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ABSTRACT

In the field of computational linguistics, computational modeling of linguistic
behavior has been motivated not only by the creation of practical language-related tools
such as machine translation, automatic speech recognition, speaker identification, and
natural language search, but also by a desire to deepen our understanding of how
language works, either in an abstract mathematical sense or in the more literal sense of
describing human behavior at various levels of analysis. These models take various
forms, some derived from mathematical models of electronic transmission of information
(Shannon, 1948), others from abstract models of neural behavior (McCulloch and Pitts,
1943; Rosenblatt, 1958).

In computational neuroscience, computer models are developed to mimic the
behavior of brains, with a greater degree of biological realism. These models focus on
neural behavior ranging from single neurons to large-scale networks of neurons.
Typically, the behavior of interest is the relative activation of groups of neurons, the
emergence of synchronized or otherwise patterned activation, and the propagation of
signals across networks. The elaboration of relatively high-level cognitive behavior is, at
best, secondary to the exploration of low-level physical and electrical interaction (Zednik,
2018).

The growing field of computational cognitive neuroscience has as a goal the
development of computational models that are biologically plausible and that exhibit

cognitive behavior of interest (Ashby, 2011). Linguistic models of this type are intended



to exhibit the kind of linguistic behavior that is observed in humans, but with an
underlying structure and behavior that closely parallels the human brain.

Marr (1982) offers a three-level framework for analyzing models of the brain that
has become a standard in neuroscience (Bechtel, 2014). Applying this method of
analysis to broad classes of computational models yields insights into the strengths and
weaknesses of each. While the ideas in this dissertation may ultimately find broader
relevance, it is presently concerned primarily with the modeling of phonemic acquisition
in infants. Application of Marr’s analysis to the actual system being modeled — the
human infant — suggests an approach to the development of acquisition models that
departs significantly from traditional computational linguistics models and computational

cognitive neuroscience models.
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CHAPTER 1

Introduction

1.1 Language Acquisition

Language has been described as a method of organizing thoughts that is unique to
humans and only incidentally provides any communicative function (Hauser, Chomsky,
and Fitch, 2002). It has also been described as a system of communication of the same
general type that some non-human animals have, but with some features that are unique
to humans. Hockett (1968) defines a set of nine features common to all primate
communication, with four additional features that distinguish human language. What is
less controversial is the position that language is important to humans, that it is unique in
degree, if not in provenance, and that it can provide a window into the workings of the
brain. For all these reasons, it is desirable to develop a scientific understanding of all

aspects of language.

The scientific study of language can be approached in many ways. While a
complete exploration of these approaches is beyond the scope of this dissertation, it may
be fruitful to mention two broad classes. Some researchers explore aspects of the
workings of language as possessed by fluent adults. This object of study is a complex
system with enough similarity between language users to make communication possible,
but with tremendous variation between individuals. The range and details of this

variation and possible methods of extracting information from the speech stream and its
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higher-level organization have occupied legions of linguists. Other researchers focus on
the process by which this sort of system comes into existence in an individual born

without the practical ability to use language. The latter approach is of interest here.

The acquisition of language by infants is a puzzle, because children learn
language fluently without overt instruction. Of course, children also learn to walk
without overt instruction, but the majority of skills that children pick up without help, like
walking, tend to be physical in nature. Language is an abstract, complex, combinatorial
system of noises that convey compositional meaning, and children learn it effortlessly.
Skinner (1957) proposed a behavioral account of language acquisition, in which the
learner mimics the speech sounds to which she is exposed and adjusts according to the
success of her efforts, eventually converging on grammatical speech. Chomsky (1959)
countered that children, under a behaviorist paradigm, do not receive enough input to
learn language as quickly as they do. He proposed what was later termed a Language
Acquisition Device — an innate and specialized cognitive system that provides the
underpinnings of language, leaving the infant to simply identify the grammatical details
that distinguish her target language from other possible human languages (Chomsky,
1965). Still other researchers (Stemmer, 1973, inter al.) adopt an empiricist position and
posit that infants acquire language through evidence and experience. Since this
dissertation is concerned with the modeling of language acquisition, the nativist
assumption of an innate language module that reduces acquisition to the recognition of
typological differences holds little interest. The empiricist position that acquisition
proceeds through the application of statistical reasoning to language input is adopted as a

more reasonable starting point.
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Language seems to be hierarchical, both in structure and in rough sequence of
acquisition. The following list shows the approximate sequence in which various aspects
of language are acquired (adapted from Vihman, 2013) and offers definitions adapted

from Brown and Miller (2013).

Prosody Stress, pitch, tempo, loudness, and rhythm

Phonetics Speech sounds (converging on the target language in time)
Phonology Organization of speech sounds of the target language
Lexicon Words of the target language

Morphology Smallest units of meaning

Syntax Arrangement of words into phrases, clauses, and sentences

Semantics, concerned with meaning, has a special place in this hierarchy. Under
the perspective of language as a system of communication, the ultimate purpose of every
part of language is to convey meaning, i.e., to deliver semantics. In some cases, semantic
content is purely linguistic in nature, including such examples as comparative
constructions (Syrett, 2016) and grammatical aspect (van Hout, 2016). In other cases,
semantics serves as the bridge between language and the external world, as exemplified
by content words with real-world referents (e.g., “house” or “run” or “purple”). The
relationship between semantics and other aspects of language allows a convenient
division of the objects of language acquisition into two broad classes — those that carry
meaning on their own (meaning units), and those that do not (sub-meaning units).
Morphemes are defined as the smallest units that carry meaning, so they are clearly

meaning units, as are lexical items and syntactic structures. Sub-meaning units include
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the sounds of language. If these are the objects of acquisition, mention must be made of
the methods of acquisition. Three points are of particular interest to the present work.
First, linguistic acquisition seems to depend on statistical learning mechanisms. Second,
separately defined modules of language are not acquired independently. There is
interaction between them. Third, particularly with regard to sub-meaning units,

acquisition depends not on simple acoustic measures, but on their complex interaction.

1.1.1 Statistical learning

Saffran (2003) proposes that language learning is dependent on statistical learning
mechanisms that may not be unique to language, and that the process is guided by
constraints on perception and production. Infants’ use of statistical learning is evident in
a range of language tasks, including learning to identify phrase boundaries (Saffran,
2001), identifying word boundaries (Saffran, et al., 1996), and learning consonants
(Maye, Werker, and Gerken, 2002). In each of these cases, the set of possibilities sits on
a multi-dimensional continuum, but observed tokens are not uniformly distributed.
Instead, inputs tend to pattern in ways that diverge from a random or uniform
distribution. These distributional irregularities allow the infant to attend to the details
that are meaningful in the target language. Measures that are not meaningful do not

pattern in a way that allows the learner to mistakenly identify them as meaningful.

1.1.2  Interaction between levels
Fig. 1.1 shows the overlapping sequence of acquisition of elements of the sound
system. There is no element of sound acquisition that begins and ends while the others

remain static. There is always overlap in mastery of the various stages.
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Fig. 1.1 — Timing of acquisition sequence (adapted from Curtin and Zamuner, 2014)

The same can be said for other levels of language, including meaning units.
Acquisition of morphology begins before acquisition of syntax, but is not completed until

after the acquisition of syntax has begun.

Disambiguation at one level frequently relies on information from another level.
Consider the noun “duck”, referring to the waterfowl, and the verb “duck”, referring to a
rapid lowering of the head. The potential ambiguity between these two words can be
resolved through syntactic cues. In the sentence, “I feda  at the park”, the blank is
likely to be filled with a noun, both because it follows the determiner “a” and because it
serves as the direct object of the verb “fed”. In the sentence, “Be sure to  through
this low doorway”, the blank is likely to be filled with a verb, both because of the
preceding infinitive marker “to” and the following adverbial phrase “through this low
doorway”. The blanks in both sentences can accept “duck”, and the syntactic context
resolves the lexical ambiguity between the noun “duck” and the verb “duck”. In other

cases, lexical ambiguity can be resolved by extra-linguistic information (see Fig. 1.2).
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Fig. 1.2 — Lexical disambiguation from non-linguistic information

1.1.3 Interaction between measures

Acquiring a sound system requires the learner to distinguish acoustic differences.
This statement is deceptively simple, because the differences of interest are seldom
signaled by simple acoustic measures. Instead, each contrast is determined by the
interaction of a number of acoustic measures. Vowel quality, for example, is determined
by a minimum of two acoustic measures — the first and second formants. In Fig. 1.3, a
first formant (F1) value of 0.5kHz can indicate as many as five distinct vowels. Only
when F1 is combined with the second formant (F2) is a single vowel specified. For
example, where F1 = 0.5kHz and F2 = 1.5kHz, the resulting vowel is [¢]. Note that the
chart in Fig. 1.3 represents the vowel productions of 76 speakers (Peterson and Barney,
1952) and indicates the variability in vowel production between speakers. Although the
first and second formants are often sufficient to determine a vowel, this is not always the
case, and additional information is sometimes required. The learner must attend to the

full range of acoustic information and the interactions between various measures.
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Fig. 1.3 — Vowel quality depends on the relationship between F1 and F2 (Peterson and Barney, 1952)

The interaction between acoustic measures is also evident in the difference
between voiced and voiceless plosives ([b] and [p], e.g.), which share an interruption of
oral airflow, but differ in the timing between the resumption of oral airflow and the
vibration of the vocal folds. (This distinction will figure prominently in Chapter 4.)
Other example support the same fact. Linguistic sound differences are often the result of

complex interactions between a number of acoustic measures.

1.1.4 Summary of acquisition and motivation of focus

Linguists commonly divide language into a set of modules — including phonetics,
phonology, morphology, and syntax — that can be studied with some degree of
independence. These divisions can be of value in studying acquisition since infant
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learners do not develop mastery of all aspects of language in parallel, instead following a
sequence starting with recognition of basic elements of speech sounds and proceeding
through higher levels of organization. However, as outlined above, acquisition research
demonstrates that these modules are not entirely independent and that the acquisition
process involves the interaction of different aspects of language. The development of
syntax requires a lexicon, but the process of developing syntax also helps to develop the
lexicon. Lexical acquisition is dependent on knowledge of phonological patterning, but a
growing lexicon also reinforces and refines phonological discrimination. In short, earlier
stages of acquisition not only inform later stages, but are also reinforced and further
developed by their use in later stages. This bidirectionality of influence between the
stages of acquisition suggests that the development of an adult-like grammar is a more
complex process than can be captured in any linear or sequential representation. As with
any scientific research, the feasibility of an acquisition study depends on an initial
restriction of the domain of inquiry. One can examine the distribution of babbling sounds
in infants or the over-regularization of past tense morphology in older children without
regard for the way in which these process might be affected by knowledge of
phonotactics. However, it is important to recognize that a theory of acquisition of one
restricted element of language will necessarily be incomplete. This is a particularly

important point in computational modeling, as will be discussed in Chapter 2.

For the purposes of the present discussion, language acquisition is far too broad a
topic to be practical. A restriction of the domain of inquiry is in order. Meaning units,
including morphemes, lexical items, and syntactic phrases, all intersect strongly with

semantics, which renders them more complex than sub-meaning units. For this reason
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alone, they are rejected as topics of further discussion in this work. Among sub-meaning
aspects of language, ideas of potential focus include prosody, phonemic contrasts, and
phonotactics. Prosody refers to pitch, stress, timing, and rhythm of language. Although
prosodic differences do not carry semantic information of the type that distinguishes
morphemes or lexical items, it can have an influence on the interpretation of language at
all levels. This renders it too complex for the present purpose, so prosody is also rejected
as an object of focus. Phonotactics refers to the language-specific rules governing which
sounds can be produced in sequence in different parts of a word. For example, in
English, the word-initial sequence [bl] is acceptable (as in “blue”, “blog”, and
“blasphemy”), but the word-initial sequence [bn] is not. Thus, “blick” is an unattested
but possible word of English, while “bnick” is neither attested nor possible. (Example
adapted from Chomsky and Halle, 1968.) These rules vary cross-linguistically. Swahili,
among other languages, allows word-initial [mb] and [nd] (Polomé, 1967), while Spanish
does not (Saporta, 1962). The question of which sounds can appear adjacent to each
other obviously requires recognition of those different sounds. For this reason,

phonotactics is rejected as the object of focus, in favor of phonemic contrasts.

A phoneme is a speech sound that can make a difference in meaning between two
words. The [b] in [blu] “blue” and the [g] in [glu] “glue” are different phonemes,
because they represent the sole sound difference between two words, “blue” and “glue”,
that have different meanings. By contrast, the unreleased [jc'] at the end of [te;f:['] “tight”
and the aspirated [t"] at the end of [tait"] “tight” represent slightly different ways of
producing the final sound of the very same word, so they are not considered different

phonemes; they are considered allophones of the same phoneme. Even though they are
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acoustically distinct, they are considered members of the same sound category. This
identification of acoustically distinct sounds as being of the same type in language use is
at the heart of phonemic acquisition. The infant learner is exposed to a multi-
dimensional continuum of acoustic input, but that continuum is not smooth. Some
regions have much more attested input than others. These regions roughly correspond to
sound categories that are meaningful in the target language, despite any acoustic
variation. Learning to divide this acoustic space into linguistically meaningful categories

is the task that will occupy the remainder of this discussion.

1.2 The Value of Modeling

Modeling the process of phonological acquisition is a worthwhile goal, for at least
three reasons. A theory of acquisition that is computationally intractable cannot be an
accurate representation of what infant learners do. Creating a computational model to
instantiate a theory provides a basic check of the viability of the theory. The
shortcomings of the model can also serve to highlight areas where the theory should be
refined or reworked. Lastly, with a model that adheres closely to the functioning of the
actual system, it is, in principle, possible to conduct experiments on the models that
cannot be performed on infants because of ethics, cost, logistic, or countless other

reasons.

The question of whether a model adheres closely to the functioning of the actual
system is a difficult one that will be addressed beginning in section 1.2.1 and continuing

in Chapter 2.

1.3 Marr’s Three Levels of Analysis
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In his seminal work, Vision, David Marr (1982) proposes three levels of analysis
for evaluating neuroscience models. This style of analysis has been applied not only to
models based on low-level neuronal behavior, but also to higher-level cognitive models
and more abstract models that purport to mimic brain behavior. This three-level analysis
is widely accepted in neuroscience and related disciplines, although there has been much
discussion about the independence of the three levels and the implications for the
behavior of the entire model that arise from changing a single level. The three levels are

Computation, Algorithm, and Implementation.

The computation level describes the problem the model is intended to solve. It
represents the “what” and the “why” of the model. In terms of models of phonemic
acquisition, this level might specify that the model is to accept acoustic input and produce

phonemic labels.

The algorithm level describes the steps the model will put into effect to
accomplish the task laid out in the computation level. This might include a specification
of how the raw acoustics will be pre-processed for delivery to the model, any calculations
or transformations to be performed by the model, and the style or format of the model

output.

The implementation level describes the actual mechanisms the model will use to
execute the algorithms from the previous level. Examples of possible implementations
include a binary hierarchy of hidden Markov models, a multi-layered perceptron, and a

deep-belief network.
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1.4  Independence of Levels

Some have argued that the three levels should be treated as independent entities.
Others, including Marr, posit a necessary interdependence between levels. Fof our
purposes, the three levels will be discussed as if they are independent, simply for the sake
of clarity in comparing different model structures. In reality, a moment’s reflection
strongly suggests that true independence is a practical impossibility. The details of the
implementation level of a model will necessarily place boundaries on possible
algorithms, while only certain algorithms will be suitable to the task specified at the

computation level (Bechtel, 1993).

1.5  Reductionism

Marr (1982) strongly opposed reductionism in neural modeling, arguing that
“both high-level information processing constraints and low-level implementational
constraints play mutually reinforcing and constraining roles” (Eliasmith, 2015). This
perspective, positing influence between the most abstract and most concrete levels,
argues against the reductionist notion that high-level behavior can be completely
explained by low-level interactions, and against the opposing extreme that completion of
high-level goals renders ow-level structures and process irrelevant. On the other hand, as
Bickle (2015) points out, the reductionism in current neuroscience is different from the
norms of Marr’s time, so the concern about reductionism may no longer apply. Here, the

adopted position is that interaction between the levels is necessary and appropriate.

