.

The bit-wise representation of input data set reduces memory access time by

a factor of 4, since we can fetch four characters with one memory access. After

mapping the input data set to binary domain, we pad the end of input data

sequences whose length are not divisible by eight with 0’s. Correspondingly,

we develop a new indexing scheme for addressing the input data stored in

the constant memory of GPU to avoid using padded bits of the input data

that are not aligned with the byte addressing. Then, we introduce a task
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generation function that generates a unique task for each thread based on

its identification number, ensures a unique path for a given sequence by each

thread and eliminates the communication between the GPU threads. The two-

bit based representation reduces the global and constant memory footprint

by factors of 4 and 3.5 compared to the baseline GPU implementation [17].

Utilizing bit-wise operations and reducing the amount of data transfers reduces

the execution time by a factor of 2 using an NVIDIA Tesla P100 GPU. CUDA

natively supports 32-bit integer shift and 32-bit bitwise ”AND”, ”OR”, and

”XOR” operations [18], which allows us to implement the bit-wise version of

recombination process as it heavily relies on shift, concatenation( using ”shift”

and ”or” ) and comparison (”xor”) operations.

For the multi-GPU implementation, we define an indexing function, which

generates global index for threads in different GPUs based on the index of

GPU, and the GPU dimension. Then, we use the proposed task generation

function to generate unique tasks for each GPU thread. Overall, our aim is

to count number of times each in vivo sequence can be generated artificially

by rearranging input data set (V , D, J genes and n-nucleotide sequence) to

model the TCR repertoire. Therefore, each thread works on its assigned task

based on its global index, repeatedly generates a unique sequence, increments

the counter for that sequence if it exists in the in vivo data set till that thread

completes the task of generating all possible sequence based on its given n-

nuceleotide. The multi-GPU implementation reduces the execution time from

a scale of 18.9 hours to 4.3 hours using 8 GPUs.

As stated above, the recombination process involves intensive amount of

fine-grained shift, concatenation, comparison, and counting operations over a

data-set generated on the fly. We take advantage of the fine grained paral-

lelism offered by the FPGA whose architecture naturally matches the program

architecture of the recombination process. Therefore, we first map the V (D)J

recombination algorithm onto the target FPGA using the GPU-based paral-

lelization approach, which is known as N-level method. In order to address

this, we first define the degree of parallelism for the final hardware architecture.

We also show the relation between degree of parallelism with critical path delay
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and resource utilization. We form the memory hierarchy based on the selected

degree of parallelism and design required components to map the recombi-

nation process. In addition, we utilize the length and V J pair index of the

generated sequence to pare down the comparison search space. Experimental

results for the FPGA implementation show that the N-level parallelization ap-

proach causes communication overhead among FPGA components and result

in poor performance. Therefore, we devise a VJ-level parallelization approach

to form a unique memory hierarchy to match the data access patterns for vari-

ous stages of the algorithm, which results in the elimination of communication

overhead among components. We show that the VJ-level parallelization ap-

proach accelerate the recombination process by a factor of 2.34 in comparison

with the N-level method for the FPGA-based implementation.

The rest of this dissertation is organized as follows: Chapter 2 provides

an overview of the DNA recombination algorithm from biological and algo-

rithmic perspectives. Chapter 3 describes a bit-wise implementation of the

recombination process on a single and multi-GPU. A detailed explanation of

the FPGA-based implementation of the V (D)J recombination process is pro-

vided in Chapter 4. Conclusions and future work are discussed in Chapter

5.
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CHAPTER 2

The DNA Recombination Algorithm

The V (D)J recombination process is a specialized DNA rearrangement critical

to the adaptive immune system. In this section, we describe the DNA recom-

bination process from biological and algorithmic perspectives, and highlight

key features related to our parallelization approach. We also provide detailed

explanation about the structure of input data set used in our experiments.

2.0.1 Biological Perspective

The TCRs are created by recombination of the V , D, and J gene segments.

Fig. 2.1 illustrates the recombination process using an example sequence

formed by the V , D and J segments. The two rows in step 0 represent the

two complementary DNA strands: the template strand and its mirror image

the coding strand. As the V , D, and J segments go through the recombination

process for generating unique sequences in search of a sequence that matches

the antigen, diverse set of sequences are generated. There are three critical

steps that contribute to this diversity, which we summarize by highlighting

the core factors in the following paragraphs.

In the first step, the recombination activation gene, recombinase, cuts the

DNA at the joints between V and D segment pairs, and D and J segment

pairs. Immediately, the template strand and coding strand bind to each other

where the cut occurs. Subsequently, the Artemis exonuclease enzyme releases

circular ends irregularly to generate a palindromic nucleotide (p-nucleotide)

with variable lengths [7, 19, 20]. From the starting point of the arrow shown

in step one of Fig. 2.1, up to length of four genes from the coding strand

are appended to the template strand on its right termini for the V segment,

both termini for the D segment, and left termini for the J segment. This

p-nucleotide addition of length up to four is one of the major contributors to

the diversity during the recombination process.
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Figure 2.1: Brief view of the V (D)J recombination process. The figure shows
p-nucleotide formation with length one for V− gene termini, two for left side
of D− gene termini, four for right side of D− gene termini and four for J−
gene termini in step one. Example depicts elimination of one nucleotide on
the V− gene termini, three nucleotides on both side of the D− gene and two
nucleotides on J− gene termini.
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In the second step, both strands of the V , D and J segments go through

a process called chewback. Once more, the Artemis exonuclease enzyme is

involved in this chewback process, in which a variable number of nucleotide

are eliminated from the V , D and J termini. The chewback is applied from

right to left on the V segment, left to right on the J segment, and from

both directions on the D segment. The amount of chewback ranges from one

nucleotide to the length of that gene segment, which is the second contributor

to the diversity.

In the third step, the Terminal Transferase (TDT) enzyme catalyzes the

addition of n-nucleotides between V −D and D−J gene pairs. We consider the

size n ranging between zero and ten. This range has been proven to regenerate

99.5% of the sequences in our in vivo data-set [17]. The in vivo data set has

been built based on the samples that were sequenced on the Roche FLX 454

platform at the UNC-Chapel Hill High Throughput Genome Sequencing Core.

The in vivo data set consists of 101,822 functional sequences. Finally, the DNA

ligase IV closes off the V and D termini to form V −D junction, and D and

J termini to form D − J junction. Compared to the first two factors that

contribute to the diversity, having n-nucleotide addition between V −D and

D− J junctions enormously grow the combinational search space, and acts as

the main contributor of the diversity.

2.0.2 Algorithmic Perspective

We refer to the V (D)J recombination as V nDn′J recombination in this dis-

cussion about the algorithmic perspective. In this case, V , D, and J indicate

the unique sequences from each set of corresponding segments while ‘n’ indi-

cates the set of all possible nucleotide combinations. We refer the generated

V nDn′J sequences as the ‘in silico’ sequences. Thus, to generate the in silico

sequences, we need four inputs: V , D, J , and the n-nucleotide (n) sequences.

There are four bases: A, G, C, T, used to generate a n-nucleotide sequences.

Thus, for n-nucleotide length m, there are 4m unique combinations. In the

recombination process, these n-nucleotide sequences can be attached on either

side or on both sides of the D sequence. To differentiate between the positions,
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Algorithm 1: Pseudo code for V(D)J Recombination Algorithm

Input : V , J , D and n− nucleotide sequences

Output : Number of times each unique in vivo sequence is

generated (Counter)

1 for i = 0 to number of V sequences do

2 for j = 0 to number of J sequences do

3 for k = 0 to number of D sequences do

4 for m = 0 to number of n− nucleotide sequences do
Combination =

CombineString(V [i], n[m], D[k], n[m], J [j]);

5 for p = n− nucleotidelenght to 0 do

move (N [m][p] → T [n− nucleotidelenght − p])
6 for n = 0 to number of in vivo sequences do

if Combination == invivo[n] then

Counter[n]= Counter[n]+1;

we define the n-nucleotides as n and n′. The D sequence can cut the n-

nucleotide at any position. Therefore, this complex junctional combination

may lead to generation of an identical sequence through numerous ways. Our

main purpose is to count the number of unique pathways that generate a given

in vivo sequence through the recombination process. Algorithm 1 shows the

pseudo code for the V nDn′J recombination process with nested loops that

iterate through each V , D, J and n sequence to form in silico sequences. All

single sequences are combined and stored in the variable Combination through

the nested loops. If a generated sequence is found in the current in vivo set,

we increment the counter value for that sequence. This process continues until

the entire combinational search space is exhausted.

2.0.3 Input data set

The input data sets consist of V , D, J and in vivo genes. In C57BL/6 mice,

there are 20 basic V β genes, 2 Dβ genes and 12 basic Jβ genes. However,

all possible patterns such as chewback and palindromic forms for each of the

functional V , D and J gene sequences need to participate in the recombina-
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tion process for modeling the TCR repertoire as illustrated in Fig. 2.1. For

example, the first basic V gene has a length of 14. For the V gene, up to

four genes can be appended to the right end of the V gene from its mirror

strand (step one, indicated as +4, +3, +2, +1), therefore the actual length

of this gene can be up to 18. This would result with 18 different sequences

based on the chewback process (step two). D and J gene data sets go through

similar process as explained in Section 2.0.1, therefore each V , D and J gene

data set consists of several forms of sequences with different lengths. Each V ,

D, J , and in vivo sequence is generated using four bases (A, G, T, and C).

In C57BL/6 mice, the in vivo data set involves 101,822 sequences, which are

grouped based on the specific V J pair used to generate that sequence. There

is no other recombination path for an in vivo sequence other than the specific

V J pair, which generates that specific sequence. This is a key feature that we

can exploit to reduce a search space within the in vivo data set and reduce

the execution time. There are 240 such pairs since we have 20 basic V genes

and 12 basic J genes in mice.
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CHAPTER 3

The GPU-based Implementation of DNA Recombination Algorithm

We provide a detailed description regarding the GPU-based implementation

of the DNA recombination algorithm in this chapter. We first evaluate two

parallelization approaches for GPU-based implementation, and select the most

suitable method based on their advantages and disadvantages in Section 3.1.

In Section 3.2, we propose the bit-wise GPU-based implementation for the

DNA recombination algorithm. We extend the bit-wise implementation to a

multi-GPU environment and provide a detailed explanation in Section 3.3.

Finally, we explain the experimental setup and simulation results for bit-wise

implementation on a single and multi-GPU in Section 3.3 and 3.5, respectively.

