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Abstract

Using data collected by the Dark Energy Survey (DES), we report the detection of intracluster light (ICL) with
∼300 galaxy clusters in the redshift range of 0.2–0.3. We design methods to mask detected galaxies and stars in the
images and stack the cluster light profiles, while accounting for several systematic effects (sky subtraction,
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instrumental point-spread function, cluster selection effects, and residual light in the ICL raw detection from
background and cluster galaxies). The methods allow us to acquire high signal-to-noise measurements of the ICL
and central galaxies (CGs), which we separate with radial cuts. The ICL appears as faint and diffuse light extending
to at least 1 Mpc from the cluster center, reaching a surface brightness level of 30 mag arcsec−2. The ICL and the
cluster CG contribute 44%±17% of the total cluster stellar luminosity within 1Mpc. The ICL color is overall
consistent with that of the cluster red sequence galaxies, but displays the trend of becoming bluer with increasing
radius. The ICL demonstrates an interesting self-similarity feature—for clusters in different richness ranges, their
ICL radial profiles are similar after scaling with cluster R200m, and the ICL brightness appears to be a good tracer of
the cluster radial mass distribution. These analyses are based on the DES redMaPPer cluster sample identified in
the first year of observations.

Key words: galaxies: clusters: general – galaxies: evolution

1. Introduction

The central galaxy (CG) of a galaxy cluster tends to be
surrounded by an extended light envelope (Zwicky 1951, 1952;
Matthews et al. 1964; Morgan & Lesh 1965). Studies indicate
that this light envelope extends to hundreds of kiloparsecs and
sometimes encloses several galaxies, especially if the cluster is
experiencing a merging process (see reviews in Mihos 2004;
Lauer et al. 2014; Mihos 2015). Given its diffuse nature
(Schombert 1986, 1987, 1988) and the fact that it may enclose
multiple galaxies, it seems more reasonable to consider this
envelope as a genuine component of galaxy clusters. The
diffuse light envelope is thus frequently referred to as
intracluster light (ICL).

Despite the conceptual difference between CGs and the ICL,
it is almost impossible to observationally separate them,
because the outskirts of CGs naturally blend into the ICL.
Outside the outskirts of CGs, the ICL is extremely faint, which
poses significant challenges for separating it from CGs and for
further characterizing its distribution and properties. In this
paper, we do not attempt to dissect the ICL and CGs. Instead,
we follow a similar convention to Pillepich et al. (2018),
wherein we simultaneously characterize CGs and the ICL. We
use “ICL” to qualitatively refer to the diffuse light outside a
few kiloparsecs of the CG centers, and when making
quantitative assessments, “ICL” and “CG” are quantitatively
distinguished by radial cuts.

Studies, especially of the halo occupation distribution,
indicate that the ICL potentially makes up a significant fraction
of the cluster stellar light. Through modeling the growth
histories of cluster member galaxies or cluster CGs, a few
analyses have found that much of the stellar mass accreted by a
galaxy cluster is missing from the luminosity or stellar mass
sum of cluster galaxies or CGs, and the ICL has been
considered the key to this missing mass (Lin & Mohr 2004;
Monaco et al. 2006; Burke et al. 2012; Contini et al. 2014;
Conroy et al. 2007). According to the extrapolation in Behroozi
et al. (2013), the ICL may contain ∼2.5–5 times the stellar
mass of the CG for a ´ M1 1014 cluster. Although a
quantitative conclusion about ICL stellar content is yet to be
reached in simulations and observational studies, many
estimate that the ICL and CGs consist of up to ∼10% to
50% of the total cluster stellar content (e.g., Zibetti et al. 2005;
Gonzalez et al. 2007; Burke et al. 2015; Montes &
Trujillo 2018).