1.6 Evaluation
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Evaluation of models under discussion will be approached in two ways. The first
asks whether the three levels are compatible. The second focuses on the computation
level and evaluates the goal of the model. The specific issue of interest is whether the
goal of the model is consistent with the purpose and abilities of the system being
modeled. The ventral theme of this dissertation is that existing models of phonemic
acquisition fail at the computation level. A closer analysis of this failure in Chapter 4
will lead to a proposal for a different approach. Another approach to the evaluation of

models is The Mirror Heuristic.

1.7 The Mirror Heuristic

The utility of computational models for elucidating the linguistic behavior of the
brain depends on a philosophical assumption that Bechtel (2018) terms “the mirror
heuristic”. This assumption is that, if two systems perform the same task, i.e., if they
accept the same input and produce the same output, then they are necessarily performing
mathematically equivalent functions. If the modeling goal is simply to develop a
computational model that performs a language task, the production of the desired output
is the only necessary metric of success, and the process that develops the output from the
input is of only utilitarian interest. However, if the goal is to improve our understanding
of the behavior of the brain during language tasks, the process from input to output is of
critical importance, and a trivial satisfaction of the mirror heuristic is insufficient. This
heuristic rests on deeper assumptions about the nature of computation in a natural system,
the meaning of “mathematically equivalent functions”, and the parts of a model in which

this equivalence is meaningful. This issue is discussed in more detail in Chapter 2.
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1.8  Dissertation Map

1.8.1 Chapter 2

Chapter 2 describes several types of computational models that develop the ability
to discriminate phonemic categories. These models are of a type that Beer (2015) refers
to as Information Theory Models, as contrasted with Dynamic Models, which will be
discussed in the next section. Information Theory Models are ultimately derived from
Shannon’s (1948) work on electronic communication and depend on language use being
analogous to the transmission of a known signal across a noisy channel. Shannon (1948)
considered a known signal traveling through a known channel, and developed metrics for
determining the ideal width of a channel and the likelihood of signal loss during
transmission. These fundamental concepts have been applied to linguistic modeling
because, to an extent, language use can be seen as the transmission of a signal across a
noise channel. Applications of these ideas to linguistic acquisition seem a little more
questionable, because the learner does not know what the intended signal is and has no
real way to evaluate the received signal, if we assume an unsupervised learning
paradigm. In reality, during the process of language acquisition, the learner has access to
a significant amount of both linguistic and extra-linguistic feedback to provide some
supervision to the learning process. Careful consideration of these details is essential to

the ecological validity of a model of acquisition.

A second type of Information Theory Model is derived from Rosenblatt’s (1958)
perceptron, which is based on earlier work by McCullough and Pitts (1943). These
models are inspired by the physical properties of neurons and the potential for emergent

behavior in networks of neurons. Their goal is to model the behavior of networks of
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neurons, rather than their physical characteristics (Ashby, 2011). The original perceptron
is essentially a geometric representation of a logistic regression, as will be demonstrated
in Chapter 2. It was argued against by Minsky and Papert (1969) because of its
limitations in handling certain logical statements. The perceptron was resurrected by
Rumelhart and McClelland (1986), who added a hidden layer, effectively creating the
opportunity for much greater complexity in the behavior of the model by allowing the

regression variables to interact in limited ways.

Marr’s three-level analysis is applied to these models as a way of exploring their
adequacy as models of phonemic acquisition. Information Theory models fail as models
of acquisition at the Algorithm and Implementation levels. An argument is made that
they also fail at the Computation level. The fact that they trivially satisfy the Mirror

Heuristic highlights the reason for their inadequacy as models of acquisition.

1.8.2 Chapter 3

Chapter 3 introduces Computational Cognitive Neuroscience models, which fall
into a class of models that Beer (2015) calls Dynamic Models. The field of
computational cognitive neuroscience has its roots in the development of a mathematical
description of the generation of action potentials in the giant squid axon by Hodgkin and
Huxley (1953). While earlier models focused on single neurons, some subsequent
models have dealt with networks comprising many neurons (Ashby, 2011). While
computational neuroscience is largely concerned with modeling the spiking behavior of
single neurons or networks of neurons (Trappenberg, 2002), computational cognitive

neuroscience attempts to model various cognitive behaviors, by always on a substrate of
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biologically plausible models of neurons (Ashby, 2011). In terms of Marr’s three levels,
computation cognitive neuroscience strives to maintain the Implementation and
Algorithm levels as they are in computational neuroscience models. But with a change to

the Computation level to include emergent cognitive behavior.

1.8.3 Chapter 4

Chapter 4 proposes a new approach to the modeling of phonemic acquisition that
is motivated by the shortcomings of existing models of various types. As will be
explained in due course, the two types of computational models broadly defined above
are unsatisfactory for the purposes of modeling phonemic acquisition. The information
theory models fail at the Implementation and Algorithm levels, although the
computational cognitive neuroscience models do better in that regard. Both types of
models fail at the Computation level, primarily because the goals they aim to achieve are
strongly motivated by the researcher’s analysis of the acquisition process, rather than by
the process itself. A careful consideration of the task that is actually undertaken by the
language learning infant, and the ways in which it diverges from a typical computational
analysis of the process, suggests a two-step process leading to phonemic discrimination.
The general structure of the proposed model approach is elaborated, along with a detailed

set of steps that could lead toward a successful implementation of this new type of model.

1.8.4 Chapter 5
In Chapter 5, the claims made in this dissertation are reviewed and directions for

future research are laid out.

26



CHAPTER 2

Linguistically Motivated Computational Models

One strong motivation for developing computational models of language is to
create tools that do useful work. The computerized language task that is most closely
related to phonemic acquisition is that of Automatic Speech Recognition (ASR). In an
ASR system, the computer takes human speech as input and converts it to a formal
representation that the computer can act on. The algorithms that bridge the speech input
and the formal output are evaluated in terms of accuracy, speed, and computational
efficiency. Any tweak to the model that offers an improvement on these dimensions will
be accepted, regardless of how distant it is from the way humans process language. The
goals of a model of human language acquisition should be somewhat different. Human
infants go through a long, slow, and complex process to acquire language. The result is a
robust system that performs well in a variety of acoustic environments, adjusts
immediately and effortlessly to unfamiliar voices, simultaneously uses all levels of
linguistic analysis for real-time error correction, and engages seamlessly with non-
linguistic cognitive functions. Mimicking this system in its entirety is, to say the least, a
daunting task best left to the realm of science fiction for the moment. Yet, even if one
divorces the broad task of language acquisition from the rest of cognitive development,
and further reduces that task to the acquisition of phonemic categories, there are reasons
to develop models that disregard the mechanistic metrics of speed of training and
accuracy of performance and, instead, mimic as closely as possible some of the elements

of the human system being modeled. The elements might include the time-trajectory of
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acquisition, the sequence of phonemes learned, the learning algorithms used, the
conceptual structure of the model, and many other factors derived from the linguistic and
cognitive realities of human infants. Naturally, the choices that drive model design are
more complicated than “make it fast or make it act like a baby”. Digital computer
technology is fundamentally different from living neurons. A universal Turing machine
should, in principle and in the absence of physical and temporal constraints, be able to
mimic the behavior of an actual neuron or collection of neurons to an arbitrary degree of
precision, but the differences between the two processes are significant. Neurons change
and “compute” in real time at the molecular level, in complex ways that do not easily
yield to mathematical description. Given that an average neuron, with a mass on the
order of 10%g, comprises in the neighborhood of 10'® molecules, has from thousands to
tens of thousands of ion channels potentially of at least three-hundred different types,
passes up to 10® ions per second, and interacts directly with around a thousand other
neurons (Jessell, 2000), it is difficult to exaggerate the challenge of a complete
mathematical description. Using a digital computer to finely approximate this complex
behavior would require a tremendous number of digital calculations at each discrete time
step. The process will inevitably run afoul of limits imposed by the scarcity of
computational resources. Of course, it is probably not necessary to accurately model
each molecule of each neuron, just as it may be unnecessarily simplistic to model a
neuron as a simple object that either fires or doesn’t fire at any given moment.
Determining some aspects of the system that can be simplified without excessive
detrimental effects on the performance of the model will be the subject of the next two

chapters. The remainder of this chapter looks at some of the types of models that are
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commonly used in computational linguistics, in support of the argument that a step in the
direction of more biologically realistic models is desirable for the purposes of modeling

phonemic acquisition.

2.1 Marr’s Three Levels of Analysis

As noted in Chapter 1, Marr’s three levels of analysis are Computation,
Algorithm, and Implementation. The Computation level defines the problem to be
solved, the Algorithm level specifies the steps to be taken, and the Implementation level
provides the structures that will be used. Speech-related learning models typically used
in computational linguistics vary primarily at the Implementation and Algorithm levels.
Historically, there seems to be a tendency to start with the simplest possible structures
and algorithms, and to respond to unsatisfactory performance by incrementally increasing
the complexity at these two levels. This is an issue that will be explored more thoroughly
in section 2.3. At the Computation level, these models all have the same task of
converting acoustic input into a set of labeled tokens, although that process might start

with a transformation of the input.

2.2 Sound Preprocessing

Waveforms, as simple graphs of air pressure across time, can show remarkable
variation, even when they are captured from successive utterances of the same word from
a single speaker. Moreover, they fail to show much of the systematic structure that is
known to exist in speech. In mathematical signal processing, a Fourier analysis of a

waveform converts the waveform into a spectrum — a set of sinusoids of specified
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frequency and amplitude that, when combined additively, can reproduce the waveform.
For speech research, since the hearing apparatus does not respond to phase differences,
relative phase of component sinusoids is routinely discarded. In a living system, when a
sound wave is presented to the hearing apparatus, it causes vibrations in the tympanic
membrane which are transferred by the ossicles to the oval window in the cochlea. Those
vibrations cause standing waves in the basilar membrane, which is lined with cilia — hair-
like nerve cells with different resonant frequencies. The cilia generate nerve impulses in
proportion to their degree of activation, and send those impulses to the auditory nerve and
on to the auditory cortex (Moore, 2004). While the cochlea performs a type of frequency
discrimination, it is notably different from a Fourier transform. Fig. 2.1 shows a
spectrum of a sound with component frequencies of 100Hz, 200Hz, and 300Hz. Note
that each spectral line shows sound energy at an exact frequency, without spillover into

adjacent frequencies. There is no apparent sound energy at 105Hz.
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Fig. 2.1 — A spectrum showing three sinusoids of different frequencies.
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Contrast this with Fig. 2.2, which shows the shape of the basilar membrane in
response to inputs of different frequencies. Each curve represents the shape the basilar
membrane adopts in response to a single sinusoid. Note that, while the peak activation is
at the input frequency, there is considerable activation at adjacent frequencies. The

hearing mechanism simply cannot respond to input frequencies with the mathematical

precision of the Fourier transform.

Distance
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Fig. 2.2 — Shape of the basilar membrane in response to different input frequencies. (von Békésy, 1947).
While the Fourier transform satisfies the mirror heuristic in that, like the cochlea,
it takes a waveform as input and separates it into component frequencies, there is no
question that, as a model of the cochlea, the Fourier transform falls short in its details.
Given a complex waveform consisting of many frequencies, the Fourier transform will
produce a spectrum marking exactly those component frequencies. That same waveform
presented to the cochlea will result in a shape on the basilar membrane that bears little
resemblance to the spectrum. Since an input sinusoid will cause a distortion of the basilar
membrane that is centered on the characteristic frequency but spreads a significant
distance to either side, a complex input will result in a basilar pattern that represents, not
the component frequencies of the input, but the interaction of those component
frequencies. While the difference between the Fourier transform and the cochlear

response may or may not have a meaningful effect on the performance of a computational
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model, it hints at the inadequacy of the mirror heuristic in evaluating models of the
acquisition process, as opposed to models of performance. A computational model of the
acquisition process should model the natural system in all its details, to the extent
possible. The alternative is to adopt a simpler model that might lose meaningful
information.

The sound pre-processing typical of computational models departs from the
function of the human hearing apparatus in other ways. While the cochlea responds to
sound input in real time, the Fourier transform requires a sufficiently long sound input to
act on. For this reason, the speech signal is divided into 10ms slices, each of which is
treated as a repeating signal to reach an appropriate temporal length for the Fourier
algorithm to act on. Clearly, this slicing, copying, and pasting procedure is not carried
out by the cochlea. When the spectra from successive time slices are arranged along a
temporal continuum, the result is a spectrogram. This is the form of analysis that allows
a researcher to visually identify vowel formants, fricatives, and other acoustic features
relevant to segment definition. In the human hearing system, any analysis of this type
takes place in the auditory cortex (Moore, 2004) and is necessarily different in its details
from the transformations performed during computational signal processing.

Since spectra and spectrograms can vary considerably between speakers, another
transformation is typically applied in an effort to duplicate the speaker normalization that
a human language user apparently accomplishes. The source-filter model of speech
production has the glottal source produce a spectrum that is then altered by the vocal tract
through constructive and destructive reflections at the glottis and the oral opening. In a

spectrum of this resulting sound, the internal harmonic structure is largely due to the
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output of the glottis, while the varying spectral envelope is due to the configuration of the
vocal tract. Since vocal tracts are minimally variable between speakers when adjusted for
length, most interspeaker variation comes from the glottal source. Separation of these
two components offers a method of speaker normalization. This is done by passing the
spectrum through a mel filter, which adjusts for the uneven response of the human
auditory system to different frequencies, and applying a second Fourier-type transform
(actually a discrete cosine transform). The result is a set of mel-frequency cepstral
coefficients (MFCCs). The higher MFCCs represent the action of the glottis, which is the
information we wish to discard during speaker normalization. The lower MFCCs
represent the shaping of the vocal tract, which is more consistent across speakers and is
clearly related to the production of phonemes. Typically, the first twelve MFCCs are
used. Because sonorants and fricatives have more energy than stops, it is useful to
calculate the power of the first twelve MFCCs. This produces a thirteenth number. It is
also common to calculate the change in each of these thirteen values from one time slice
to the next. This change is known as the delta and produces another set of thirteen
numbers. The change in the delta from one time slice to the next is known as the delta-
delta, and is also commonly calculated, resulting is thirteen more numbers. Ultimately,
each time slice is represented by a vector of thirty-nine numbers.

If the goal is simply to produce a system that can, to some extent, normalize
between speakers and learn to categorize phonemes, this preprocessing can be effective.
However, if the goal is to mimic the behavior of a naturally occurring language-using
system (like a human), this method raises a number of questions. (If the goal is to mimic

the learning behavior of a human infant, the questions are significantly compounded.
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That issue will be addressed in Chapter 4.) While the preprocessing steps outlined above
may be roughly analogous to the function of the human auditory system, it is important to
consider whether the differences between these two processes are significant. From the
perspective of the mirror heuristic, the question is about the definition of the function of
the system. Recall that the mirror heuristic states that, if two systems accept the same
input and produce the same output, they are performing mathematically identical
functions. But is it sufficient to say that the computational pre-processing and the human
auditory system both take sound as input and produce something more or less like a
spectrum as output, or should we strive for a computational system that produces the very
same output as the natural system, in all its details, rather than in broad strokes? This

question will be taken up again in Chapter 4.

23 Some Model Families

The Algorithm and Implementation levels of analysis highlight the most obvious
differences between various models. As mentioned in Section 2.1, there seems to be a
historical tendency to create models that are as simple as possible at these two levels, i.e.,
in their processes and their structures, and then to incrementally make them more
complex, in an apparent effort to converge on the minimally complex model that is
capable of accomplishing the desired task or representing the relevant natural system.
This tendency will be illustrated in two different classes of models. This is not intended
as a complete history of computational models, but rather as evidence of a particular
philosophical approach to model design that will be argued against in Chapter 4. Section

2.3.1 covers some clustering algorithms which fail as models of acquisition at both the
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Implementation and Algorithm levels. Section 2.3.2 discusses models loosely inspired by
the workings of the brain that still fail to satisfy Marr’s second and third levels of

analysis.

2.3.1 Clustering Models

Jain (2009) defines the goal of a clustering algorithm as “discover[ing] the natural
grouping(s) of a set of patterns, points, or objects”, and offers the following informal
definition of the process.

Given a representation of n objects, find K groups based on a

measure of similarity such that the similarities between objects in the same

group are high while the similarities between objects in different groups

are low.