3.1 The Parallelization Strategy

In this section, we analyze two parallelization approaches for the GPU-based

implementation of V (D)J recombination process. For each strategy, we at-

tempt to answer the following questions: 1) What would be the workload

distribution based on the parallelization strategy? 2) Does the proposed par-

allelization strategy result in an even workload distribution among the threads?

Since each V −J pair generates a specific sequence, the first parallelization

approach would be the V −J level parallelism by assigning one V gene, one J

gene, and both D genes to each thread to perform the recombination process.

In this assignment, each thread needs to cover all possible n-nucleotide lengths

(zero to ten) along with all possible combinations of four bases for any given

n-nucleotide lengths. However, as there are 20 V genes and 12 J genes, this

implementation would require only 240 threads and result with significantly

low thread utilization on the GPU. A finer granularity of V −J level parallelism

can be realized by assigning one form (refer to chewback and palindromic forms

of each input gene) of V gene, one form of J gene, and both D genes to each
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thread. For this approach, the total number of required threads is 102,446

since there are 362 V genes, 283 J genes in the chewback and palindromic

forms for the mice data set. This finer level of parallelization occupies 90% of

the threads on the target P100 series GPU.

In order to answer the second question for the fine-grained V −J level par-

allelization approach, we need to consider workload for both combination and

comparison steps. We refer to the combination step as a process of generat-

ing all possible in silico sequences for a given input data and the comparison

step as a process of comparing generated sequences with in vivo sequences.

The workload distribution for combination step is even since, each thread is

assigned one form of V gene, one form of J gene, and both D genes. In order

to evaluate the workload distribution for the comparison step, we provide a

normalized distribution of in vivo sequences across 240 V J pairs in Fig. 3.1.

As shown, total number of in vivo sequences is not evenly distributed across

different V J pairs, which directly affects the workload of each thread. Since,

each thread needs to compare its generated in silico sequences against every

in vivo sequence in the corresponding V J pair, the fine-grained V − J based

assignment results in an uneven workload distribution among GPU threads.

The second solution would be n-nucleotide level parallelism, where each

thread is assigned a unique n-nucleotide sequence and the recombination pro-

cess is applied on that unique sequence. In this assignment, the workload

for the combination step is even since, each thread works on one n-nucleotide

sequence. In addition, the workload distribution for comparison step is equal

among GPU threads, since GPU threads are working on the same V and J

gene. Therefore, total number of in vivo sequence for the comparison process

are equal among active threads. Since all threads share the same V and J gene

pairs, this approach can take advantage of the shared memory to improve the

the memory bandwidth utilization.

In order to decide which one of the stated approaches performs better in

terms of execution time, we evaluate the workload per thread for the combi-

nation step, in both approaches. In the fine-grained V − J level parallelism,

each thread generates in silico sequences for all possible forms of n-nuclotide
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Figure 3.1: A Normalized distribution of in vivo sequences across 240 VJ
pairs.

for length of zero to ten. Table 3.1 shows the total number of n-nucleotide

sequence based on the length. Therefore, a single thread must generate

706,042,015 in silico sequences through the entire process as there are 1,381,717

unique n-nucleotide sequence in total and there are 505 sequences for D gene.

In the n-nucleotide based assignment, each thread generates 51,735,230 in sil-

ico sequences since there are 362 V genes, 283 J genes, and 505 D genes. As

a result, workload per thread in fine-grained V − J level parallelism is almost

13 times higher than n-nucleotide parallelization approach. In the following

sections we present our approach to bit-wise and multi-GPU implementations

based on n-nucleotide level parallelism.

3.2 The Bit-Wise Implementation

Mainly, there are two phases for the implementation of bit-wise representation.

The first phase involves converting the input data set from character domain

to binary domain, which we refer to as data conversion phase. The second

phase consists of developing GPU kernel using bit-wise operations. We provide

detailed explanation regarding the implementation of bit-wise version of the
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Table 3.1: The total number of unique n-nucleotide sequences based on the
length of n-nucleotide

N len Total number of unique

n-nucleotide sequences

0 1

1 4

2 16

3 64

4 256

5 1,024

6 4,096

7 16,384

8 65,536

9 262,144

10 1,048,576

Total 1,381,717

recombination process in the following subsections.

3.2.1 Conversion of input data set

The main objective of using bit-wise operations for mapping the recombination

process is to reduce the memory footprint and execution time. We represent

each base (A, C, T, and G) with two bits as shown in Table 3.2 and pack a

sequence of four bases into a single byte. For those sequences (V , D, and J)

whose length is not divisible by four, remainder bases will not fill the byte

to its capacity. In this case, we zero pad the end of sequence such that the

length of the binary string is divisible by eight (one byte). Let’s consider a V

sequence, which has the length of ten characters (20 bits). For this case, four

zeros are appended to the end of V sequence. As a result, the new V sequence

has 24 bits, which requires three bytes of data to store in the memory. The

last byte of this V sequence has four zero padded bits, which we refer to as

padded bits. We call the first two bytes, which only contain the original bits
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Table 3.2: 2-bit encoding scheme

Gene base 2-bit representation

A 00

T 01

C 10

G 11

of the V sequence as full byte.

The maximum length of in vivo sequences is 60 characters (bytes). In

the baseline implementation, in vivo sequences are padded with 0‘s so that

the length of all sequences are equal to 64 bytes. This guarantees that the

allocation of each sequence is equal to the number of threads in two warps,

ensuring the memory is aligned to realize coalesced memory accesses. In the

binary representation form with 2 bits per base (character), we also follow the

same encoding procedure with padding, and represent each in vivo sequence

with fixed size of 16 bytes.

In the baseline implementation, all possible forms of V , D, and J sequences

are stored in the constant memory to take advantage of the temporal locality

it offers. However, the in vivo sequences are stored into the GPU’s global

memory as there are too many in vivo sequences (> 105) to fit into the con-

stant memory. For the bit-wise implementation, the in vivo data set is also

stored in the global memory since the required constant memory for the binary

representation of in vivo data set is larger than the available constant memory

in a target GPU.

3.2.2 GPU Kernel

For the n-nucleotide level parallelism, the total number of threads is set to the

total possible combinations for a given n-nucleotide sequence (4m), where m is

the length of n-nucleotide sequence. In this case, all active threads can fetch

the same input data (V , D, J , and in vivo) and each thread can apply the

recombination process over its assigned n-nucleotide. This reduces the number
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Algorithm 2: Pseudo code for the task generator function which gen-

erate a unique n-nucleotide sequence for each thread based on its thread

and block indexes.
Input : threadId, blockId, and blockDim

Output : n-nucleotide sequence

base[4] = {00, 01, 10, 11}
Gindex = threadIdx.x+ blockIdx.x ∗ blockDim.x
for i = 0 to 3 do

for j = 0 to 9 increment by 2 do

temp = base [{Gindex +Gindex/4
4∗i+(j−2/2)}%4]� (8− j)

n-nucleotide[i] |= temp

of memory accesses (global and constant) for a specific gene sequence to one

among all active threads.

As mentioned earlier, the in vivo sequences are partitioned into 240 groups

based on the V and J gene used to generate these sequences. This feature

was used to pare down the comparison search space in [17]. Indeed, in silico

sequences are only compared against the corresponding portion of the in vivo

data set instead of being compared with the entire data set. We also use

this feature in our design. Therefore, our GPU kernel starts its execution

by using V and J gene indexes to determine how many and which in vivo

sequence will be used for the recombination process. Then each thread is

assigned a unique n-nucleotide sequence based on the length of n sequence,

thread ID, and block ID. We propose a function that generates a unique binary

n-nucleotide sequence for each thread to guarantee that there is no duplicate n-

nucleotide sequence. Algorithm 3 shows the pseudo code for the task generator

function, which is used to generate a unique binary n-nucleotide sequence.

After assigning a unique task to each GPU thread, the recombination process

starts on the GPU.

There are four main loops in the GPU kernel. The first for loop iterates

through each in vivo sequence. Upon entering this loop, threads within the

block read a single in vivo sequence from the global memory into the shared
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memory. Since, the in vivo sequence is shared among all threads within a

block, we use synchthread() to assure that all threads wait until the memory

transaction is completed.

The second for loop iterates through each V sequence in the current V gene

set. All threads within a block read the same V sequence from the constant

memory, while they work on a different n-nucleotide sequence. We compare

the V sequence against the in vivo sequence. To accomplish this, we calculate

the total number of full bytes and padded bits for a given V sequence. Then,

we iterate through each full byte of the V sequence, and compare it with in

vivo sequence one byte at a time. If there is a mismatch, we terminate the

current comparison for all threads and read a new in vivo sequence from global

memory. Otherwise, we continue on to comparing the last byte of V sequence

with the pertinent byte of in vivo sequence. In order to accomplish this,

we shift the corresponding byte of in vivo sequence to the right by the total

number of padded bits. Accordingly, we shift that byte to the left by the same

amount. We will refer to this process as an alignment process. Finally, we

compare the last byte of V sequence with the aligned byte of in vivo sequence.

This procedure is shown in step one of Fig. 3.2. If the V sequence completely

matches with the in vivo sequence, we proceed to the next loop. Otherwise,

we read a new in vivo sequence and repeat the process.

The third loop iterates through each D sequence. There is a difference

between this loop (D-loop) and the previous loop (V-loop). The D sequence

can cut the n-nulceotide sequence at any position as explained in Chapter 2.

Therefore, each thread generates all possible combinations of nDn′ sequence

for a given D and n-nucleotide sequences. Then, they compare their nDn′

sequence with in vivo sequence from the last character that was found to be

identical to the V sequence in the previous loop. This is accomplished by

shifting the in vivo sequence to the left by the length of V sequence. The

comparison procedure is shown in step two of Fig. 3.2, and it is the same

process as explained in the V-loop. If there is a mismatch between the in

silico and in vivo sequence, then the thread terminates the current comparison,

generates a new combination for nDn′ sequence, and repeats the process.
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Otherwise, we continue on to the next loop. It should be noted that, if a

thread generates all possible forms of nDn′ sequence for a given D and n

sequence, then we load new D sequence and repeat the process.

