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Abstract. We propose a novel complex-analytic method for sums of i.i.d. random variables
that are heavy-tailed and integer-valued. The method combines singularity analysis, Lindelöf

integrals, and bivariate saddle points. As an application, we prove three theorems on precise

large and moderate deviations which provide a local variant of a result by S. V. Nagaev (1973).
The theorems generalize five theorems by A. V. Nagaev (1968) on stretched exponential laws

p(k) = c exp(−kα) and apply to logarithmic hazard functions c exp(−(log k)β), β > 2; they cover

the big jump domain as well as the small steps domain. The analytic proof is complemented by
clear probabilistic heuristics. Critical sequences are determined with a non-convex variational

problem.

1. Introduction

The motivation of the present article is two-fold. First, we present a new analytic method for
the investigation of large powers of generating functions of sequences that satisfy some analyticity
and log-convexity conditions. The method is explained and developed for probability generating
functions but it has potentially broader applications and is motivated by techniques commonly
used in analytic combinatorics [11]. Specifically, we show that methods akin to singularity analysis
can be pushed beyond the realm of functions amenable to singularity analysis in the sense of [11,
Chapter VI.1].

Second, we explore consequences for probabilistic limit laws and prove three theorems on precise
large and moderate deviations for sums of independent identically distributed (i.i.d.) random
variables that are heavy-tailed [7] and integer-valued. The theorems generalize results on stretched
exponential laws by A. V. Nagaev [15] which have recently attracted interest in the context of the
zero-range process [2]. They are close in spirit to results by S. V. Nagaev [17], however with more
concrete conditions on the domain of validity of the theorems, and provide deviations results “on
the whole axis” [20]. Our assumptions are more restrictive than one may wish from a probabilistic
perspective; in return, they allow for sharp results and may provide a helpful class of explicit
reference examples. For example, we prove that one of the bounds of the (local) big-jump domain
for logarithmic hazard functions derived in [4] is sharp.

The analytic proof of the theorems is complemented by clear probabilistic heuristics. Our results
cover different regimes: a small steps or moderate deviations regime, where a classical variant of a
local central limit theorem with corrections expressed with the Cramér series holds [12], and a big-
jump regime where the large deviation is realized by making one out of the n variables large. In the
language of statistical mechanics and the zero-range process, they correspond to supersaturated
gas and a condensed phase [2]. The critical scales that distinguish between regimes are defined with
the help of a non-convex variational problem which encodes competing probabilistic effects. The
variational problem has been analyzed before [15, 20], our strong assumptions on the probability
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weights allow for a detailed analysis. Our results are further facilitated by the non-negativity of
the random variables, which dispenses us from dealing with left tails.

The study of combinatorial generating functions shares much in common with the study of
probability generating functions; in fact in many instances they coincide or run parallel as is
the case for more recent investigations in the area of random combinatorial structures [1]. From
the viewpoint of complex function theory the key here involves relating asymptotic questions
to questions about the nature of the singularities of generating functions viewed as more global
analytic objects. In most of the successful applications of this singularity analysis to coefficient
asymptotics a bridge is provided by the realization that the series in question satisfies some global
algebraic or differential equation. Generating functions for which this is the case are referred
to as holonomic. Pushing beyond this class in a systematic way requires new ideas and one of
the most promising of these is the use of Lindelöf integrals. Lindelöf introduced these classically
[13] as a means to constructively carry out analytic continuations of function elements (series)
in a fairly general setting. In more recent times his construction has begun to be used to study
non-holonomic combinatorial generating functions [10]. The generating functions for heavy-tailed
distributions studied in this paper are of non-holonomic type and our methods of studying them
show a new application of Lindelöf’s construction that has novel connections to other areas of
analytic asymptotic analysis such as bivariate steepest descent. In future work we hope to build
on the present article in a way that broadens the application of harmonic analysis and complex
function theory to problems of asymptotic analysis in both probability and combinatorics, such as
applying the theory of Hardy spaces and Riemann-Hilbert analysis and extensions of Tauberian
theorems as originally envisioned by Paley and Wiener [9].

Our proof shares some features with [17], where cumulative distribution functions are approx-
imate Laplace transforms and approximating moment generating function admit analytic exten-
sions. Contour integrals that appear in inversion formulas are deformed and analyzed by Gaussian
approximation—our proof details in Section 5.4 follow [17]. There are, however, key differences:
we need not deal with approximation errors because of stronger analyticity assumptions, and
our detailed analysis of the underlying variational problem allows us to formulate more concrete
conditions for our theorems.

The remainder of this article is organized as follows. In Section 2 we formulate our main results
and discuss applications to stretched exponential weights c exp(−kα)) and weights c exp(−(log x)β)
with logarithmic hazard functions. In Section 3 we explain the proof strategy in five steps, which
are treated in detail in the remaining sections. Steps 1 and 2 concern analytic extensions and
notably use the Lindelöf and Bromwich integrals (Section 4). Steps 4 and 5 analyze the critical
points of a bivariate function and deal with the Gaussian approximation to a double integral
(Section 5). The pivotal Step 3 connects the contour integral and the bivariate double integral; it
leads to the full proof of our theorems that can be found in Section 6.

2. Results

We use the notation an ∼ bn if an = (1 + o(1))bn and an � bn if an = o(bn).

2.1. Preliminaries. In order to formulate the results, we need to introduce critical sequences
deduced from a variational problem and the Cramér series. Let X,X1, X2, . . . be independent,
identically distributed random variables with values in N and law

P(X = k) = p(k) = exp(−q(k)) (k ∈ N) (2.1)

for some sequence (q(k))k∈N. We assume that X is heavy-tailed and has moments of all orders,
i.e., the generating function

G(z) =

∞∑
k=1

p(k)zk (|z| ≤ 1) (2.2)

has radius of convergence 1 and E[Xm] =
∑∞
k=1 k

mp(k) <∞ for all m ∈ N. Let µ and σ2 be the
expectation and variance of X. Set Sn = X1 + · · · + Xn. We are interested in the asymptotic
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behavior of P(Sn = µn + Nn) when n,Nn → ∞ with Nn �
√
n. The following assumption is

similar to conditions considered by S. V. Nagaev [17].

Assumption 2.1. For some a > 0, the sequence (q(k))k∈N∩(a,∞) extends to a smooth function
q : (a,∞)→ R which has the following properties:

(i) q′ > 0, q′′ < 0, and q′′′ > 0.
(ii) limx→∞ xq′(x)/(log x) =∞.

(iii) c1
q′(x)
x ≤ |q′′(x)| ≤ c2 q

′(x)
x for some constants c1, c2 > 0.

(iv) c3
|q′′(x)|
x ≤ q′′′(x) ≤ c4 |q

′′(x)|
x for some constants c3, c4 > 0.

(v) q′(x) ≤ α q(x)
x for some α ∈ (0, 1).

Assumption 2.1 allows for an easy analysis of an auxiliary variational problem, which is essential
to the formulation of our main results. Let us collect a few elementary consequences. Under As-
sumption 2.1, q is concave on (a,∞) and p = exp(−q) is log-convex. Moreover, limx→∞ x2q′′(x)/ log x =
−∞ and for y > x > a, using

q′(y)

q′(x)
= exp

(
−
∫ y

x

|q′′(u)|
q′(u)

du
)
, (2.3)

we estimate (y
x

)−c2
≤ q′(y)

q′(x)
≤
(y
x

)−c1
≤ 1 (2.4)

Similarly, for y > x > a, (y
x

)c3
≤ q′′(y)

q′′(x)
≤
(y
x

)c4
. (2.5)

Since G(z) =
∑
k z

k exp(−q(k)) has radius of convergence 1, we also know that

lim
x→∞

q′(x) = lim
x→∞

q′′(x) = lim
x→∞

q′′′(x) = 0. (2.6)

Indeed by Assumption 2.1, q′ is eventually decreasing and the limit ` := limx∞ q′(x) exists in
R∪{−∞}. Then ` = limx→∞ q(x)/x and G(z) has radius of convergence exp(`) = 1, whence ` = 0.
Assumption 2.1(iii) and (iv) leads to the statements on higher order derivatives. Assumption 2.1(v)
implies q(x) = O(xα) as x→∞.

Our method of proof requires two more analyticity assumptions.

Assumption 2.2. There exists b ≥ 0 such that (p(n))n∈N∩[b,∞) extends to a function p(ζ) that
is continuous on a closed half-plane Re ζ ≥ b, analytic on the open half-plane Re ζ > b, and in
addition satisfies

(i) For every ε ∈ (0, π), some Cε > 0, and all ζ, we have |p(ζ)| ≤ Cε exp(ε|ζ|).
(ii)

∫∞
−∞ |(b+ is)kp(b+ is)|ds <∞ for all k ∈ N.

Moreover p(x) = exp(−q(x)) for all x ≥ max(a, b) with a, q(x) as in Assumption 2.1.

Assumption 2.3. Let p(ζ) = exp(−q(ζ)) be the analytic extension from Assumption 2.2, defined
in Re ζ ≥ b. Then q(ζ) = −Logζ, defined with the principal branch of the logarithm is analytic as
well, and the following holds:

(i) For r > 0 large, let zr = b+ i
√
r2 − b2. Then as r →∞,∣∣∣∣∣

∫
Re ζ=b, |ζ|≥r

exp(−Re q(ζ))dζ

∣∣∣∣∣ ≤ exp(−Re q(zr) +O(log r)).

(ii) Im (ζq′(ζ)) ≤ Im (ζq′(r)) for all large r and all ζ with Im ζ ≥ 0 and |ζ| = r.
(iii) |q′′′(ζ)| ≤ C|q′′(ζ)/ζ| for some C > 0 and all ζ.

Assumption 2.3 enters the proof of Theorem 4.4 only.
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Variational problem and critical scale. Assumption 2.1 is tailored to the analysis of an auxiliary
variational problem (see also [15, 20]), motivated by the following heuristics. For subexponential
random variables, the typical large deviations behavior is realized by making one out of the n
variables large,

P(Sn = µn+Nn) ≈ nP(Xn = Nn − kn)P(Sn−1 = µn+ kn) (2.7)

with a yet to be determined optimal kn. Assuming that a normal approximation for the second
factor is justified, we get

P(Sn = µn+Nn) ≈ exp
(
−q(Nn − kn)− k2

n

2nσ2

)
(2.8)

where we have neglected prefactors n and 1/
√

2πnσ2 (see Eq. (2.11) below for a more refined
heuristics). The optimal kn is then determined by minimizing the term in the exponential. Thus
we are led to the minimization of

fn(x) = q(x) +
(Nn − x)2

2nσ2
. (2.9)

As illustrated in Figure 1, the nature of the variational problem changes with Nn. Define x∗n > 0
and N∗n by

q′′(x∗n) = − 1

nσ2
, N∗n = x∗n + nσ2q′(x∗n). (2.10)

For sufficiently large n, the inflection point x∗n is uniquely defined because of the monotonicity
from Assumption 2.1 and Eq. (2.6), moreover x∗n →∞. The quantity N∗n is defined in such a way
that the tangent to the curve y = q′(x) at x = x∗n has equation y = (N∗n − x)/(nσ2), see Fig. 3.

The next two lemmas characterize the minimization of fn; they are proven in Section 5.1. The
first lemma relates the critical points of fn to the location of Nn compared to N∗n.

Lemma 2.4. For sufficiently large n, the following holds true:

(a) If Nn < N∗n, then f ′n > 0 on (a,∞).
(b) If Nn = N∗n, then f ′n has the unique zero x∗n, moreover f ′n(x) ≥ 0 with equality if and only

if x = x∗n.
(c) If Nn > N∗n and lim supn→∞Nn/(nσ

2) < limx↘a q
′(x), then fn has exactly two critical

points xn and x′n, which satisfy x′n < x∗n < xn < Nn and

fn(x′n) = max
(a,x∗n)

fn, fn(xn) = min
(x∗n,∞)

fn.

(d) If Nn > N∗n and lim infn→∞Nn/(nσ
2) > limx↘a q

′(x), then fn has a unique critical point
xn. It satisfies xn ∈ (x∗n, Nn) and is a global minimizer.

For Nn > N∗n, the function fn may have two local minimizers: a and xn, and we may wonder
which one is the global minimizer. The answer depends on the location of Nn compared to a new
critical sequence N∗∗n . Concrete examples are given in Sections 2.3 and 2.4.

Lemma 2.5. For n sufficiently large, there is a uniquely defined N∗∗n > N∗n such that:

(a) If N∗n < Nn < N∗∗n , then fn(a) < fn(xn).
(b) If Nn = N∗∗n , then fn(a) = fn(xn).
(c) If Nn > N∗∗n , then fn(xn) < fn(a).

In general it may not be straightforward to determine N∗∗n exactly, but it is simple to find a lower
bound: if a = 0 and q(Nn) < N2

n/(2nσ
2), then Nn > N∗∗n . This lower bound corresponds, roughly,

to the sequence Λ(n) in [17].
The sequences introduced up to now are ordered as follows.

Lemma 2.6. As n→∞, we have
√
n� x∗n < N∗n < N∗∗n = O(n1/(2−α))� n,

and for some constants C, δ > 0
(1 + δ)x∗n ≤ N∗n ≤ Cx∗n.
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The lemma is proven in Section 5.1. Lemmas 2.4 and 2.5, together with the heuristics described
above, suggest that for Nn > N∗∗n the unlikely event Sn = nµ + Nn is realized by making one
component of the order of xn. One may wonder how far xn is from swallowing all of the overshoot
Nn.

x∗n

fn(x) fn(x)

xx x

N2
n

2nσ2

Nn Nn Nnx′n x∗n xn

N2
n

2nσ2

N2
n

2nσ2

x′n x∗n xn

q(Nn)

q(Nn)

(c) Nn > N∗∗n(b) N∗n < Nn < N∗∗n(a) Nn < N∗n

q(Nn)

fn(x)

Figure 1. Minimization of fn(x) = q(x) + (Nn − x)2/(2nσ2) and illustration of
Lemmas 2.4 and 2.5 for weights q : (0,∞) → R with q(0) = 0. For Nn > N∗n,
fn(x) has two critical points x′n and xn separated by an inflection point x∗n. The
global minimum is reached either at x = xn or at x = 0.

Lemma 2.7. Suppose Assumption 2.1(i) holds true. Let Nn > N∗n. Then

Nn −N∗n ≤ xn ≤ Nn, nσ2f ′′n (xn) = 1− nσ2|q′′(xn)| = 1 +O
(N∗n
Nn

)
.