The origin and distribution of the ICL have been explored
theoretically or through simulation studies. Most of these
explain the origin of the ICL as stars that originally formed
inside galaxies and became dispersed into the intracluster space
during galaxy interactions (see reviews in Contini et al. 2014;

DeMaio et al. 2018). Tidal stripping (Gallagher & Ostriker
1972), galaxy disruption (Guo et al. 2011), and relaxation of
galaxy mergers (Murante et al. 2007) are possible astrophysical
processes that produce the ICL in this way. Surprisingly, in situ
star formation also appears to be a viable contributor to the ICL
(Puchwein et al. 2010; Tonnesen & Bryan 2012). The ICL
likely formed through multiple channels, but the relative
contributions from the channels are still being explored.
Depending on the main formation mechanism, simulated ICL
exhibits different color and spatial distributions (Contini et al.
2018b), and the total amount of the ICL stellar mass varies
(Contini et al. 2018a), which provide clues for testing ICL
formation hypotheses with observations.
Observational studies of the ICL have been performed with

both Hubble and ground-based telescopes. These include
targeted imaging observations of individual (e.g., Krick et al.
2006; Toledo et al. 2011; Giallongo et al. 2014; Montes &
Trujillo 2014; Presotto et al. 2014) or a sample of clusters (e.g.,
Krick & Bernstein 2007; Morishita et al. 2017; DeMaio et al.
2018; Montes & Trujillo 2018), or statistical studies of a few
hundreds of clusters based on wide field survey data (Zibetti
et al. 2005). Many works focused on nearby (e.g., Mihos et al.
2017) or intermediate-redshift clusters, but high-redshift ICL
observations to z∼1.0 (Burke et al. 2012, 2015; Ko &
Jee 2018) have been reported. Advances in integral-field
spectroscopy also bring forward spectroscopic studies of the
ICL stellar population (Adami et al. 2016; Edwards et al. 2016;
Gu et al. 2018; Johnston et al. 2018). The ICL has been found
to contain an old stellar population and extends to several
hundreds of parsecs from cluster centers, although cluster-to-
cluster variation (e.g., Krick & Bernstein 2007), cluster
dynamic state (Jiménez-Teja et al. 2018), redshift evolution
in addition to methodological differences and sometimes
differences in ICL definitions (Cui et al. 2014; Jiménez-Teja
& Dupke 2016; Tang et al. 2018) may cause different
conclusions.
Due to its low surface brightness and diffuseness, studying

the ICL presents significant challenges. Simulation ICL studies
generally require high resolution (Contini et al. 2014) as well as
proper baryonic physics such as active galactic nucleus (AGN)
feedback (Martizzi et al. 2016; Pillepich et al. 2018) to trace the
dispersion of stellar particles. Observational studies using the
Hubble Space Telescope tend to be pointed observations and
benefit from the high resolution and low sky background level
of the images but are limited to small cluster samples. ICL
studies with ground-based telescopes benefit from the richer
observing resources yet face more challenges in data proces-
sing. Studies of individual galaxy clusters require long
exposure time, often dozens of hours even with large-aperture
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telescopes. Analyses of the data then require a meticulous
account of systematic effects such as flat-fielding and sky
background subtraction, and the telescope and imaging camera
point-spread function (PSF) is a confusing effect for interpret-
ing ICL detection results at large cluster radius (Bernstein 2007;
Sandin 2014; Tang et al. 2018).

Studying the statistical distribution of the ICL in an
ensemble of clusters is one approach toward easing systematic
effects from ground-based observations. A particularly exciting
method is to combine the images of dozens to several hundreds
of galaxy clusters by aligning the centers of the CGs and
measuring the ICL in these combined images, also known as
“stacking.” With this approach, Zibetti et al. (2005) analyzed
∼600 clusters with Sloan Digital Sky Survey (SDSS) data and
detected the ICL at a surface brightness level of
32 mag arcsec−2. Krick et al. (2006) adopted a similar ICL
analysis method, and Tal & van Dokkum (2011) and Wang
et al. (2018) applied the stacking idea to analyze the light
envelopes of luminous red galaxies and the CGs of galaxy
groups. Notably, the stacking method is less affected by, but
not completely immune to, systematic effects. Issues such as
sky background subtraction and the PSF still plague the method
and need to be carefully evaluated.

In this paper, we use a “stacking,” i.e., an averaging
approach in which we analyze hundreds of clusters for ICL
detection and characterization. We use observational data sets
from the Dark Energy Survey (DES), which is in the process of
collecting imaging data of an unprecedented combination of
large area (5000 deg2 of the sky) and depth. DES expects to
find 30,000 galaxy clusters using their population of member
galaxies. Although this paper focuses on ICL detection in
clusters of redshift 0.2–0.3 identified in the first year of DES
observations (DES Y1), the final DES data set will eventually
allow us to apply our methods to a higher redshift range and
possibly characterize the redshift evolution of ICL.