The final loop iterates through each J sequence. In this loop, we first cal-

culate the length of V nDn′J sequence and compare it with the length of in

vivo sequence. If the length of in silico and in vivo sequences are not equal,

then we terminate the current comparison and load a new J sequence. Other-

wise, we compare the J sequence with the latter portion of in vivo sequence as

shown in step three of Fig. 3.2. If a sequence generated by a thread matches

with the in vivo sequence, then that thread increments the local counter stored

in a register. A thread may generate the targeted in vivo sequence through

multiple recombination paths. After all threads complete their n-nucleotide

level workload, the counter value stored in the shared memory for that in vivo

sequence is updated through reduction. At the end of this loop, reduction

determines the total number of times an in vivo sequence is generated artifi-

cially. Finally, the first thread within the block updates the counter value in

the global memory.

Figure 3.2: Brief view of the comparison process for the bit-wise version of
V (D)J recombination process.
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3.3 The Multi-GPU Implementation

In n-nucleotide level parallelization, threads of a GPU are assigned a unique

n-nucleotide sequence while they work on the same V and J gene. From multi-

GPU implementation perspective, in order to generate a unique n-nucleotide

sequence for each active thread, we define a global index for each thread based

on its thread Id, block Id, GPU Id, and GPU dimension as shown in (3.1) and

utilize a task generator function that is presented in the algorithm 3.

Gindex = threadIdx+ blockIdx× blockDim+GPUIdx×GPUDim. (3.1)

For the n-nucleotide based parallelization approach, GPU threads work

on the same V J pair so they require accessing the same in vivo sequences.

Therefore, we replicate input data set and store it in the constant and global

memories of each GPU to avoid data transfer between the GPUs.

In order to distribute the workload among GPUs, we first calculate the total

number of required threads, which is 4m, where m is the length of n-nucleotide

sequence. Then, we calculate the total number of required blocks based on

the thread-block configuration (refer to Fig. 3.3). Finally, we calculate total

number of blocks in each GPU using 3.2. For example, we need 262, 144

(49) threads for n-nucleotide length of 9. As we will present later in the

experimental results, 128 threads per block configuration, which requires 2048

blocks in total is the desired configuration on a single GPU. Assuming that

we have two GPUs, based on 3.2, each GPU is assigned 1024 blocks with 128

threads in each block. In this assignment, the workload distribution among

GPUs and GPU threads are equal.

#blocks =
#total threads− 1

#threads per block ×#GPUs+ 1
(3.2)

In order to obtain the final result from multiple GPUs, we perform a re-

duction process [21]. This process accumulates all the results in the root node

and copy them to global memory of the host.
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Table 3.3: P100 GPU Streaming Multiprocessor Resources

Parameter Value

Compute Capability 6.0

Streaming Multiprocessors (SM) 56

Threads per Warp 32

Maximum Thread Block Size 1024

Maximum Thread Blocks per SM 32

Maximum Warps per SM 64

Maximum Threads per SM 2048

Maximum 32-bit Registers per SM 65536

Maximum Registers per Block 65536

Maximum Registers per Thread 255

Maximum Shared Memory Size per SM 64 KB

Constant Memory Size 64 KB

3.4 Experimental Setup

We conducted our experiments on a cluster consisting of NVIDIA P100 GPU

accelerators. The system is composed of 400 nodes (Intel Haswell V3 28 core

processor, 192 GB RAM per node) in which 46 of them are configured as

accelerator nodes with a single Nvidia P100 GPU in each node. The cluster

uses FDR Infiniband for node to node interconnect and 10 Gb Ethernet for

node to storage interconnect. Table 3.3 summarizes the GPU parameters. The

P100 GPU has 56 streaming multiprocessors (SM), each limited to having up

to 2048 threads, 32 thread blocks, and 64 KB shared memory [22]. For the

bit-wise implementation of the V (D)J recombination algorithm with n-level

granularity, each thread utilizes 48 registers, while there are 65536 registers

available per SM. Therefore, the maximum number of active threads per SM

is 1365 due to the register usage constraint. Also, it should be noted that the

shared memory usage is not the limiting factor for the active threads per SM.

As discussed in Section 3.2, the shared memory usage per block is 16 bytes plus

one byte per thread for the counter value storage. Thus if we consider block

size of 128 threads, only 134 bytes of shared memory is required per thread
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block, allowing 489 thread blocks per SM. Given that for n-nucleotide length

of nine, there are 2048 blocks for the 128 threads per block configuration. Due

to register usage constraint, there are only 10 active thread blocks per SM. As

a result, we do not reach the limiting factor (489 thread blocks per SM) for

the shared memory usage.

3.5 Experimental Results

We start our analysis by determining the best thread-block configuration for

different n-nucleotide lengths on a single GPU. We then compare the execution

time of our bit-wise based implementation with the baseline [17] implementa-

tion for each n-nucleotide length. Finally, we present execution time analysis

for the multi-GPU implementation with up to eight nodes.

3.5.1 Thread Block Configuration Analysis

Fig. 3.3 shows the normalized results for four different thread block config-

urations over n-nucleotide length ranging from four to ten. For each length

of n-nucleotide sequence, we take the shortest execution time and use that as

a dividing factor over the execution time of other configurations. Therefore,

normalized value of 1 represents the best performance for a given length. We

did not consider n-nucleotide length of zero to three as there are not sufficient

threads to utilize multiple warps executing concurrently. As shown in Fig. 3.3,

there are negligible differences between performance of various thread block

configurations for length of four to six since, there are not sufficient tasks to

utilize all the available multiprocessors of the P100 GPU. For n-nucleotide

length of less than seven, the thread utilization is bellow 14% as the total

number of required threads is less than 214 while there are 114,688 threads

available in P100. However, for n-nucleotide length of greater than seven, the

workload increases such that more than 60% of available GPU threads are

used. There is a 20% reduction in the performance for the n-nucleotide

length of seven based on 256 threads per block configuration compared to

other configurations. For n-nucleotide length of seven, the recombination pro-
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Figure 3.3: Normalized results of four different thread per block configurations
(32, 64, 128, 256) for n-nucleotide length of four to nine.

cess completes in one iteration for every thread per block configuration since

the total number of required threads is 47 = 16, 384, which is less than the

total number of available threads in a single P100 GPU. The lower thread

block utilization per SM is the root cause for this performance loss as shown

in Table 3.4, which reports the thread, thread block, and warp utilization for

each configuration.

We observe a 35% reduction in the performance for the n-nucleotide length

of eight, if 32 threads per block are employed. The reason is that the maxi-

mum number of active thread-blocks per multiprocessor is 32 in the P100 GPU.

Therefore, we are limited by the hardware to have 32 active blocks per SM in

which each block has 32 threads. As a result, we have 210 × 56 active threads

in GPU while we need 216 threads to complete the recombination process in

one iteration. Let’s consider the 64 threads per block configuration, based on

the register constraint usage, we can have maximum 1365 active threads per
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Table 3.4: GPU resource utilization for n-nucleotide length of seven with four
different thread block configurations.

thread block threads per SM thread blocks warp
configuration per SM

32 1024 (50%) 32 (100%) 32 (50%)
64 1344 (65%) 21 (65%) 42 (65%)
128 1280 (62.5%) 10 (31.25%) 40 (62.5%)
256 1280 (62.5%) 5 (15.62%) 40 (62.5%)

SM, and based on the thread block configuration, we can have maximum of

21 blocks with 64 threads. This results in total of 21 × 64 × 56 = 75, 264

threads, which is greater than the required threads for n-nucleotide length

of eight. Therefore, the recombination process completes in one iteration for

thread block configuration of 64 for n-nucleotide length of eight, while it can

not be completed in one iteration with 32 threads per block. We note that

the difference between the performance of 64, 128, and 256 threads per block

configurations is negligible with normalized values of 1, 0.961, and 0.95 respec-

tively as the recombination process is completed in one iteration for all three

configurations.

For n-nucleotide length of nine, the total number of required threads is

49 = 262, 144, which is greater than available threads in a single GPU. This

will results in completing the recombination process in more than one itera-

tions. For 64, 128 and 256 threads per block configurations, four iterations is

required to complete the recombination process. As a result, there is a negli-

gible difference between their performances with normalized values of 0.984, 1

and 0.994 respectively. However, the number of required iteration increases by

one, if 32 threads are employed per block. Therefore, the poorest performance

belongs to 32 thread per block configuration for n-nucleotide length of nine.

In summary, based on Fig. 3.3, we set thread block configuration to 64

for n-nucleotide lengths four to eight, 128 for lengths nine and ten. In the

following subsection, we evaluate the performance of bit-wise and multi-GPU

implementations with respect to the the baseline implementation.
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3.5.2 Bit-wise Simulation Results

In order to evaluate the bit-wise implementation, we ran an experiment on a

single Tesla P100 GPU using the baseline implementation. The timing analysis

and memory footprint for this experiment are used as a reference point for

performance comparison.

Table 3.5 shows the total amount of required memory for V , D, J genes,

and in vivo data set using the bit-wise representation. As stated in table

3.5, the memory footprint for constant memory reduces by a factor of 3.4

compared to the baseline implementation, while the required global memory

reduces by a factor of 4. Table 3.6 shows the execution time results for each

n-nucleotide length. Last row shows the total execution time for the recombi-

nation process. As shown, the total execution time reduces by a factor of 2.1

in comparison with the baseline implementation. For both implementations,

after n-nucleotide of eight, the execution time increases by about a factor of

four at each increments of n-nucleotide length by one. For n-nucleotide length

of eight, we utilize 87.5% of available SM on a single GPU since 49 MPs with

thread block configuration of 64 (smallest execution time) are used. There-

fore, increasing the workload beyond this point directly results in increasing

the execution time. The workload per GPU depends on the total number

of unique n-nucleotide sequence as mentioned in 3.1. Therefore, increasing

the length of n-nucloetide by one results in increasing the total number of

unique n-nucleotide sequences by a factor of four and as a result execution

time increases with the same factor.

3.5.3 Multi-GPU Simulation Results

Table 3.7 shows the execution time of the multi-GPU version of the bit-wise

implementation for each n-nucleotide length. We ran experiments by using

up to eight GPUs to evaluate the trends in execution time improvement with

respect to change in number of GPUs.

The key observation from Table 3.7 is that there is slight increase in ex-

ecution time if multiple GPUs are utilized for n-nucleotide length less than
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Table 3.5: The memory footprint for the bit-wise implementation in compari-
son with the baseline approach.