In particular, for Nn � N∗n, we have xn ∼ Nn and nσ2f ′′(xn) → 1. The lemma is proven in
Section 5.1. The information on the second derivative enters a refined heuristics: we make the
ansatz that conditional on the unlikely event Sn = nµ+Nn, there is one large component of size
xn, but the size is not deterministic. Instead, there are fluctuations around xn. This yields

P(Sn = nµ+Nn) ≈ n
∑
`

P(X1 = xn + `)P(Sn−1 = Nn − xn − `)

≈ n
∑
`

exp(−fn(xn + `))√
2πnσ2

≈ n e−fn(xn)
∑
`

exp(−f ′′n (xn)`2/2)√
2πnσ2

≈ n exp(−fn(xn))√
1− nσ2|q′′(xn)|

. (2.11)

Theorem 2.11 below confirms the heuristics for large Nn, up to correction terms both in the
prefactor and in the exponential.

Cumulants and Cramér series. The heuristics together with Lemma 2.7 suggest that the optimal
kn = Nn − xn in Eq. (2.8) is of order up to N∗n �

√
n. At this scale the normal approximation

fails and requires correction terms. The latter are usually expressed with the Cramér series [12],
whose definition we briefly recall. Let ϕ(t) be the cumulant generating function of X,

ϕ(t) = logE[ etX ] = logG( et ) (Re t ≤ 0). (2.12)

Note ϕ(0) = 0. As t→ 0, ϕ(t) can be approximated to arbitrary order

ϕ(t) =

r∑
j=1

κj
tj

j!
+O(tr+1) (2.13)

with finite and real expansion coefficients κj ∈ R, the cumulants, see Section 4. Notice that κ1 = µ
is the expectation and κ2 = σ2 > 0 is the variance of X.
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Definition 2.8. Let t(τ) = 1
σ2 τ +

∑
j≥2 ajτ

j be the formal power series obtained by inverting

σ2t(τ) +
∑
j≥2

κj+1
t(τ)j

j!
= τ.

The Cramér series
∑
j≥0 λjτ

j is the formal power series defined by composing the expansion of

t(τ) with the expansion of (µ+ τ)t− ϕ(t),

(µ+ τ)t(τ)−
∑
j≥1

κj
t(τ)j

j!
= − τ2

2σ2
+ τ3

∑
j≥0

λjτ
j .

Equivalently, the Cramér series is the left-sided Taylor expansion of the Legendre transform ϕ∗ at
µ: let ϕ∗(x) := supt≤0(tx− ϕ(t)). Then as τ ↗ 0,

ϕ∗(µ+ τ) = − τ2

2σ2
+ τ3

r∑
j=0

λjτ
j +O(τ r+4) (2.14)

to arbitrarily high order r.

Remark 1. For t > 0, log[
∑
k≥1 p(k) exp(kt)] is infinite and the standard convention is to set

ϕ(t) = ∞; then ϕ∗(µ + τ) ≡ 0 for τ ≥ 0 and Eq. (2.14) no longer applies. We adopt a different
convention, however, for which ϕ(t) is smooth in a neighborhood of 0 (see Theorem 4.2), though
it becomes complex-valued, and Eq. (2.14) applies to (Reϕ)∗ for positive τ as well.

2.2. Main theorems. Set fn0 = fn and for r ≥ 1,

fnr(x) = q(x) +
(Nn − x)2

2nσ2
− (Nn − x)3

n2

r−1∑
j=0

λj

(Nn − x
n

)j
. (2.15)

Remember the minimization of fn(x) and the critical scales
√
n� N∗n < N∗∗n = O(n1/(2−α))� n

illustrated in Fig. 1. In Proposition 2.12 below we check that the properties of fn carry over to fnr.
The following theorems provide a local variant of a large deviations theorem by S. V. Nagaev [17],
see also [18, Theorem 2.1]. Local results have been provided before, see [4] and the references
therein. The principal difference, apart from the local character of the theorems, is that our
detailed investigation of the variational problem and notably Lemma 2.7 allows us to formulate
conditions directly in terms of Nn, whereas S. V. Nagaev’s criteria included an indirect condition
on the sign of some second derivative.

Theorem 2.9. Let Nn → ∞ with
√
n � Nn ≤ (1 + o(1))N∗n. Pick r large enough so that

n(Nn/n)r → 0. Then

P(Sn = µn+Nn) ∼ 1√
2πσ2n

exp
(
− N2

n

2nσ2
+
N3
n

n2

r−1∑
j=0

λj

(Nn
n

)j)
.

Theorem 2.10. Let Nn →∞ with lim inf Nn/N
∗
n > 1 and Nn = O(n1/[2−α]). Pick r large enough

so that n(N∗n/n)r → 0. Then

P(Sn = µn+Nn) = (1 + o(1))
1√

2πσ2n
exp
(
− N2

n

2nσ2
+
N3
n

n2

r−1∑
j=0

λj

(Nn
n

)j)
+ (1 + o(1))

n√
1− nσ2|q′′(xnr)|

exp
(
−fnr(xnr)

)
with xnr = Nn +O(N∗n) the largest solution of f ′nr(xnr) = 0.

Lemma 2.5 suggests that for Nn � N∗∗n , the first contribution dominates and for Nn � N∗∗n the

second contribution wins, but one has to be careful because of the factors n and 1/
√

2πnσ2 as well
as the Cramér corrections; a detailed evaluation is best left to concrete examples (see, however,
Corollary 2.13 below).
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Theorem 2.11. Let Nn → ∞ with Nn � n1/(2−α). Pick r large enough so that n(N∗n/n)r → 0.
Then

P(Sn = µn+Nn) ∼ n exp
(
−fnr(xnr)

)
with xnr = Nn +O(N∗n) the largest solution of f ′nr(xnr) = 0.

In practice one may prefer not to deal with the Cramér corrections or the variational problem,
and the following proposition is helpful.

Proposition 2.12. Suppose that lim infn→∞Nn/N
∗
n > 1. Fix r ∈ N0. Then, for sufficiently large

n, xnr is the maximizer of fnr restricted to (x∗n, Nn) and the unique zero of f ′nr in that interval.
Moreover 1− nσ2|q′′(xnr)| = 1 +O(N∗n/Nn) stays bounded away from zero and

xnr = Nn − (1 + o(1))nσ2q′(xnr) = Nn +O(N∗n),

fnr(xnr) = q(xnr) +
1

2
(1 + o(1))nσ2q′(xnr) = q(Nn)

(
1 +O

(N∗n
Nn

))
.

The proposition is proven in Section 5.1. For Nn � N∗n, we obtain xnr ∼ Nn, q′(xnr) ∼ q′(Nn),
and q(xnr) = q(Nn)− (1 + o(1))nσ2q′(Nn), hence

fnr(xnr) = q(Nn)− 1

2
(1 + o(1))nσ2q′(Nn)2. (2.16)

Now suppose in addition that lim inf
N2
n

2nσ2 /q(Nn) > 1. Then in Theorem 2.10, the first summand is

of order exp(−(1+o(1))N2
n/(2nσ

2), the second of order exp(−(1+o(1))q(Nn)), so the first contribu-
tion is negligible and the validity of Theorem 2.11 extends accordingly, since 1−nσ2|q′′(xnr)| → 1
for Nn � N∗n. Eq. (2.16) now yields the following corollary.

Corollary 2.13. Take Nn →∞ with Nn � N∗n and lim inf
N2
n

2nσ2 /q(Nn) > 1. Then

P(Sn = nµ+Nn) ∼ n e−q(Nn) = nP(X = Nn)

if and only if
√
nσ2q′(Nn)→ 0.

In concrete examples, Theorem 2.9 should allow us to extend the domain of validity of the corollary
to Nn � N∗∗n . The condition

√
nσ2q′(Nn)→ 0 is closely related to the insensitivity scale discussed

by Denisov, Dieker and Shneer [4], as

p(Nn ±
√
nσ2

)
p(Nn)

→ 1 ⇔
√
nσ2q′(Nn)→ 0. (2.17)

Remark 2 (Big-jump vs small steps). The domain where P(Sn = nµ + Nn) ∼ nP(X = Nn) is
sometimes called big-jump domain. Think of Sn as the position of a random walker with step
size distribution p(k). In the situation of Corollary 2.13, the unlikely event that the walker has
travelled a distance µn + Nn much larger than the expected distance µn is realized by one big
jump of size Nn. Finding the boundary of the big-jump domain is an active field of research [4].

The interpretation of Theorem 2.9, in contrast, is that the moderate overshoot Nn is achieved
by a collective effort: all steps tend to stay small, though each stretches a little beyond its expected
value µ. For stretched exponential variables, this interpretation is made rigorous in [15] and [2].

Remark 3 (Condensation in the zero-range process). In the zero-range process, the random vari-
ables X1, . . . , Xn model the number of particles at lattice sites j = 1, . . . , n, with Sn the total
number of particles, and µ is a critical density. Theorem 2.9 corresponds to supersaturated gas.
In Corollary 2.13, the particle excess Nn is absorbed by a condensate, i.e., one large occupation
number. In Theorem 2.11, the particle excess is shared by a condensate of size xnr < Nn and
supersatured gas. See [2] and [8, Section 7].

We conclude with an equivalent but more intrinsic formulation of Theorem 2.11. In Section 4
we shall see that G(z) extends to a function that is analytic in the slit plane C \ [1,∞), and in
addition the limit G( et ) = limε↘0G( et + iε) exists for all t ≥ 0. So the cumulant generating
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function ϕ(t) = logG( et ) extends to a function that is well-defined and smooth in a neighborhood
of the origin in R, and Eq. (2.13) stays valid for small positive t. We define

Φn(t, ζ) = −q(ζ) + nReϕ(t)− (µn+Nn)t+ tζ

= −q(ζ) + n

r−1∑
j=2

κj
tj

j!
− t
(
Nn − ζ) +O(tr). (2.18)

The asymptotic expansion holds for every order r. For Nn � N∗n and sufficiently large n, the
bivariate function Φn(t, ζ) has exactly two critical points in (0, Nnnσ2 ) × (a,∞). We label them as
(tn, ζn) and (t′n, ζ

′
n) with tn < t′n. Then, in the situation of Theorem 2.11, we have

P(Sn = nµ+Nn) ∼ n eΦn(tn,ζn) . (2.19)

It is in this form that we prove the theorem. Let us explain how to recover the expression in terms
of fnr. We may solve for ∇Φn(t, ζ) = 0 in two steps: (1) use ∂tΦn(t, ζ) = 0 to express t = t(ζ)
as a function of ζ, (2) plug the expression into ∂ζΦn(t, ζ) to obtain an equation for ζ. This latter
step breaks into the following two stages:

(2a) substitute the expression of t = t(ζ) into the expression for Φn(t, ζ) so as to obtain a
function Φn(t(ζ), ζ) of ζ only;

(2b) set the derivative of Φn(t(ζ), ζ) with respect to ζ to zero,

which is valid since
d

dζ
Φn(t(ζ), ζ) =

∂Φn
∂ζ

(t(ζ), ζ) +
∂Φn
∂t

(t(ζ), ζ)
dt

dζ
(t) =

∂Φn
∂ζ

(t(ζ), ζ). (2.20)

By the definition of the Cramér series, step (2a) gives

Φn(t(ζ), ζ) = −q(ζ)− (Nn − ζ)2

2nσ2
+

(Nn − ζ)3

n2

∑
j≥0

λj

(Nn − ζ
n

)j
(2.21)

Truncation of the asymptotic expansion on the right-hand side gives precisely the function−fnr(ζ).
For r large enough, step (2b) shows that we may approximate

Φn(tn, ζn) = −fnr(xnr) + o(1), nσ2q′′(ζn) = nσ2q′′(xnr) + o(1) (2.22)

hence the equivalence of Eq. (2.19) with the expression from Theorem 2.11.

2.3. Application to stretched exponential laws. Here we explain how to recover five theorems
by A. V. Nagaev [15] for stretched exponential variables. Let α ∈ (0, 1), c > 0, and

p(k) = c exp(−kα), q(k) = kα − log c (k ∈ N). (2.23)

We need not check Assumption 2.3 since Theorem 4.4 for stretched exponential weights has already
been proven in [12, Theorem 2.4.6].

Lemma 2.14. The probability weights (2.23) satisfy Assumptions 2.1 and 2.2, and we have

x∗n =
[
α(1− α)nσ2

]1/(2−α)
, N∗n =

2− α
1− α

x∗n, N∗∗n = Cα(nσ2)1/(2−α)

with Cα = (2−α)(2−2α)−(1−α)/(2−α). Moreover
√
nσ2q′(Nn)→ 0 if and only if Nn � n−1/(2−2α).

The proof of the lemma is sketched in Appendix A. The critical scale n−1/(2−α) is explained by a
simple scaling relation: for Nn = kn1/(2−α), we have

fn
(
yn1/(2−α)

)
= nα/(2−α)

(
yα +

(k − y)2

2σ2

)
− log c. (2.24)

A careful examination of the expressions in Theorem 2.10 shows that the first summand dominates
if Nn ≤ (1− δ)N∗∗n while the second dominates if Nn ≥ (1 + δ)N∗∗n for some δ > 0. In particular,
Theorem 2.9 extends to Nn ≤ (1− δ)N∗∗n , which corresponds to Theorem 1 in [15]. Theorem 2.10
for Nn ∼ N∗∗n is Theorem 4 in [15]. For Nn ≥ (1 + δ)N∗∗n , we have

P(Sn = nµ+Nn) ∼ 1√
1− nσ2q′′(xnr)

e−fnr(xnr) . (2.25)
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This regime can be divided into three cases:

(a) Nn � n−1/(2−2α) corresponds to Theorem 2 in [15].
(b) When Nn is of the order of n−1/(2−2α), the corrections from the Cramér series are irrelevant

and

P(Sn = µn+Nn) ∼ n exp
(
−fn(xn)

)
, (2.26)

i.e., we may choose r = 0. This corresponds to Theorem 6 from the erratum [16], replacing
Theorem 5 in the original article [15]. The statement actually extends to Nn � n−1/(3−3α).
Indeed q′(xnr) ∼ (Nn − xnr)/(nσ2) = o(Nn/n) yields Nn − xnr = (1 + o(1))nσ2αNα−1

n and

fnr(xnr) = fn(xnr) +O
(
nN−(3−3α)

n

)
, (2.27)

and one can check that fn(xnr) = fn(xn) + o(1) if Nn � n−1/(3−3α).
(c) Nn � n−1/(2−2α) corresponds to Theorem 3 in [15] and our Corollary 2.13.