We develop a “stacking” approach in that we study the ICL
by stacking the light profiles derived from individual cluster
images, rather than stacking the images of the clusters as in
previous works (Zibetti et al. 2005; Krick et al. 2006; Tal &
van Dokkum 2011). Our method achieves results equivalent to
the latter method upon our initial method testing, but it is
computationally more efficient and versatile. The data sets and
methods used in this paper are described in Sections 2 and 3,
respectively. Because PSF is a possible effect that influences
ICL interpretation, we derive the DES Dark Energy Camera
PSFs in Section 4. Sections 5 and 6 present our results on ICL
detection and ICL properties. In Section 7, we discuss how
systematic effects, such as sky background subtraction and the
PSF, influence the interpretation of the results. Section 8
discusses and summarizes the analyses. Throughout the paper,
we assume a flat ΛCDM cosmology with h=0.7.

2. Data

2.1. The redMaPPerCluster Catalogs

We study the ICL in a galaxy cluster sample identified with the
redMaPPeralgorithm (Rykoff et al. 2014). redMaPPersearches
for galaxy clusters by considering galaxy colors, luminosities, and
spatial distributions. A notable feature of the algorithm is that it
looks for cluster galaxies that match the colors of the red sequence
galaxies in spectroscopically confirmed galaxy clusters. The
result is a highly complete and pure cluster sample with precise

photometric redshifts and a cluster richness estimator that scales
well with cluster mass (Rykoff et al. 2012; Rozo & Rykoff 2014;
Rozo et al. 2015a, 2015b; Melchior et al. 2017; McClintock et al.
2019). A detailed description of the algorithm can be found in
Rykoff et al. (2016). The final products of the redMaPPeralgo-
rithm includes a cluster catalog, a cluster member galaxy catalog,
and a random point catalog that records the sky coverage of the
cluster-finding algorithm. Both the cluster catalog and the random
point catalog are used in this paper.
Specifically, we select a subset of 0.2<z<0.3 red-

MaPPerclusters discovered in DES Year 1 coadd observations
(McClintock et al. 2019). Because of a slightly better
performance in identifying cluster CGs, we use a DES internal
version of the redMaPPersample based on DESDM coadd
catalogs, rather than the nominal redMaPPersample based on
multiobject fitting photometry (Drlica-Wagner et al. 2018). We
eliminate galaxy clusters that have flags of bright stars, bright
galaxies, adjacency to the Large Magellanic Cloud, etc. (bad
region mask >2 in Drlica-Wagner et al. 2018), within 526″
(2000 DES coadd image pixels) of the redMaPPercenters. In
particular, these eliminations reduce undesirable imaging
features such as streaks of saturated stars or improper sky
estimation around nearby galaxies, which would lower the
overall signal-to-noise ratio (S/N) of ICL detection. A DES
object depth cut is also applied, with details described in
Section 2.3, which requires object detection to be highly
complete in the cluster regions. These criteria remove ∼2/3 of
the redMaPPercluster sample. In total, we analyze ∼280
galaxy clusters with a mean mass of ´ M2.50 1014 , the
redshift and richness distribution of which are shown in
Figure 1.
We use the redMaPPerrandom point catalog, which is a

sample of random locations that traces the sky coverage of the
redMaPPercluster sample and matches the sky coordinates of
the redMaPPercluster search area. The main purpose of usig it
is to estimate light profiles of random fields in the red-
MaPPerfootprint. As described in Section 3, the light profiles
of the random fields are subtracted from the cluster light
profiles to eliminate sky-subtraction residual. For this purpose,
we draw a sample of 2000 random points, which is ∼7 times
the size of the cluster catalog to avoid significantly increasing
profile uncertainties. We also test the ICL detection procedures
with the random points as described in Section 3.3. For that
purpose, we draw a second set of random points the same size
as the cluster sample.