Percentage

Gene Baseline [17] Bit-wise reduction

V 1448 425 70.65

J 3107 913 70.61

D 3210 908 71.71

in vivo 6517568 1629392 75.00

Table 3.6: Execution time on single GPU: Baseline vs. Bit-wise Implementa-
tions

N length Baseline (min) Bit-wise (min)

0 8.36 8.68

1 10.17 9.34

2 12.57 10.14

3 15.38 10.92

4 18.47 11.74

5 21.73 12.56

6 25.67 13.69

7 32.09 16.23

8 102.03 49.82

9 426.9 196.76

10 1755.35 797.8

Total 2428.7 1137.7

eight. The reason behind this observation is the fact that the P100 GPU is

over-provisioned; the total number of required threads for any n-nucleotide

length less than eight are less than the maximum 2048× 56 = 57, 344) active

threads. Moreover, the extra reduction step for a multi-GPU implementation

becomes a slight overhead.

However, for n-nucleotide length more than seven, we observe a reduction

in the execution time with multiple GPUs. This is due to the fact that a

single GPU is almost fully utilized at 87.5% as explained in Section 3.5.1 for
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n-nucleotide length of more than seven. Since the required number of threads

exceeds the active thread count per GPU, we observe the benefit of the multi-

GPU implementation for n-nucleotide length eight and above. At this point,

we expect to see relatively linear reduction in the execution time for a given n-

nucleotide length as we increase the number GPUs. However, the simulation

results show a saturating execution time trend where adding another GPU

resource no longer helps reduce the execution time. We further investigate

this behavior in the following paragraph.

For n-nucleotide length of nine, the required number of threads is 49 =

262, 144, which is more than the available threads in a single P100 GPU.

Based on the register resource constraint, the recombination process can be

completed in four iterations (d(49/1280×56)e = 4) using a single GPU. In this

case there are 47, 104 active threads in the last iteration utilizing 65% of the

GPU threads. Employing two GPUs results in completing the process in two

iterations, while there are 32, 768 threads in the last iteration. In this case we

are only utilizing 45% of the GPU threads. Therefore, we do not observe two

times speed up with two GPUs. Utilizing four GPUs for n-nucleotide length of

nine results with completing the process in one iteration. Beyond this point,

increasing the number of GPUs causes under-utilization of each GPU and does

not significantly improve the execution time.

For n-nucleotide length of ten, the required number of threads is

410 = 1, 048, 576. The recombination process is completed in 15 iterations

(d(410/1280 × 56)e = 15) using a single GPU while there are 45056 active

threads in the last iteration (62% GPU threads utilization). However, em-

ploying two GPUs results in completing the process in 8 iterations. The re-

duction of execution time from 797 minutes to 455 minutes is proportional

to the reduction of iteration count from 15 to 8, which is the root cause for

not observing a linear speedup with two GPUs. Using three GPUs results in

completing the recombination process in 5 iterations while the GPU thread

utilization is at 87.6% in the last iteration. When we employ four GPUs, iter-

ation cont becomes 4. For the GPU count of five, six, and seven, the iteration

count remains at 3 with fewer threads being utilized as the number of GPUs
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increases. In order to complete the process in one iteration, we need to employ

16 GPUs. In overall, the saturation in the reduction of iteration count as we

increase the GPU resources combined with the under utilization of the threads

during the last iteration of the recombination process are the two root causes

of saturating trend in execution time with respect to GPU count.

For the single GPU version, in the previous section, we showed that exe-

cution time increased by about a factor of four at each increments of the n-

nucleotide length. Since we distribute the workload equally across the GPUs,

we observe a similar trend for the multi-GPU implementation. For example,

as shown in Table 3.7 execution time using two GPUs for n-nucleotide length

of nine is about four times the execution time for n-nucleotide length of eight.

Consistently we observe about a factor of four as we increase length from nine

to ten for all GPU configurations.

Furthermore, we should expect the same execution time for two consecutive

n-nucleotide lengths, while using one GPU for the first one and using four

GPUs for the second one. As highlighted in Table 3.7, the execution time

for n-nucleotide length of nine is 196 minutes by using single GPU. However

we observe that execution time is 231 minutes for n-nucleotide of ten with

four GPUs. We identify factors to this discrepancy as overhead of reduction

process with the increase in number of GPUs, difference between the total

number of nDn′ combinations, and difference between the number of times

each thread finds a match or terminates early. As stated earlier in Chapter 2,

the D sequence can cut n-nucleotide sequence at any position, and each thread

needs to generate all possible combinations of D with n-nucleotide sequence.

As the length of n-nucleotide increases, the total possible combinations of

nDn′ increases by one for given D and n-nucleotide sequences. We note that

an extra sequence needs to be combined with all possible forms of V and J gene

sequences, which explains the difference between what we expected and what

we observed. The difference in execution time reduces to around 9 minutes

between n-nucleotide length eight with a single GPU and n-nucleotide length

of nine with 4 GPUs. This discrepancy is about 2.6 minutes for the length

pair of seven and eight with 1 and 4 GPUs respectively. We attribute this
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discrepancy reduction trend to the three factors listed above.
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CHAPTER 4

FPGA-based Implementation of The DNA Recombination Algorithm

In this Chapter, we study the implementation of V (D)J recombination pro-

cess on FPGA using the n-necleotide level parallelism that was used in the

GPU-based implementation in Section 4.1. As we converge to a final hard-

ware architecture, we provide a detailed explanation for each unit individually.

We explain the experimental results for the n-level FPGA-based implementa-

tion of V (D)J recombination process in Section 4.2. Based on the simulation

results, we explain the draw back of n-level paralleization method for FPGA-

based implementation of the recombination process in Section 4.3. As a result,

we proposed the VJ level parallelization approach for the FPGA-based imple-

mentation to overcome the draw back of n-level approach in Section 4.4. We

describe the structure of each unit of the final hardware architecture for the VJ

method. Finally, we describe the simulation results for the new parallelization

approach in Section 4.5.

4.1 Hardware Implementation of N Level Parallelization

The goal for the hardware implementation of DNA recombination process is

to accelerate the generation of all possible TCR sequences with any given V ,

D and J gene sequences and count the number of times each sequence can

be generated artificially. As we converge to a final hardware architecture for

this process we need to determine the level of parallelism and granularity of

the processing elements for generating in silico sequences, orchestrate the data

transfers between the memory and computation units, and balance the trade-

off between throughput and resource usage. In this section, we first describe

the parallelization strategy and then explain the structure of each unit that is

used to implement the V (D)J recombination algorithm.

Fig 4.1 shows the proposed architecture for the hardware implementation
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of the recombination process, which consists of three units, address generator

unit (AGU), memory bank unit, and processing unit. The processing unit

(PU) consists of processing element (PE), n-sequence initiator, and in vivo

address generator units. The PE consists of a number of parallel computation

units (CUs), which is formed of concatenation and comparison units.

The PU generates the number of times each in vivo sequence can be gener-

ated artificially in cooperation with the memory bank unit and corresponds to

the inner most three loops in Algorithm 1. The n-sequence initiator provides

the legitimate n-nucleotide length and reference n-nucleotide sequence for each

CU based on the length of each input V , D and J gene sequences. Each CU

generates a unique n-nucleotide sequence, forms all possible in silico sequences

based on the input V , D and J gene sequences, and searches those generated

sequences in the in vivo memory bank. The in vivo address generator unit

allows reading the in vivo sequences and their counter values for each CU,

and updates the counter value when a match is found by a CU. The AGU is

corresponds to the outer most three for loops in Algorithm 1 in order to gen-

erate the indexes for accessing the V , D, J sequences. The memory bank unit

is compromised of four sub-memory banks for maintaining input and output

data sets.

4.1.1 N Level Parallelization Strategy

In this section, we present a series of experimental analysis to answer the

following four questions that will help us determine the degree of parallelism

(Dp) to realize in the final architecture:

1) What is the efficient parallelization strategy that will minimize the ex-

ecution time, 2) How does the workload partitioning strategy across the CUs

affect the performance based on the resource constraints imposed by the target

FPGA, 3) What is the correlation of the Dp with the resource utilization and

the critical path delay, and 4) How does the Dp affect the throughput?

As mentioned in Chapter 2, all possible forms of n-nucleotide sequences are

involved in the recombination process. The length of n-nucleotide (Nlength) can

be between zero to ten and the n-nucleotide sequence can be placed on either
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Figure 4.1: The hardware implementation of V (D)J recombination process
using the N-level parallelization approach.

side of D sequence. Table 4.1 shows the total number of unique n-nucleotide

sequences based on the Nlength along with the total number of possible com-

binations of n1Dn2 with a given D sequence given that D gene can partition

the n-nucleotide of size Nlength at any position generating Nlength + 1 such par-

titioning opportunities. Therefore, if the length of D sequence is greater than

zero then, the total possible combinations is equal to 4Nlength × (Nlength + 1).

The computation requirement is the same for generating the in silico se-

quences based on each of the 4Nlength unique n-nucleotide sequences. This cre-

ates an opportunity to parallelize at n-nucleotide level and achieve a balanced

workload distribution across the computation units. This was the paralleliza-

tion approach taken in our GPU-based implementation to achieve a balance

workload across the threads and thread blocks of the GPU. Consider the case

of Nlength of ten, which generates over one million unique sequences. Hardware

implementation at a scale of million CUs is not feasible due to the resource

constraints. Therefore a partial parallelization is needed and the resource de-
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mand for a single CU helps us determine the amount of unrolling we can apply

to the loop with index four in Algorithm 1 and derive the number of CUs we

can instantiate on the target FPGA. This number will also help us determine

the structure of the n-sequence initiator and PU. Therefore, in order to answer

the second question, we implement a single CU, that is composed of concate-

nation and comparison units on the the Virtex-7 XC7VX485T FPGA. We will

describe the details of the PU structure in section 4.1.2. As shown in table

4.6, the ”Slice LUTs” is the determining factor and we can fit up to 256 CUs

leaving 15% of the resources for the AGU state machine, n−sequence initiator

unit, in vivo address generator and glue logic.

In order to answer the third question, we implement the proposed archi-

tecture for different Dp and plot the resource utilization trend as shown in

Fig. 4.2. As we increase the Dp, the resource utilization increases linearly.

We show the critical path delay with respect to changes in Dp in Fig. 4.3 to

answer the third question. As shown, the critical path delay slightly increases

as the Dp increase.

In order to answer the last question, we first need to define the throughput.

The throughput is defined as the total number of comparisons per second.

Since, we have the same number of comparison units as theDP , the throughput

increases linearly.