2.4. Application to logarithmic hazard functions. Here we specialize to

p(k) = c exp
(
−(log k)β

)
, q(k) = − log c+ (log k)β (2.28)

with β > 2.1

Lemma 2.15. The weights (2.28) satisfy Assumptions 2.1– 2.3. Moreover

N∗n ∼ 2x∗n ∼ 2
√

21−ββnσ2(log n)β−1, N∗∗n ∼
√

2nσ2(log n)β ,

and
√
nσ2q′(Nn)→ 0 if and only if Nn �

√
n(log n)β−1.

The lemma is proven Appendix A. Notice that unlike the stretched exponential case (Lemma 2.14),
N∗∗n is much larger than N∗n. The scaling relation (2.24) is modified as follows: for Nn =

k
√
nσ2(log n)β−1 ∼ kx∗n, we have

fn(yx∗n) = (log x∗n)β + β(log n)β−1
(

log y +
(k − y)2

2

)
+ o
(

(log n)β−1
)

(2.29)

and (log x∗n)β ∼ (log n)β ∼ (logNn)β .
Our results may now be applied to obtain a sharp boundary for the big-jump domain.

Theorem 2.16. Let p(k) be as in Eq. (2.28) with β > 2 and Nn �
√
n. Then P(Sn = µn+Nn) ∼

nP(X = Nn) if and only if Nn �
√
n(log n)β−1.

The “if” part of the theorem is actually a special case of [4, Theorem 8.2] and as such not new.
The “only if” part shows that the boundary derived in [4] is in fact sharp.

Proof Theorem 2.16. Let In :=
√
nσ2(log n)β−1 and notice In � N∗∗n for β > 2. Suppose that

Nn � In. Then we have, in particular, Nn � N∗∗n . Write Nn = αnN
∗∗
n with αn →∞. Then

N2
n/(2nσ

2)

(logNn)β
= α2

n

(
1 + o(1)

logαn
log n

)−β
≥ α2

n

(logαn)β
→∞ (2.30)

and it follows from Corollary 2.13 that P(Sn = nµ + Nn) ∼ nP(X = n), hence Nn � N∗∗n is
indeed a sufficient condition. In order to check that it is necessary, we treat the case Nn = O(In)
with Theorems 2.9 and 2.10.

Case 1 : N∗n � Nn = O(In). In Theorem 2.10 we obtain a lower bound by neglecting the first
contribution and estimating 1− nσ2|q′′(xnr)| ≤ 1. Combining with Proposition 2.12, we find

P(Sn = nµ+Nn) ≥ n exp(−fnr(xnr) + o(1))

≥ n exp
(
−q(Nn) + (1 + o(1))nσ2q′(Nn)2 + o(1)

)
(2.31)

1For β ∈ (1, 2], xq′(x) = β(log x)β−1 →∞ but the stronger condition xq′(x)/ log x→∞ from Assumption 2.1(ii)

fails. We suspect that this restriction is technical and could be lifted with more detailed estimates, but a proof or
disproof is beyond this article’s scope.
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hence in view of Nn = O(In) and Lemma 2.15

lim inf
n→∞

P(Sn = nµ+Nn)

nP(X = Nn)
≥ lim inf

n→∞
exp
(
(1 + o(1)nσ2q′(Nn)2)

)
> 1. (2.32)

Case 2 : Nn = O(N∗n). Then we have in particular Nn = o(N∗∗n ). Write Nn = αnN
∗∗
n with

αn → 0, then

N2
n

2nσ2(logNn)β
≤ α2

n(log n)β

(log
√
n)β

→ 0 (2.33)

and Theorems 2.9 and 2.10 show

log
P(Sn = nµ+Nn)

nP(X = Nn)
≥ − N2

n

2nσ2
+ (logNn)β +O(log n)→∞. (2.34)

�

3. Proof strategy

Here we explain the strategy for the proof of Theorems 2.9–2.11. We focus on the caseNn = o(n)
and Theorem 2.10. Set m = µn + Nn. We start from the observation that P(Sn = m) is equal
to [zm]G(z)m, the coefficient of zm in the expansion of G(z)m, which in turn is given by contour
integrals

[zm]G(z)n =
1

2πi

∮
G(z)n

zm
dz

z
=

1

2πi

∫ 2πi

0

enϕ(t)−mt dt. (3.1)

The contour integral can be taken over any circle centered at the origin with radius r ≤ 1. A
steepest descent ansatz would look for a point zn such that znG

′(zn) = m/n = µ + Nn/n, or
ηn with ϕ′(ηn) = µ + Nn/n, and then integrate over |z| = |zn| (or Re t = Re ηn). However in
the regime m/n > G′(1) = µ that we investigate there is no such point, and instead we follow
an approach that is in the spirit of singularity analysis [11] but with several novel ingredients.
Crucially, the generating function G(z) does not fall into the class of functions which Flajolet and
Sedgwick call “amenable to singularity analysis” [11][Chapter VI].

Step 1: Analytic extension to slit plane. Observe that G(z) has an analytic extension to
the slit plane C\[1,∞). This is proven with the help of the Lindelöf integral [13, 10], see Propo-
sition 4.1. The key ingredient here is that p(ζ) is analytic in a complex half-plane containing the
integers k ∈ N and growth slower than exp((π − ε)|ζ|) as ζ →∞.

Step 2: Behavior near the dominant singularity and along the slit. The Lindelöf
integral actually shows that the analytic extension G(z) has well-defined limits as z approaches
the slit [1,∞) from above or below, i.e., the limits limε↘0G( et + iε) and limε↘0G( et − iε) exist
for all t ∈ R. Moreover the imaginary part along the slit is given by a Bromwich integral,

lim
ε↘0

ImG( et + iε) =
1

2i

∫ 1/2+i∞

1/2−i∞
etζ p(ζ)dζ (t ≥ 0). (3.2)

The line of integration Re ζ = 1/2 can be replaced by any other line Re ζ = x > 0. As t↘ 0, the
imaginary part vanishes faster than any power of t, whereas the real part can be approximated to
arbitrarily high order by a Taylor polynomial.

Step 3: Contour integrals. We may now deform the contour of integration: in the z-plane,
we replace the circle of radius 1 by a Hankel-type contour consisting of a circle of radius eε and
a piece hugging the segment [1, ε), see Figure 2. In the t-plane, we replace the vertical segment
joining 0 and 2πi by the three other sides of the rectangle with corners 0, ε, ε + 2πi, 2πi. This
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(b)(a)

|z| = eε

|z| = 1

ε0

2πi

Figure 2. Contour integrals in the z-plane (a) and in the t-plane (b). Dotted
lines: Eq. (3.1). Solid lines: deformed contours in Eq. (3.3). Recall that z = et .
Later ε = ηn will be chosen in a judicious way. For Nn � N∗∗n , the dominant
contribution should come from the horizontal pieces of the deformed contour in
the t-plane. For Nn � N∗∗n , the dominant contribution should instead be from
the vertical line.

yields

[zm]G(z)n =
1

2πi

(∫ ε

0

enϕ(t)−mt dt+

∫ 2π

0

enϕ(ε+iθ)−m(ε+iθ) idθ

−
∫ ε

0

enϕ(t+2πi)−m(t+2πi) dt
)
. (3.3)

We focus on Nn = o(n) and choose ε = ηn as the solution of

Reϕ′(ηn) =
m

n
= µ+

Nn
n
. (3.4)

Notice ηn ∼ Nn/(nσ2). Using the identities

G(z) = G(z), ∀t ≥ 0 : ϕ(t+ 2πi) = ϕ(t), (3.5)

Eq. (3.3) becomes

[zm]G(z)n = Hn + Vn (3.6)

with

Hn =
1

π

∫ ηn

0

enReϕ(t)−mt sin
(
nImϕ(t)

)
dt

Vn =
1

π

∫ π

0

enReϕ(ηn+iθ)−mηn cos
(
nImϕ(ηn + iθ)

)
dθ.

(3.7)

Standard arguments show that the dominant contribution to Vn come from small θ. Since
ImG( et )→ 0 faster than any power of t as t↘ 0 and

ImG( et ) = Im eϕ(t) = eReϕ(t) Imϕ(t) ∼ Imϕ(t), (3.8)

we may drop the trigonometric functions from Eq. (3.7) and find

Hn ∼
n

π

∫ ηn

0

enReϕ(t)−mt ImG( et )dt, Vn ∼
1

π

∫ π

0

enReϕ(ηn+iθ)−mηn dθ. (3.9)

The vertical contribution is evaluated with the help of a Gaussian approximation around θ = 0,
which yields

Vn ∼
1√

2πnReϕ′′(ηn)
enReϕ(ηn)−mηn . (3.10)
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With Definition 2.8, we recognize in Eq. (3.10) the asymptotic expression from Theorem 2.9 and
obtain

Vn ∼
1√

2πnσ2
exp
(
− N2

n

2nσ2
+
N3
n

n2

r−1∑
j=0

λj

(Nn
n

)j)
. (3.11)

The evaluation of Hn is more involved. As a preliminary step, we express ImG( et ) through the
Bromwich integral and find

Hn ∼
n

2πi

∫ ηn

0

(∫ 1/2+i∞

1/2−i∞
eΦn(t,ζ) dζ

)
dt (3.12)

with Φn as in Eq. (2.18).

Step 4: Critical points of Φn(t, ζ). In order to apply a Gaussian approximation to the
bivariate integral (3.12), we look for a critical points (tn, ζn) of Φn with tn ∈ (0, ηn) and ζn ∈
(0,∞). The gradient ∇Φn(tn, ζn) vanishes if and only if

tn = q′(ζn),

Re
(
ϕ′(tn)− ϕ′(0)

)
=
Nn − ζn

n
.

(3.13)

Since Reϕ′(t) = µ+ σ2t+O(t2) as t↘ 0, Eq. (3.13) implies

q′(ζn) ∼ Nn − ζn
nσ2

. (3.14)

We recognize the equation for the critical points of fn. Lemma 2.4 suggests the following: for
Nn � N∗n, there should be no critical point, for N∗n � Nn � n, there should be two. Let us focus
on the latter case and label the critical points as (tn, ζn) and (t′n, ζ

′
n) with tn < t′n. In view of

Lemmas 2.4 and 2.7, we expect ζn ≈ xn and ζ ′n ≈ x′n, hence

tn ∼ q′(Nn), ζn = Nn +O(N∗n) (3.15)

and ζ ′n < x∗n < ζn. The Hessian of Φn is

Hess Φn(t, ζ) =

(
nReϕ′′(t) 1

1 −q′′(ζ)

)
. (3.16)

Using again Lemma 2.7 and ζn ≈ xn, we expect

det Hess Φn(tn, ζn) = −1−
(
1 + o(1)

)
nσ2q′′(ζn) = −1 +O

(N∗n
Nn

)
< 0 (3.17)

thus (tn, ζn) is a saddle point. (More precisely, it is a saddle point of Re Φn, but the abuse of
terminology is natural and not problematic in our context.) On the other hand ζ ′n ≈ x′n < x∗n
with 1 + nσ2q′(x∗n) = 0 by definition of x∗n, so we expect

det Hess Φn(t′n, ζ
′
n) = −1−

(
1 + o(1)

)
nσ2q′′(ζ ′n) > 0. (3.18)

Step 5: Gaussian approximation for Hn. In order to evaluate the double integral in
Eq. (3.12), we use a good change of variables and a Gaussian approximation. Let ζ(t) be the
solution of q′(ζ) = t, so that ∂ζΦn(t, ζ) = 0 if and only if ζ = ζ(t). It is convenient to deform the
contour and integrate along Re ζ = ζ(t) instead of Re ζ = 1/2. The integral becomes

Hn ∼
n

2π

∫ ηn

0

(∫ ∞
−∞

eΦn(t,ζ(t)+is) ds
)

dt. (3.19)

A straightforward computation shows that Fn(t, s) = Sn(t, ζ(t)+is), a function of two real variables
t, s, has a critical point at (tn, 0) with positive definite Hessian

HessFn(tn, 0) =

(
βn 0
0 −∂2

ζΦn(tn, ζn)

)
, βn =

det Hess Φn(tn, ζn)

∂2
ζΦn(tn, ζn)

, (3.20)

see Lemma B.1. Fn : (0, ηn)×R→ C has another critical point at (t′n, 0), with negative determinant
of the Hessian; later we show that it does not contribute to the integral. The evaluation of Hn is
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concluded by replacing the double integral (3.19) by the integral of the Gaussian approximation
around (tn, 0) which yields

Hn ∼
n

2π

√
(2π)2

det HessFn(tn, 0)
eFn(tn,0) =

n√
|det Hess Φn(tn, ζn)|

eΦn(tn,ζn) . (3.21)

The argument leading leading to Eq. (2.22) and Eq. (3.17) show

Hn ∼
n√

1− nσ2q′′(xnr)
e−fnr(xnr) . (3.22)

4. Analytic continuation. Lindelöf and Bromwich integrals

Here we take care of steps 1 and 2, starting from Assumption 2.2. For concreteness’ sake we
write down the results for b = 1/2; they apply for general b with straight-forward modifications.
Define

Λ(w) = − 1

2πi

∫ 1/2+i∞

1/2−i∞
p(ζ)wζ

π

sinπζ
dζ (w ∈ C\(−∞, 0]), (4.1)

the Lindelöf integral with symbol p(ζ).

Proposition 4.1 ([13]).

(a) Λ(w) is analytic in the slit plane C\(−∞,−1].
(b) In the unit disk |w| ≤ 1,

Λ(w) =

∞∑
k=1

p(k)(−w)k = G(−w).

A detailed proof and many additional properties of Λ(w) can be found in [10]. Proposition 4.1
shows right away that G(z) = Λ(−z) has an analytic continuation from the unit disk to the
open slit plane C\[1,∞). We use the same letter G(z) for the analytic continuation, and set
ϕ(t) = LogG( et ) with Log the principal branch of the logarithm, and Im t ∈ [0, 2π). We prove
the following additional properties of G(z) and ϕ(t).

Theorem 4.2.

(a) The boundary value G( et ) = limε↘0G( et + iε) exists for all t ∈ R and is a smooth
function of t ∈ R.

(b) The imaginary part ImG( et ), t ≥ 0 is given by the Bromwich integral (3.2).
(c) ϕ(t) is well-defined and smooth in a neighbourhood of the origin; the derivatives κj =

ϕ(j)(0) are real. As t→ 0 in the strip Im t ∈ [0, 2π), we have

ϕ(t) = LogG( et ) =

r∑
j=1

κj
tj

j!
+O(tr+1).

to arbitrarily high order r.