Clustering is an important technique in a wide range of disciplines, including
computer vision (Shi and Malik, 2000), marketing (Arabie and Hubert, 1994), genomics
(Baladi and Hatfield, 2002), and others that rely on multivariate data. A style of
clustering known as partitional clustering (Jain, 2009) divides a set of data points into a
number of clusters, or regions of high density separated by regions of low density,
without positing any structure in the relationships between clusters. This stands in
contrast to hierarchical clustering, in which each cluster can be divided into some number
of subordinate clusters. This type of clustering will be addressed later in this section.
Partitional clustering poses several challenges to the modeler, including defining metrics
of similarity between data points, determining the optimal number of dimensions to use,

and deciding how many clusters are desired. Although many clustering algorithms have

been developed, one of the earliest, simplest, and most common is k-means, introduced
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by Steinhaus (1957). Many improvements have been made to the original algorithm in
an effort to address the challenges above. For a thorough discussion of these
improvements, see Bock (2008). For present purposes, a brief exploration of the general
idea of k-means and some of the difficulties it faces as a model of phonemic acquisition
will suffice.

Fig. 2.3 illustrates a trivial example of clustering. Tokens with two measured
dimensions (X and Y) are plotted on a two-dimensional graph. The clustering algorithm
has the task of determining which tokens belong together. In an actual clustering
problem, the tokens would be unlabeled, i.e., they would appear identical except for their
position. In this example and the ones that follow, tokens are marked with shape and
color for expository convenience. At a glance, it should be obvious that the blue stars

form one cluster and the red squares another.
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Fig. 2.3 — A trivial clustering problem

In some cases, an added dimension can clarify appropriate clusters. In Fig. 2.4,
the left panel shows a number of tokens that overlap in position, seemingly belonging to
the same cluster. However, if a third dimension is measured and included in the graph, as

in the right panel, we see that the blue stars have low values on the z-axis, while the red
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squares have higher values on that dimension. Where clustering was impossible in two

dimensions, it becomes possible in higher-dimensional space.
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Fig. 2.4 — Clustering can benefit from added dimensions.

In other cases, an additional dimension can change lower-dimensional clustering
results. Fig. 2.5 shows such an example. In the two-dimensional left panel, where only
the X and Y measures are used, it is clear that the stars form one cluster and the
rectangles another, regardless of color. But, when a third measure of each token is taken
and plotted on the z-axis, it looks like the blue tokens form one cluster and the red

another, regardless of shape.

Fig. 2.5 — An added dimension can change clusters.

Because humans generally have difficulty navigating patterns in more than three

dimensions, and multivariate datasets often have a far greater number of dimensions, it is
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unusual to graph a dataset and determine clusters visually. As an example, in the sound
pre-processing scheme laid out in Section 2.2, each time slice of each phoneme is
represented as a point in 39-dimensional space. Since a graphical approach is infeasible,
the dataset is subjected to mathematical manipulation to separate it into clusters.

A typical algorithm might involve the random selection of k data points to serve
as the centroids of k clusters. Each point in the dataset is then assigned to the centroid it
is closest to. A cluster consists of a centroid and all the data points that are closer to it
than to other centroids. For each cluster, the average position of its data points is
calculated and marked as the new centroid. All points in the dataset are again assigned to
the nearest centroid, which may have changed, since the centroids have been
recalculated. This process of refinement is repeated until the change in centroids is
arbitrarily small, until no tokens are moved, or until some other measure of completion is
achieved (adapted from Bock, 2008). The improvements alluded to above include
variations of this general algorithm. There are also variations in distance metrics, in
scaling of various dimensions, in the conditions that stop the refinement process, in
whether the centroid is based on the mean or the median value of a cluster, and numerous
other details (Jain, 2009).

In terms of modeling phonemic acquisition, the process of developing a centroid
for each phoneme is appealingly reminiscent of the perceptual magnet effect (Iverson and
Kuhl, 1995). In this theory of phonemic categorization, the infant develops a magnet —a
prototypical example of each phoneme — that, much like a k-means centroid, defines the
tokens that are perceptually close enough. The idea is that the infant, hearing a token of a

phoneme that is reasonably close to the magnet, will experience the perceptual attraction
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of the magnet and hear that token as an ideal example of that phoneme class. As strong
as the parallels between k-means and perceptual magnets seem to be, all k-means
clustering algorithms suffer from problems that are relevant to their utility as models of
phonemic acquisition. It is not always clear which dimensions should be included in the
clustering process. As illustrated in Fig. 2.5 above, the results of the clustering process
can vary with the inclusion or omission of additional measured values. The relative
scaling of different dimensions can also have an impact on clustering. Dimensions
measured in incomparable units are frequently normalized to span numbers from 0 to 1,
where 0 represents the minimum actual value, and 1 represents the maximum actual value
(Dhillon, 2004), but many normalization schemes are available, and all affect the distance
measures between tokens. The choice of normalization method can influence the
development of clusters. One major consideration is selecting or discovering the
appropriate number of clusters, i.e., the value of K. In some cases, this value is supplied
by the researcher. In other cases, the model is run with different values of k, and the
researcher chooses the best result. In still others there is an attempt to automatically
determine the appropriate number of clusters (Jain, 2009). The automatic determination
of the number of clusters often starts with a large number of clusters that are then
combined until some condition is met. Possible conditions include statistical measures of
the gaps between clusters (Tibshirani, 2001) and information theoretic measures such as
the Minimum Description Length (Hansen and Yu, 2001). At a maximum, a k-means
model can develop as many clusters as there are non-identical input tokens. In this
outcome, each token would be a phoneme unto itself. At the other extreme, this type of

model could assign all tokens to a single large cluster, which would clearly represent a
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failure to distinguish phonemes. Whether the model is explicitly told how many clusters
to form or is designed to stop dividing clusters according to one of the methods above,
this is information that is not available to the human learner. One may propose that the
human learner does eventually have this information, so providing it to the computational
model is nothing more than a practical simplifying assumption. But, from the perspective
of modeling the acquisition process, the provision of information that the human learner
must discover in the course of performing the process that is being modeled seems to
regrettably taint the ecological validity of the model.

A final problem that restricts the utility of a k-means clustering approach to
modeling phonemic acquisition is that the input tokens have a temporal dimension. Each
time slice is represented by a fixed-length vector of thirty-nine values, but each phoneme
comprises multiple time slices. This variability cannot be accommodated in a model with
a fixed number of dimensions.

Other models depend on a different type of algorithm that recognizes the
sequential nature of speech information. A given set of cepstral coefficients and related
information from a single time slice is more or less likely to belong to a given phoneme,
depending on what cepstral information is provided by the next time slice. Recall that the
typical preprocessing of sound (see Section 2.2) includes deltas — the change in cepstral
coefficients from one time slice to the next — and delta-deltas — the change in deltas from
one time slice to the next. In this way, each vector contains information about some of
the values in the next two time slices. This built-in sequential information reinforces the
connections between time slices by ensuring that the vector corresponding to each time

slice is partially predicted by its predecessor and partially predicts its successor. A type
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of model that similarly exploits the connections between successive time slices is the
Hidden Markov Model (HMM). (For a thorough description of HMMs, see Rabiner,
1989, from which this discussion is derived.) An HMM is a directed graph (a set of

nodes with directional connections between them. See Fig 2.6.)

Fig. 2.6 — Hidden Markov Model (with missing emission probabilities)

Movement through the model starts with the start node at the left (labeled “S”)
and ends with the finish node at the right (labeled “F’’). The connections, or edges, are
assigned transition probabilities. For example, from the start node, there is a 0.3
probability of moving to node A and a 0.7 probability of moving to node B (for a total
probability of 1 of leaving the start node — staying on a node is not an option). One can
calculate the probability of any path by multiplying the transitional probabilities of the
individual steps. Starting at S and moving to A, then C, then back to A, and to the final
node F has a probability of (0.3)(0.1)(0.5)(0.3)= 0.0045. The probabilities of all possible
paths sum to 1, since there is a 100% chance of following a possible path. Verification of
this fact is left to the reader as an exercise.

In an HMM, each node, in principle, has the ability to emit any value within the
set of values that is relevant to the model. (For simplicity’s sake, we will assume that the

Start and Finish nodes do not emit anything. This is not the case in all HMM designs.)
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In the context of categorizing phonemes, the emission might be the thirty-nine
dimensional vector of cepstral coefficients, deltas, delta-deltas, and power values. In this
example, possible outputs are the colors red, green, and blue. Each node has emission
probabilities for the possible outputs, allowing different nodes to have different
likelihoods of emitting any given color. The tables below list the emission probabilities

for the three nodes.

A B C

Red 0.5 0.7 0.3
Green 0.3 0.1 0.3
Blue 0.2 0.2 0.4

Emission probabilities for nodes A, B, and C.

In this particular HMM, the output sequence “Blue Red” can only come from a
path that has exactly two nodes between start and finish. Returning to Fig. 2.6, there are
three paths from start to finish that hit exactly two nodes — Start-A-C-Finish, Start-B-A-
Finish, and Start-B-C-Finish. For the first possibility, there is a 0.3 probability of moving
from Start to A, then a 0.2 probability that A will emit “Blue”, followed by a 0.1
probability of moving from A to C, and a 0.3 probability that C will emit “Red”. For this
path, the probability that the model will emit “Blue Red” is (0.3)(0.2)(0.1)(0.3)=0.0018.
Probabilities can be calculated for the other paths as well, giving the total probability that
the HMM will emit the desired sequence. Note that the possibility of bidirectional

movement between A and B and between A and C offers the potential for output
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sequences of any length, although each added step reduces the probability of such an
output.

In an HMM designed for phonemic categorization, the possible outputs would be
the thirty-nine dimensional vectors already discussed. Since MFCC values are not
discrete, the emission probability tables take the form of probability density functions,
which represent the probabilities of values along a continuum. In a process reminiscent
of the way k-means algorithms refine their centroids, learning in an HMM is a matter of
adjusting the transition and emission probabilities to maximize the total probability that
the HMM will emit the dataset it is training on. If two HMMs are intended to represent
two phoneme classes, the dataset is divided in two, with each one assigned to one HMM.
The transition and emission probabilities of each HMM are then adjusted to make it the
ideal representative of the set of tokens assigned to it. Then each token is reevaluated to
determine which of the updated HMMs it fits better, and reassigned, if necessary. The
HMMs are updated again, and the process of refinement continues until it reaches a
predefined stopping condition.

Phonemes of varying length can be represented by this type of model, because the
multiple connections between nodes allow for paths of different lengths from the Start
node to the Finish node. While it is not represented in the diagram in Fig. 2.6, in an
HMM, a node can connect to itself. A phoneme with a relatively lengthy steady state,
like a vowel or a fricative, will likely be best represented by a path through the model that
includes several steps from a node to itself. Shorter phonemes, like a flap, will be best
represented by a short path through the model. Much of the power of an HMM comes

from its flexibility in representing input sequences in several ways. Each input sequence

43



can, with some degree of probability, be emitted by any path of the right length. The
probability of the model emitting that sequence is the sum of the individual probabilities
of the various paths producing that sequence. This allows the HMM to represent more
than just the most prominent features of an input token, giving it the ability to exploit a
broader set of statistical regularities in the data. From the perspective of modeling
acquisition, this characteristic of HMMs is appealing, since it has been demonstrated that
infants use statistical reasoning in the process of acquisition. However, HMMs only
respond to the statistical pattern that are found in the dataset. Saffran (2003) points out
that infants not only respond to statistical patterns, but actually constrain the learning
process through limitations of their perceptual ability. HMMs respond to whatever
statistical information they have access to. Infants do to, but they only have access to the
information their sensory apparatus permits. What looks like a similarity between
HMMs and infants — their sensitivity to statistical information — is actually an argument
for developing ecologically valid and biologically plausible model structures and
processes. An analysis of HMMs at the Implementation and Algorithm levels suggests
that HMMs are likely to do things infants cannot do and fail to do things that infants can

do.

2.3.1.1 A Particular Model of Acquisition

Many models are presented simply as performing categorization of the type that
adult humans do. At least one model is explicitly purported to be a model of phonemic
acquisition, using HMMs to implement a hierarchical clustering algorithm. Lin (2005)

presents a model that features two HMMs that “compete” for a set of inputs. Each input
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is assigned to the HMM that is most likely to emit it. The HMMs are adjusted to what
amounts to a centroid of their assigned tokens, and all tokens are reevaluated and
reassigned. After several rounds of refinement, the model is ready to generate another
level in the hierarchy. Each of the initial HMMs spawns two identical daughter HMMs,
whose parameters are then randomly adjusted slightly. The daughter HMMs then
compete for the input tokens assigned to the mother HMM. This process continues until
a binary-branching hierarchy of HMMs is generated with the lowest level representing
phonemes defined by acoustic feature bundles that can be read off the tree by following a
path to the top node. Much is made of the model’s classification of phonemes into a
hierarchy of binary acoustic features and the implications this has for acquisition
research. The claim that this model mimics an infant’s acquisition of phonemic
distinctions is problematic. Regardless of whether infants actually learn phonemic
distinctions by separating input tokens into binary classes aligned with acoustic features,
the model is explicitly designed to do exactly that. An HMM-based hierarchical
clustering model in which each cluster spawns two daughter clusters will necessarily
produce a binary branching tree of HMMs. This is not a validation of any theory that
posits binary acoustic features. The binary nature of the features the model develops are
a necessary consequence of the model structure. Similarly, the alignment of the model’s
developed features with traditional acoustic features says more about the model structure
than about the feature system. An input scheme based on specific acoustic
transformations would be hard pressed to produce categories that are not correlated with
acoustic measures. This model is not so much a validation of feature geometry

(Clements, 1985) as it is an expression of feature theory. Even if infants do exactly what
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the model does, the model, by virtue of its design, does not tell us anything about what
infants do. Thus, it is not a mode of infant phonemic acquisition; it is a model of a
specific theory about infant phonemic acquisition. This highlights the ventral difficulty
of modeling natural systems as a way of understanding those systems. There can be an
overwhelming temptation to model a favored theory of how the natural system works,
and the claim that the model’s success at performing a task specified by the theory
confirms that it is actually a model of the natural system. In the absence of ecological
validity or biological plausibility at any level of analysis, this claim of modeling success
is overly optimistic.

We have seen that clustering models can vary dramatically in complexity and can
learn to categorize phonemes with some degree of success. Some aspects of these
models, especially their incremental refinement of categories and their exploitation of
statistical regularities in the data, are conceptually similar to what infants do during the
acquisition process. Nevertheless, it is clear that the mirror heuristic — the notion that
equivalent output indicates equivalent process — is inadequate for models of acquisition.
To model the actual acquisition process, not just the end result, the Algorithm and
Implementation levels of Marr’s analysis must be given more attention. The sound
preprocessing that is typical of computational models involving speech diverges from the
functioning of the human hearing apparatus in several important ways. An effective k-
means clustering algorithm requires information that the infant learner does not have
access to. The structure of a putative model of phonemic acquisition makes the results
inevitable. In every case, elements of the structure and process of the model diverge so

sharply from what infants can do that they eliminate themselves as models of acquisition.
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It seems that an effective model of acquisition should begin with an Implementation level
that has roots in the actual structure of the natural language learning system. The next
section explores some models that are loosely based on the structure and function of the

human brain.

2.3.2 Information Theory Models Based on Neurons

Some models make a stronger attempt to align with natural systems on the
Implementation level and, to a lesser degree, on the Algorithm level. This section
explores some of those models, with an emphasis on the tendency to simplify the
structure and algorithms of the model in the beginning, and then make them
incrementally more complicated. We begin with the perceptron (Rosenblatt, 1958) and
Minsky and Papert’s (1966) objections to it, and continue with Rumelhart and
McClelland’s (1985) development of the modern artificial neural network, and some

more recent variants, including convolutional neural networks and LSTM networks.