Based on the above analysis, we set the DP equal to 256 and the final

architecture based on our n-nucleotide level parallelization strategy is shown

in Fig. 4.1. In the following sections, we explain the structure of each unit

within the processing core (PC) in detail.

4.1.2 Processing Unit

As illustrated in Algorithm 1, modeling the TCRs repertoire involves six nested

for loops. We map the inner most three for loops with index 4-6 to the PU

to iterate through all possible forms of n-nucleotide additions, create in silico

sequences, and search for a match of the in silico sequence within the in vivo

data set. We describe the structure of the PU composed of the PE, n-sequence

initiator, and in vivo address generator units in the following subsections.
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Table 4.1: The total number of unique n-nucleotide sequences and total num-
ber of possible combinations of n1Dn2 with a given D sequence based on the
length of n-nucleotide.

Nlength Total number of unique Total number of possible
n− nucleotide sequences combinations of n1Dn2

with a given D
0 1 4
1 4 8
2 16 48
3 64 256
4 256 1280
5 1024 6144
6 4096 28672
7 16384 131072
8 65536 589824
9 262144 2621440
10 1048576 11534336

Table 4.2: Resource Utilization for a single CU

Slice LUTs (303600) 977
Slice Registers (607200) 509

Slice (75900) 275
hline LUT as Logic (303600) 977

LUT Flip Flop Pairs (303600) 272

The inputs to the PU are the V , D, J , and in vivo sequences received from

their respective memory bank units, the counter received from the conuter

memory bank unit, and the VJ group (groupid) from the AGU. The addresses

for these three sequences are determined by the AGU, which will be discussed

later. We set the bitwidth for each sequence to 64 as shown in Fig. 4.1.

In C57BL/6 mice data set, the maximum length of the V , J and D gene

sequences is 26 characters. We assign two bits to represent each of the four

types of nucleotide bases (A, G, C, and T). We reserve five bits to keep track

of the length of each sequence. The n-sequence initiator unit will rely on this

length information for selecting valid length for the n-nucleotide sequence.
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Figure 4.2: The resource utilization of the proposed architecture for different
values of the DP .

Figure 4.3: The critical path delay of the proposed architecture for different
values of the DP .
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In addition, the concatenation unit depends on the length information for

generating the in silico sequence. As explained earlier in Chapter 2, the D gene

goes through chewback process on its both ends. Based on the C57BL/6 mice

data set, there are maximum of 22 different paths to generate D sequences.

We reserve five bits to represent each path, which we refer to as DPath. The in

vivo address generator unit will require this information for counter update,

which will be discussed later. Therefore, in total we need to form a 62 bit

package as an input to the PU, however we set the package size as 64 leaving

2-bit for debugging purpose to set as used or not used.

4.1.3 n-sequence Initiator Unit

The input to the n-sequence initiator unit are the length of V , D, and J gene

sequences received from their respective memory bank units, the RequestData

signal received from the PE. The outputs of this unit are the DataReady,

Nlength, length of in silico sequence (sequencelength), and the reference n-

nucleotide sequence (InitialN) for the CUs, andDataReady and sequencelength

for the in vivo address generator unit. We set the bitwidth of Nlength and

InitialN to five and 20 respectively, as the maximum length of n-nucelotide is

20 bits (ten characters). Also, we set the bitwidth of sequencelength to seven

as the maximum value for sequencelength is 120 bits (60 characters).

The n-sequence initiator unit implements the for loop indexed as four in the

Algorithm 1. This loop iterates through n-nucleotide of length zero through

ten and generates all possible sequences for that length. We can extend the

for loop with index of four into three sub-for loops as shown in Algorithm 3.

The first for loop iterates through all possible n-nucleotide sequences of

Nlength between zero and ten. However, all possible n-nucleotide sequences for

each length will not result with valid in silico sequence based on the given V ,

D and J gene sequences as the sequencelength must be within the range of six

to sixty characters and divisible by three. Therefore, primary functionality

of the n-sequence initiator unit is selecting the legitimate Nlength and proceed

to the next loop. The second for loop iterates through all possible unique n-

nucleotide sequences for the selected Nlength. Table 4.1 shows the total number
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Algorithm 3: Pseudo code for expanding the for loop with index of four

in Algorithm 1.

1 for i = 0 to 10 do
Nlength = i;

sequencelength = Vlen+ Jlen + Dlen + Nlength;

if (6 <= sequencelength <= 60) & (sequencelength%3 == 0) then

2 for k = 0 to 4i do
InitialN = k;

3 for j = i to 0 do
lenn1 = j;

lenn2 = i-j;
k = k + DP ;

possible unique n-nucleotide sequences with different length.

Rather than having this unit generate a n-nucleotide sequence for each CU,

and send all possible combinations in rounds each with 256 sequences (as there

are 256 parallel CUs), we send only InitialN as a reference starting address

to all CUs and have each CU calculate its unique n-nucleotide sequence using

InitialN + CUid, expression where CUid is the index of CU. This allows us

to reduce the amount of data transfer to the CUs and wiring requirement on

the implementation. After each round, the InitialN is incremented by 256 to

complete all the rounds needed for that specific Nlength, which is 4Nlength/256.

The third for loop iterates through all possible combinations for the length of

n1 and n2 sequences to cover all forms of n1Dn2 sequence.

4.1.4 In vivo Address Generator Unit

The inputs for the in vivo address generator unit are the sequencelength and

DataReady from the n-sequence initiator, the groupid from the AGU, the

Match signal indicates that there is a match between in vivo and in sil-

ico sequences, from the PE, and the 16-bit counter indicating the number

of times that the specific in vivo sequence is generated, from the counter

memory bank. The outputs are the address for reading the sequence from

the in vivo memory bank (in vivo Add) along with its read enable signal
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(in vivo En) and the address for the sequence’s counter value in the counter

memory bank (Counter Add) along with read enable (Counter En) and write

enable (Counter Wr En) signals to control reads and writes. We set the

bitwidth of Counter Add and in vivo Add to 12 as there are maximum 3249 in

vivo sequences in the BRAMs. In addition, we set the bitwidth of in vivo En

and Counter En to 8 as there are 240 BRAMs in the in vivo and counter

memory bank units.

Before we describe the functionality of the in vivo address generator unit,

we need to explain the structure of the in vivo memory bank. As mentioned

in Section 2.0.3, the in vivo sequences are grouped based on the V J pair

used to generate that sequence. We benefit from this feature to reduce the

comparison search space. Therefore, we distribute the in vivo data set based

on the V J group assignment across 240 BRAMs, where each BRAM holds in

vivo sequences sorted in ascending order of length for that V J group. This way

of data organization allows us to use the groupid to search for the data only

in one of the 240 BRAMs, and sequencelength to search within a single BRAM

among the sequences that have the same length. In order to realize this, we

need to know the starting and ending addresses of the in vivo sequences in

the in vivo memory bank for any given sequencelength. Therefore, we utilize

two 240x19 arrays (startingarray, endingarray), which keep the starting and

ending address of in vivo sequences for each sequencelength and groupid. The

size of startingarray, endingarray is defined based on the total number of V J

groups (240 V J groups) and the total number of available length for the in

vivo sequence (19 different lengths from six to sixty characters).

4.1.5 Processing Element

The inputs for the PE are the V , D and J gene sequences from the mem-

ory banks, the sequencelength, Nlength, DataReady and InitialN from the n-

sequence initiator unit and 128-bit in vivo sequence from the in vivo memory

bank unit. The output is the Match signal for the in vivo address generator

unit indicating that one of the 256 CUs generated the in vivo sequence. This

Match signal triggers the in vivo AGU to update the corresponding counter
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for that in vivo sequence. As shown in Fig. 4.1, the PE consists of 256 parallel

CUs where, each CU consists of a pair of concatenation and comparison units.

The concatenation unit uses an or gate to concatenate the V , n1, D, n2

and J sequences in the given order to form a 128-bit sequence. The position

of each sequence in the 128-bit package is determined by the length of the

remaining four sequences. This position value is used as the shift amount to

apply to each sequence before the or gate based concatenation. We pass the in

silico sequence to the comparison unit of each CU to compare the generated

sequence with the in vivo sequence. The 128-bit comparator unit sets the

match flag to one when the 128-bit in silico sequence is equal to the in vivo

sequence, which in turn triggers the Match signal.

4.1.6 Address Generator Unit

The main objective of the AGU is to generate the addresses for the V , D and

J memory bank units. The input for the AGU is the one bit RequestData

signal received from the PU. The outputs are the addresses for reading three

sequences from the V, J, D memory banks (V Add, J Add, D Add ) along

with their read enable signals (V En, J En, D En). We set the bitwidth of

V Add and J Add to five as there are maximum 26 sequences in their BRAM.

In addition, we set the bitwidth of D Add to nine as there are maximum 202

D gene sequences in its BRAM. The bitwidth of V En is set to five as there

are 20 BRAMs where, each BRAM holds one basic V gene sequence and its

chewback and palindromic forms 2.0.3. Also, we set the bitwidth of J En

to four as there are 12 basic J genes where, each gene and its chewback and

palindromic forms are stored in one BRAM.

4.2 Simulation Results of the N Level Parallelization Architecture

Table 4.3 shows the resource utilization for the n level parallelization archi-

tecture. As shown, we utilize up to the 85% of the available resources on the

target FPGA. The critical path delay is 19.798 ns and the maximum clock rate

is 50 MHz. For comparison purpose, we ran experiment for the bit-wise GPU-
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based implementation using P100 GPU. Table 4.4 shows the execution time

for each NLength on both Virtex-7 FPGA and P100 GPU. The total execution

time is equal to 19571 minutes (∼ 13.6 days) on the target FPGA while the

total execution time is equal to 1137 minutes (∼ 19 hours) on a single GPU.

4.3 Drawbacks of N Level Parallelization Architecture

As stated in table 4.4, the execution time for FPGA-based implementation

using n-level parallelization strategy is 17 times slower than the bit-wise GPU-

based implementation. This is due to the fact that the critical path delay is

large for the FPGA-based implementation, which results in low clock rate

frequency. In the following we state the advantages and disadvantages of n-

level parallelization strategy for FPGA-based implementation.