In (c) z = et is allowed to approach the slit [1,∞) as fast as we like; we may even take t real.
Because the coefficients κj are real, we find in particular that ImG( et ) vanishes faster than any
power of t as t→ 0, t ∈ R.

Proof of Theorem 4.2. For u ∈ C in the closed strip Imu ∈ [−π, π], define

L(u) = − 1

2πi

∫ 1/2+i∞

1/2−i∞
p(ζ) eζu

π

sinπζ
dζ. (4.2)

When Imu is in the open strip Imu ∈ (−π, π), we have w = eu ∈ C\(−∞, 0] and L(u) = Λ( eu ).
Along the vertical line Re ζ = 1/2, we have∣∣∣exp(ζu)

sin(πζ)

∣∣∣ = 2 eReu/2 exp(−sImu)

exp(πs) + exp(−πs)
≤ 2 eReu/2 (ζ =

1

2
+ is) (4.3)
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By Assumption 2.2(ii), since ζkp(ζ) is integrable along Re ζ = 1/2. Eq. (4.3) then shows that the
integral defining L(u) is absolutely convergent, and it stays absolutely convergent if we replace
the symbol p(ζ) by ζkp(ζ). Standard arguments for parameter-dependent integrals then show
that L(u) is continuous on the closed strip, differentiable in the open strip, and we may exchange
differentiation, limits, and integration, which shows that the restriction of L to the boundaries
Imu = ±π yield smooth functions.

When z → et ∈ [1,∞) along Im z > 0, we have w = −z → − et along Imw < 0. Thus we may
write w = eu with Reu→ t and Imu = argw ↘ −π. Therefore

lim
ε↘0

G( et + iε) = L(t− iπ) = i

∫ ∞
−∞

p
(

1
2 + is

)
e(1/2+is)t exp(πs)

exp(πs) + exp(−πs)
ds. (4.4)

This proves the existence of the limit and, in view of the above mentioned properties of L(u), the
smoothness as a function of t. The complex conjugate is

− i

∫ ∞
−∞

p
(

1
2 − is

)
e(1/2−is)t exp(πs)

exp(πs) + exp(−πs)
ds

= i

∫ ∞
−∞

p
(

1
2 + is

)
e(1/2+is)t exp(−πs)

exp(πs) + exp(−πs)
ds. (4.5)

Therefore

ImG( et ) =
1

2

∫ ∞
−∞

p
(

1
2 + is

)
e(1/2+is)t ds =

1

2i

∫ 1/2+i∞

1/2−i∞
p(ζ) etζ dζ.

This proves (b). For (c), consider first real t ∈ R. We have already checked (a) hence G( et ) is in
C∞(R). It is real and strictly positive for t ≤ 0 (this follows from the series representation and
p(k) > 0), and non-zero though possibly complex-valued for sufficiently small t > 0. Therefore
ϕ(t) = logG( et ) is well-defined and smooth in some interval (−∞, δ), δ > 0, and real-valued for
t ≤ 0. In particular, the derivatives κj = ϕ(j)(0) exist and are real, and ϕ(t) can be approximated
to arbitrarily high order by Taylor polynomials. The extension to complex t, Im t ∈ [0, 2π), follows
again from the smoothness of L(u) in the closed strip Imu ∈ [−π, π]. �

Theorem 4.2(b) has an interesting consequence. Eq. (3.2) is, up to a factor π, the formula for
the inverse Laplace transform, therefore

p(λ) = π

∫ ∞
0

e−tλ ImG( et )dt (Reλ > 0). (4.6)

In the special case of stretched exponential weights, we can draw on an extensive literature as
exp(−λα) is known to be the Laplace transform of a probability density, an α-stable law. For
α = 1/2 [5]

ImG( et ) =
c
√
π

2t3/2
e−1/(4t) (t ≥ 0). (4.7)

For general α ∈ (0, 1), we have instead [12, Theorem 2.4.6]

ImG( et ) ∼ c

2

√
2π

(1− α)α−1/(1−α)

exp
(
−(1− α)

(
α
t

)α/(1−α))
t(2−α)/(2−2α)

(4.8)

as t↘ 0. This is proven in [12] by applying a steepest descent approach to the Bromwich integral.
For general weights, Eq. (4.8) is generalized as follows.

Assume that t < limx↘a |q′′(x)|. By Assumption 2.1, q′′ is strictly increasing and negative on
(a,∞). By Eq. (2.6), we have q′′(x)→ 0 as x→∞. Consequently there exists a uniquely defined
ζ(t) that solves q′(ζ(t)) = t. We define

ψ(t) = tζ(t)− q(ζ(t)) (4.9)

and note the relations

ψ′(t) = ζ(t), ψ′′(t) =
1

q′′(ζ(t))
, (4.10)
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so ψ(t) is monotone increasing and strictly concave. Since −ψ(−t) is the Legendre transform of
the convex function −q(x), it comes as no surprise that Assumption 2.1 on large x translates into
information on small t.

Lemma 4.3. The following holds:

(a) limt↘0 tψ
′(t)/ log t =∞.

(b) −ψ′′(t) ≥ cψ
′(t)
t for some c > 0 and all sufficiently small t > 0.

(c) 0 ≤ ψ′′′(t) ≤ C |ψ
′′(t)|
t for some C > 0 and all sufficiently small t > 0.

The lemma has been proven in [17, Lemma 2.2].

Theorem 4.4. As t↘ 0,

ImG( et ) ∼ 1

2

√
2π|ψ′′(t)| eψ(t) .

Proof. By Theorem 4.2(b) we may start from the Bromwich representation of ImG( et ). The
analyticity of q(ζ) allows us to replace the contour Re ζ = 1/2 by Γ = Γ1 ∪ Γ2 where

Γ1 = {ζ ∈ C | |ζ| = ζ(t), Re ζ ≥ 1/2}, Γ2 = {ζ ∈ C | |ζ| > ζ(t), Re ζ = 1/2}. (4.11)

To lighten notation set r = ζ(t) and suppress the t- and r-dependence from the notation. Let
θ0 = arcsin(1/2r) and notice θ0 ↗ π/2 as r →∞ (t↘ 0). For small θ we have

t r eiθ − q(r eiθ ) = ψ(t)− 1

2
r2q′′(r)( eiθ − 1)2 +O

(
r3q′′′(r)( eiθ − 1)2

)
= ψ(t)− 1

2
r2|q′′(r)|

(
θ2 +O(θ3)) (4.12)

The estimate is uniform in r = ζ(t) by Assumption 2.3(iii). Let ε(r)↘ 0 with ε(r)2r2q′′(r)/ log r →
∞ (this is possible by Assumption 2.1), then

1

2i

∫ ε(r)

−ε(r)
exp
(
tr eiθ − q(r eiθ )

)
ir eiθ dθ ∼ 1

2

√
2π|ψ′′(t)| eψ(t) . (4.13)

As we veer away from r = ζ(t) along Γ1, the real part of ζt−q(ζ) decreases. Indeed for θ ∈ (0, π/2)

d

dθ
Re
(
tr eiθ − q(r eiθ )

)
= Re

(
iζ(t− q′(ζ))

)∣∣∣
ζ=r eiθ

= −Im
(
ζq′(r)− ζq′(ζ)

)∣∣∣
ζ=r eiθ

≤ 0. (4.14)

At the very end we have used Assumption 2.3(ii) It follows that∣∣∣∣∣ 1

2i

∫ θ0

ε(r)

exp
(
tr eiθ − q(r eiθ )

)
ir eiθ dθ

∣∣∣∣∣
≤ rπ

4
exp
(
ψ(t)− 1

2
r2|q′′(r)|ε(r)(1 + o(1))

)
= o
(

exp(ψ(t))
)

Taking complex conjugates, we obtain a similar estimate for the integral from −θ0 to −ε(r).
Together with (4.13) we obtain

1

2i

∫
Γ1

etζ−q(ζ) dζ ∼ 1

2

√
2π|ψ′′(t)| eψ(t) . (4.15)

It remains to estimate the contribution from Γ2. Because of the monotonicity (4.14) we have

Re (tζ0 − q(ζ0)) ≤ ψ(t)− 1

2
r2|q′′(r)|ε(r)2(1 + o(1)) (4.16)

Assumption 2.3(ii) ensures that∣∣∣∫
Γ2

etζ−q(ζ) dζ
∣∣∣ ≤ exp

(
Re
[
tζ0 − q(ζ0)

]
+O(log r))

)
= o
(

exp(ψ(t))
)
. (4.17)

�
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5. Critical point and Gaussian approximation

Here we prove Lemmas 2.4-2.7 and Proposition 2.12 and we address steps 4 and 5 of the proof
strategy.

5.1. Variational analysis of fn(x). Critical scales.

Proof of Lemma 2.4. We treat the case a = 0. Under Assumption 2.1(i), q′ is strictly convex and
decreasing. Therefore

f ′n(x) = q′(x)− Nn − x
nσ2

≥ q′(x∗n) + q′′(x∗n)(x− x∗n)− Nn − x
nσ2

=
N∗n −Nn
nσ2

(5.1)

with equality if and only if x = x∗n. If Nn < N∗n, we obtain f ′n(x) > 0 on (0,∞) and parts (a) and
(b) of the lemma follow right away.

If Nn > N∗n, then f ′n(x∗n) = (N∗n −Nn)/(nσ2) < 0 and limx→∞ f ′n(x) = ∞, so by the interme-
diate value theorem f ′n has at least one zero in (x∗n,∞). On the other hand

f ′′n (x) = q′′(x) + (nσ2)−1 = q′′(x)− q′′(x∗n) > 0 on (x∗n,∞) (5.2)

so f ′n is strictly increasing and f ′n has exactly one zero xn in (x∗n,∞), moreover fn(xn) =
min(x∗n,∞) fn. Since q′(xn) > 0 by Assumption 2.1 and q′(xn) = (Nn − xn)/(nσ2), we must
have xn < Nn. This proves the first part of (c).

If in addition to Nn > N∗n, we have lim supn→∞Nn/(nσ
2) < limx↘a q

′(x), then limx↘a f
′
n(x) >

0. We have already observed that f ′n(x∗n) < 0. By the intermediate value theorem, f ′n has at least
one zero x′n in (0, x∗n). Since f ′′n (x) = q′′(x) − q′′(x∗n) < 0 on (0, x∗n), the zero is unique and
corresponds to maximizer. This completes the proof of (c). The proof of (d) is similar to (c) and
therefore omitted. �

Proof of Lemma 2.5. We treat the case a = 0. Write fn(x) = In(x,Nn) with In(x, y) = q(x) +
[y − x]2/[2nσ2]. For y > N∗n, let xn(y) > x∗n > x′n(y) be the solutions of ∂xIn(x, y) = 0, with
x′n(y) well-defined for Nn ≤ nσ2 sup q′ only. Notice that x 7→ In(x, y) is increasing in (0, x′n(y)),
decreasing in (x′n(y), xn(y)), and increasing in (xn(y),∞). We have

d

dy

[
In(xn(y), y)− I(0, y)

]
=
y − xn(y)

nσ2
− y

nσ2
= −xn(y)

nσ2
< 0. (5.3)

As y ↘ N∗n at fixed n, a careful examination of the proof of Lemma 2.4 shows xn(y) ↘ x∗n and
x′n(y) ↗ x∗n(y), hence In(xn(y), y) → In(x∗n, N

∗
n). But x 7→ In(x,N∗n) is strictly increasing on

(0,∞) because for Nn = N∗n, ∂xIn(·, Nn) = f ′n(x) ≥ 0 by Eq. (5.1), hence In(x∗n, N
∗
n) > In(0, N∗n)

and by continuity

lim
y↘N∗n

[
In(xn(y), y)− I(0, y)

]
> 0. (5.4)

Assumption 2.1 implies that q(y) = o(y) as y →∞. It follows that

lim
y→∞

[
In(y, y)− I(0, y)

]
= lim
y→∞

[
q(y)− y2

2nσ2

]
= −∞. (5.5)

Eqs. (5.3)–(5.5) guarantee the existence and uniqueness of a solution y = N∗∗n to the equation
In(xn(y), y) = I(0, y), and (a)–(c) follow with the observation fn(xn) − fn(0) = [In(xn(y), y) −
In(0, y)]|y=Nn . �

Proof of Lemma 2.6. As noted after Assumption 2.1, we have limx→∞ x2q′′(x) = −∞, moreover
from the definition (2.10) of x∗n and the observation x∗n →∞ we get

1 = lim
n→∞

nσ2|q′′(x∗n)| � nσ2

(x∗n)2
(5.6)

hence x∗n �
√
n. The inequality x∗n < N∗n follows from the definition 2.10 of N∗n and the positivity

of q′. The inequality N∗n < N∗∗n holds true by definition of N∗∗n . By Assumption 2.1(v) there exists
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C > 0 such that q(x) ≤ Cxα for all sufficiently large x. Fix C ′ > C and Nn ≥ (2C ′nσ2)1/(2−α).
Then for large n,

q(Nn)

Nn/(2nσ2)
≤ 2nσ2CNα−2

n ≤ C

C ′
< 1. (5.7)

Write C/C ′ = 1− ε. It follows that fn(Nn) = q(Nn) < (1− ε) Nnnσ2 ≤ (1− ε)(1 + o(1))fn(a), and

a fortiori min fn ≤ fn(Nn) < fn(a), which shows Nn ≥ N∗∗n . This proves N∗∗n = O(n1/(2−α)) and
completes the proof of the first part of the lemma.

Next suppose by contradiction thatN∗n/x
∗
n → 1. Then by Eq. (2.10) we must have nσ2q′(x∗n)/x∗n →

0. Since x∗n →∞, Assumption 2.1 yields nσ2q′′(x∗n)→ 0, contradicting the definition of x∗n. Sim-
ilarly, the assumption N∗n/x

∗
n → ∞ leads to nσ2q′′(x∗n) → ∞, contradicting again the definition

of x∗n. So N∗n/x
∗
n stays bounded away from 1 and from ∞. �

Proof of Lemma 2.7. Remember q′(x∗n) = [N∗n − x∗n]/[nσ2] by definition of N∗n, and q′(xn) =
[Nn − xn]/[nσ2] by definition of xn. Since q′ is strictly decreasing we deduce

Nn − xn
nσ2

= q′(xn) < q′(x∗n) =
N∗n − x∗n
nσ2

<
N∗n
2σ2

, (5.8)

so Nn−xn ≤ N∗n (see Figure 3). Since q′ is strictly convex, we have q′(x∗n) > q′(xn)+q′′(xn)(x∗n−
xn) hence

q′′(xn) >
q′(xn)− q′(x∗n)

xn − x∗n
=

(Nn − xn)− (N∗n − x∗n)

nσ2(xn − x∗n)
=

O(N∗n)

nσ2(Nn +O(N∗n))
(5.9)

We also know that q′′(xn) < 0, so we obtain

f ′′n (xn) = q′′(xn) +
1

nσ2
=

1

nσ2

(
1 +O

(N∗n
Nn

))
. (5.10)

�

x
x′nx∗n N∗n

q′(x)

x

q′(x)

N∗nNn

N∗n
nσ2

Nn
nσ2

N∗n
nσ2

x

q′(x)

N∗n Nn

xn

(c) Nn > N∗n : two solutions(b) Nn = N∗n : one solution(a) Nn < N∗n : no solutions

N∗n
nσ2

Nn
nσ2

Figure 3. Solutions to q′(x) = (Nn − x)/(nσ2) (=critical points of fn) as in Lemma 2.7.