2.3.2.1 The Perceptron

Building on work by McCullough and Pitts (1943), Rosenblatt (1958) introduced
the perceptron, a rudimentary neural network. This model represents a network of
processing elements, each intended to be a simplified version of a neuron. It is worth
noting that the perceptron is nothing more than an implementation of a logistic regression
— a multiple regression with each input passed through a logistic (or bounded

exponential) function to force it into a range between zero and one.
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The principle behind the perceptron starts with the idea that an input can influence
an output. This is exemplified by the general function in slope-intercept form, y=mx+b,
where y represents the output or dependent variable, x represents the input or independent
variable, m represents the degree to which the value of x influences the value of y, and b
represents the value of y in the absence of any influence from x. Fig. 2.7 shows the graph

of such a function where m=2 and b=4.
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Fig. 2.7 — The graph of y = 2x + 4.

Where x is 0, the independent variable does not affect the dependent variable,
which has a value of 4. As the independent variable increases in value, the value of the
dependent variable increase twice as fast (m=2).

In most datasets of interest, including those related to language, the dependent
variable tends to be influenced by more than one input or independent variable. This is
represented in Fig. 2.8 as a three-dimensional graph of the function y=4x+1.5z+3, a

specific instance of the general form, y=mx+nz+b.
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Fig. 2.8 — The graph of y =4x + 1.5z + 3.

The tendency of the dependent variable, absent the influence of the independent
variables, is to adopt a value of 3, as indicated by the value of b in the equation. The
value of m indicates that a change of 1 in the value of the independent variable labeled x
results in a change of 4 in the value of the dependent variable. Similarly, the value of n
indicates that a change of 1 in the value of the independent variable labeled z results in a
change of 1.5 in the value of the dependent variable. In this way, each independent
variable has a weighted effect on the dependent variable. This idea can easily be
extended to many more dimensions. To avoid an ever-expanding list of variables, the
convention in statistics is to label all the independent variables as x with different
subscripts and all the weighting factors as 3 with subscripts matching the independent
variables they are weighting. The value of the uninfluenced dependent variable is labeled
Bo and moved to the front of the equations. This yields the canonical multiple regression
equation (Cohen, 2003):

y = Bo + Bix1 + Pax2 + B3x3 + PnXn
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Explaining this equation in operational terms, each input variable (xa) is
multiplied by its own weighting factor () and the results are added together, along with
the natural tendency, or bias (o), of the dependent variable. The result (y) is the
predicted value of the dependent variable. Representing this process in graphical form,
with appropriate changes to the variables to align with common usage in computational

linguistics, yields the diagram in Fig. 2.9.
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Fig. 2.9 — A multiple regression in diagram form. A perceptron follows
this structure, but with a logistic function applied to each input.

Each input variable (xn), represented by the circles at the bottom, is multiplied by
a weighting factor (own), marked next to the connecting lines extending from the circles,
and the results are added together to give the predicted output (y), represented by the
circle at the top. This diagram represents a perceptron, except for one necessary
additional detail.

It has been known since Emil Dubois-Reymond’s work in 1849 that nerve cells
fire (generate an action potential) at full force or not at all, rather than generating weaker
action potentials for weaker inputs (Jessell, 2000). However, neurons do not generate
action potentials at precise and predictable moments. Instead, they are increasingly likely
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to fire as their membrane potential approaches and then crosses a neuron-specific value.
This increase in the probability of firing is not linear, and is best represented as a logistic

curve, also known as a bounded exponential curve, illustrated in Fig. 2.10.
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Fig. 2.10 — A logistic, or bounded exponential, curve.

In a perceptron, each input value is taken as the input to a logistic function, with
the output of that function then serving as the input to the model illustrated in Fig. 2.9. In
effect, each input value is converted to a probability that the analog of a neuron will
“fire”, or produce an output that will contribute to the output of the model. This changes
the multiple regression to a logistic regression, which is exactly what a perceptron
instantiates. Extending the logistic curve to three dimensions (two input variables, one

output) gives the graph in Fig. 2.11.
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Fig. 2.11 — A logistic curve in three dimensions, showing two independent
variables with bounded exponential relationships to the dependent variable.

The perceptron as described above is commonly called a single-layer perceptron,
in contrast to the multilayer perceptron that shortly followed (Olazaran, 1996). The
multilayer perceptron is intended to address the issue of orthogonality between input
variables. The word “orthogonal” refers to statistical independence between two
variables. Its origin, from the Greek “op08o-" (“straight”) and “yovia.” (“angle”)

(etymonline.com, 2018), sheds light on its meaning. Consider the graph in Fig. 2.12.
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Fig. 2.12 — Moving a point across orthogonal axes.

The horizontal and vertical axes are at right angles to each other — they are
orthogonal. (Note that the axes are not intended to represent an independent variable and
a dependent variable. Instead, they represent two independent variables, with the
dependent variable relegated to a third axis that is omitted for clarity.) This means point
A, at 1 on the horizontal axis and 3 on the vertical axis can move horizontally without
changing its position relative to the vertical axis. If it moves three steps to the right, it
reaches point B, which is still at 3 on the vertical axis. Moving still farther, to 8 on the
horizontal axis, it reaches point C, which is still at 3 on the vertical axis. In terms of
inputs to a single-layer perceptron, orthogonality between inputs lets each independent
variable take on any value, without affecting or being affected by any of the other
independent variables. This is evident in the lack of connecting paths between the

independent variables in the diagram in Fig. 2.9.
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In many datasets, measurable variables are not entirely independent. A change in
the value of one might precipitate a change in the value of another. In this case, the
variables are non-orthogonal and can be plotted on axes that are not at right angles to
each other. This situation is illustrated in Fig. 2.13, where the horizontal axis is rotated

30 degrees counter-clockwise from its original position.
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Fig. 2.13 — Moving a point across non-orthogonal axes.

In this situation, the same starting point, A, is at a position of 1 on the formerly
horizontal axis and 3 on the vertical axis. Moving point A parallel to the formerly
horizontal axis to a position of 4 necessarily changes its position on the vertical axis,
from 3 to 4.5. Continuing its movement parallel to the formerly horizontal axis to a
position of 8 changes its position on the vertical axis to 6.5. The non-orthogonality of the
axes allows interaction between variables. Where two orthogonal variables, x and z,
influence the independent variably, y, in the equation y = mx + nz + b, the equation in the
case of non-orthogonality between x and z would be y = mx + nx + z(cos0)x + b, where 0

is the angle by which the x axis departs from its original orthogonal position. The

54



inclusion of the new term, z(cos0)x, allows the two independent variables not only to
have independent influence on the output variable, but also to moderate that influence
depending on the value of the other variable. This can obviously be extended to any
number of variables, with each influencing any of the others to whatever degree the
model specifies. In a graphical representation, this influence takes the form of an

additional layer of nodes (or processing elements), as shown in Fig. 2.14.
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Fig. 2.14 — A multilayer perceptron, where the hidden layer
allows for non-orthogonality between input variables.

Learning, in this sort of model, is a process of adjusting connection weights to
allow the model to best reflect the input datasets.

While the perceptron was initially intended for use in computer vision and image
processing (Olazaran, 1996), its perceived utility was quickly extended to other tasks. In
an interview with The New York Times (1958), Rosenblatt predicted “Later Perceptrons
will be able to recognize people and call out their names and instantly translate speech in
one language to speech or writing in another language.” In retrospect, this seems like a
rather lofty set of goals for the single-layer perceptron, which attempts to reduce every

desirable output to a simple sum of weighted input variables. These goals also seem out

55



of reach of the multilayer perceptron, because the hidden layer allows only very limited
types of interaction between input variables. This idea will be addressed in more detail in
the next section.

The limitations of the single-layer perceptron were expounded upon by Minsky
and Papert (1969) who argued, among other claims, that the single-layer perceptron could
not represent an XOR relationship. It was thought that the ability to learn all logical
operators was essential to a model that purported to perform tasks requiring intelligence.
In logic, an XOR relationship is an “exclusive or”. “A XOR B” is true if A is true or if B
is true, but not if both are true (or if both are false). Single-layer perceptrons are only
capable of linear separation of data (Rosenblatt, 1958). Because there is no interaction
between input variables, the model cannot respond differently to the firing of one input
depending on the state of another input. The multilayer perceptron’s admission of
interaction between input variables overcomes this limitation. There is some debate over
whether Minsky and Papert were aware that multilayer perceptrons could handle the
XOR problem (Olazaran, 1996). Their book proved the XOR limitation only for single-
layer perceptrons. Nevertheless, many people understood the argument in Minsky and
Papert (1969) to mean that neural network type models represented a dead end in
artificial intelligence research, which resulted in a decline in the development of models
based on the perceptron (Olazaran, 1996). This trend was reversed with McClelland and

Rumelhart’s (1986) introduction of Parallel Distributed Processing.

2.3.2.2 Parallel Distributed Processing
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The publication of “Parallel Distributed Processing” (Rumelhart & McClelland,
1986) marked a turning point in artificial intelligence research. Parallel distributed
processing (PDP) does not refer to a particular model structure as much as it defines a
philosophy of modeling or a modeling framework. This framework is inspired by the
structure and function of the brain, in recognition of the idea that differences between
brains and computers are not simply a matter of “software”, but of “hardware” as well.

“In our view, people are smarter than today’s computers because
the brain employs a basic computational architecture that is more suited to
deal with a central aspect of the natural information processing tasks that
people are so good at.” (ibid, p. 3)

Eight major aspects of the framework are defined as follows (ibid, p. 46).

A set of processing units

A state of activation

An output function for each unit

A pattern of connectivity among units

A propagation rule for propagating patterns of activities through

the network of connectivities

6. An activation rule for combining the inputs impinging on a unit
with the current state of that unit to produce a new level of
activation for the unit

7. A learning rule whereby patterns of connectivity are modified by
experience

8. An environment within which the system must operate

Nk W=

These eight aspects capture more of the complexity of the brain than previously
discussed models. Each of the first seven is related to neurons and their behavior
(Medlar, 1998). Processing units are analogous to neurons. The state of activation is
loosely analogous to the internal behavior of the neuron. The output of a processing unit
represents the action potential of a neuron. The pattern of connectivity evokes the
synaptic connections between neurons. The propagation rule evokes the transmission of

action potentials through a network of neurons. The activation rule relates to a neuron’s
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response to the collective inputs of connected neurons. The learning rule is a method of
updating connections weights, which is analogous to the strengthening or weakening of
synaptic connections as part of the learning process in a biological neural network. The
eighth aspect, “the environment within which the system must operate”, refers to the
model’s characterization of the input, the output, and the relationship between them.
PDP models “represent the environment as a time-varying stochastic function over the
space of input patterns” (Rumelhart & McClelland, 1986, p. 53). While a biological
neural network must have some sort of mapping from input to output, it may not be of the
type that is adopted in PDP models, leaving room for potential failure at the
Implementation level. Nevertheless, the PDP model framework represents an effort to
meet the requirements of the Implementation and Algorithm levels that surpasses the
models discussed earlier in this chapter.

Specific implementations of PDP-type models have developed over time. Two
that will be briefly described here are Convolutional Neural Networks (CNNs) and Long
short-term memory (LSTM) networks. CNNs were designed with connection patterns
between processing elements that are intended to mimic the neuron connection patterns
seen in the visual cortex of animals (Matsugu, 2003). Their architecture is similar to that
of a multilayer perceptron, but with multiple hidden layers, each with a specific purpose.
These hidden layers include convolutional layers, pooling layers, and normalization
layers (Schmidhuber, 2013). The convolutional layer is a type of feature map comprising
a set of detectors, each built from multiple processing units, that perform a transformation
on the input and pass the result to the next layer. In a phoneme recognition model, each

of these detectors acts as a filter on the input, refining its ability to detect a particular
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pattern (Murphy, 2012). Each of those patterns could correspond to a particular
phoneme, much like the leaves of the binary branching HMM tree in Lin’s (2005) model
described in section 2.3.1.1. The pooling layers combine the outputs of groups of
neurons from one layer and passes the result on as the input to a single neuron in the next
layer (Schmidhuber, 2013). These layers can have varied effects, depending on the
method of combination. The output of a group could be the average of the outputs of the
neurons in that group or the maximum value. The processing effect is to limit the
number of computational load on the network by reducing the number of neuron signals
to be calculated. The effect on the operation of the network is to selectively reduce the
resolution of the data, by discarding information that, in a natural system, would be
overwhelmed by neighboring signals (ibid.). The normalization layers mimic the ability
of neurons in biological networks to inhibit the activation of their neighbors (Le, 2015).

All of these aspects of CNNs are inspired by the visual cortex, which makes them
fare better than some competing models under the Implementation level of analysis.
There are notable differences between the structure of the visual cortex and that of the
auditory cortex, so there is some question of the applicability of CNNs to speech
recognition, if biological realism is part of the goal.

The long short-term memory (LSTM) network is a type of recurrent neural
network (RNN) that is made up of LSTM units and was introduced by Hochreiter and
Schmidhuber in 1997. RNNs can define a nonlinear dynamic system (Murphy, 2012),
which makes them reasonable candidates for modeling brain function, i.e., for satisfying
the Implementation level of analysis. The feature that allows this type of network to

develop nonlinear dynamic behavior is the system of feedback within and between
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processing units (Schmidhuber, 2013). An LSTM network is an RNN in which the
processing units are LSTM units. Compared to a simple “fire/don’t-fire” processing
element, an LSTM unit is capable of more complex behavior. It has the ability to
“remember” information by maintaining its state. This is accomplished by a gate that
allows or prevents the acceptance of incoming signals. There is also a “forget gate” that
controls when the unit will reset its memory. This arrangement allows an LSTM unit to
behave in a more complicated way in response to the relationship between the
information it has been exposed to and any incoming information (Hochreiter and
Schmidhuber, 1997). This makes LSTM networks well-suited to modeling data with a
strong sequential component, such as speech. In recent years, LSTM networks have

regularly outperformed other types of models on a range of speech-related tasks

(Murphy, 2012).

24 Summary

This chapter has examined several types of computational models for the purpose
of evaluating their suitability as models of phonemic acquisition. All of them potentially
suffer from a lack of biological plausibility because of the methods of sound pre-
processing that are commonly in use. Although aspects of this pre-processing are
roughly analogous to what the human hearing apparatus does, there remains a question of
whether the differences in processing result in meaningful differences in model
performance. In the absence of clear information on this issue, it might be prudent to
more precisely model the actual functioning of the human auditory system, to the extent

possible.
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We reviewed the concept of clustering algorithms, focusing on a particular one
known as k-means. With regard to its suitability as a model of phonemic acquisition, the
k-means algorithm has one strong point in its favor. The development of centroids is
strongly reminiscent of the concept of perceptual magnets in acquisition (Iverson and
Kuhl, 1995). However, this type of model fails in a number of other respects. It has no
real connection to the physical structure of the brain, making it rather weak on the
Implementation level of analysis. It also employs algorithms that require either a priori
information from the researcher or built-in methods for stopping the partitioning process,
both of which are unavailable to the infant learner, rendering the model unsatisfactory
under the Algorithm level of analysis. Furthermore, k-means models are not typically
designed to deal with time-series data, which makes them inappropriate for clustering
speech sounds, which are temporal sequences of acoustic data.

HMMs were also reviewed, with mixed results. They are capable of handling
sequential data and, like infants, they exploit statistical regularities, but they fall short on
ecological validity, both in structure and in process. As mentioned before, the mirror
heuristic may be satisfied by the transformation of input to output, but models of
acquisition should include a focus on the process and the way it derives from the
structure. A specific implementation of an HMM model of acquisition (Lin, 2005) was
explored. It performs a hierarchical clustering process and generates a binary branching
tree of HMMs, with the leaves representing phonemes and the intermediate nodes
representing acoustic features. Apart from issues at the Implementation and Algorithm
levels, the results of this model are largely built in from the start, limiting what it has to

say about how infants learn to categorize phonemes.

61



Computational models that are loosely inspired by the human brain were also
explored, starting with the single layer perceptron and going through convolutional neural
networks and long short-term memory networks. One trend that emerges from this
sequence is of significant interest. The single layer perceptron implements a logistic
regression, which is far too simple to serve as a model of acquisition. The multilayer
perceptron offers a slightly more complex model by including a middle layer and
rejecting the orthogonality of input variables. As much as this improves the ability of the
perceptron to deal with more complex data, it is worth noting that the interaction between
input variables is still tightly constrained. Subsequent models continue this trend of
incremental ornamentation of existing models. With the multiple goals of performing a
language task, minimizing the use of computational resources, and trying to maintain the
analyzability of the model by the researcher, it makes sense to start with something
simple — even too simple — and progress from there. However, the structure of the human
brain and the knowledge gained from acquisition experiments suggest that simplicity of
structure and process is incompatible with modeling the process of acquisition. Even
with the development and reported success of very impressive models like LSTM
networks, they still fall short on the Implementation and Algorithmic levels of analysis.
In too many cases, the performance of the model is dependent on decisions made by the
researcher, and the structure of the model is, at best, roughly analogous to the human
system at every level.