One of the main advantages of n level parallelization architecture is the

even workload distribution across the computation units since they work on

the same V and J genes, their comparison search space is equal. The second

advantage is the highly parallel comparison process. As shown in Fig. 4.1,

there are 256 CUs, which compare their in silico sequence with the in vivo

sequence. Indeed, the execution time for comparison process reduces by factor

of 256 in comparison with the sequential based comparison process. The third

advantage is the elimination of the repetitive computations for generating in

silico sequences. The n-sequence initiator unit perform required computations

such as determining the valid length for n-nucleotide and in silico sequences

and pass them to the CUs. This result in performing computation once for

256 CUs.

As stated above, the main disadvantage of n-level parallelization is the large

critical path delay, which results in low clock frequency rate. The large critical

path delay is due to the communication between the n-sequence initiator unit

and CUs. In order to remove the communication, we need to perform all

required computations within the CU, which results in increasing the resource

utilization and reducing the Dp. Another disadvantage of this architecture is

that there is no overlap between the execution of two consecutive component.

For example, every components are in idle while the comparison units compare
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Table 4.4: Execution time for the FPGA and bit-wise GPU-based implemen-
tations using Virtex-7 and P100 GPU, respectively.

NLength Execution Time (min) Execution Time (min)
for FPGA-based implementation for GPU-based implantation

0 <1 8.68
1 1 9.34
2 1 10.14
3 1 10.92
4 1 11.74
5 8 12.56
6 39 13.69
7 180 16.23
8 805 49.82
9 1768 196.76
10 15243 797.8

Total 19571 1137.7

the in silico and in vivo sequences.

4.4 Hardware Implementation of VJ Level Parallelization

In this section, we propose the VJ level parallelization approach for FPGA-

based implementation of the V (D)J recombination process. We first analyze

the implementation of VJ level parallelization approach for FPGA-based im-

plementation and determine the final architecture in Section 4.4.1. Then, we

provide a detailed explanation about the structure of each unit individually in

Sections 4.4.2 - 4.4.4. Finally, we ran experiment to evaluate the performance

of VJ level method and provide the experimental results in Section 4.5.

4.4.1 VJ Level Parallelization Strategy

In this section, we present a series of experimental analysis to answer the

following two questions that will helps us determine the parallelization level

of the final architecture:

1) What is the resource requirement for a processing core (PC) that is
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Table 4.5: Resource Utilization for a single PU

Slice LUTs (303600) 2007
Slice Registers (607200) 900

Slice (75900) 642
LUT as Logic (303600) 2007

LUT Flip Flop Pairs (303600) 735

composed of an address generator unit, memory banks, combination and com-

parison units?

2) What is the efficient data partitioning strategy across the PCs that

will maximize the execution time performance, and how does the partitioning

strategy affect the parallelization level (number of PCs), workload per PC,

and execution time performance based on the resource constraints imposed by

the target FPGA?

The resource demand of a single PU will help us determine the number of

PCs we can instantiate on the target FPGA. This number will also help us

determine the structure of the address generation unit (AGU) and the way

the data should be partitioned across the block rams. Therefore, in order

to answer the first question, we implement a single PU, that is composed of

combination and comparison units along with a buffer in between these units

on the Virtex-7 XC7VX485T FPGA. As shown in table 4.5, the ”Slice LUTs”

is the determining factor and we can fit up to 136 PUs leaving 10% of the

resources for the AGU state machine and glue logic.

We need to consider the following two conditions for data partitioning

strategy before answering the second question. First, the data partitioning

strategy should result in even workload across the PCs. Second, the data

distribution strategy should allow the PCs operate independently meaning

that the reads from the memory banks when accessing the V , D, J , and in vivo

sequences along with the writes to memory banks when updating the counter

value should be isolated from each other. In the following, we explain the

available options for the data distribution strategy. Note that these strategies

were introduced based on the structure of input data set.
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One solution would be to pair one V gene, one J gene and both D genes

to each PU. Based on this assignment, the total number of required PCs will

be 240. Table 4.5 shows that we can only realize up to 136 PUs on the target

FPGA. Therefore, this solution will result in completing the recombination

process in two rounds, in which during the second round 24% of the PUs

would be idle.

We distribute the in vivo data set across the PUs based on the V J group

2.0.3 assignment so that we satisfy the second condition. Fig. 3.1 illustrates

the normalized distribution of in vivo data set across 240 V J pairs. Even

though the workload for each combination unit across the PUs is homoge-

neous, this is not the case for the comparison unit since the total number of in

vivo sequences is not distributed evenly across the V J groups. However, this

distribution allows us to exploit V J level parallelism with independent and

parallel memory reads with a trade off in uneven workload distribution for the

comparison unit. Furthermore, since each in vivo sequence is originated from

a specific V J pair, the recombination paths that may generate the same se-

quence will always come from the same V J pair. Therefore for each successful

recombination, the counter updates will occur within the same PU ensuring

that PCs will always write into their designated counter memory units.

Alternative solution would be increasing the workload per PUs till we reach

a single iteration based execution. The strategy that allows us to complete the

process in one iteration requires one V and two J genes per PU, resulting with

a total of 120 PUs to cover for all 240 pairs. We can keep increasing the number

of J genes per PUs, but such an approach has two major drawbacks. As we

increase the number of J genes per PU we reduce the number of parallel PUs

and increase the workload per PU, which result in increasing the execution

time.

Fig. 4.4 shows the architecture of proposed PC based on the VJ-level

parallelization strategy. In the following, we explain the structure of each unit

within the PC in detail.
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Figure 4.4: A high level view of hardware implementation of VJ level paral-
lelization for the V (D)J recombination process.
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4.4.2 Combination Unit

The inputs to the combination unit are the V , J and D gene sequences re-

ceived from their respective memory banks. The addresses for these three

sequences are determined by the AGU, which will be discussed later. We set

the bitwidth for each sequence to 64 bits as shown in Fig. 4.4. In C57BL/6

mice data set, the maximum length of the V , J and D gene sequences is 26

characters. We assign two bits to represent each of the four types of nucleotide

bases (A, G, C, and T). We reserve six bits to keep track of the length of each

sequence. The combination unit will rely on this length information for the in

silico generation. As explained earlier in section 2, the D gene goes through

chewback process on its both ends. Based on the C57BL/6 mice data set,

there are maximum of 22 different paths to generate D sequences. We reserve

five bits to represent each path, which we refer to as DPath. The comparison

unit will require this information for counter update, which will be discussed

later. Therefore, in total we need form a 63 bit package as in input to the

Combination Unit, however we set the package size as 64 leaving 1-bit for de-

bugging purpose to set as used or not used. The combination unit continuously

executes the following five steps as long as the buffer is not full to implement

the for loops indexed four and five of the Algorithm 1. Fig. 4.5 shows the high

level flow of these five steps.

Step 1: We set the length of n-nucleotide to zero as a starting point. For

the current 64-bit V , J and D, we extract the length of each sequence and

calculate the length of in silico sequence using (4.1). Based on the C57BL/6

mice data set there are two conditions that need to be met in terms of the

in silico sequence length. Length of the generated sequence must be within

the range of six to sixty characters and divisible by three. If the length of in

silico sequence meets those two conditions, then we set the initial binary value

of the n-nucleotide sequence as zero for the current n-nucleotide length and

proceed to the step two. If the length conditions are not met, then we check

the length of n-nucleotide. If the length of n-nucleotide is less than ten then,

we increase the length of n-nucleotide by one, update the length of in silico

sequence, and reevaluate the new length. If the length of n-nucleotide is not
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less than ten then, we request a new input data from the V, D, and J memory

banks, whose addresses are generated by the AGU.

Lengthin silico = V [5 : 0] + J [5 : 0] +D[5 : 0] + n− nucleotidelength (4.1)

Step 2: The n-nucleotide sequence involves the n1 and n2 nucleotide se-

quences 2.0.1. In the second step, we set the length of n1 and n2 sequences

based on the length of n-nucleotide, which was selected in the previous step.

We set the length of n1 sequence equal to the length of n-nucleotide and set

the length of n2 sequence equal to zero, then we continue on to the third step.

Later in step five we will decrement and increment the n1 and n2 lengths by

one respectively till n1 is 0 and n2 is the length of n-nucleotide.

Step 3: In this step, we use an or gate to concatenate the V , n1 D, n2 and

J sequences in the given order to form a 134-bit sequence. The position of each

sequence in the 134-bit package is determined by the length of the remaining

four sequences. This position value is used as the shift amount to apply to

each sequence before the or gate based concatenation. As mentioned before,

the maximum length of an in silico sequence is 60 characters (120 bits). We

reserve six bits to keep track of the length of in silico sequence (sequencelength),

two bits to keep track of the V J group groupid, five bits to indicate the DPath,

and one bit as a nlength flag to show that the in silico sequence is created using

the n-nucleotide with length of greater than zero. The comparison unit relies

on the in silico length information and V J group to reduce its search space,

which we will explain later.

Step 4: In this step, we check the status of the the first-in, first-out buffer

(FIFO). If the FIFO is not full, then we pass the generated 134-bit sequence

into the buffer and proceed to the fifth step. Otherwise, we remain in this step

till the last entry in the buffer becomes available.

Step 5: At this point of the execution, the combination unit has generated

an in silico sequence and fed it into the FIFO. This step adjusts the lengths

of n1 and n2 sequences along with the binary value of the n-sequence based

on the following execution model. We first evaluate the length of n1 sequence.
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If it is greater than zero, then we increase the length of n2 sequence, decrease

the length of n1 sequences, and proceed to the third step. We increase and

decrease the length n1 and n2 respectively to generate all possible combinations

of n1Dn2 sequence.

When the length of n1 sequence reaches to zero, we compare the current

binary value of the n-nucleotide sequence with the largest number that can

be generated for that length (note that length was determined in Step 1). If

it does not match, then we increase the n-nucleotide value by one and move

to the second step. Otherwise, we move to the first step to evaluate and

increase the length of n-nucleotide. Indeed, all possible forms of n-nucleotide

sequence can be generated by increasing its value by one. Since all zeros in

the n-nucleotide sequence is equivalent to the sequence with all ’A’, while the

n-nucleotide sequence with all ones is equal all ’T’.

4.4.3 Comparison Unit

The inputs for the comparison unit are 134-bit package received from the

buffer, 128-bit in vivo sequence received from the in vivo memory bank, and

the 16-bit counter indicating the number of times that specific in vivo sequence

has been generated. Before we describe the functionality of the comparison

unit, we explain the structure of the in vivo memory bank. As mentioned in

section 4.4.1, we distribute the in vivo data set across the PCs based on the

V J group assignment. Since we pair each V gene with two J genes, we divide

the in vivo memory bank into two partitions, where each partition holds in

vivo sequences sorted in ascending order of length for that V J group. This

way of data organization allows us to use the groupid to search for the data

only in one of the two partitions, and sequencelength to search within a single

group among the sequences that have the same length. In order to realize this,

we need to know the starting and ending addresses of the in vivo sequences in

the in vivo memory bank for any given sequencelength and groupid. Therefore,

we utilize two 2x19 arrays (startingarray, endingarray), which keep the starting

and ending address of in vivo sequences for every sequencelength and groupid.