For the proof of Theorem 2.9 in the case Nn ∼ N∗n we need the following.

Lemma 5.1. Let Nn = N∗n. We have

fn(x∗n)− (N∗n)2

2nσ2
≥ ε (N∗n)2

2nσ2
. (5.11)

for some ε > 0 and all sufficiently large n,

Proof. Assume a = 0 and q(0) = 0. By Lemma 2.5 we already know fn(x∗n)− fn(0) > 0, we prove
fn(x∗n)− fn(0) > εfn(0). Since f ′n(x∗n) = 0 for Nn = N∗n,

f ′n(x) =

∫ x

x∗n

f ′′n (y)dy =
1

nσ2

∫ x∗n

x

(
nσ2|q′′(y)| − 1

)
dy. (5.12)

For y ≥ x∗n/2 the integrand stays bounded away from zero, hence

f ′n(x) ≥ c(x∗n − x)

nσ2
(5.13)
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for all x ≥ x∗n/2 and some c > 0. Then

fn(x∗n)− fn(0) =

∫ x∗n

0

f ′n(y)dy ≥ cx∗n
2

8nσ2
(5.14)

and the statement follows from N∗n = O(x∗n) (Lemma 2.6) and fn(0) =
(N∗n)2

2nσ2 (1 + o(1)). The proof
for a > 0 is based on a similar estimate of fn(x∗n)− fn(2a) and therefore omitted. �

Proof of Prop. 2.12. Fix r ∈ N0. We have

f ′nr(x) = f ′n(x) +O
(

(
Nn − x
nσ2

)2
)
. (5.15)

Clearly f ′nr(Nn) = q′(Nn) > 0. Fix δ ∈ (0, ε) and x ∈ (x∗n, (1 + δ)x∗n). Remembering (2.10) and
the monotonicity of q′, we obtain

f ′nr(x) ≤ N∗n − x∗n
nσ2

− (1 + o(1))
Nn − (1 + δ)x∗n

nσ2

= − 1

nσ2

(
Nn + o(Nn)−N∗n − δx∗n

)
≤ − 1

nσ2

(
(1 + o(1))εN∗n − δx∗n

) (5.16)

which is eventually negative because of x∗n ≤ N∗n and δ < ε. It follows that f ′nr does indeed have
a zero xnr which lies between (1 + δ)x∗n and Nn. On (x∗n, (1 + δ)x∗n) fnr is strictly decreasing
by (5.16), on ((1 + δ)x∗n, Nn) the second derivative satisfies

f ′′nr(x) =
1

nσ2

(
1− nσ2|q′′(x)|+O

(Nn
n

))
(5.17)

which stays bounded away from 0, hence fnr is strictly convex. It follows that xnr is the unique
zero of f ′nr and the maximizer of fnr in (x∗n, Nn). Moreover

(1 + o(1))
Nn − xnr
nσ2

= q′(xnr) ≤ q′(x∗n) =
N∗n − x∗n
nσ2

(5.18)

hence xnr = Nn − (1 + o(1))nσ2q′(xnr) = Nn + O(N∗n). The asymptotic expression for fnr(xnr)
is easily checked. �

5.2. Critical points. We look for critical points (tn, ζn) with tn ↘ 0 and ζn ∈ (a,∞) of

Φn(t, ζ) = −q(ζ) + nϕ(t)−mt+ tζ (5.19)

(remember m = µn+Nn). Since our contour integrals involve integrals over z = et , it is convenient
to work with functions of a single variable t: for t < limx→a |q′′(x)|, let

Ψn(t) = Φn(t, ζ(t)) = nϕ(t)−mt+ ψ(t). (5.20)

where ζ(t) is the solution of q′(ζ(t)) = t as on p. 14. Then (t, ζ) is a critical point of Φn(t, ζ) if
and only if ζ = ζ(t) and Ψ′n(t) = 0. So instead of looking for bivariate critical points, we may look
for zeros of Ψ′n(t) in (0, sup |q′′(x)|). For later purpose we note the relations

Ψ′n(t) = nϕ′(t)−m+ ζ(t) = −(Nn − ζ(t)) + nσ2t(1 +O(t)) (5.21)

Ψ′′n(t) = nϕ′′(t) + ψ′′(t) = nσ2(1 +O(t)) +
1

q′′(ζ(t))
, (5.22)

with ψ(t) defined in (4.9). The variable t and the analysis of Ψn are in some sense dual to the
variable x (or ζ) and the variational problem fn(x) = min analyzed in Section 5.1. The analysis
becomes more involved, however, because we need to take into account correction terms from∑
j≥3 κjt

j/j!.

Lemma 5.2 (Inflection point of Ψn). Let δ > 0 such that inf(0,δ) ϕ
′′(t) > 0. Then for all

sufficiently large n, Ψn has an inflection point t∗n ∈ (0, δ). Any inflection point satisfies t∗n ∼ q′(x∗n),
and Ψn is concave below the smallest inflection point and convex above the largest inflection point.

If the inflection point is unique, then Ψn is concave on (0, t∗n) and (t∗n, δ). In general we do not know
whether the inflection point is unique, however the asymptotic behavior t∗n ∼ q′(x∗n) is uniquely
determined, and all statements below hold for every inflection point t∗n.
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Remark 4. It follows that t∗n is of the order of N∗n/n: from Lemma 5.2 and the definition of N∗n,

we have t∗n ∼
N∗n−x

∗
n

nσ2 , and then Lemma 2.6 yields

δ
N∗n
n
≤ t∗n ≤ C

N∗n
n
. (5.23)

Proof of Lemma 5.2. As a preliminary observation, we note that any solution t∗n of Ψ′n(t) = 0
converges to zero: this is because −ψ′′(t∗n) = nϕ′′(t) ≥ n inf(0,δ) ϕ

′′ →∞.

As t ↘ 0 at fixed n, we have ϕ′′(t) → σ2 and ψ′′(t) → −∞ hence Ψ′′n(t) → −∞. On the
other hand we may choose εn in such a way that εn ↘ 0 and Ψ′′n(εn)→∞: indeed ψ′′(q′(x∗n)) =
1/q′′(x∗n) = −nσ2 by definition of x∗n, so choosing εn � q′(x∗n) in such a way that |ψ′′(εn)| �
|ψ′′(q′(x∗n))| = nσ2 we find Ψ′′n(εn) = (1+o(1))nσ2+o(nσ2)→∞. It follows from the intermediate
value theorem that Ψ′′n(t) = 0 has a solution t∗n in (0, εn). It satisfies

q′′(x∗n)

q′′(ζ(t∗n))
= −ψ

′′(t∗n)

nσ2
=
ϕ′′(t∗n)

σ2
= 1 +O(t∗n)→ 1. (5.24)

Assumption 2.1(iv) and its consequence (2.5) imply that ζ(t∗n)/x∗n → 1 and t∗n = q′(ζ(t∗n)) ∼
q′(x∗n). �

Ψ′n(t) is positive for small t and decreasing on (0, t∗n) and increasing on (t∗n, δ). Define ζ∗n = ζ(t∗n)
and notice ζ∗n ∼ x∗n from the proof of the previous lemma.

For Nn � n, let ηn ∼ Nn/(nσ2) be the solution of (3.4). Notice Ψ′n(ηn) = ζ(ηn)→∞.

Lemma 5.3. Let δ > 0 be as in Lemma 5.2, ε > 0, and t∗n an inflection point of Ψn. Let Nn →∞
with (1 + ε)N∗n ≤ Nn � n. Then for sufficiently large n, Ψ′n has exactly two zeros in (0, δ), one
zero tn ∈ (0, t∗n) and another t′n ∈ (t∗n, ηn). Set ζn := ζ(tn). We have

0 ≤ Nn − ζn = O(N∗n),

lim supn→∞ tn/t
∗
n < 1, lim infn→∞ ζn/x

∗
n > 1, and lim inf t′n/ηn > 0.

Remark 5. When Nn � N∗n, we use Eq. (2.4), Lemmas 2.6 and 5.2 and find

ζn ∼ Nn, tn = q′(ζn) ∼ q′(Nn)� q′(x∗n) ∼ t∗n = O
(N∗n
n

)
(5.25)

hence tn = o(t∗n). When Nn = O(N∗n), we have instead c−1t∗n ≤ tn ≤ c t∗n for some c > 0 and
all sufficiently large n: The upper bound is part of Lemma 5.3. For the lower bound, we note
that tn = q′(ζn) ≥ q′(Nn) because q′ is decreasing and ζn ≤ Nn. Since Nn is of the order of N∗n,
Eq. (2.4) shows that q′(Nn) is of the order of q′(N∗n) which in turn is of the order of q′(x∗n) ∼ t∗n.

Proof of Lemma 5.3. We check first that t∗n < ηn. With C ≥ 1 as in Lemma 2.6, we have

t∗n ∼ q′(x∗n) =
N∗n − x∗n
nσ2

≤ (1− C−1)
N∗n
nσ2

(5.26)

so

t∗n/ηn ≤ (1 + o(1))(1− C−1)N∗n/Nn ≤ (1 + o(1))
1− C−1

1 + ε
(5.27)

is bounded away from 1. As t → 0 at fixed n, Ψ′n(t) ∼ ζ(t) → ∞, and as n → ∞, Ψ′n(ηn) → ∞.
Furthermore

Ψ′n(t∗n) = −(Nn − ζ∗n) + (1 + o(1))nσ2q′(ζ∗n)

= −
(
Nn − (1 + o(1))x∗n

)
+ (1 + o(1))nσ2q′(x∗n)

= −
(
Nn − (1 + o(1))x∗n

)
+ (1 + o(1))

(
N∗n − x∗n

)
= −(Nn −N∗n) + o(N∗n)→ −∞.

(5.28)

The intermediate value theorem proves the existence of a zero tn ∈ (0, t∗n) and another zero
t′n ∈ (t∗n, ηn).

Suppose by contradiction that tn/t
∗
n → 1. Then the identities tn = q′(ζn), t∗n = q′(ζ∗n) and

Eq. (2.4) imply ζn ∼ ζ∗n ∼ x∗n and an estimate analogous to (5.28) shows Ψ′n(tn) → −∞, in
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contradiction with Ψ′n(tn) = 0. It follows that tn/t
∗
n and ζn/x

∗
n are bounded away from 1. In

addition, tn ≤ t∗n = O(N∗n/n) and

Nn − ζn ∼ nσ2tn = O(N∗n). (5.29)

For the lower bound of t′n, we use t′n ≥ t∗n ∼ q′(x∗n) and Assumption 2.1 to get ζ ′n ≤ (1 + o(1))x∗n
where q′(ζ ′n) = t′n. Since t′n = O(ηn)→ 0, Ψ′n(t′n) = 0 together with (5.21) yields

t′n ∼
Nn − ζ ′n
nσ2

∼ ηn
(

1− ζ ′n
Nn

)
≥ ηn

(
1− N∗n

Nn

)
(5.30)

and Nn ≥ (1 + ε)N∗n implies lim inf t′n/ηn > 0. Notice that, in view of (5.27), we have a fortiori
lim inf t′n/t

∗
n > 0.

We have actually shown that for every inflection point t∗n, t/t∗n ≤ 1 stays bounded away from
1. In particular, in case of non-uniqueness of t∗n we may choose t∗n as the smallest inflection point
of Ψn. Then Ψ′n is strictly increasing on (0, t∗n), consequently the zero tn is unique. A similar
argument shows that t′n is unique. �

When lim infn→∞Nn/n > 0, the sequence ηn is either no longer defined or it does not converge
to zero. The previous lemma is modified as follows.

Lemma 5.4. Assume Nn → ∞ with lim inf Nn/n > 0. Then there exists δ0 > 0 such that for
large n, Ψn has exactly one critical point tn in (0, δ0). The critical point lies in (0, t∗n) and it
satisfies 0 ≤ Nn − ζ(tn) = O(N∗n).

Proof. The existence and uniqueness of a critical point in (0, t∗n) as well as the properties of ζ(tn)
are proven as in the previous lemma. Fix δ0 > 0 such that ϕ′(δ0) ≤ µ+ 1

2 lim inf(Nn/n) =: µ+ε/2.
Then

Ψ′n(δ0) = −n
(
µ+

Nn
n
− ϕ′(δ0)

)
+ ζ(δ0) ≤ −n(

ε

2
+ o(1)

)
+ ζ(δ0)→ −∞. (5.31)

It follows that Ψ′n < 0 on (t∗n, δ0). �

5.3. Hessians. Let tn ∈ (0, t∗n) be the critical point of Ψn(t), and ζn = ζ(tn). Thus (tn, ζn) is a
critical point of Φn(t, ζ). Lemma B.1 shows

Ψ′′n(tn) = −det Hess Φn(tn, ζn)

|q′′(ζn)|
= −1− nReϕ′′(tn)|q′′(ζn)|

|q′′(ζn)|
. (5.32)

Lemma 5.5. Assume Nn → ∞ with lim infn→∞(Nn/N
∗
n) > 1 and let (tn, ζn) be the unique

critical point of Φn in (0, t∗n)× (a,∞).

(a) If Nn � N∗n, then det Hess Φn(tn, ζn)→ −1.
(b) If Nn = O(N∗n), then det Hess Φn(tn, ζn) = −(1−nσ2|q′′(ζn)|) + o(1) and it stays bounded

away from zero.