2.4.1 The Mirror Heuristic Revisited

In an effort to put a final nail in the coffin of the mirror heuristic, let us recall that

Bechtel (2018) defines it as the assumption that, if two processes take the same input and
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produce the same output, they are performing equivalent mathematical functions and are
therefore equivalent in a meaningful way. This issue arises whenever a model of a
natural process is created. If the purpose of the model is to help the researcher
understand the natural system, one hopes that the model and the natural system are
similar enough for the model to offer some insight into the operation of the natural
system. In terms of Marr’s three levels of analysis, the question of sufficient similarity
depends to a great degree on the Computation level — the definition of what the model is
intended to mimic. If we are modeling nothing more than the movement of a heavier-
than-air object from one point to another, then an airplane is a reasonable model of a bird.
However, we would be remiss in then claiming that an airplane offers insight into a bird’s
maneuverability, musculature, energy usage, or reproductive habits. To gain a greater
understanding of these aspects of birds through modeling, one would have to build a
model that includes the structures and processes that are relevant to what one is trying to
understand. If this analog seems overly cartoonish, it is only because we have ready
access to actual birds that we can examine and test directly. The situation is significantly
different when it comes to modeling neural processes. Computational neuroscience is
rife with models of vision, especially as compared to models of language behavior. One
reason for this is that the human eye is a physical object whose function is extremely
similar to the eyes of other animals, giving researcher greater ability to experimentally
discern its response to clearly measureable physical input. The situation with language is
noticeably different. Hearing is well understood. The structures and functions of the
tympanic membrane and the cochlea are similar across mammals, and a great deal of

experimentation has clarified the details of their operation. What happens in the auditory
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cortex and beyond to turn sounds — but only some sounds — into the multivalent
abstractions of language is more difficult. With regard to the discrimination of speech
sounds, the situation is not quite so bleak. We have animal models that can serve to
illuminate the response of the auditory cortex to acoustic stimuli. There are claims that
some animals, most notably chinchillas (Kuhl, 1972) exhibit categorical perception in the
way humans do when exposed to voiced/voiceless stop pairs, which would certainly be
an exciting way to explore how phonemic perception might work in the human brain.
However, there are concerns about the experimental design behind these claims about
chinchillas that will be explored in Chapter 4.

The differences between humans and other animals in the processing of language
pose a conundrum for the modeler who wishes to satisfy Marr’s analysis, even with the
relatively simple goal of modeling phonemic acquisition. A great deal is known about
the general brain regions where aspects of sound processing occur. Less is known about
the fine-grained detail of how individual neurons in those regions behave, connect, and
interact to produce an apparent emergent understanding of linguistically relevant
distributional information from acoustic input. Even so, a modeler can approach the
Implementation level armed with significant information about the types of neurons,
connections, and behaviors that exist in brains, and refrain from oversimplifying those
details. In the absence of this type of effort, appeals to the mirror heuristic look like
efforts to mask the inadequacy of some models.

Chapter 3 will examine some models that approach the Implementation level from
the perspective of mimicking details known from neuroscience. Computational cognitive

neuroscience models attempt to bridge the gap between computational neuroscience
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models, which tend to be focused on single neurons or small networks of neurons, and
higher level cognitive behavior. The underlying assumption is that cognitive behavior is

driven by the details of lower-level neuronal organization and behavior.
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CHAPTER 3

Computational Cognitive Neuroscience Models

This chapter introduces Computational Cognitive Neuroscience (CCNS) models.
This type of model aspires to a greater degree of biological plausibility than the models
discussed in Chapter 2, especially in low-level structure, while still modeling higher-level
cognitive behaviors. This plausibility is approached by building on Computational
Neuroscience (CNS) models, which attempt to mimic the remarkably complex behavior
of neurons and small networks of neurons. This chapter begins with an exploration of the
structure and behavior of neurons and biological neural networks, and builds to CNS and
CCNS models. Both types of models are evaluated under Marr’s three levels,
particularly the Implementation and Algorithm levels. Unsurprisingly, they do better
than the models in Chapter 2 under this analysis, since they are designed under the same

philosophy that drives Marr’s three levels.

3.1 Neurons

Santiago Ramoén y Cajal, in 1899, was the first to propose that neurons are
contiguous, rather than continuous (Finger, 2000), meaning that, rather than forming a
continuous structure with neighboring cells, they act as independent bodies. Unlike the
cells in other tissues of the body, which behave largely in concert with the cells they are
adjacent to, neurons form a more complex set of connections with cells that may be
centered some distance away. This discreteness of neurons is known as the “neuron
theory” (ibid.) and is reflected in computational neuroscience models, as well as in the

structure of Rosenblatt’s (1958) perceptron and its conceptual descendants.
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The anatomical structure of the neuron can be simplified into four primary
components — the soma (or cell body), dendrites, the axon, and presynaptic terminals

(Kandel, 2000) (See Fig. 3.1).
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Fig. 3.1 — Parts of a neuron

The soma contains the type of nucleus and organelles that are present in all cells.
While the soma is obviously important to the neuron, the dendrites, axon, and presynaptic
terminals are the structures that play a primary role in the signaling between neurons
(ibid.). A typical neuron has one axon and multiple dendrites, structures that extend
away from the soma. The axon sends signals to other neurons, through multiple
terminals that branch away from the main body of the axon, while the treelike branching
dendrites receive information from other neurons (Gazzaniga, 2009). The places where
the transfer of information occurs are called synapses, which are small gaps between the
axon terminals of one cell and the dendrites of another. Because information flows
across the synapse from axon to dendrite, axon terminals are described as presynaptic,
and dendrites are described as postsynaptic (ibid.). Also of interest is the membrane of

the neuron, which contains large numbers of ion channels, specialized protein structures
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that allow or prevent the flow of ions across the membrane, i.e., between the inside and

outside of the neuron, in either direction (see Fig 3.2).
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Fig. 3.2 — Ton channel closed (left) and open (right).

A single neuron may have thousands of ion channels. Some are passive, allowing
ions to pass freely. Others are gated, allowing or preventing the passage of ions
depending on electrical or chemical changes in their immediate environment (Kandel,
2000).

Differences in the relative concentration of ions inside and outside the neuron
cause a voltage difference across the membrane. A sufficient voltage difference can
cause ion channels to open, allowing ions to move across the membrane. This can lead to
the opening of more ion channels. As this process continues, it is possible for the voltage
across the membrane to reach a neuron-specific threshold value, which causes the neuron
to produce an action potential — a voltage spike. This action potential travels down the
axon to the presynaptic terminals, where neurotransmitters are released into the synapse.
On the postsynaptic side, the neurotransmitters bind with receptors in the dendrites of
other neurons. These bound neurotransmitters can influence the membrane voltage of the
neurons they are bound to, resulting in the opening of ion channels and the possibility of
generating an action potential (Gazzaniga, 2009). Because the typical neuron has many

dendrites, receiving signals from many other neurons, it acts as an “integrator”,
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combining all the signals it receives and responding accordingly. This process is known
as “integrate and fire” (Anderson, 2014). After a neuron fires, it goes through a
refractory period, during which it cannot fire for a brief period of time, and its membrane

potential returns to its resting state (See Fig. 3.3).
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Fig 3.3 — Action potential followed by refractory period.

If a neuron receives sufficient continuous input, it will alternate between firing
and experiencing its refractory period. This results in a series of action potentials, known

as a “spike train” (Brette, 2007)(See Fig. 3.4).
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Fig. 3.4 — Spike train
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Consider a hypothetical simplified network consisting of two neurons, A and B,
each releasing enough neurotransmitter with an action potential to cause the other to fire.
If the time between receiving a signal at the dendrite and firing an action potential down
the axon is the same for both neurons, and they have the same refractory period, one
would expect the firing pattern between A and B to be as regular as the swinging of a
pendulum. However, if the neurons vary in any parameter — length of refractory period,
dendritic length, membrane potential threshold, number of ion channels, length of axon,
etc. — the firing pattern between A and B will be uneven. If the network is extended to
include a third neuron, the potential for irregular spike patterning increases dramatically.
Extend this system to include tens of thousands of neurons, all with different
characteristics, and the potential complexity of the spike patterning of such a network is
staggering.

The foregoing explanation of the function of neurons and small networks of
neurons is deliberately simplistic for the sake of clarity. Even in this simplified version,
the inherent complexity of small biological neural networks is evident. In reality,
neurons are considerably more complicated. There are three different ions — sodium
(Na"), potassium (K"), and calcium (Ca’) — whose complex interactions are implicated in
creating and changing the membrane voltage potential (Gazzaniga, 2009). Over three-
hundred types of ion channels have been discovered (Gabashvili, 2007), with each neuron
having varied proportions of multiple types that are permeable to different ions. There
are scores of different neurotransmitters, some of which serve to inhibit the generation of
impulses in the postsynaptic neuron, as well as variations in number and length of

dendrites, in threshold voltage, in axon length, in spike rate, and in a range of other
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parameters (Kandel, 2000). With each axon connecting to the dendrites of up to one-
thousand other neurons, the combinatorial possibilities for the behavior of a biological
neural network are seemingly limitless.

3.1.1 Simplifying models

Naturally, a primary focus when modeling neurons is finding elements that can
plausibly be simplified. Ideally, any simplification will still produce a model that is
capable of reproducing some of the behavior of the natural object being modeled. In
some cases, an apparent over-simplification can be subject to an ecological justification,
even if the model falls short on other grounds. For example, consider computational
models based on the work of Pitts and McCullough and, later, Rosenblatt, described in
Chapter 2. In those models, the analogs of neurons have a probability of firing that is
described by a simple logistic curve (See Fig. 3.5), although some other mathematical

functions are also in common use.
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Fig. 3.5 — Logistic curve

A logistic or bounded exponential function is used to represent a variable whose
value increases exponentially, but is subjected to a limiting factor. A simple example

comes from animal population studies. A given species, with abundant resources and
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limited risk of predation, will undergo an exponential increase in population as each
breeding generation multiplies itself by the average litter size. At some point, the
population becomes large enough to feel the limiting effects of finite resources. If
animals do not have access to enough food and water, they will breed less and die more
easily. Thus, the exponential increase in the population levels off and approaches an
equilibrium point. This process is conceptually related to the behavior of individual
neurons, described above, with regard to likelihood of firing. Any neuron is relatively
unlikely to fire when in its resting state. As incoming ions cause changes to the
membrane potential, that likelihood increases. Ion channels in the membrane open,
leading to further depolarization of the membrane, opening more ion channels, and
continued increase in the likelihood of firing. The process is exponential in the
beginning, but tapers off as it approaches 1 (where 1 represents a 100% chance of firing).
The changes in probability in response to changes in ion concentration and membrane
behavior follow a logistic curve. This is the inspiration for the use of this curve in
Rosenblatt-style models. Related models sometimes use the hyperbolic tangent (tanh) as
an activation function (Fig. 3.6), while others use a rectified linear unit (ReLU)(Fig. 3.7).
The tanh function can be seen as a scaling of the logistic function to allow values on the
interval [-1, 1], where the logistic function only allows values on the interval [0,1].
Depending on the structure of the network in question, one of those intervals is more
appropriate than the other. The ReLU activation function, introduced by Hahnloser
(2000), departs somewhat from the operation of biological neurons, ignoring negative
inputs and passing positive inputs through unaltered. The softmax function (Dugas,

2001)(Fig. 3.7) is an approximation of the ReLU function, but with a smoother transition
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at the zero point. Softmax is the anti-derivative of the logistic function, which highlights
the relationship between the various activation functions in common use. All of these
functions can be understood as conceptual variants of a cumulative density function (Fig.
3.8) or a step function with normally distributed error in the transition (Fig. 3.9). The
details of these last two functions are not especially important. The point is simply that
all commonly used activation functions in perceptron-related models have the same

general sigmoid shape (although ReLU is noticeably degenerate).
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Because their intended use is in simplified “integrate and fire” models, they all
vaguely follow the firing-probability curve of biological neurons. However, they
overlook the fact that, in many cases, the complex behavior of interest in biological
neural networks is driven not by the simple firing of neurons, but by the spike rate and
spike timing of neurons (Brette, 2007). As previously noted, simplified models of this
type have shown the ability to perform certain language tasks adequately, but modeling

the process of acquisition requires a model that is closer to the actual biological system.

32 Neuroscience models
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Computational neuroscience is a branch of neuroscience that uses computational
techniques and models in an effort to develop an understanding of how the brain works.
“Although computational neuroscience is theoretical by its very nature,
it is important to bear in mind that models must be gauged on experimental
data; they are otherwise useless for understanding the brain. Only
experimental measurements of the real brain can verify “what” the brain
actually does. In contrast to the experimental domain, computational
neuroscience tries to speculate “how” the brain operates. Such speculations

are developed into hypotheses, realized into models, evaluated analytically
or numerically, and tested against experimental data.” (Trappenberg, 2010,

p-2)

This emphasis on experimental verification of computational models is what sets
computational neuroscience models apart from the types of models discussed in Chapter
2. The goal in computational neuroscience is to understand the natural system by
building models that are biologically plausible in structure and process, and that exhibit
the same behavior as their natural counterparts. The reproduction of behavior alone, even
with a high degree of precision, is insufficient. This goal aligns with the goal of
modeling language acquisition. The development of a model that acquires some aspect
of language without biological plausibility, without experimental confirmation, or
without adhering to the facts about acquisition that are known to experimentalists is not a
model of acquisition. At best, it is a model that illustrates or reiterates a particular theory
of language. At worse, it is a model that merely does something interesting.

The goals of computational neuroscience are not without their pitfalls. The
overwhelming complexity of the neuron, with its tremendous number of moving parts,
requires simplification, either of structure, of process, or of both. But there is a
fundamental tension between maintaining biological plausibility and achieving

computational feasibility. Much of the behavior of the neuron arises from the interaction

75



of different parts. If those parts are simplified excessively, the behavior may not arise. A
great deal of the art of computational neuroscience modeling is in finding the parts of the
natural system that can be simplified without destroying the behavior one hopes to elicit
from the model. In keeping with Trappenberg’s perspective quoted above, any
simplification of neural structure or process should be theoretically motivated and
experimentally verified. In other words, a simplification in a model should proceed
based on reasonable and supported beliefs about the degree to which the proposed
simplification will affect the operation of the model on the dimension of interest, and the
resulting model should be verified against experimental data from the natural system, to
the extent possible. One approach to simplifying structural aspects of a model is through

the use of compartment models.

3.2.1 Compartment models

A compartment model is the result of dividing a continuous system into discrete
regions, each made up of numerous elements, with each region producing outputs that
represent the average behavior of its constituent elements (Eriksson, 1971). Familiar
examples include models in any social science, such as economics, in which a group of
people are treated as monolithic, regardless of any differences between individuals. In
neuroscience, a compartment model might treat all of a neuron’s ion channels as a single
unit that effects an aggregate change in membrane potential, rather than modeling
individual ion channels and summing their individual impact. A well-established
instance of compartment modeling in neuroscience has roots in the study of electronic

transmission in undersea cables, which inspired the simplification of the function of
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dendrites by modeling them as lengths of cylindrical cable whose physical properties are
the average of the properties of the branching structures they encompass. This so-called
cable theory has been a mainstay of neuronal modeling since the early 20" century
(Trappenberg, 2009). While compartment modeling can be effective in reducing the
number of parameters of a neuronal model to a manageable few hundred, a network of
such modeled neurons can still place too great a computational burden on the computer
used to run the model. A further degree of modeling abstraction results in models that
focus on the spiking behavior of neurons, without regard for the details that produce

those spikes. These models are conceptual descendants of work by Hodgkin and Huxley.