The size of startingarray, endingarray is defined based on the total number of
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Figure 4.5: The algorithmic description for the structure of Combination unit.
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V J group in each PC (two V J groups) and the total number of available length

for the in vivo sequence (19 different lengths from six to sixty characters).

The comparison unit continuously executes the following four steps as long

as there is data in the buffer to implement the inner most for loop of the

Algorithm 1. Fig. 4.6 shows the high level flow of these four steps.

Step 1: In this step, we check whether the buffer has at least four entries

or not. We remain in this step till the combination unit passes at least four in

silico sequences to the buffer.

As mentioned before, there are four nucleotide bases (A, C, G, and T) that

we need to use for generating the n-nucleotide sequences. Therefore, there are

4M n-nucleotide sequences with length of M involving in the recombination

process. In addition, we need to generate all possible combinations of n1Dn2

in the recombination process (step five of the combination unit) for any given

n-nucleotide sequence in the presence of D sequence (D sequence with length

of greater than zero). This causes additional M + 1 ways for generating the in

silico sequence for a given n-nucleotide. Therefore, the total number of possible

in silico sequences for a given V , D, and J genes is equal to 4M×(M+1) using

the n-nucleotide sequence with length of M . Based on this analysis, we have

at least 4M×(M+1) in silico sequences with the same features (sequencelenght,

groupid, and Dpath) in the presence of n-nucleotide and D sequence. However,

we have at least 4M in silico sequences with the same features in the absence

of D gene. Table 4.6 shows the total number of in silico sequences with the

same features for a given n-nucleotide with length of M in the presence and

absence of D sequence.

We can benefit from the above feature to perform parallel comparisons

to accelerate the process. However, the level of parallelization is dependent

on the length of n-nucleotide and D gene in the recombination process. The

parallelization level affects the resource utilization and execution time perfor-

mance. Increasing the parallelization level results in increasing the resource

utilization directly as we need to provide a 134-bit register for every in silico

sequences in the comparison unit. The execution time reduces as we increase

the parallelization level from one to two/four. However, increasing the paral-
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Table 4.6: The total number of in silico sequences with the same features for
a given n-nucleotide’s length with and without the D gene.

NLength Total number of sequences Total number of sequences
in the presence of D gene in the absence of D gene

0 1 1
1 8 4
2 48 16
3 256 64
4 1280 256
5 6144 1024
6 28672 4096
7 131072 16384
8 589824 65536
9 2621440 262144
10 11534336 1048576

lelization level from four to eight increases the critical path delay due to higher

resource utilization. Also, this solution is not applicable for all the cases as

shown in the table 4.6. Therefore, we set the parallelization level to four to

have a general solution for most of the cases and avoid increasing the resource

utilization. Note that we can not do any parallelization in the absence of n-

nucleotide (length of n-nucleotide equal to zero). Thus, we detect this case

at the second step using the nlength flag to perform the comparison process

without parallelization.

Step 2: In this step, we first read one in silico sequence from the buffer. If

the nlength of the received sequence is set to one, then we read three more in

silico sequences from the buffer and proceed to the third step. Otherwise, we

directly continue on to the third step.

Step 3: At this step, there is no difference between having one or four

in silico sequences since all of them have the same features. Therefore, we

first extract the sequencelenght and groupid of the in silico sequence. Then,

we calculate the index of startingarray and endingarray based on groupid and

sequencelenght using (4.2). Accordingly, we can access to the starting address

and ending address of in vivo memory using the calculated index. Finally, we
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set the address of in vivo memory bank to the starting address and proceed

to the next step.

Indexarray = groupid × 19 +
sequencelength

2
− 2 (4.2)

Step 4: In this step, we first read the in vivo sequence from the in vivo

memory bank. Then, we compare the in vivo sequence with in silico sequences

simultaneously. If there is a match between the in silico and in vivo sequences,

then we set the address of counter memory bank to the current address of in

vivo and proceed to the next step. Otherwise, we compare the current address

of in vivo memory bank with the ending address of in vivo memory bank that

is determined in the previous step. If it is match, then we go to the first step.

Otherwise, we increment the current address of in vivo memory bank by one,

read the next in vivo sequence, and do comparison.

Step 5: In this step, we first read the counter from the counter memory

bank. Then, we update the counter value with the Dpath and write the updated

counter into the counter memory bank. At this point, if we find a match for all

of the in silico sequences, then we move to the first step. Otherwise we continue

on to the fourth step to do the comparison between the current address of in

vivo memory bank and the ending address.

4.4.4 First In First Out Buffer (FIFO)

We utilize FIFO in the PUs for three reasons. First, we can eliminate the com-

munication overhead between the combination and comparison units, since the

combination unit continuously generates the in silico sequence and passes it to

the FIFO without considering the state of comparison unit. Also, the compar-

ison unit can perform comparison as long as the buffer is not empty without

considering the state of combination unit. Second, we can perform parallel

comparisons using FIFO. Third, we can overlap the task of combination and

comparison units using the FIFO, which results in reducing the execution time.

The challenging decision for the FIFO relates to its size. The size of FIFO

directly affects the BRAM utilization. We use 75% of the available BRAM in

the target FPGA without the FIFO. Since our aim is to remain below 85%
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Figure 4.6: The algorithmic description for the structure of Comparison unit.
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BRAM utilization, we can only assign 1× 36Kb BRAM to each PU. Thus, we

set the FIFO so that it can keep up to 256 in silico sequences with 134 bits.

4.5 Simulation Results of the VJ Level Parallelization Architecture

Table 4.8 shows the resource utilization for the VJ level parallelization archi-

tecture. As shown, we utilize up to the 80% of the available resources on the

target FPGA. The critical path delay is 9.328 ns and the maximum clock rate

is 100 MHz. Table 4.4 shows the execution time for each NLength for both

n-level and VJ level parallelization approaches on Virtex-7 FPGA along with

the execution time for the bit-wise GPU-based implementation on P100 GPU.

The total execution time for the VJ level parallelization approach is equal to

8237 minutes ((∼ 5.7 days)) on the target FPGA. As stated in table 4.7, the

total execution time for the VJ level approach reduces by a factor of 2.37 in

comparison with the n-level parallelization approach. In addition, the exe-

cution time for n-nucleotide length of zero to five on FPGA is smaller than

the bit-wise GPU-based implementation. However, for the large length of n-

nucletide, the execution time for GPU implementation is faster by a factor of

up to 8. As a result the total execution time for the VJ level parallelization

approach is slower than the baseline GPU-based implementation by a factor

of 7.2.

4.6 Drawback of VJ-Level Parallelization architecture

As shown in the previous sections, both FPGA implementations of the recom-

bination process had a poor performance in comparison with the GPU imple-

mentation. The main difference between the GPU and FPGA implementation

is the parallelization level for the comparison process. For the GPU-based

implementation, all active threads compare their in silico sequences with one

in vivo sequence. Therefore, the parallelization level at the comparison step

is equal to the total number of active threads (4m). However, FPGA-based

implementations did not offer this level of parallelization at the comparison

stage. For the n-level approach on FPGA, we compare 256 in silico sequences
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Table 4.7: Execution time for the n-level and VJ level parallelization approach
for FPGA-based implementation using Virtex-7 in comparison with the bit-
wise GPU-based implementations using P100.

NLength Execution time (min) Execution time (min) Execution time (min)
for n-level parallelization for VJ level parallelization for the bit-wise GPU-based
approach using Virtex-7 approach using Virtex-7 implementation

0 <1 <1 8.68
1 1 <1 9.34
2 1 <1 10.14
3 1 <1 10.92
4 1 <1 11.74
5 8 3 12.56
6 39 17 13.69
7 180 78 16.23
8 805 347 49.82
9 1768 1490 196.76
10 15243 6300 797.8

Total 19571 8237 1137.7

with one in vivo sequence and the parallelization level for comparison step

is equal to 4 for the VJ-level approach. Therefore, we believe that the great

performance of GPU implementation is due to the huge parallelization level

for comparison process.

In order to evaluate our claim, we estimate the amount of time that is used

for the combination and comparison process. For this purpose, we select one of

the PC out of 120 units. In order to evaluate the worst case scenario, we chose

the PC with the largest in vivo data set among all PC. Then, we calculate the

total number of in silico sequences can be generated based on the selected PC

(VJ pair). We also calculate the total number of required comparison for all

possible in silico sequences in a given unit, assuming that there is no match

between generated sequence and in vivo sequences. Simulation results show

that, total of 3, 517, 387 in silico sequences can be generated for a selected PC

and total number of comparison is equal to the 963, 073, 005 for that unit. As a

result, the average of 271 comparisons are required for each in silico sequence

in the worst case scenario. Assuming that combination unit generates one

in silico sequence per clock cycle and comparison unit compares one in vivo

sequence with four in silico sequences per clock cycle, then 98% of the total

execution time is spend on the comparison process and only 2% of the exe-
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cution time is used for generating in silico sequences. Based on this analysis,

the comparison process consumes the majority of the execution time and it

is the main reason for the poor performance of FPGA-based implementation

in comparison with the GPU-based implementation. To address this issue,

we need to find a solution to reduce total number of required comparisons for

each in silico sequence. One solution would be using hashing method for the

comparison process. Hashing can reduce the lookup time from O(n) to O(k),

where n is the total number of in vivo sequences in a given data set, and k is

the constant value significantly smaller than n.

4.7 Hashing Functions

In this section, we first study different hashing methods for the hardware

implementation and select the one that is more suitable for our application.

In 4.7.1, we provide a detailed explanation about the chosen hash function for

the recombination process.

In [23], authors introduce shift-Add-XOR hash function which is based on

bitwise AND, right and left shift, and addition. This hash function is suitable

for hardware based implementation due to the nature of required operations

for calculating the hash value. However, latency of this hash function depends

on the input length which is not suitable for our application. Since, we are

looking for a hash function which generate a hash value in one clock cycle.