Proof. (a) If Nn � N∗n, then by Lemmas 5.3 and 5.4, we have ζn = Nn +O(N∗n) ∼ Nn, hence in
particular ζn � N∗n ≥ x∗n. Exploiting the monotonicity and the convexity of q′, we have

0 ≥ q′′(ζn) ≥ q′(ζn)− q′(x∗n)

ζn − x∗n
=
O(N∗n/(nσ

2))

Nn(1 + o(1))
= − 1

nσ2
O
(N∗n
Nn

)
(5.33)

from which we get

det Hess Φn(tn, ζn) = −1 + nσ2(1 +O(tn))|q′′(ζn)| = −1 +O
(N∗n
Nn

)
→ −1. (5.34)

(b) If Nn = O(N∗n): By Lemma 5.3, ζn ≥ (1 + ε)x∗n for some ε > 0. Consequently |q′′(ζn)| ≤
(1− δ)|q′′(x∗n)| = (1− δ)/(nσ2) for some δ > 0 and large n, from which we deduce that

1− nReϕ′′(tn)|q′′(ζn)| ≥ 1− (1 +O(tn))(1− δ) = 1− δ +O(tn), (5.35)

in particular the expression stays bounded away from zero. We also have

det Hess Φn(tn, ζn) = −(1− nσ2|q′′(ζn)|) + o(tn)nσ2|q′′(ζn)| (5.36)
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Since ζn > x∗n, the estimate (5.33) still holds true and

tnnσ
2|q′′(ζn)| = tnO

(N∗n
Nn

)
= O(tn)→ 0. (5.37)

�

5.4. Gaussian approximation. Next we address the Gaussian approximation for the evaluation
of Hn. Because of Theorem 4.4, we need not deal with a bivariate integral and instead may use

1

π

∫ εn

0

enReϕ(t)−mt ImG( et )dt ∼ 1√
2π

∫ εn

0

√
|ψ′′(t)| eΨn(t) dt (5.38)

as n→∞ and εn ↘ 0. Remember that Ψn(tn) = Φn(tn, ζn) and from Eq. (5.32) and Lemma 5.5,

ψ′′n(tn)

Ψ′′n(tn)
=

1

1− nσ2|q′′(ζn)|
(5.39)

with a denominator bounded away from zero. The following technical lemma helps estimate the
prefactor

√
|ψ′′(t)|. Set

Rn(t) := Ψn(t) + log
√
|ψ′′(t)|. (5.40)

Lemma 5.6. Let Nn → ∞ with lim inf(Nn/N
∗
n) > 1 and tn ∈ (0, t∗n) the zero of Ψ′n(t) from

Lemma 5.3. Then R′n has at least one zero sn ∈ (0, tn). Moreover there exists a sequence δn ↘ 0
such that every such zero lies in ((1− δn)tn, tn).

Proof. As t↘ 0 at fixed n, using Lemma 4.3, we have

R′n(t) = Ψ′n(t) +
1

2

ψ′′′(t)

ψ′′(t)
= n

(
Reϕ′(t)− µ

)
−Nn + ψ(t) +

1

2

ψ′′′(t)

ψ′′(t)

= n(σ2t+O(t2))−Nn + ψ′(t) +O(1/t)

= −Nn + o(1) + (1 + o(1))ψ′(t)→∞, (5.41)

hence t 7→ Rn(t) is initially increasing. At t = tn we have

R′n(tn) = Ψ′n(tn) +
1

2

ψ′′′(tn)

ψ′′(tn)
=

1

2

ψ′′′(tn)

ψ′′(tn)
< 0. (5.42)

The intermediate value theorem guarantees the existence of a zero sn of R′n. Set

yn := ψ′(sn) +
1

2

ψ′′′(sn)

ψ′′(sn)
. (5.43)

In view of Lemma 4.3, we have yn ∼ ψ′(sn) and by Eqs. (2.4) and (4.10), q′(yn) ∼ sn. From
sn ≤ tn ≤ t∗n and Lemma 2.7 we get that yn is larger than x∗n and actually bounded away from it.
By the definition of sn,

0 = n
(
Reϕ′(sn)− µ

)
−Nn + yn = nσ2sn(1 +O(sn))− [Nn − yn] (5.44)

hence
Nn − yn
nσ2

∼ sn ∼ q′(yn). (5.45)

Let xn ∈ (x∗n, Nn) be the solution of q′(xn) = (Nn − xn)/(nσ2). Now

d

dy

(
q′(y)− Nn − y

nσ2

)
= q′′(y) +

1

nσ2
=

1− nσ2|q′′(y)|
nσ2

(5.46)

and nσ2|q′′(y)| stays bounded away from 1 when y ≥ (1 + δ)x∗n, we find that for some c > 0, we
have ∣∣∣q′(yn)− Nn − y

nσ2

∣∣∣ ≥ c|yn − xn|
nσ2

(5.47)

hence yn − xn = o(Nn − yn) = o(Nn). If Nn � N∗n, Lemma 2.7 says xn ∼ Nn and we deduce
yn − xn = o(xn). If Nn = O(N∗n), we use xn ≥ x∗n in conjunction with Lemma 2.6 and find
yn − xn = o(N∗n) = o(x∗n) = o(xn).
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Thus we have checked that yn ∼ xn, which in turn yields sn ∼ q′(xn). An entirely similar
argument shows tn ∼ q′(xn), so we must have sn ∼ tn. This holds for every zero in (0, tn), in
particular the smallest one, and the lemma follows. �

Lemma 5.7. Let Nn →∞ with lim inf(Nn/N
∗
n) > 1 and Nn = O(N∗n). Then∫ t′n

0

√
|ψ′′(t)| eΨn(t) dt ∼

√
2π

1− nσ2q′′(ζn)
eΨn(tn) .

Proof. By Lemma 5.2 and 5.3, Ψn is increasing on (0, tn) and decreasing on (tn, t
′
n). We use a

Gaussian approximation to Ψn around tn and adapt [17, Lemma 2.1]. First we check that the
window (tn − εn, tn + εn) contributing most to the Gaussian integral fits amply into (0, t′n), i.e.,

εn :=
1√

|Ψ′′n(tn)|
= o
(
min(tn, t

′
n − tn)

)
. (5.48)

By Lemma 5.3, we have tn ≤ (1− δ)t∗n ≤ (1− δ)t′n for some δ ∈ (0, 1), hence t′n − tn ≥ δtn and

min(tn, t
′
n − tn) ≥ δtn. (5.49)

Eq. (5.39) and Lemma 5.5 show that Ψ′′n(tn) is of the order of ψ′′(tn), ε2
n of the order of 1/|ψ′′n(tn)|.

By Lemma 4.3, t2n|ψ′′n(tn)| → ∞ hence ε2
n/t

2
n → 0 and (5.48) follows. The same argument shows

that for

cn →∞ with cnεn = o(tn) (5.50)

we still get cnεn = o
(
min(tn, t

′
n − tn)

)
. Second, we observe that the prefactor ψ′′(t) is essentially

constant on the relevant window: Because of ψ′′′(u)/ψ′′(u) = O(1/u) (Lemma 4.3), we have

ψ′′(t)

ψ′′(tn)
= exp

(
−
∫ t

tn

ψ′′′(u)

ψ′′(u)
du
)

= exp
(
O(log

t

tn
)
)

(5.51)

and

sup
{∣∣∣ ψ′′(t)
ψ′′(tn)

− 1
∣∣∣ ∣∣∣ |t− tn| ≤ cnεn} = O(cnεn)→ 0. (5.52)

Third, we note that cubic corrections can be neglected:

Ψn(t) = Ψn(tn) +
1

2

(
1 + o(1)

)
Ψ′′n(tn)(t− tn)2 (5.53)

uniformly in |t− tn| ≤ cnεn. To this aim write, with the help of (5.52),

Ψ′′n(t) = n
(
ϕ′′(tn) +O(cnεn)

)
+ ψ′′n(tn)(1 +O(cnεn))

= Ψ′′n(tn) + ψ′′n(tn)
(
O
( ncnεn
ψ′′n(tn)

)
+O(cnεn)

)
Now n/ψ′′(tn) = nq′′(ζn) = O(1) by Lemma 5.5 and ψ′′(tn) = O(Ψ′′n(tn)) by Eq. (5.39) and the
same lemma, hence

Ψ′′n(t) = (1 +O(cnεn))Ψ′′n(tn) (5.54)

in |t− tn| ≤ cnεn and (5.53) follows. Eqs. (5.52), (5.53) and (5.39) yield∫ tn+cnεn

tn−cnεn

√
|ψ′′(t)| eΨn(t) dt ∼

√
2πψ′′(tn)

Ψ′′n(tn)
∼

√
2π

1− nσ2q′′(ζn)
eΨn(tn) . (5.55)

Our next task is to estimate the integral on (0, tn − cnεn) and (tn + cnεn, t
′
n), taking into account

that the prefactor
√
|ψ′′(t)| goes to infinity. On both intervals we have

Ψn(t) ≤ Ψn(tn)− 1

2
(1 +O(cnεn))c2n. (5.56)

For t ≥ tn + cnεn we have −ψ′′(t) ≤ −ψ′′(tn) hence√
|ψ′′(t)| exp(Ψn(t)) ≤ exp

(
Ψn(tn)− 1

2
(1 + o(1))c2n +

1

2
log |ψ′′(tn)|

)
. (5.57)
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By Lemma 5.6 we may choose cnεn ↘ 0 in such a way that Rn is increasing on (0, tn(1− cnεn)),
which yields

Ψn(t) + log
√
|ψ′′(t)| ≤ Ψn(tn − cnεn) + log

√
|ψ′′(tn − cnεn)|. (5.58)

This estimate, combined with Eqs. (5.52) and (5.56), shows that (5.57) holds true not only in
(tn + cnεn, t

′
n) but also in (0, tn − cnεn). Next we check that we can choose cn → ∞ so that not

only cnεn = o(tn) but in fact

− (1 + o(1))c2n + log |ψ′′(tn)| → −∞. (5.59)

By Lemma 4.3 (iii), as t ↘ 0, we may estimate |ψ′′(t)| as follows: fix t0 > 0 and take t ∈ (0, t0),
then

log(−ψ′′(t)) = log(−ψ′′(t0))−
∫ t0

t

ψ′′′(u)

ψ′′(u)
du ≤ log(−ψ′′(t0)) +

∫ t0

t

C

u
du

= log(−ψ′′(t0)) + C log
t0
t

= O(| log t|). (5.60)

In particular log |ψ′′(tn)| = O(log tn). On the other hand

c2n
| log tn|

=
(cnεn
tn

)2 Ψ′′n(tn)

ψ′′(tn)

t2n|ψ′′(tn)|
| log tn|

(5.61)

The ratio Ψ′′n(tn)/ψ′′(tn) stays bounded away from 0 and by Lemma 4.3,

t2|ψ′′(t)|
| log t|

→ ∞. (5.62)

Thus we may find a function ω(t) → 0 such that ω(t)2t2|ψ′′(t)|/| log t| still goes to infinity as
t↘ 0, set cnεn = tnω(tn), and then Eq. (5.59) holds true. The bound (5.57) then shows∫ tn−cnεn

0

√
|ψ′′(t)| eΨn(t) dt+

∫ t′n

tn+cnεn

√
|ψ′′(t)| eΨn(t) dt = o

(
eΨn(tn)

)
. (5.63)

Eqs. (5.55) and (5.63) complete the proof of the lemma. �

Lemma 5.8. Let Nn →∞ with N∗n � Nn � n. Then∫ t′n

0

√
|ψ′′(t)| eΨn(t) dt ∼

√
2π eΨn(tn) .

Proof. The proof of Lemma 5.7 applies without any changes, the end result simplifies because
1− nσ2q′′(ζn)→ 1 by Lemma 5.5. �

Lemma 5.9. Let Nn →∞ with lim inf(Nn/n) > 0. Let δ0 > 0 as in Lemma 5.4. Then∫ δ0

0

√
|ψ′′(t)| eΨn(t) dt ∼

√
2π eΨn(tn) .

Proof. By Lemma 5.4, Ψn(t) has a unique critical point tn in (0, δ0) and we may use a Gaussian
approximation on this interval—there is no need to restrict to an interval whose length goes to
zero. Apart from this difference, the proof is identical to Lemmas 5.7 and 5.8. �

6. Evaluation of contour integrals. Proof of the main theorems

The proof of the main theorems starts from the decomposition

P(Sn = nµ+Nn) = Hn + Vn (6.1)

where Hn and Vn are defined as in (3.7). The correctness of (6.1) is checked as in Section 3,
building on the properties of G(z) proven in Section 4. For the proof of Theorem 2.10 it is
convenient to decompose Hn further as Hn = H1

n +H2
n where

H1
n =

1

π

∫ t′n

0

enReϕ(t)−(µn+Nn)t sin(nImϕ(t))dt (6.2)
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and H2
n is a similar integral, but with integration from t′n to ηn. In the proof of Theorem 2.11

we adopt slightly modified definitions and replace the sequence ηn ∼ Nn/(nσ
2) in the domain of

integration by another sequence εn ↘ 0 or by some fixed small ε > 0.

6.1. Evaluation of Vn. Theorem 2.11 only needs upper bounds for Vn, provided in Lemmas 6.1
and 6.2. Theorems 2.9 and 2.10 requires the full asymptotic behavior of Vn proven in Lemma 6.3.

Lemma 6.1. Suppose Nn → ∞ and Nn ≥ δn for some δ > 0 and all n ∈ N. Then for suitable
C = Cδ > 0, every sufficiently small η > 0, and all n ∈ N

1

π

∫ π

0

enReϕ(η+iθ)−(µn+Nn)η dθ ≤ e−Cnη .

Proof. Let S+ be the half-strip {t ∈ C | Re t ≥ 0, Im t ∈ [0, π)}. By Theorem 4.2, we know that
as t→ 0 in S+

Re
(
ϕ(t)− µt− Nn

n
t
)

= −Nn
n

Re t+
1

2
σ2
(
(Re t)2 − (Im t)2

)
+O(t3). (6.3)

Then for sufficiently small ε1 > 0 and all t ∈ S+ with max(|Re t|, |Im t|) ≤ ε1, the right side of
Eq. (6.3) is smaller than −δRe t/2, which shows

1

π

∫ ε1

0

enReϕ(η+iθ)−(µn+Nn)η dθ ≤ ε1

π
e−nδη/2 (6.4)

for all η ∈ (0, ε1). On the other hand on the unit circle G(z) is given by a power series with
strictly positive coefficients and therefore |G(z)| has a unique maximum at z = 1. It follows that
for all t = iθ with θ ∈ [ε1, 2π − ε1], we know Reϕ(t) < 0. By continuity this extends to some thin
vertical strip Im t ∈ [ε1, 2π − ε1], Re t ∈ [0, ε2] so that Re (ϕ(t)− µt) ≤ −µRe t and

1

π

∫ π

ε1

enReϕ(η+iθ)−(µn+Nn)η dθ ≤ π − ε1

π
e−nµη (6.5)

for all η ∈ (0, ε2). To conclude, we let Cδ := min(δ/2, µ). �

Lemma 6.2. Assume Nn = m − nµ → ∞ and Nn = o(n). Let εn ↘ 0 with εn ≤ ηn =
(1 + o(1)) Nnnσ2 . Then for suitable constant C > 0, as n→∞,∣∣∣ 1

2π

∫ π

0

enReϕ(εn+iθ)−mεn) dθ
∣∣∣ ≤ e−(1+o(1))Nnεn/2 .