3.2.2 Spiking models

Although many aspects of the general function of the neuron were explored
earlier, Hodgkin and Huxley (1952) developed the first mathematical representation of
the electrical behavior of neurons. Their work on the giant squid axon resulted in a
system of four differential equations describing how changes to the voltage potential
across the cell membrane of a neuron could lead to an action potential (Trappenberg,
2002). Differential equations are used to describe process that include feedback. In the
context of a neuron, drawing on the discussion above, changes in ion concentrations
around a cell membrane cause certain ion channels in the membrane to open, leading to
further changes in ion concentration, which could lead to cascading changes that
ultimately produce a spike of electrical transmission. In other words, a change to the

environment of a neuron causes the neuron to alter its behavior, which further changes
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the environment, leading to further changes in the behavior of the neuron, until this cycle
produces an action potential.

A currently popular approach to modeling neurons reduces Hodgkin and Huxley’s
four continuous-time differential equations to two discrete-time iterated functions, each
influencing the other. These radically simplified models are known as neural maps. An
example from Rulkov (2002) offers the following equations

xt+1 = F(xt, yt + Br)

yir1 =yt - Wxe + 1 - ot)

where G, |, and 3 are adjustable parameters. Note that each equation defines the
value of a variable at a discrete time step in terms of its value at the previous time step
and the value of the other variable at the previous time step. So, the value of x at time
t+1 is determined in part by the values of both x and y at the previous time step, t.
Similarly, the value of y at time t+1 is determined in part by values of x and y at the
previous time step. One advantage to using discrete-time iterated functions is that the
calculations are greatly simplified, reducing the computational load. Discrete-time
functions are analogous to digital sampling of audio. The natural audio signal is
continuous; it has a value at every point in time. For the purposes of speech analysis,
knowing the amplitude of a waveform at every nanosecond is unnecessary and represents
a huge amount of data. Sampling the waveform every 0.0000625 seconds (a sample rate
of 16kHz) reduces the size of the resulting data set by many orders of magnitude while
still delivering all the information needed for the intended analysis. (For other purposes,
different sample rates are recommended. For example, commercial music is typically

sampled at 44.1kHz.) Similarly, a discrete-time function as a neural map allows for the
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“sampling” (generation, actually) of the neuronal output at enough points to give a clear
picture of overall behavior without the computational burden of calculating a continuous
function. The time step (analogous to sample rate) can be selected to give the desired
temporal resolution. (As the size of the time step approaches zero, the discrete-time
function approaches the continuous function. Too large a time step will omit useful
information about what the neuron is doing between samples.)

It has been demonstrated that Rulkov-type maps, depending on the choice of
parameters, can generate many of the behaviors seen in biological neurons, including

steady spike trains, spike bursts, and chaotic behavior (Rulkov, 2002)(Fig. 3.10).
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Networks of neural maps — small numbers of neural models that are
interconnected so that each affects the behavior of the others — have the ability to
synchronize their outputs and to settle into regular oscillations, both of which behaviors

are seen in biological neural networks (Rulkov, 2004, 2008).
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At the level of the neuron, the unit of currency, so to speak, seems to be the spike
rate; while in networks of neurons, relative spike timing plays an important role (Brette,
2007). For these reasons, as well as reasons of computational tractability, modeling
neurons at the level of abstraction achieved by neural maps is appealing. The fine-
grained details of membrane depolarization and neurotransmitter release are subsumed by
the simpler model of spiking behavior at the axon terminal.

In terms of Marr’s three levels of analysis, Rulkov-type neural maps fare quite
well, because their goals and methods are so narrowly defined. At the Computation
level, their goal is simply to model the spiking behavior of individual neurons and
networks of neurons. At the Implementation level, not much can be said about the
individual neuron. Networks of neurons are connected in biologically plausible ways,
with each neuron typically being connected to all the others in a small network (Rulkov,
2008). At the Algorithm level, if we accept the validity of Hodgkin and Huxley’s
mathematical representation of the generation of action potentials, then a simplified set of
equations that produce the same output should also be accepted as valid. In this type of
model, the details of the natural system that are either aggregated or disregarded in the
model design (for example, the specifics of the cascading voltage along the cell
membrane or the number of neurotransmitter receptors in the dendrites) do not affect the
behavior that is being modeled. In principle, the spike train will behave identically
whether there are a thousand ion channels in a given neuron or nine-hundred. The
simplicity of the goal of this type of model almost guarantees its success under Marr’s

analysis. Whether the details of neuron behavior that the model ignores are relevant to
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the emergence of higher level cognitive behavior from the low-level interactions of

neurons is an issue that will arise in the next section.

3.3 Cognitive neuroscience modeling

Computational cognitive neuroscience (CCNYS) is a relatively new discipline that
attempts to bridge computational neuroscience and cognitive neuroscience (Zednik,
2018). As discussed above, computational neuroscience attempts to create models of
neural structures that are biologically plausible in their structure and in their function.
Cognitive neuroscience focuses on developing explanations of higher-level behavior that
are rooted in attested neuronal structures and function. Computational cognitive
neuroscience models are intended to exhibit higher-level cognitive behavior while
abiding by the constraints of neuroscientific information about low-level neuronal
behavior. Several researchers have laid out standards for CCNS models.

O’Reilly (1998, pp. 455-456) offers six principles to guide the design of CCNS
models.

(1) Biological realism

(2) Distributed representations

(3) inhibitory competition

(4) bidirectional activation propagation

(5) Error-driven task learning

(6) Hebbian model learning

The concept of biological realism undergirds the entire enterprise of
computational cognitive neuroscience modeling. The goal is to understand how the brain

gives rise to cognition, so the model should be constrained by neuroscientific knowledge

about the brain.
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Distributed representation refers to the well-established notion that
representations in the brain rely not on single neurons, but on some number of neurons
acting in concert. Any neuron can participate in many representations.

Inhibitory competition refers to the tendency for some active neurons to suppress
activity in other neurons. This is part of the learning process, in that it promotes the
activity of the most strongly activated neurons.

Bidirectional activation propagation refers to simultaneous top-down and bottom-
up communication. It reflects the fact that, if neuron A can send an action potential to
neuron B, neuron B can usually send an action potential to neuron A. A strict
hierarchical structure with information moving in only one direction violates the
requirement of biological plausibility. This also as implications for the emergence of
chaotic behavior, which will be addressed in the next chapter.

Error-driven task learning is essentially supervised learning. On the surface, this
requirement is problematic, because it seems to require an external process that has
access to information about expected behavior. However, O’Reilly posits a mechanism
by which a network can settle into a pattern that reflects an expectation, and then respond
to the actual input pattern in a way that allows the difference between the two to surface
as an “error” pattern. Minimizing this error means, in effect, learning to align
expectations with observations.

Hebbian model learning refers to unsupervised learning, which is simply
responding to the distributional patterns of the input. In a biological network, this type of
learning increases the synaptic strength between neurons that are regularly activated

together. (Preceding explanations adapted from O’Reilly, 1998.)
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Meeter (2007, pp. 760-761) offers a shorter set of criteria for CCNS modeling.
(1) Sparse models
(2) Binding to Biology
(3) Ontological clarity

The sparse model requirement suggests that unjustified assumptions in a model
make it more difficult to analyze and interpret. This is related to the concept of
biological plausibility in that a model bound by the constraints of known neuroscience
will incorporate knowledge about the brain. Any additional assumptions are not based on
knowledge about the brain and are thus in violation of the sparse model requirement.

Binding to biology is essentially the mirror image of the sparse model
requirement, as noted in the previous paragraph. It requires as many of the model
assumptions as possible to be evidence based.

The requirement of ontological clarity is a constraint on the researcher, rather than
on the model. It requires the modeler to be clear and unambiguous about the intent of the
model, the nature of the model’s algorithms, the model’s level of representation, and the
plan for testing and evaluating the model. (Preceding explanations adapted from Meeter,
2007.)

Ashby (2011, pp. 276-276) offers four requirements for building a good CCNS
model.

(1) The neuroscience ideal

(2) The simplicity heuristic

(3) The set-in-stone ideal

(4) The goodness-of-fit ideal

The neuroscience ideal, similar to O’Reilly’s first criterion of biological realism,

says that a model should not make any assumptions that contradict known facts about

83



neuroscience. Since biological plausibility is one of the goals, a CCNS model should be
rooted in current neuroscience knowledge.

The simplicity heuristic echoes Meeter’s first criterion of having few assumptions
that are not rooted in known neurobiological fact. Ashby allows an exception for
unsupported assumptions without which the model would not function, but these are
clearly dispreferred.

The set-in-stone ideal requires that model structure be fixed. Ashby points out
that neural connections and network response to stimuli do not change from one task to
the next. The notion of establishing a learning machine that can be programmed for
specific tasks violates the neuroscience ideal.

The goodness-of-fit ideal requires that the model make predictions at both the
behavioral and neuroscience levels. Without addressing both of these levels, a model
cannot properly be called a computational cognitive science model. (Explanations
adapted from Ashby, 2011.)

Whichever standards one adopts to guide the development of a computational
cognitive neuroscience model of phonemic acquisition, a number of challenges stand out.
Poeppel (2017) raises the paired questions of whether linguistics has anything to tell us
about the nature of computation in the brain and whether improved knowledge of the
workings of the brain can offer any insights into the structure of language. It is not
immediately clear that either question can be answered in the affirmative. Part of the
problem is that linguistic definitions and processes tend to be of a different type than
descriptions in neuroscience. Linguistic analyses are typically couched in the paradigm

of the electronic computer — datasets are acted on by a process to produce more data.
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But, in the brain, the software and hardware are not only inseparable, they are the same
thing (Jacobs, 1992). The very nature of neural computation is at odds with common
notions of linguistic computation. This seems like less of a problem with the acquisition
of sub-meaning units, like phonemes. Part of the phonemic acquisition process is simply
a hearing task, which is relatively straightforward. The learner must attend to acoustic
differences and then, through the use of statistical reasoning, begin to disregard some of
those differences and pay attention to others. But the heart of phonemic acquisition is in
the development of a sound system, not just a collection of sounds. Just what this would
look like in the brain is an open question that will be taken up in Chapter 4.

Another difficulty in modeling acquisition lies in the relative dearth of empirical
evidence at the requisite level of analysis. Models of individual neurons are assisted by
experimental evidence obtained from actual neurons. Although there are many types of
neurons, their most basic behavior is consistent across types (Kandel, 2000).
Furthermore, the types of neurons that exist in humans are also found in other animals
(Ullman, 2001), facilitating experimentation that cannot be done on humans. Although
single-electrode measurements in human subjects are not unheard of, they are restricted
to cases in which a person’s brain is being operated on for other reasons. The bulk of the
information we have about how individual neurons work comes from animal studies
(Kandel, 2000).

The same is true for higher functions that we share with other animals. Our
understanding of the cortical networks that are involved in motor control or vision or
hearing is greatly enhanced by studying those system in non-human brains (Gazzaniga,

2009). Even emergent functions — those that arise from the interaction of simpler

85



systems — can be studied in animal models and can offer some insight into how specific
emergent properties might arise in certain parts of human brains. For behaviors that do
not have direct physical analogs to be measured, such experimentation is less useful. For
a cognitive behavior like language that is unique to humans at least in degree and scope,
animal models cannot tell us much, so we must rely more heavily on measurements taken
from humans. On the subject of phonemic acquisition, there is a line of research
suggesting that chinchillas can develop categorical perception in certain phonemic
contrasts, like humans do (Kuhl, 1975). If this were true, then chinchillas would provide
a useful avenue of investigation for the neural correlates of certain phonemic distinctions.
However, there are problems with this line of research that will be addressed in Chapter
4.

Brain imaging techniques have improved tremendously and have deepened our
understanding of how human brains operate. Unfortunately, their resolution is too low to
tell us anything beyond the average behavior of a large number of neurons. Magnetic
Resonance Imaging (MRI) is a brain imaging process that relies on the magnetic
properties of water. Water is a polar molecule, meaning it has different charges at
different ends of the molecule, causing it to behave like a miniscule magnet. In MRI, the
subject is inserted into the center of a super-cooled magnet capable of generating a very
strong magnetic field. This field causes the water molecules to align with the external
magnetic field. When the magnet is turned off, the water molecules return to random
positions. The changes in the magnetic fields generated by groups of water moleculs can
be measured by the MRI system to give an indication of the water content of specific

small volumes of the body. Water content correlates with density, which allows the
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machine to create a detailed map of the part of the body it is focused on. Functional MRI
(fMRI) is an adaptation of this process that measures not only relative quantities of water,
but changes in water content over a short time periods. As a portion of the brain becomes
more active, blood flow to that area is increased. With increased blood flow comes
increased water content. In this way, fMRI is able to indirectly measure blood flow to an
area of the brain, and researchers infer increased neural activity in that area. This allows
experimenters to determine what areas of the brain are implicated in various cognitive
tasks. One serious limitation of this process stems from the low resolution of an fMRI.
Spatial resolution of fMRI is between 1 and 5 cubic millimeters, a cortical volume that
can contain a few million neurons and tens of billions of synapses (Huettel, 2009).
Clearly, this technique does not allow us to correlate higher cognitive behavior with the
activity of small numbers of neurons. A cognitive neuroscience model based on fMRI
data would have compartments consisting of millions of neurons, because no information
is available at a smaller scale. Temporal resolution of fMRI is on the order of 1 to 6
second (ibid.). For the purposes of examining the neural correlates of language behavior,
this low temporal resolution presents insurmountable difficulties. Times spans of interest
in phonetic research are on the order of tens of milliseconds. Even syntactic research
focuses on structures that can start and end within a second, and certainly within six.

This limits the utility of fMRI in gathering experimental data to inform the construction
of computational cognitive neuroscience models of language. Other brain imaging
techniques, such as electroencephalogram (EEG) have a much better temporal resolution

than fMRI, but considerable lower spatial resolution. Combinations of techniques can
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offer slight improvements to spatial resolution, but not to the level that would dictate the
construction of neural models.

From the perspective of Marr’s three levels of analysis, computational cognitive
neuroscience modeling suffers from a conflict between the Implementation and
Algorithm levels, even though the nature of CCNS models drives an effort to satisfy both.
Realism at both of those levels results in models that are computationally intractable.
Simplifying the model at either the Implementation or Algorithm level introduces the risk
of reducing overall model complexity to the extent that it cannot model the behavior of
interest. A balanced approach is indicated, with both Algorithm and Implementation
reduced only as far as necessary to achieve computational feasibility while pursuing the
goal specified by the Computation level.

The fundamental problem in developing neutrally plausible computational models
of cognition lies in the conceptual distance between cognitive behavior and individual
neurons. Cognitive behavior necessarily involves the interaction of large enough
numbers of neurons to make direct and accurate small-scale modeling impractical. But
simplifying the model in terms of structure or function presents the risk of eliminating
whatever interactions give rise to the behavior of interest, while ignoring the structural
details of the natural system. This creates the problem that the model of the behavior is
based on the modeler’s theoretical understanding of the behavior, which might not align
with the reality of how the natural system operates. Given that one purpose of modeling
is to test and refine theoretical assumptions, developing a model based primarily on those

theoretical assumptions restricts the falsifiability of the model.
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Chapter 4 explores some ideas that could lead to more effective models of
phonemic acquisition. The potential role of animal studies is examined in some detail,
and the goal at the Computation level is questioned. Finally, a reexamination of Marr’s
three levels suggests a slightly different perspective on the evaluation of acquisition

models.
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CHAPTER 4

Proposals for a Model of Phonemic Acquisition

4.1 Model Complexity

Every model that is expected to achieve a goal needs an appropriate degree of
total complexity, although that complexity can be distributed differently across varied
parts of the model. No model should be as complex as the system it is intended to model.
The most obvious reason is that the added complexity is unnecessary to the task, as
evidenced by the existence of a simpler system that performs that same task. Another
reason is that models are intended to give the modeler some insight into the operation of
the system being modeled. It is easier to see patterns in and draw conclusions from a
model that is relatively straightforward in its details. But focusing on the analyzability of
the model to the extent that it is simplified beyond its ability to perform its function
defeats the purpose of modeling. The total model complexity must be sufficient to
complete the task. Model complexity can be divided into complexity of structure and
complexity of process, as intimated in Chapter 3. Simplifying a model on one of these
dimensions requires making it more complex on the other. Take as an example a binary
branching tree with three nodes labeled “A”, “B”, and “C” (Fig. 4.1a). Imagine that the
goal is to generate all six possible permutations of those three labels. With a very simple
flat, binary branching structure, permutation of the labels requires a number of processes.
There must be processes to insert a new node (Fig. 4.1b), move a label from its position

to the new node (Fig. 4.1c), and then delete the old node (Fig. 4.1d).
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Fig. 4.1a — Binary branching tree with nodes A, B, and C.