Figure 1. Redshifts and richnesses of the redMaPPerclusters used in this work.
The masses of the clusters are estimated from richnesses using the mass–
richness relation in Melchior et al. (2017). The mean mass of the clusters
studied in this paper, which pass the purging criteria in Section 2.1 (red shaded
symbols, the “Selected Subset”), is ´ M2.50 1014 .
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2.2. DES FINALCUTImages

This analysis makes use of fully processed single-exposure
images, i.e., FINALCUTimages, from the official DES image-
processing pipeline (Morganson et al. 2018). The corresp-
onding pipeline handles bias and flat corrections, astrometry
and photometry calibrations, as well as the masking of bad
pixels and artifacts including cosmic rays and satellite trails.
Because of the significantly improved sky-subtraction proce-
dure applied to DES images collected in the first three years
(Y3), we make use of the FINALCUTimages from the DES Y3
data processing campaign, yet limited to the region of Y1
redMaPPeridentifications.

During this Y3 data processing campaign, the imaging sky
background is estimated and subtracted from the FINALCUTi-
mages using a Principal Component Analysis (PCA) method
developed in Bernstein et al. (2017). The method evaluates the
sky level across the whole focal plane image of 3 deg2. The full
exposure sky background is described as the linear combina-
tion of a small set (three or four) of fixed patterns, and the
coefficient for each is determined independently for each
exposure. This PCA method is designed to capture the possible
realizations of signals produced by the uniform zodiac and
atmospheric background with gentle gradients across the
image, but it does not attempt to remove light coming from
individual objects. Because the sky background is evaluated
over the 3 deg2 focal plane, it is unlikely to be severely
influenced by bright stars, ghosts, dust reflection, and ICL, as
long as they do not affect a significant fraction of the focal
plane. We further investigate the effect of sky subtraction on
ICL detection in Section 7.

2.3. The Object Catalog

To enable the detection of ICL, we mask regions associated
with objects already detected by the DES coaddition pipeline.

The object-detection scheme from the DES coadd image is
described in Drlica-Wagner et al. (2018), Abbott et al. (2018),
and Morganson et al. (2018). In short, the SEXTRACTORsoft-
ware (Bertin & Arnouts 1996) is employed to detect objects in
the DES coadd images, yielding coordinates as well as
photometry measurements for the detected objects. Of
particular interest to this analysis, SEXTRACTORevaluates a
Kron magnitude for each object, which is the flux enclosed
within 2.5 Kron radii (Kron 1980), denoted as MAG_AUTO. The
coadd catalog generated from DES Y1 data reaches a 10σ
magnitude limit of ∼22.5 mag in the i-band. Although not
relevant to this paper, multiepoch, multiobject fitting photo-
metry is also acquired for the detected objects using the
NGMIXcode (Sheldon 2014; Jarvis et al. 2016).

We select a subset of clusters around which object detection
is highly complete and hence the objects can be correctly
masked. The requirement is that the i-band completeness limit
(see definition in Zhang et al. 2017) within 526″ (2000 DES
coadd image pixels) of the redMaPPerCGs reaches 22.4 mag.
Most of the redMaPPerclusters identified in Y1 data satisfy
this requirement.

3. Methods

The centerpiece of this analysis is the measurement of ICL
profiles. The derivation of ICL light profiles is based on DES
images and consists of two steps, image processing and profile
estimation. In this section, we provide the details of the method

components and present a test to demonstrate the effectiveness
of the methods in determining an accurate ICL light profile.
The general flow of the methods is illustrated in Figure 2.

3.1. Image Processing

The ICL analysis starts with processing DES single-
exposure images. For each of the clusters, we download
DES FINALCUTimages and the corresponding weight maps
overlapping a circular region of 0°.15 radius centered on the
redMaPPerCG. These images are projected and averaged
with weights to create one coadd image for each cluster, using
the SWARPsoftware (Bertin et al. 2002). Specifically, the
images are projected with a TAN projection system (see a
review in Calabretta & Greisen 2002), and the SWARPsky
background function is turned off. These coadded images for
each of the clusters are the input to computing the profiles of
ICL. Notably, we do not use the coadded images from the
official DES coaddition pipeline, which has incorporated a
sky-subtraction process by the SEXTRACTORsoftware and
thus complicates ICL detection.
To improve the detection of faint diffuse light, we mask