Proof. The proof is analogous to Lemma 6.1. We start from the estimate (6.3). In a sufficiently
small ε1-neighborhood of the corner 0 of the half-strip S+, we have

Re
(
ϕ(t)− m

n
t
)
≤ −

(Nn
n
− 1

2
σ2Re t

)
Re t. (6.6)

Notice that ε1 can be chosen n-independent: we only need −σ2(Im t)2 + O((Im t)3) ≤ 0 for
|Im t| ≤ ε1. When Re t = εn with εn ≤ Nn

nσ2 , the upper bound in (6.6) is in turn bounded by
−(1 + o(1))Nnεn/2.

When Re t = εn is small but Im t is bounded away from 0 and 2π, we estimate

Re
(
ϕ(t)− m

n
t
)
≤ −m

n
Re t = −

(
µ+

Nn
n

)
t ≤ −Nn

n
t. (6.7)

and we conclude as in Lemma 6.1. �

The proof of the next lemma is closely related to the treatment of moderate deviations for
random variables with generating functions analytic beyond z = 1 given by Ibragimov and Lin-
nik [12].

Lemma 6.3. Let Nn → ∞ along
√
n � Nn = O(n1−γ) for some γ > 0. Define ηn ∼ Nn/(nσ

2)
by (3.4) and Vn as in (3.7). Then Eq. (3.11) holds true.
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Proof. Since Reϕ′(t) = µ+σ2t+O(t2) is strictly increasing for small t > 0 and Nn/n→ 0, we may
fix δ > 0 small enough so that for large n ≥ nδ, the equation (3.4) has indeed a unique solution
ηn ∈ (0, δ), which satisfies ηn ∼ Nn/(nσ2). Arguments analogous to the proof of Eq. (6.5) show

1

π

∣∣∣∫ π

δ

en(ϕ(ηn+iθ))−(µn+Nn)(ηn+iθ) cos(nImϕ(ηn + iθ))dθ
∣∣∣ ≤ e−nµηn . (6.8)

We also have, uniformly in s ∈ (0, δn),

ϕ(ηn + is) = ϕ(ηn) + ϕ′(ηn)is− 1

2
ϕ′′(ηn)s2 +O(s3)

= ϕ(ηn) + i
(
µ+

Nn
n

)
s− Imϕ′(ηn)s− 1

2
ϕ′′(ηn)s2 +O(s3) (6.9)

and therefore

Reϕ(ηn + is) −
(
µ +

Nn
n

)
ηn = Reϕ(ηn) − 1

2
ϕ′′(ηn)s2(1 + O(s)) − Imϕ′(ηn)s. (6.10)

Since ϕ′′(ηn)→ σ2, standard arguments show

1

π

∫ δ

0

enReϕ(ηn)−n2 Reϕ′′(ηn)s2(1+O(s)) ds ∼ exp(nReϕ(ηn))√
2πnσ2

, (6.11)

moreover the contribution to the interval from s ≥ δn := (log n)/
√
n is negligible and Eq. (6.11)

holds true with δ replaced by δn. By Theorem 4.2 and the relation ImG( et ) = |G( et )|Imϕ(t) the
imaginary part of ϕ′(ηn) vanish faster than any power of ηn = O(n−γ), hence nImϕ′(ηn) can be
neglected; the same argument works for nImϕ′′(ηn). For the cosine, we look separately at (0, δn)
and (δn, δ). On (0, δn), again by Theorem 4.2, sups∈(0,δn) |Imϕ(ηn + is)|, vanishes faster than any

power of max(ηn, δn) hence it can be neglected. On (δn, δ) we simply bound the cosine by 1. As
the contribution from (δn, δ) to the integral (6.11) is negligible, combining with (6.8) we find in
the end

Vn = (1 + o(1))
exp(nReϕ(ηn)− µn−Nn)√

2πnσ2
+O

(
e−nµηn ). (6.12)

By Theorem 4.2 and Definition 2.8, we have

nReϕ(ηn)− µn−Nn =
(

1 +O(
Nn
n

)
) N2

n

2nσ2
(6.13)

with correction terms expressed in terms of the Cramér series. In particular, the exponent goes
to −∞ as −N2

n/n, i.e., slower than the term −nµηn = −Nnµ in the second term. Therefore
the second term in Eq. (6.12) is negligible compared to the first and Eqs. (3.10) and (3.11) hold
true. �

6.2. Evaluation of Hn. Here we focus on the regime lim inf Nn/N
∗
n > 1; the case lim supNn/N

∗
n ≤

1 is treated in the proof of Theorem 2.9. In order to apply the Gaussian approximation from Sec-
tion 5.4, we need to drop the sine and replace Imϕ(t) with G( et ).

Lemma 6.4. Let εn ↘ 0 faster than some power of n, i.e., nεpn → 0 for some p > 0. Then

sin
(
nImϕ(t)

)
∼ nImG( et )

uniformly for t ∈ [0, εn].

Proof. We have

ImG( et ) = Im eϕ(t) = eReϕ(t) Imϕ(t) = |G( et )| Imϕ(t). (6.14)

We know that

sup
t∈[0,εn]

|ReG( et )− 1| = O(εn)→ 0, (6.15)

and the imaginary part vanishes faster than any power, in particular

sup
t∈[0,εn]

|ImG( et )| = O(εpn)→ 0. (6.16)
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It follows that a similar bound applies to Imϕ(t). As a consequence

sup
t∈[0,εn]

∣∣∣nImϕ(t)− sin(nImϕ(t))

sin(nImϕ(t))

∣∣∣ = O
(
n2 sup

t∈[0,εn]

|Imϕ(t)|2
)

= O
(
n2ε2p

n

)
→ 0, (6.17)

Thus sin(nImϕ(t)) ∼ nImϕ(t), uniformly in [0, εn]. Eq. (6.14) in turn shows Imϕ(t) ∼ ImG( et )
uniformly in [0, εn]. �

The dominant contribution to the Gaussian integral in Lemmas 5.7-5.9 comes from windows of
width o(tn) around tn; by Remark 5 and Lemma 2.6, tn = O(t∗n) = O(N∗n/n) = O(n−[1−α]/[2−α]).
This latter bound vanishes like some negative power of n, hence Lemma 6.4 is applicable on the in-
terval contributing most to the Gaussian integrals. Outside we use the inequality | sin(nImϕ(t))| ≤
nImϕ(t) = n(1 + o(1))ImG( et ), and we find: For Nn →∞ with lim infn→∞Nn/N

∗
n > 1, we have

H1
n ∼

n√
1− nσ2q′′(ζn)

eΨn(tn) . (6.18)

For Nn →∞ with Nn � N∗n,

H1
n ∼ n eΨn(tn) . (6.19)

H2
n is estimated in the proof of Theorem 2.10 and is not needed in the proof of Theorem 2.11.

Finally for lim inf Nn/n > 0 and δ0 > 0 small enough as in Lemma 5.4,

1

π

∫ δ0

0

enReϕ(t)−mt sin
(
nImϕ(t)

)
dt ∼ n eΨn(tn) . (6.20)

Remember that Ψn(tn) = Φn(tn, ζn) = −fnr(xnr) + o(1) and 1− nσ2|q′′(ζn)| ∼ 1− nσ2|q′′(xnr)|
by the definition of Ψn and Eq. (2.22), so the right-hand sides in Eqs. (6.18)–(6.20) correspond to
the relevant contribution in Theorems 2.10 and 2.11.

6.3. Critical scale: proof of Theorem 2.10. Let Nn → ∞ with lim inf Nn/N
∗
n > 1 and

Nn = O(n1/(2−α)). Let ηn ∼ Nn/(nσ2) be the solution of (3.4), define Hn and Vn as in (3.7), and
H1
n and H2

n as in (6.2) Thus we have

P(Sn = nµ+Nn) = Vn +H1
n +H2

n. (6.21)

By Lemma 6.3, the asymptotics of Vn is given in terms of the Cramér series as in Eq. (3.11). H1
n

is evaluated with Lemma 5.7 and Lemma 5.8 as the right-hand side of Eq. (3.22). The proof is
complete once we show H2

n = o(Vn).
On (t′n, ηn) the function Ψn(t) is increasing by Lemma 5.3,

sup
t∈(t′n,ηn)

Ψn(t) ≤ Ψn(ηn) =
(
nReϕ(ηn)− (nµ+Nn)ηn

)
+ ψ(ηn). (6.22)

The term in big parentheses can be reexpressed with the Cramér series and is exactly equal to the
exponent in the evaluation of Vn (see Eqs. (3.10) and (3.11)), while ψ(ηn)→ −∞. The prefactor
satisfies

sup
t∈(t′n,ηn)

√
|ψ′′(t)| ≤

√
|ψ′′(t′n)| = exp

(
O(log t′n)

)
= exp

(
O(log n)

)
. (6.23)

(remember (5.4) and t′n ≥ t∗n, with t∗n of the order of N∗n/n� 1/
√
n). On the other hand ηn ↘ 0

faster than some power of n, so by Lemma 4.3 we have for some constant C

|ψ(ηn)| � | log ηn| ≥ C log n� log
√
|ψ′′(t′n)|, (6.24)

whence

ψ(ηn) + log n+ sup
t∈(t′n,ηn)

log
√
|ψ′′(t)| → −∞. (6.25)

In view of (6.22), (3.10) and (3.11), we obtain

H2
n =

n

π

∫ ηn

t′n

enReϕ(t)−(nµ+Nn)t ImG( et )dt = o(Vn). (6.26)
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which concludes the proof. �

6.4. Big jump: proof of Theorem 2.11. Let Nn → ∞ with Nn � n1/(2−α). Notice that, by
Lemma 2.6, we then have Nn � N∗∗n . We distinguish two cases.

Case 1: lim infn→∞Nn/n > 0. Fix δ0 > 0 as in Lemma 5.4 and define Hn and Vn as in (3.7)
but with δ0 instead of ηn. The asymptotic behavior of Hn is given by Eq. (6.20). The proof is
complete once we check Vn = o(Hn).
Vn is exponentially small in n by Lemma 6.1. Remembering Eq. (2.22) and (??) we get

Ψn(tn) = −fnr(xnr) + o(1) = −q(Nn) +
1

2
(1 + o(1))nσ2q′(Nn)2 + o(1)

≥ −q(Nn) + o(1) ≥ −CNα
n . (6.27)

It follows that Hn ∼ n exp(Ψn(tn)) goes to zero slower than exp(−cnα) for some c > 0, hence
Vn = o(Hn) and

P(Sn = nµ+Nn) ∼ Hn ∼ n e−fnr(xnr) . (6.28)

If n1/(2−α) � Nn � n, set εn = t′n. By Remark 5, the critical point t′n ∈ (t∗n, ηn) is bounded
from below by some constant times ηn ∼ Nn/(nσ

2). We define Hn and Vn as in (3.7) but with
εn instead of ηn. Hn is evaluated as in (6.19), which yields Hn ∼ n exp(Ψn(tn)); Eq. (6.27) stays
valid. Vn is estimated by Lemma 6.2, which yields Vn = O(exp(−Nnt′n/2))). Now Nnt

′
n → ∞

much faster than Nα
n . Indeed t′n is bounded from below by some constant times Nn/n, hence

Nα
n

Nnt′n
= O(nNα−2

n )→ 0. (6.29)

It follows that Vn = o(Hn) and Eq. (6.28) stays true. �

6.5. Small steps: proof of Theorem 2.9. The proof of Theorem 2.9 requires two more technical
lemmas, proven at the end of this section. Remember the function Rn(t) from (5.40).

Lemma 6.5. If lim supn→∞Nn/N
∗
n < 1, then R′n > 0 on (0, ηn) for all sufficiently large n.

Lemma 6.6. Let Nn → ∞ with Nn ∼ N∗n. Set f∗n(x) := q(x) +
(N∗n−x)2

2nσ2 . Suppose that there are
infinitely many n ∈ N for which the equation R′n(t) = 0 has a solution sn ∈ (0, ηn). Then sn ∼ t∗n
and

Rn(sn) = −f∗n(x∗n) + o
( (N∗n)2)

n

)
+O(log n).

The zero sn need not be unique—in case of non-uniqueness the lemma applies to every choice of
sn.

Proof of Theorem 2.9. Let Nn →∞ along
√
n� Nn ≤ (1 + o(1))N∗n. Let ηn ∼ Nn/(nσ2) be the

solution of (3.4) and define Vn and Hn as in (3.7). By Lemma 6.3, the asymptotic behavior of Vn
is given by Eqs. (3.10) and 3.11, so it remains to verify that Hn = o(Vn). We estimate

Hn ≤
nηn
π

sup
t∈(0,ηn)

√
|ψ′′(t) eΨn(t) =

nηn
π

sup
t∈(0,ηn)

eRn(t) . (6.30)

Just as in Lemma 5.6, one checks that Rn(t) is increasing for small t. We distinguish two cases.
Case 1: lim infn→∞Nn/N

∗
n < 1. Then Lemma 6.5 shows, for large n,

sup
t∈(0,ηn)

Rn(t) ≤ Rn(ηn) =
(
nReϕ(ηn)− (nµ+Nn)ηn

)
+ ψ(ηn) + log

√
|ψ′′(ηn)| (6.31)

and we deduce from (3.10)

Hn

Vn
≤ nηn

π

√
2πnσ2 exp

(
ψ(ηn) + log

√
|ψ′′(ηn)|

)
= exp

(
ψ(ηn) + log

√
|ψ′′(ηn)|+O(log n)

)
(6.32)

which goes to zero by an estimate analogous to (6.24).
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Case 2: Nn ∼ N∗n. If R′n reaches its maximum at t = ηn, the estimate (6.32) still applies. If
along some subsequence (nj), R

′
n reaches its maximum at some interior point sn ∈ (0, ηn), then

we must have R′n(sn) = 0 and by Lemmas 6.6 and 5.1

sup
t∈(0,ηn)

Rn(t) ≤ −(1 + ε+ o(1))
N∗n

2

2nσ2
+O(log n). (6.33)

for some ε > 0 and all large n. Since Vn = exp(−(1 + o(1))
N∗n

2

2nσ2 +O(log n)) we get

Hn

Vn
≤ exp

(
−(ε+ o(1))

N∗n
2

2nσ2
+O(log n)

)
. (6.34)

By Assumption 2.1 and Lemma 2.6,

1

nσ2
= |q′′(x∗n)| � log x∗n

x∗n
2 ≥ log n+O(1)

x∗n
2 (6.35)

so log n = o(N∗n
2/n) and the right-hand of (6.34) goes to zero.