Fig. 4.1b — Inserting a node.

Fig. 4.1c — Moving C from one node to another.
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Fig. 4.1d — Deleting the empty node
There might need to be a process for determining how nodes can cross each other.
Finally, there must be a governing process that tracks the movements of the labels to
avoid duplicate permutations and ensure that the complete set is generated. (Compare
this to the stopping problem discussed in Chapter 2 — the difficulty, in a clustering
algorithm, of deciding when to stop forming new clusters.) The structurally simple
model is paired with a fairly complex process, and the total complexity is sufficient to
complete the task. What if, instead, we move some of the total complexity from the
process to the structure? Consider a tetrahedron — a triangular-based pyramid —
suspended from its top point. Depending from the remaining vertices are labels, “A”,
“B”, and “C”. The sequence is to be read from left to right at the level of the labels. In
one possible arrangement, one would see “A” hanging from the vertex that is close and to
the left, “B” hanging from the vertex that is far and centered, and “C” hanging from the

vertex that is close and to the right, for the sequence “ABC” (Fig. 4.2a).

A B C

Fig.42a—- A tetrahedral permutation-generator
in physical and schematic versions.
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This is a more complex structure than the binary-branching tree, but generating
the full set of permutations can be accomplished with a much simpler process. The only
step that is needed is to rotate the tetrahedron 60 degrees in one direction. Rotating the
above arrangmement 60 degrees moves the front left “A” to the center back position, the
front right “C” to the front left position, and the center back “B” to the front right

position, giving a new sequence of “ACB” (Fig. 4.2b).

A C B
I
Fig. 4.2b — 60 degree rotation of ABC yields ACB.

Repeating the simple rotation generates all six permutations (Figs. 4.2¢-4.2f).

 d C A B
Fig. 4.2c — 60 degree rotation of ACB results in CAB.

) C B A
Fig. 4.2d — Next rotation gives CBA.
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Fig. 4.2f — And, finally, BAC. One
more rotation will return to ABC.

The concept of balancing complexity of structure and process provides a useful
perspective when analyzing computational models. Note that structure and process are
roughly analogous to the Implementation and Algorithm levels of Marr’s style of
analysis.

A question that must be answered in the process of designing any model is what
degree of total complexity is necessary. This is intended as a philosophical question with
no suggestion that complexity needs to be explicitly quantified. With a well-defined
goal, one can, in principle, approach the question empirically from one end or the other.
One could start with a simple model and incrementally make its parts more complex until
it manages the desired goal. One could also start with a complex model and
incrementally simplify its parts until it loses the ability to perform its task. N reality,

practical constraints make both of these approaches untenable, and model details are
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driven by theoretical considerations. The primary differences between the models
discussed so far are based on differing theoretical concerns.
4.2 Quick Review

Chapters 2 and 3 examined both information theoretic and neural-based models in
terms of Marr’s three levels of analysis. To achieve the goal of developing a
computational process that learns to categorize and label phonemes quickly and
accurately, very well-established and successful models have been developed based on
the information theoretic approach of Shannon (1948) and the style of neural network
developed from Rosenblatt’s (1958) work. These models reduce the complexity of the
natural neural process sufficiently to remain computationally feasible while still
maintaining enough complexity to produce acceptable results. However, for the very
different goal of modeling the acquisition process that infants go through, rather than
simply producing similar end results, a greater degree of similarity to the natural process
is desirable. For this goal, existing information theory models fall short on the
Implementation and Algorithm levels. The involve structures that are related to the
structure of the target system only in the most abstract way. Their algorithms are also far
removed from the functioning of a natural neural system.

Computational cognitive neuroscience models fare much better under analysis at
the Implementation and Algorithm levels. They are designed with actual biological
neural networks in mind, so they adopt simplifications of structure and process only to
the extent necessary to allow for computational execution. The goal of these models is
not to simply reproduce the output of the natural system. Instead, the goal is to

reproduce, as faithfully as practical, the structure and functioning of the natural system
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with success measured by how closely the behavior of the model matches that of the
system on all levels. Whereas the information theoretic models focus on the
Computation level of analysis and accept broad deviation on the Algorithm and
Implementation levels, cognitive neuroscience models attempt to succeed on all three
levels.
4.3  Modeling Goals

For the purposes of this dissertation, the goal of developing a model of phonemic
acquisition in infants is to model the infant’s acquisition process. Modeling the end
result of the process of acquisition is a different goal, more in line with the models that
are intended to provide some language-related functionality. Our goal is to model the
process that the infant goes through. The first departure from the models previously
discussed comes from a recognition that those models fail at the Computation level.
Marr’s first level of analysis is intended to define the goal, the input and output, the
reason for modeling. The behavior of existing models of acquisition suggests that the
goal is to convert an acoustic input into a phonemic label of some sort. Naturally, the
acoustic input is intended to be analogous to what the infant hears. Determining the
analog of the phonemic label requires some discussion. In toy models, one imagines the
output being an actual label, such as [a] or [z], flashed on the screen. The label is clearly
intended to give evidence of the model’s success in a way that is easily interpreted by the
researcher. The infant merely recognizes that two tokens belong to the same class. The
infant is performing a categorization task, which implies the formation of categories, not
the principled labeling or analysis of those categories. But is this a valid task to assign an

infant? Do infants actually form phonemic categories? This may seem like a silly
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question, since infants eventually learn to distinguish phonemes, but there is evidence
that they learn to distinguish features during this same process. White (2008) showed
that nineteenth-month-olds presented with mispronunciations of familiar object names
showed sensitivity to the degree of mispronunciation. Degree of mispronunciation was
measured in the number of features of the word-initial consonant that were changed —
place alone; place and voicing; or place, voicing, and manner. It seems plausible that,
while infants are learning to distinguish [f] from [g], they are also necessarily learning to
distinguish [labiodental] from [velar], [-voice] from [+voice], and [+fricative] from
[+stop]. The problem with computational models of phonemic acquisition is that they
have the hypothetical infant perform only one of these tasks. Either the infant learns to
transform acoustic information in a way that identifies phonemes, or the infant learns
transformations to identify acoustic features and then learns to combine those features
into bundles representing phonemes. I propose that both of these perspectives are flawed,
in that they posit an unrealistically complex task. The task of learning to categorize
phonemes can be broken down into a sequence of simpler tasks that are much more in
line with what dynamic neural networks excel at.

4.3.1 Supervision

The process of converting an acoustic input into a label that can be right or wrong
implies some sort of supervised learning. One could argue that no learning is wholly
unsupervised, since one learns in the context of an environment that provides both the
motivation for learning and the corrective mechanisms for learning expected categories
and rejecting infelicitous possibilities. However, this implies too much knowledge on the

part of the infant. Supervised learning requires a directed interaction between the learner
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and the supervisor, whether it is an explicit instructor or simply the learning environment.
The infant must know to react to corrective information from the environment in a way
that spurs a reevaluation of the information the infant is trying to learn. This is a variant
of the labeling problem in syntactic acquisition, in which the learner cannot know to
apply a label to a category without an understanding of what that category is, but that
understanding eliminates the need for the label (Landau, 1985; White, 2017). I propose
that the infant learner initially has the much more straightforward task of simply
modeling the acoustic input.

4.3.2 Revising the Goal

This concept is easier to understand when one abandons the notion that the learner
acts on the input and considers that the learner initially simply interacts with the input. A
set of connected neurons with some number of parameters including connection weights,
activation thresholds, and spike rates can be analyzed as a multi-dimensional surface — a
state space — with each point on the surface representing a possible state of the system.
Because the elements of this system are interconnected — because there is feedback — any
input applied to the system will propagate through the system and cause changes to the
behavior of the elements. In any system that can be described with a set of differential
equations, the dynamics of the system can run to infinity, reach an equilibrium, oscillate
between two of more values, or behave chaotically. Because actual neurons are subject
to physical constraints like real-time movement of ions, time from baseline to threshold,
and timing of the post-spike refractory period, they are prevented from exceeding certain
extremes of behavior. A neuron simply cannot fire faster than its maximum spike rate,

regardless of what input it gets. The natural, physical limiting factors prevent a network
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of neurons from running to infinity. This leaves equilibrium, oscillation, and chaos as the
only possible behaviors. It is well understood that learning in neurons takes place
through a facilitating effect in synapses that have recently fired (Kandel, 2000). In other
words, connections that are used are strengthened, while connections that are not used are
weakened and eventually culled. The state space — the multidimensional surface
representing the states of the set of neurons — will find itself more frequently conforming
to the shapes that correspond to frequent inputs. One could extend the state space by one
dimension and, for each point in the state space, i.e., for each possible state, set the new
dimension equal to the probability that the state occurs. The result would be a probability
density map over the state space. Over time, as the system responds to the inputs it
receives, propagates those signals through the network, and strengthens the participating
connections, the probability density map over the state space will begin to correlate
strongly with a probability density map over the input. This process, without supervision,
without direction, without any goal beyond each neuron behaving as neurons behave in
response to differential input, results in the system creating a model of the input. The
configurations of the model may not be interpretable to the researcher, but the sstem has
essentially developed a way to translate acoustic input into its “neural language”. At this
point, the infant “knows” something about input categories in the sense that brain states
vary predictably in response to different inputs. This is when the infant has enough
information to begin acting as if categories exist, because there exist different brain states
that are correlated with the categories of interest.

4.3.3 Secondary Goal
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Once this initial process is completed, the model is free to engage in the
supervised process of generating labels in response to inputs. From the model’s
perspective, that process is not “Learn to associate this label with this input.” Instead, it
is “When you find yourself in the state that results from receiving this input, produce this
label.” That is a much easier task, because it does not connect unknown labels with
unknown inputs, but rather associates unknown labels with known states. One effect of
this two-part process is that the modeler does not have to choose whether the model will
learn phonemes or features. The model learns acoustic distributions and can be taught
any relevant category. The model can be taught to produce the labels [m] and [n] as
appropriate. It can also be taught that the states associated with those inputs can produce
the label [+nasal]. We can’t necessarily know if, when exposed to inputs [m] and [n], the
model enters states that have meaningful similarities on some dimension that are
effectively the neural correlate of the label [+nasal]. The fact that the network has
learned to model acoustic space — more to the point, it has become a model of acoustic
space — would suggest that this might be the case, but it is conceivable that the model
would be nudged into entirely different states for [m] and [n] and would simply learn that
both of those states suggest the label [+nasal]. This should be the case with allophones.

Allophones are acoustically distinct speech sounds that count as the same
phoneme, i.e., they are never the sole segment distinction between words with different
meaning. Alveolar [t], dental [t], aspirated [t], and glottalized [t] have significant
acoustic differences, which places them at different locations in a multidimensional
acoustic space. For a clustering algorithm intended to define or discover phonemic

clusters, these four distinct groups of acoustic tokens present a problem. They will
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appear as four separate clusters because of their acoustic differences but, as variants of
the same phoneme, they should be assigned to the same cluster. If the model somehow
decides to disregard the acoustic dimensions that correspond to “alveolar” and “dental”, it
might lose the ability to distinguish other phoneme classes. In any case, the contextual
disregard for a particular acoustic dimension requires knowledge of the context — the
phonemic class. If this information is made available to a clustering model, then it is
essentially being told which clusters to find. The model being elaborated here sidesteps
this problem in a simple way. It should recognize that the four allophones listed above
are acoustically distinct tokens, given that it has essentially become a model of acoustic
space. However, in the second round of training, the model would learn to produce the
label [t] for each of those acoustic events. The state that it finds itself in after being
exposed to an alveolar [t] input would cause it to produce the label [t]. The different state
it finds itself in after being exposed to a dental [t] would also cause it to produce the label
[t]. It recognizes the difference between allophones, because of their acoustic
distinctness, but it produces the appropriate phonemic label, because the specifics of the
acoustics have been decoupled from the labeling process. This departs from other models
of phonemic acquisition, in which the system is expected to develop a single
mathematical transformation from several acoustically distinct allophones to a single
label. The proposed model is much more satisfying in its ability to recognize the
differences between allophones but still label them appropriately.

4.3.4 Opverfitting
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Overfitting occurs when a learning model is too precise in its treatment of a
training dataset to the detriment of its performance on test data. Fig. 4.3 illustrates

overfitting in the context of separating two sets of points.

Fig. 4.3 — Overfitting (green line) vs more
conservative curve (black line)

The red and blue dots overlap at the boundary, suggesting that the categories are
not wholly distinct or that there is a missing dimension that could disambiguate the
tokens near the boundary. The black curve separates the blue and red dots with a small
degree of error — some dots end up in the wrong group. The green line reflects an attempt
to separate the blue and red dots without error. It meanders through the boundary area
with the sole goal of having all the blue dots on one side and the red on the other. This
scheme can cause problems in dealing with later data. Assuming this training dataset is
representative of the complete set of data, any randomly selected subset of sufficient size
will have some overlap near the boundary. The black curve accepts that there will be
some error, imposes a separation that reflects the general trend in the data, and probably
produces the same degree of error in any subset of the data. The green line tries to reduce
the error to zero but fails to accommodate for the fact that other subsets of data will have
different overlap at the boundary, rendering the green line at least as error prone as the

black one, but with an unjustifiably complex shape. As Chicco (2017, p. 17) explains:
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“Overfitting happens as a result of the statistical model having to

solve two problems. During training, it has to minimize its performance

error. But during testing, it has to maximize its skills to make correct

predictions on unseen data. This ‘double goal’ might lead the model to

memorize the training dataset, instead of learning its data trend, which

should be its main task.”

Because the proposed model’s first task is not to identify clusters, but to learn to
model the input, there is no opportunity for overfitting, because there is no fitting to
begin with. Any ambiguity that exists in the input will be reflected in the model of the

input. In the second stage, when the model is learning to generate labels in response to

its internal states, there will be some degree of error, reflecting the noise in the input.

4.4  Empirical Evidence

In determining the structure of a model, it would be useful to look to animal
models for neural correlates of speech perception. As mentioned previously, the question
of whether non-human animals use anything like language presents problems for the use
of animal models. Nevertheless, chinchillas and monkeys have been shown to be
sensitive to certain speech contrasts, so there is some potential for animal brain studies to
provide useful information. One of the strongest areas of research in this vein involves
voice onset time and categorical perception.

4.4.1 Categorical Perception

Let us define “categorical perception” as the inability to distinguish tokens that
vary along a continuum if the tokens fall on the same side of some perceptual midpoint
on that continuum, coupled with the ability to distinguish the tokens if they fall on

opposite sides of that perceptual midpoint. Let us further define “continuous perception”
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as the ability to distinguish two tokens that vary sufficiently on the measured dimension,
regardless of their position on the continuum.

One classic example is VOT — voice onset time — as the primary distinguishing
characteristic between voiced and voiceless plosives followed by vowels. For example,
in English, the bilabial plosives /b/ and /p/ are said to differ in the voicing feature, with
/b/ considered voiced and /p/ considered voiceless. Since the production of each of these
phonemes consists of blocking airflow by pressing the lips together, allowing air pressure
to build up behind the lips, and releasing the pent up pressure in a burst, there is no direct
involvement of the vocal folds, voicing does not come into play in this part of the
articulatory gesture. English phonotactics do not allow a voiceless phoneme to
immediately follow a syllable-initial bilabial plosive. Since speech consists not of
individually and discretely articulated phonemes, but rather of a continuous stream of
gestures altering the acoustic signal, the time between the release of the bilabial closure
of /b/ or /p/ and the initiation of voicing of the next phoneme provides a distinguishing
characteristic between /b/ and /p/. This characteristic is known as voice onset time
(VOT) and is measured in milliseconds. The syllable /ba/ will typically have a space of 0
to 10 milliseconds between the release of the bilabial closure (at the end of /b/) and the
onset of voicing in the vowel, /a/ -- a VOT of between Oms and 10ms. For a /pa/ syllable,
more time is left between the two events, yielding a VOT in the neighborhood of 80-
90ms.