detected objects above a magnitude limit. These objects are
selected from the DES coadd catalog (Section 2.3) to be
(1) above the 5σ magnitude limit in the i-band, i.e.,
MAGERR_AUTO_I<0.218, and (2) brighter than 22.4 mag
in the i-band, i.e., MAG_AUTO_I<22.4. According to the
study of the relation between DES catalog depth and
completeness in Zhang et al. (2017), objects of i-band
MAG_AUTO<22.4 mag and magerr_auto<0.218 (flux mea-
surement at 5σ) reach a ∼99.8% completeness. We expect the
depth and completeness relation in DES Y1 data to be similar
to those in Zhang et al. (2017) because of consistent DES
imaging/coadding strategies over the years.
For each of the objects, we mask the region enclosed within

its 2.5 Kron radius (Kron 1980) ellipse. The major and minor
axes of the ellipse as well as its inclination are computed by
SEXTRACTORin the DES coadd catalog. Analytical studies
indicate that more than 90% of the galaxy luminosity is
enclosed within this elliptical aperture (Graham &Driver 2005).
To ensure that bright stars are properly masked, we set a
minimum masking radius along the major axis of the ellipse to
be 48−2×mag_auto_i pixels (1 pixel=0 263) according
to a visual check of the relation between Kron magnitudes and
apertures.
The CG identified by the redMaPPeralgorithm is excluded

in the masking procedure.

3.2. Light Profile Estimation

We measure the light profiles of each of the clusters from
the coadded images. The light flux profiles are computed as the
averaged pixel values in radial annuli centered on the
redMaPPerCGs, excluding the masked regions. The profiles
are then averaged, i.e., “stacked,” for an ensemble of clusters to
detect ICL.
The cluster selection criteria eliminate undesirable features

near clusters because cluster centers are selected to be 0°.15
away from bright stars or nearby galaxies, but the extended
profiles of these undesirable features may still contribute to ICL
detection, which is stronger at the cluster outskirt, causing a
nonflat radial trend (see the top panels of Figures 3 and 4). To
offset this trend, we subtract the light profiles of redMaPPer
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Figure 2. The ICL analysis in this paper starts with DES single-exposure images. The single-exposure images are stacked, the detected objects are masked, and a raw
ICL+CG light profile is derived for each cluster. These raw measurements go through a residual light-subtraction process, which removes residual background and
cluster selection effects. The light profiles are finally averaged over all the clusters to create the stacked ICL+CG measurements.
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random points selected with the same criteria in terms of sky
coverage (Section 2.1).

We assign the clusters to 40 sky regions47 using a KMEANS
clustering algorithm (Steinhaus 1956; MacQueen 1967) imple-
mented for celestial coordinates.48 The 2000 redMaPPerran-
dom points are also assigned to the 40 regions. We measure the
light profiles of each of the random points and then average
them in each of the 40 KMEANS sky regions. For each of the
cluster light profiles, we subtract from it the averaged random
light profile of its corresponding KMEANS region. To further
reduce cluster-to-cluster variations of the background level, for
each cluster, we derive the average flux level value at the edge
of the image of each cluster, which is 0°.145 from the cluster
centers, and subtract it from the overall cluster light radial
profile. Thus, by design, for each cluster, its radial flux profile
reaches 0 at 0°.145, which is 1.73 to 2.34Mpc from the cluster
centers, depending on the cluster redshift, which is outside the
R200c of a typical redMaPPercluster (McClintock et al. 2019).

The above region associations are also used to estimate light
profile uncertainties. After the subtraction procedures, for each
of the 40 aforementioned KMEANS regions, we average the

cluster light profiles in the region to acquire a “stacked”
measurement. The profiles of the 40 KMEANS regions are then
combined using the jackknife technique (Lovász et al. 1986) to
estimate the mean and uncertainties of the final stacked profile.
In Figure 3, we show the final stacked profile of the clusters

before and after the subtraction procedures, estimated with the
jackknife technique. The subtraction steps eliminate sky
residual and reduce correlated noise in the final stacked profile,
which is more evident in the random test shown in the next
section. If not explicitly stated, uncertainties presented in this
paper are all estimated using the jackknife approach. Note that,
by construction, they thus do not represent the cluster-to-cluster
variation of the profiles.