We have checked in both cases that Hn = o(Vn), which concludes the proof. �

Proof of Lemma 6.5. Suppose that the equation R′n(sn) = 0 has a solution sn ∈ (0, ηn) for infin-
itely many n. Thus (sn) may be defined only along some subsequence (nj), which we suppress
from the notation. Define yn ∼ ψ′(sn) as in (5.43). Proceeding as in Lemma 5.6, we find that
q′(yn) ∼ (Nn − yn)/(nσ2). By the convexity of q′ and the definition of N∗n, we have

(1 + o(1))
Nn − yn
nσ2

= q′(yn) ≥ N∗n − yn
nσ2

=
N∗n −Nn
nσ2

+
Nn − yn
nσ2

(6.36)

hence N∗n −Nn ≤ o(Nn − yn) = o(Nn) and lim supN∗n/Nn ≤ 1 i.e. lim inf Nn/N
∗
n > 1.

So if lim supn→∞Nn/N
∗
n < 1, we must have R′n 6= 0 on (0, ηn) except possibly for finitely many

n. From the proof of Lemma 5.6 we know that limt↘0R
′
n(t) = ∞ for all n ∈ N, and Lemma 6.5

follows. �

Proof of Lemma 6.6. For t ∈ (0, ηn) with ηn ∼ Nn/(nσ2) we have

R′n(t) = n(Reϕ′(t)− µ)−Nn + ψ′(t) +
1

2

ψ′′′(t)

ψ′′(t)

= nσ2t− (N∗n − ζ(t)) + o(nt) + (N∗n −Nn) +O
(1

t

)
= nσ2t− (N∗n − ζ(t)) + o(N∗n) + o(ζ(t)). (6.37)

In terms of the dual variable ζ = ζ(t) = ψ′(t), the equation R′n(t) = 0 reads

nσ2q′(ζ)− (N∗n − ζ) = o(N∗n) + o(ζ). (6.38)

At ζ = x∗n, the left-hand side of (6.38) vanishes by definition of N∗n. It follows that

nσ2q′(ζ)− (N∗n − ζ) =

∫ ζ

x∗n

(1 + nσ2q′′(x))dx. (6.39)

Fix γ > 0. On ((1 + γ)x∗n,∞), we have 1− nσ2|q′′(x)| ≥ 1− nσ2|q′′((1 + γ)x∗n)| =: cγ > 0 and for
all x ≥ x∗n, the integrand is non-negative. As a consequence,

nσ2q′(ζ)− (N∗n − ζ) ≥ cγ
(
ζ − (1 + γ)x∗n

)
(6.40)

for all ζ ≥ (1 + γ)x∗n. Suppose that Eq. (6.38) has a solution ζ ′n with ζ ′n ≥ (1 + 2γ)x∗n along some
subsequence. Then N∗n = O(x∗n) = o(ζ ′n) and

cγ γζ
′
n ≤ cγ(ζ ′n − (1 + γ)x∗n) = o(ζ ′n), (6.41)

which is a contradiction (remember ζ ′n ≥ x∗n → ∞). It follows that for every γ > 0, there are at
most finitely many n for which ζ ′n > (1 + 2γ)x∗n, hence lim sup ζ ′n/x

∗
n ≤ 1.

The case ψ′(ηn) ≤ ζ ′n ≤ (1−2γ)x∗n is treated in an analogous fashion, based on two observations:
first, nσ2q′′(x) + 1 ≤ −cγ < 0 for all x ∈ (a, (1 − γ)x∗n) and some cγ > 0. Second, since ηn is of
the order of N∗n/n i.e., of the order of t∗n ∼ q′(x∗n), the estimate (2.4) shows that ζ ′n is bounded
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from below by some constant times N∗n, i.e., we still have N∗n = O(ζ ′n) and ζ ′n → ∞. We find
lim inf ζ ′n/x

∗
n ≥ 1, hence altogether lim ζ ′n/x

∗
n = 1. This applies in particular to ζ ′n := ψ′(sn) i.e.

sn = q′(ζ ′n). Eq. 2.4 and t∗n ∼ q′(x∗n) (Lemma 5.2) yield lim sn/t
∗
n = 1.

By Remark 5 and Lemma 2.6 we have sn ∼ t∗n ≥ constN∗n/n� 1/
√
n hence log sn = O(log n)

and by (5.4)

log |ψ′′(sn)| = O(log sn) = O(log n). (6.42)

Furthermore for t ∈ (0, ηn)

Ψn(t) =
1

2
n
(
σ2t2 + o(η2

n)
)
−Nnt+ tζ(t)− q(ζ(t)

=
{
−q(ζ(t)) +

1

2
nσ2t2 − (N∗n − ζ(t))t

}
+O

(
(N∗n −Nn)ηn

)
+ o(nη2

n) (6.43)

The two remainders are o((N∗n)2/n) by our choice of Nn. Write gn(t) for the term in curly braces.
At t = q′(x∗n) = [N∗n − x∗n]2/[nσ2] we have ζ(t) = x∗n, gn(t) = −f∗n(x∗n) and g′n(t) = 0. Moreover
for t ∈ (0, ηn)

g′′n(t) = nσ2 + ζ ′(t) = nσ2 − 1

|q′′(ζ(t))|
= O(nσ2). (6.44)

Here we have used that t ≤ ηn implies that ζ(t) is bounded from below by a constant times N∗n or
equivalently, x∗n and therefore |q′′(ζ(t))| is bounded from below by some constant times 1/(nσ2).
We deduce∣∣gn(sn) + f∗n(x∗n)

∣∣ ≤ 1

2
(tn − q′(x∗n))2 sup

0,ηn

|g′′n| = o(t2nnσ
2) = o(nη2

n) = o
( (N∗n)2

n

)
. (6.45)

The estimate on Rn(sn) follows from Eqs. (6.42), (6.43) and (6.45). �

Appendix A. Proofs of Lemmas 2.14 and 2.15

Proof of Lemma 2.14. The proof of Assumption 2.1 is straightforward and left to the reader. The
function q(ζ) = ζα is analytic in Re ζ > 0 and p(ζ) = exp(−ζα) satisfies, for all k ∈ N,

|ζkp(ζ)| = |ζ|k e−|ζ|
α cos(αarg(ζ)) ≤ |ζ|k e−|ζ|

α cos(απ/2) . (A.1)

Since α ∈ (0, 1), we have cos απ2 > 0 and Eq. (A.1) shows that |ζkp(ζ)| is integrable along Re ζ =
1/2 and that p(ζ) grows slower than any exponential exp(ε|ζ|). This proves Assumption 2.2.

The equation q′′(x∗n) = −1/(nσ2) can be solved explicitly. N∗n and N∗∗n are best determined
with the scaling relation (2.24). They have already been determined in [15], we omit the proof.
For the insensitivity scale, we notice that

nσ2q′(Nn)2 = nσ2α2N2α−2
n (A.2)

which goes to zero if and only if Nn � n−1/(2−2α). �

Proof of Lemma 2.15. The function q(x) = − log c + (log x)β is clearly smooth on (1,∞). Then
q′(x) = β(log x)β−1/x and as x→∞,

q′′(x) ∼ −β(log x)β−1

x2
, q′′′(x) ∼ 2β(log x)β−1

x3
. (A.3)

Assumption 2.1 is easily checked. For Assumption 2.2 we note q(ζ) = c + (log ζ)β is analytic in
Re ζ > 1. Fix b > 1 and write ζ = r exp(iθ). As |ζ| → ∞ along Re ζ = b i.e. ζ = b + iy, the
argument θ goes to ±π/2 and we have

Re (log |ζ|+ iθ)β = Re
(

log |y|+ 1

2
log
(

1 +
b2

y2

)
+ iθ

)β
(A.4)

= (log |y|)β + o(1), (A.5)
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conditions(i) and (ii) in Assumption 2.2 are easily checked. Assumption 2.3(iii) follows from a

computation similar to (A.3). Set y0 =
√
r2 − b2. We have for ζ = b+ iy, y ≥ yr, uniformly in r,

Re q(ζ)− Re q(zr) = (log y)β − (log y0)β + o(1)

≥ β(log y0)β−1 log
y

y0
+ o(1) (A.6)

hence ∫ ∞
yr

e−Re q(b+iy) dy ≤ e−Re q(b+iy0)+o(1)

∫ ∞
1

e−(log y0)β−1 log s y0ds

∼ e−Re q(b+iy0) y0

(log y0)β−1
= e−Re q(b+iy0)+O(log r) , (A.7)

which proves Assumption2.3(i). Next let ζ ∈ C with Re ζ > 1, write ζ = r exp(iθ), then

ζq′(ζ) = β(log ζ)β−1 = β(log r + iθ)β−1 = q′(r)
(

1 +
iθ

log r

)β−1

(A.8)

and for large r and θ ∈ (0, π/2),

Im ζq′(ζ)

Im ζq′(r)
∼ β − 1

r log r

θ

sin θ
→ 0 (A.9)

and so Assumption 2.3(ii) holds.
We now turn to the asymptotic behavior of the sequences x∗n, N∗n and N∗∗n . Since q′′(xn) =

− 1
nσ2 , it is clear that xn →∞ as n→∞. The equation is

1

nσ2
∼ β(log x∗n)β−1

(x∗n)2
. (A.10)

Consequently,

(x∗n)2 ∼ βnσ2
(

1
2 log(x∗n)2

)β−1 ∼ βnσ2( 1
2 log n)β−1

(
1 +

log βσ2 + (β − 1) log log x∗n
log n

)β−1

. (A.11)

The last bracket is asymptotically equal to 1 and we get the expression for x∗n. Next, we have
from (2.10)

N∗n = x∗n + nσ2 β(log x∗n)β−1

x∗n
∼ 2x∗n. (A.12)

The last asymptotics follows from (A.10).
We now turn to N∗∗n . It is asymptotically given by the solution of the equations

N2
n

2nσ2
= q(xn) +

(Nn − xn)2

2nσ2
, (A.13)

q′(xn) =
Nn − xn
nσ2

. (A.14)

Eq. (A.14) is equivalent to

x2
n −Nnxn + βnσ2(log xn)β−1 = 0. (A.15)

The relevant solution is

xn = 1
2

(
Nn +

√
N2
n − 4βnσ2(log xn)β−1

)
= Nn

(
1− βnσ2

N2
n

(log xn)β−1(1 + o(1))
)
. (A.16)

It follows that Nn−xn ∼ βnσ2

Nn
(log xn)β−1. We insert this in (A.13); using log xn ∼ logNn, we get

N4
n

2nσ2
−N2

n(logNn)β − 1
2β

2nσ2(logNn)2β−2 = o(1). (A.17)

The relevant solution is

N2
n ∼ nσ2

[
(logNn)β +

√
(logNn)2β + β2(logNn)2β−2

]
∼ 2nσ2( 1

2 logN2
n)β ∼ 21−βnσ2

(
log n+ log 2σ2 + β log logNn

)β
.

(A.18)
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Only the term log n matters in the last bracket and the result follows.
The last part of the lemma on insensitivity sequence is shown as in [4, Section 8.3] the proof is

therefore omitted. �

Appendix B. Bivariate Hessian

As explained in Step 4 of the proof outline, the Hessian at (tn, ζn) has determinant −1 + o(1)
and is a saddle point of Φn(t, ζ), considered as a function of two real variables t, ζ > 0. In order to
get rid of off-diagonal elements in the Hessian and to give all eigenvalues the same sign, we take
complex ζ and reparametrize, as sketched in Step 5.

Lemma B.1. Let ζ(t) be the unique solution of (∂ζΦn)(t, ζ) = t− q′(ζ) = 0. Set

Fn : (0,∞)× R→ C, Fn(t, s) = Φn(t, ζ(t) + is).

Then (∇Fn)(tn, 0) = 0,

HessFn(t, 0) =

(
β(t) 0

0 q′′(ζ(t))

)
, β(t) = −det(Hess Φn)(t, ζ(t))

q′′(ζ(t))
.

Note that ζn = ζ(tn), so as n→∞
det HessFn(tn, 0) = β(tn)q′′(ζn) = −det(Hess Φn)(tn, ζn) = 1 + o(1). (B.1)

Proof. We have

∂tFn(t, s) = (∂tΦn)(t, ζ(t) + is) + (∂ζΦn)(t, ζ(t) + is)ζ ′(t),

∂sFn(t, s) = i∂ζΦn(t, ζ(t) + is). (B.2)

At t = tn, s = 0, we have ζ(t) = ζn and (∇Fn)(tn, 0) = ∇Φn(tn, ζn) = 0. For the Hessian, we
compute

∂2
sFn(t, 0) = −∂2

ζΦn(t, ζ(t)) = q′′(ζ(t)),

∂t∂sFn(t, 0) = i(∂t∂ζΦn)(t, ζ(t)) + i∂2
ζΦn(t, ζ(t))

∂2
t Fn(t, 0) =

d2

dt2
Φn(t, ζ(t)) = β(t). (B.3)

By definition of ζ(t),

0 =
d

dt
∂ζΦn(t, ζ(t)) = (∂t∂ζΦn)(t, ζ(t)) + ∂2

ζΦn(t, ζ(t))ζ ′(t). (B.4)

It follows that ∂t∂sFn(t, 0) = 0, and

β(t) =
d2

dt2
Φn(t, ζ(t)) =

d

dt
(∂tΦn)(t, ζ(t))

= (∂2
t Φn)(t, ζ(t)) + (∂t∂ζΦn)(t, ζ(t))ζ ′(t). (B.5)

We solve for ζ ′(t) in Eq. (B.4), insert into Eq. (B.5), and obtain the formula for β(t). �
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[7] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events. For insurance and finance, Applications

of Mathematics (New York), 33. Springer-Verlag, Berlin (1997)

[8] N.M. Ercolani, S. Jansen, D. Ueltschi, Random partitions in statistical mechanics, Electron. J. Probab. 19,
no. 82, 1-37 (2014)

[9] W. Feller, An Introduction to Probability theory and its Applications, Vol. 2, John Wiley & Sons, Inc., New

York-London-Sydney (1966)
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