In [24], authors used CRC-style polynomials as a hashing function for NIDS

pattern matching. The main advantages of CRCs based hashing function is

that they involve simple functions (mainly XOR) with small implementation

cost. However, the implementation cost for CRCs is heavily dependent on the

input width. Another limitation of CRC based hashing is that a separate CRC

generator is required for each specific sequence length which cause significant

memory and logic cost. Also, the memory utilization is heavily dependent on

the number of sequence of that length [24]. In [25], authors proposed variable

length CRC hashing to eliminate the drawback of CRCs based hash function

by using one CRC generator for the several close sequence lengths. However,

this method is applicable to the data set that can guarantee the hash values
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of first few characters of all sequence are unique. This is not applicable for

our data set since the in vivo data set is portioned based on the VJ pair used

to generate them as a result the first few character of all sequence is similar.

In [26], authors utilize a hash function of class H3 with the hash table bins

of CAM-based implementation [27] for virus checking application. The class

of H3 only involves bit-wise AND and XOR operations which result in a fast

hash function operation completing in one clock cycle. In addition, the class

H3 hash function, has been proved to be very effective in distributing keys

evenly among hash table entries [28] leading to a low collision rate. The logic

cost for the hardware implementation of H3 hash funcion is low as it requires

simple bitwise AND and XOR logics. We choose the hash function to be of

class H3 due to its advantages over other hashing function.

4.7.1 The class of function H3

Let A = 0, 1, ..., 2n − 1 be the key space and B = 0, 1, ..., 2m − 1 be the address

space, where n is the number of bits in the key and m is the number of bits

in the address. Then, the class H3 is defined as follow: Let Q is the set of all

n×m matrices. For a give q ∈ Q and x ∈ A, q(i) is the ith row of the matrix

q and x(i) is the ith bit of x. The hashing function hq(x) : A =⇒ B is defined

as: hq(x) = x1.q(1) ⊕ x2.q(2) ⊕ ..... ⊕ xi.q(i), where . indicates bitwise AND

operation and ⊕ indicates bitwise exclusive OR operation.

Based on the definition of the class of H3, we need n ×m AND modules

and n XOR modules to map a n-bit key to a m-bit hash value on a target

FPGA. Matrix q can also be stored in distributed ram for fast access.

4.8 Hardware Implementation of VJ-Level Parallelization Using Hash Func-

tion

Fig 4.7 shows the architecture of the proposed PC using the class of H3 hash

function for the VJ level parallelization approach. In the following, we provide

a detailed explanation of each unit in PE.



69

4.8.1 Combination Unit

The inputs to the combination unit are the V , J and D gene sequences received

from their respective memory banks. The output of this unit are the 120-

bits in silico sequence and the 5-bits Dpath which are passed to the hash and

comparison unit respectively. The structure of combination unit does not

change significantly in comparison with previous architecture. The only change

to this unit is that the length of the in silico sequence does not pass to the

hash and comparison units. Since, comparison unit does not relay on the

length information anymore.

4.8.2 Hash Unit

The inputs to the hash unit is the 120-bit in silico sequence received from

combination unit. The output is the 13-bit hash value which is used as an

address for the indirect memory bank which we will explain later. Hash unit

consists of 120× 13 AND modules and 120 XOR modules since the key space

in our application is in silico sequences and their maximum length is 120 bits.

Thirteen bits are required to address the in vivo memory bank unit since it

contains at most 4762 in vivo sequences. Matrix q is randomly generated

through a C code and hard coded to the distributed ram for fast access.

4.8.3 Comparison Unit

The inputs for the comparison unit is 13-bit hash value received from the

hash unit, 5-bit Dpath received form combination unit indicating total number

of path that in silico sequence can be generated, 120-bit in silico sequence

received from combination unit, 128-bit in vivo sequence received from the in

vivo memory bank, and the 16-bit counter indicating the number of times that

specific in vivo sequence has been generated. The comparison unit consists

of 120 bits comparator and indirect memory. Before we explain the structure

of indirect memory, we need to explain the output of hash unit. Hash unit

generate 13-bit hash value distributed between 0 to 8192. While, the in vivo

memory bank at most contains 4762 sequences. If we use the result of hash
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unit as an address to the in vivo memory bank unit, then we need to increase

the size of memory which results in significant increase in memory utilization.

Therefore, we deiced to utilize indirect memory as a pointer to a possible

matching sequence in the in vivo memory. Indeed, the indirect memory holds

address for the in vivo memory bank unit corresponding to a given hash value.

The memory utilization does not increase significantly since each entry is 13

bits in the indirect memory. Note that the indirect memory is initialized to

-1 for those hash values that are not exist in the data set. This way, we can

terminate comparison process quickly and without reading in vivo sequence.

As explained above, indirect memory generate an address associated with

a given hash value for the in vivo memory bank unit. Then, the 120-bit

comparator is used to compare the in silico with in vivo sequence. Finally,

the counter memory is updated if there is a match, otherwise move on to the

next in silico sequence.

4.9 Simulation Results of the VJ Level Parallelization Architecture Using

Hash Function

Table 4.10 shows the resource utilization for the VJ level parallelization archi-

tecture with hash unit. As shown, we utilize up to the 70% of the available

resources on the target FPGA. Hash unit only utilize 4.5% of the available

resources on target FPGA. In addition, resource utilization for combination

and comparison units reduces by factors of 1.09× and 7.9× respectively in

comparison with the VJ level architecture without hash function. This is due

to the fact that we remove all logics corresponding with FIFO and starting and

ending arrays. However, the memory utilization increase 4.9% in comparison

with the VJ level architecture without hash function which is the results of

employing indirect memory.

The critical path delay is 8.70 ns and the maximum clock rate is 100 MHz.

Table 4.9 shows the execution time for each NLength for VJ level parallelization

with and without hash function on Virtex-7 FPGA along with the execution

time for the bit-wise GPU-based implementation on P100 GPU. The total

execution time for the VJ level parallelization approach using hash function is
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Figure 4.7: A high level view of hardware implementation of VJ level paral-
lelization with hash unit for the V (D)J recombination process.
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Table 4.9: Execution time for the VJ level parallelization approach with and
without hash function for FPGA-based implementation using Virtex-7 in com-
parison with the bit-wise GPU-based implementations using P100.

NLength Execution time (min) Execution time (min) Execution time (min)
for VJ level parallelization for VJ level parallelization for the GPU-based

approach without hash function approach with hash function implementation
0 <1 <1 8.68
1 <1 <1 9.34
2 <1 <1 10.14
3 <1 <1 10.92
4 <1 <1 11.74
5 3 <1 12.56
6 17 2 13.69
7 78 8 16.23
8 347 38 49.82
9 1490 167 196.76
10 6300 726 797.8

Total 8237 947 1137.7

equal to 947 minutes (∼ 16 hours) on the target FPGA. As stated in table 4.9,

the total execution time for the VJ level approach using hash function reduces

by a factor of 8.69× in comparison with the VJ-level parallelization approach

without hashing. In addition, the VJ-level approach using hash function is

1.2× faster that the bit-wise GPU-based implementation.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusions

The V (D)J recombination process in TCRs offers a diverse set of receptors,

which is necessary to facilitate T-cell responses to foreign invaders. In addi-

tion, scrutiny of the TCR repertoire enable immunologists to understand the

functionality of healthy immune system, determine the nature of successful

and unsuccessful immune responses, and understand the immune mechanism

in presence of different diseases. The response of immune system to specific

antigen often leaves evidence in the form of repertoire sequence signatures that

are common across individuals and these signature patterns can be associated

with the corresponding antigen. Identification of these signatures help im-

munologists to understand the correlation between the immune receptors and

different disease, which provides researchers the ability to identify immune re-

ceptor clones that can be converted into precision vaccines. However, analysis

of TCR pool require modeling of the diverse set of TCR, which is computation-

ally challenging as the total number of TCRs to be generated and processed

can exceed 1018 sequences. This massive scale of data processing poses as the

barrier for immunologists to successfully understand the functionality of hu-

man immune system. Therefore, reducing the timescale of modeling the TCR

repertoire is crucial for the immunologists.

In this dissertation, we introduced a bit-wise implementation of the V (D)J

recombination algorithm, which reduces the constant memory and global mem-

ory footprint by factors of 3.4× and 4× respectively. On a single GPU, the

bit-wise implementation reduces the total execution time by a factor of 2.1×
compared to the baseline implementation. We presented the multi-GPU ver-

sion of the bit-wise recombination and conducted availability analysis. We

showed that beyond n-nucleotide length of eight, since we fully occupy the
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thread blocks on a single GPU, we observed reduction in execution time with

the increase in number of GPUs. However this reduction shows a saturating

trend. We finally analyzed the root causes of observing a saturation trend in

execution time reduction as we increase the GPU resources. As we transition

from mouse data set to human data set, we expect the time scale of the experi-

ments to increase by three orders of magnitude. In this scale, ability to reduce

the simulation time from 40.5 hours to 18.9 hours on a single GPU and to 4.3

hours on a 8-GPU system for mouse data set is a significant gain that will

allow us to count the number of unique pathways a TCR sequence can be gen-

erated, and conduct statistical analysis to correlate those frequently generated

TCR sequences to certain diseases much faster that the baseline version.

We also mapped the V (D)J recombination algorithm onto FPGA and take

advantage of the fine grained parallelism offered by the target FPGA whose

architecture naturally matches the program architecture of the recombination

process. We first map the recombination algorithm using the N-level paral-

lelization approach, which is used for GPU-based implementation. We show

that this implementation suffers a large critical path delay and as a result low

clock frequency. In order to address the draw back of N-level architecture, we

propose the VJ-level parallelization approach. Simulation results showed that

the total execution time reduces by a factor of 2.34× in comparison with the

N-level architecture for the FPGA-based implementation.

5.2 Future Work

Future work for the GPU-based implementation includes extending a bit-wise

implementation of the V (D)J recombination process to explore a data contain-

ing 50 million sequences from 100 humans, as well as additional data sets from

mice and other species. One of the potential future work involves proposing

scalable implementation of recombination process for the multi-GPU environ-

ment. The scalable GPU-based implementation will enable immunologists to

analyze the human data set and provide them with a more solid understand-

ing of the mechanisms that control the recombination process in the human

immune system.
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For the FPGA-based implementation, one potential future work would be

utilizing dictionary based algorithm to speed up the comparison process, which

can result in accelerating the entire process. Another work would be employing

hash function to eliminate the comparison step. This will significantly help

us to increase the degree of parallelism due to elimination of comparators and

significantly accelerate the process.
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