Since the physiological mechanisms underlying the release of the bilabial closure
and the initiation of voicing are independent of each other, and it is possible to produce

VOTs of Oms and of 90ms, it is clearly possible to produce VOTs between these
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extremes. It is also possible to artificially alter tokens to have a desired VOT, by
inserting or deleting space between the release of the stop and the onset of timing. If, for
the sake of argument, we define the canonical /ba/ syllable as having a VOT of 10ms and
the canonical /pa/ syllable as having a VOT of 90ms, a question arises regarding the
identification of non-canonical tokens. If an adult speaker of English hears a token with a
VOT of 30ms, will she perceive it as a slightly anomalous production of canonical /ba/ or
will she subconsciously disregard the slightly longer VOT and perceive the token as a
canonical /ba/, even though it is imperfect? One can easily grasp the benefit of having a
speech perception system that suppresses conscious awareness of small deviations from
the norm, relying instead on recognizing productions that are “close enough”. There is
significant evidence suggesting that, at least on the dimension of VOT, English speakers
have categorical perception, i.e., they perceive /ba/ or /pa/, even when exposed to
intermediate tokens that are, at best, mediocre versions of canonical /ba/ or /pa/. This
categorical perception was demonstrated in an experiment (Lieberman, 1967) using a
discrimination task. Subjects heard pairs of tokens, differing in VOT by 10ms. So, one
pair might have VOTs of 10ms and 20ms, while another had VOTs of 70ms and 80ms.
The subjects did not know that the tokens varied in VOT and were simply assigned the
task of saying whether the two tokens were the same or different. There is a sharp
increase in the number of subjects who could distinguish the tokens whose VOTs
straddled a perceptual transition point of 40ms. This result shows that English speakers
perceive measurably distinct tokens as identical, as long as they sit on the same side of a

continuum.

105



A different experimental design has also been used to demonstrate categorical
perception, but flaws in the design render the results inconclusive. This experiment
design relies on an identification task. The subject is exposed to tokens of the type
described above, with VOTs ranging from Oms to 90ms. The task is to press one key or
lever if the token is perceived as /ba/ and another if it is perceived as /pa/. The
percentage of tokens identified as /pa/ as a function of VOT yields a familiar sigmoid
curve. The tokens with lower VOT values are identified as /pa/ virtually none of the
time, while the tokens with higher VOT values are identified as /pa/ virtually all of the
time. The transition is at around 40ms and is relatively sharp. It is best understood as a
step function with some degree of variability around the transition point, yielding a
sigmoid graph. This result is interpreted as demonstrating categorical perception in
humans. Although humans do show categorical perception, as demonstrated by the
discrimination experiment, this identification task neither supports nor refutes the
existence of categorical perception.

The design of this experiment contains a fundamental flaw that renders its results
uninterpretable. The hypothesis is that the subjects have categorical perception. The test
seems designed to confirm this hypothesis. However, experiments should be designed to
confirm the null hypothesis — the logical statement that is necessarily false in every case
where the hypothesis is true. In this case, the null hypothesis is that the subjects have
continuous perception, i.e., that they can distinguish tokens with different VOT, with
some degree of precision. Imagine a subject that is instructed to press the left lever
whenever it hears a canonical /ba/ token with a VOT of Oms and the right lever whenever

it hears a canonical /pa/ token with a VOT of 90ms. Imagine further that the subject is
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perfectly capable of distinguishing tokens with VOTs of Oms, 10ms, 20ms, and so forth,
all the way up to 90ms. If, during the experiment, the subject hears a token with a VOT
of 30ms, what should the subject do? The token is recognized as somewhat anomalous,
but there are only two lever choices. Presumably, the subject would select the lever
corresponding to the canonical token that is closest to the anomalous token. In this way,
all tokens that seem closer to /ba/ will be identified as /ba/, and all tokens that seem closer
to /pa/ will be identified as /pa/, simply because there is no alternative. The result for a
subject with continuous perception should look exactly the same as the result for a
subject with categorical perception — all /ba/ with a fairly sharp transition at the
perceptual midpoint, followed by all /pa/.

This type of experiment is useful in determining the perceptual midpoint, which is
a factor of interests to compare between humans and other animals. Kuhl (1978) tested
chinchillas’ response to VOT differences with a forced choice experiment, and wrongly
concluded that chinchillas have categorical perception on this measure. The better
conclusion is that chinchillas seem to perceive the midpoint between /ba/ and /pa/ at
around 40ms, just like humans.

4.4.2 Other Animal Experiments

Other animal experiments demonstrate that non-human animals can discriminate a
variety of speech sound contrasts. Kuhl and Padden (1982, 1983) used a discrimination
task to test macaques, a species of Old World monkeys, for categorical perception. They
appear to show similar perception to humans, suggesting that the categorical perception
of VOT might stem from natural limitations in the response of the auditory system to

simple acoustic differences.
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However, although macaques may show categorical perception, it appears that
monkeys are generally less sensitive to VOT differences than humans (Sinnot & Adams,
1987). This could be due to different physical constraints in the perceptual system of
humans, as compared to monkeys. It could also be that humans and monkeys are
working with very similar perceptual systems, but humans, as language users, undergo a
language-specific refinement of the underlying system.

The complexity of the speech code is another issue of interest in comparing
humans to other animals. Monkeys are considerably less sensitive than humans to
differences in pure sine wave tones, but they perform similarly to humans in
discriminating vowels (Sinnott and Kreiter, 1991). While the reason for this is unclear, it
suggests that the speech signal, in interaction with the perceptual system, is more than the
sum of its parts.

The preceding suggests that non-human animals can perceive many of the
differences that are important to speech, and that they sometimes resemble humans very
closely in their perceptual abilities. A related question is whether non-human animals
can be trained to recognize phonemic contrasts. Hienz and Bradley (1988) trained
baboons to distinguish five synthetic steady-state vowels (/a/, /&/, /o/, /u/, and /¢/), which
they could eventually do with 95% to 100% accuracy. Sinnott (1989) trained monkeys to
distinguish ten synthetic steady-state vowels. The monkeys performed similarly to
humans on front vowels, but struggled comparatively with back vowels.

All of these experiments demonstrate that non-human animals, especially other
primates, are able to discriminate some speech contrasts without training, and are also

able to learn some other speech contrasts. It is important to recognize that every auditory

108



system is intended to discriminate sounds, and speech is made up of sounds. The ability
of a monkey to discriminate sounds that humans use in speech is not necessarily the same
as discriminating speech sounds. However, for the purposes of the proposed model,
finding neural correlates of sound discrimination can help.

4.4.3 Neural Correlates

In a series of experiments on monkeys, small neural complexes have been
implicated in the discrimination of sounds from speech. Steinschneider (1982) measured
multiple unit activity (MUA), the average activity of a small set of neurons, in the
primary auditory cortex and thalamocortical fibers of awake monkeys. Thalamocortical
fibers are connections between the thalamus and the cortex, and have been implicated in
the processing of sound. The subjects were exposed to synthetic syllables /ba/, /da/, and
/ta/, as well as a click noise, and the activity of the two types of brain cells was recorded.

Fig. 4.4 shows the differential responses to the various inputs.
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Fig. 8. MUA at 4 progressively deeper sites in an electrode pass through posterior auditory koniocortex illustrates response pattern
differences between thalamocortical fibers and cortical cells (see text for description). Thalamocortical axon responses at site D
reflect consonant place of articulation, as the early response to /ba/ is larger than those to /da/ and /ta/. Activity during the later
acoustically identical portions of faf also differs across syllables, illustrating effects on following vowel responses by preceding
consonants. Note double-peaked response at site C to clicks and to each pitch period of the syllables.
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Fig. 4.4 — From Steinschneider (1982, p361).

Thalamocortical responses correlate with place of articulation, while the cortical
response encodes other aspects of the speech signal. “Stimulus parameters that play a
role in the differential perception of stop CV syllables are expressed in the temporal
patterning of activity within the auditory radiations and cortex, sites necessary for speech
decoding. Perceptually significant parameters that are reflected in the neural responses
include fundamental frequency, VOT, place of articulations, and voiced formant
transition duration” (ibid., p.362).

Steinschneider (1989) tested monkeys’ responses to the formants in /da/, /ba/, and

/ta/ syllables. There was a difference in response to steady state formants and to formant
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transitions indicating the place of articulation of the onset consonants. Steinschneider
posits that the interaction between the different patterns in the auditory cortex and the
thalamocortical cells could provide a stronger contrast in the response to complex stimuli
that differ only in subtle ways. Later research in this sequence (Steinschneider, 1993,
1995) demonstrates specific neuron responses that correlate with the perceptual boundary
in VOT between /ba/ and /da/ syllables, and with the consonant burst and the onset of
voicing. Steinschneider (1999), this time working with human epilepsy patients, suggests
that the categorical perception of stop consonants might be driven by temporal processing
limitations within the auditory cortex. This is reinforced by experiments on monkeys
exposed to two-tone complexes with variable tone onset time (TOT). These are simply
pairs of tones that vary in their temporal relationship to each other. The first tone stands
in for the plosive burst in a VOT experiment, while the second tone represents the onset
of voicing (Steinschneider, 2005). The signal recorded from the monkeys’ brains fails to
show a difference in the response to tokens with TOT smaller than 20ms.
4.5  Designing the Model

In order to design a model of the type that has been hinted at in this chapter,
several steps are necessary. The basic model element should be something along the
lines of a Rulkov map — a relatively simple construct that can exhibit much of the spiking
behavior of actual neurons. In light of Steinschneider’s demonstration that different
types of neurons are implicated in auditory processing, the Rulkov maps should be
adjusted to reflect the behavior of the type of cell they are mimicking — auditory cortex
neurons or thalamocortical fibers. The number of cells accessed by the multiple unit

activity (MUA) process used by Steinschneider should be duplicated in a network of
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Rulkov maps, with their interconnectedness determined by what is known of the network
structure of the auditory cortex and the relevant thalamus neurons. At this point, the
model network can serve as a monkey in one of Steinschneider’s experiments. With
known stimuli and (roughly) known structure, one need only tweak the Rulkov map
parameters until the network behavior is similar to that seen in monkey subjects. This
process of refinement should continue, along with any necessary structural extensions to
the model, until it accommodates all relevant experimental data from direct recordings of
neural responses to speech sounds.

The cited research focuses primarily on VOT in categorical perception, but
similar experiments could, in principle, be performed for any acoustic feature that
distinguishes speech sounds. Eventually, a single model should exhibit all the behavior
discovered from animal studies.

Further animal studies can illuminate the next step. Chinchillas or monkeys
should be trained to distinguish those speech contrasts that do not appear to be solely
byproducts of perceptual limitations. The differences in neural behavior before and after
training should give an indication of the way biological neural networks encode learned
speech differences. This should, of course, inform an extension of the structure of the
model, including a scheme for updating model parameters.

4.6  Marr Revisited

In terms of Marr’s three levels of analysis, this type of model satisfies the
Implementation level as well as a computational cognitive neuroscience model, because it
is that type of model. It is also identical to that type of model at the lower end of the

Algorithm level. The neurons, or their analogs, behave exactly as they would in any
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other type of dynamic model. The model diverges from other dynamic cognitive models
at the higher end of the Algorithm level. This is because of the interaction between the
Computation and Algorithm levels and the change to the Computation level. The change
to the Computation level involves limiting the model’s task to what infants are logically
capable of doing, and this has an influence on the operation at the Algorithm level. The
perspective adopted in some other models of phonemic acquisition focuses too much on
the knowledge of the researcher or the expected knowledge of the adult language user,
and not enough on the limitations of the infant. One alternative resolution to the excess
focus on the researcher is to claim that the infant has access to the relevant knowledge of
the researcher. This is essentially a nativist position that claims that the infant is born
with an innate understanding of the categories to be formed, and is only required to find
boundaries and apply labels. This is an unsatisfying approach, because it answers the
question of why things work the way they do by simply asserting that they do.

One aspect of Marr’s three levels to bear in mind during any analysis of a model
is that they are not levels of the model; they are levels of analysis (Bechtel, 2015). They
do not represent a requirement that models have discrete Implementation and Algorithm
levels. Instead, Marr’s three levels offer a systematic way of looking at a model. While
the three levels offer distinct perspectives on a model, they are also interrelated (ibid., p.
320). As illustrated at the beginning of this chapter, model complexity can be distributed
across model structure and model process in various ways. In biological neural networks,
while it is easy to talk about the physical structure of a neuron as a set of facts distinct
from the generation and transmission of action potentials, the reality is that these sets of

facts are intimately interrelated. A strict separation between structure and process would
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suggest that the existence of an ion is intrinsically distinct from the fact that the neuron
has a charge. At this low level, the melding of structure and process is clear, but it
persists at higher levels. In a biological neural network, as well as Rulkov-style models
of these networks, the behavior of the set of neurons is determined by their individual and
collective structure which, in turn is altered by their behavior. This circularity can break
down the distinctions between the Implementation and Algorithm levels. Just like
linguistic models should model processes rather than the researcher’s theories about the
processes, Marr’s three levels should be used to guide the analysis of the model, but
model itself should be based on knowledge of the actual system being modeled.
4.7 Summary

This chapter has offered some sources of empirical evidence to inform neural
models of acquisition, and suggested some reassessment of the goals of such models.

The fifth and final chapter will briefly review the ideas presented in this dissertation.
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CHAPTER 5

Conclusion

5.1 Overview

This dissertation has reviewed two very different classes of models that can be
used to illustrate linguistic behavior, especially acquisition. One class has its roots in
Information Theory (Shannon, 1948) and is further divided into those inspired by
mathematical functions intended to lead to quick and accurate results, and those inspired
by the behavior of neurons, but not their physics (Rosenblatt, 1958). This Information
Theory approach focuses on the flow of relevant information through the system and its
ultimate application to a categorization decision (Beer and Williams, 2015). The other
class is intended to mimic the physical behavior of neurons, with some necessary degree
of simplification (Ashby, 2011), and inspires an analysis of geometrical and temporal
relationships underlying model behavior (Beer and Williams, 2015).

An analysis of these different model types under Marr’s (1982) three levels
suggests that the Information Theory models do not fare well at the Implementation of
Algorithm levels, although the perceptron types do somewhat better with
Implementation. It is argued that all of these models fail under the Computation level,
because they identify a mistaken goal of mapping acoustic input to labels. Infants do
learn to do this, but the process is broken down into simpler steps. I propose that models
should adopt the biological plausibility of computational cognitive neuroscience models,
but adapt the training paradigm to reflect the realities of what infants are logically
capable of doing.

5.2 Future Directions
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Clearly, any discussion of model adjustments or innovation should be followed by
the construction and testing of the proposed model. Selection of a computational
cognitive neuroscience model on which to base the new model will itself be the subject of
much exploration and empirical testing. The Rulkov-style maps discussed in Chapter 3
offer a promising starting point. The animal research of Steinschneider and others
presented in Chapter 4 offers a practical low-level target for the development and
refinement of a neural model. This notion of mimicking the actual system at the lowest
practical levels can be applied at other stages.

Given the thesis that a model of phonemic acquisition should closely follow the
neural behavior of an infant, it would be prudent to revisit the acoustic processing that the
input undergoes before it is fed to a model. The methods of preparing acoustic data for
presentation to a model are well-established, but that does not mean they should not be
changed. We certainly know enough about the function of the inner ear to model it more
directly than the mathematical approximations we currently use.

Eventually, an acquisition model must express the fact that phonemic acquisition,
like acquisition of any aspect of language, does not occur in a vacuum. Moulin-Frier
(2014) describes the role of intrinsic motivation or curiosity in vocal development. The
interaction of production and perception or motor and sensory modalities has an impact
on the development of phonemic categories (Oudeyer, 2002, 2005). The types of models
considered here could eventually be extended to include the influence of production, but
that is clearly a task for later. These models would be hard pressed to include curiosity as
a parameter, but it should be remembered that every process relies in part on extrinsic

information and a model will experience some error in the absence of that information.
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An incremental approach is warranted, perhaps including well-studied sensory
modalities, like vision. For example, a model that can learn the phonemes of color words
while getting regular visual input that corresponds to the audio input would begin to tie
together the supervisory aspects of non-linguistic data over linguistic cognitive tasks.

In the end, the hope is that the ideas presented here will inform more valid models

that will help us develop our understanding of the near miracle of language acquisition.
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