3.3. Test with Random Points

We first apply the methods to a set of redMaPPerrandom
points of the same size as the cluster sample. These are selected
from the overall set of random points in the same way as our
cluster sample from the redMaPPercatalog. The set of random
points goes through the image- and profile-processing steps
described in earlier sections. Figure 4 shows the stacked
light profiles of this random point sample, before and after
the profile-subtraction procedures (Section 3.2). The stacked
light profiles before the subtraction procedures show a nonflat

Figure 3. This figure demonstrates the effect of random field subtractions on
the ICL+CG profile measurement. The upper panel shows the stacked cluster
light profile (after object masking) before subtracting the profiles of random
fields. The lower panel shows the stacked light profile of the same clusters after
subtracting random fields and residual background. The insets zoom onto the
profiles at large cluster radius. The subtraction steps reduce the correlated noise
and eliminate the contamination light from the cluster selection effects. The
effectiveness of the subtractions is more evident in the random test shown in
Figure 4.

Figure 4. We apply our ICL detection methods to a set of random points of
similar size to the cluster sample. This figure (black lines) demonstrates the
effectiveness of random field subtractions in deriving the stacked light profile
of random points. The upper panel shows the stacked profile (after object
masking) before subtracting the profiles of random fields. The lower panel
shows the stacked light profile after subtracting random fields and the residual
background. The subtraction steps reduce the correlated noise and eliminate the
contamination light from cluster selection effects. In the lower panel, the
stacked profile of the random points is consistent with 0, which is evidence of
unbiased measurement.

47 This number is high enough to estimate standard deviations, while keeping
each region sufficiently large to include noise caused by large-scale structures,
e.g., superclusters, filaments, etc.
48 https://github.com/esheldon/kmeans_radec
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trend from the center of the image to the outskirt. After image
inspections and noticing that random points/clusters are at a
distance away from bright stars or nearby galaxies by design,
we interpret the trend as the sky footprint selection effect of the
redMaPPeralgorithm. To our relief, the stacked light profile of
random points is consistent with 0 after the subtraction
procedures. Using the jackknife method, we estimate the 1σ
surface brightness uncertainties to be ∼31.5 mag arcsec−2 at
r=1arcmin and ∼33 mag arcsec−2 at r=7arcmin, which
means that our methods are sensitive enough to detect light
above these surface brightness levels.

Notably, the noise fluctuations of the random points appear
to be highly correlated at different radii, as shown in Figure 5.
We notice that any image imperfections, such as scattered light,
uneven sky-subtraction residual in different exposures, bright
stars, etc., are likely to affect a significant portion of a single-
exposure image (see the Appendix for some examples), causing
correlated noise in the stacked profiles. The correlation is
especially prominent at small radii, due to the smaller area.
However, because the correlated fluctuations appear to be
within the 3σ uncertainty range in the random test (Figure 4,
bottom panel), we do not consider it further in this paper.

To test the accuracy of the ICL measurement using our
method, we inject a simulated ICL+CG distribution into the
images of the random points. The ICL+CG radial distribution
is simulated as a combination of three Sérsic profiles with
parameters described in Section 5.1 and injected into the
processed and masked images of the random points, which then
go through the light profile estimation procedures described in
Section 3.2. Poisson photon noise from the ICL+CG model is
not included in the injection to create an ideal situation of low-
noise ICL+CG observation.

The result of this test is presented in Figure 6, showing the
recovered radial profile of the simulated ICL+CG in
comparison and the injected model. Because we assume that
the ICL flux reduces to 0 at ∼0°.145, the ICL+CG model
shown in the figure has also been subtracted by its model
values at ∼0°.145. Our method has recovered the injected ICL
+CG model with excellent accuracy out to ∼7 arcmin from the
injection center, down to a surface brightness level of
30 mag arcsec−2.

4. DECam Point-spread Function (PSF)

Literature studies show that the PSF of imaging instruments
mounted on ground-based telescopes have low surface bright-
ness wings that extend tens of arcminutes (Moffat 1969;
King 1971; Racine 1996; Bernstein 2007). Detection of ICL is
not to be confused with this feature. In this section, we measure
and model the DECam (Flaugher et al. 2015) PSF in the g- and
r-bands as a tension test of our methods, and also to determine
whether or not scattered light from an extended PSF could have
any significant effect on our detection of ICL.
To measure the central component of the PSF, we select a set

of stars with magnitudes 19<r<19.3, as measured by the
DES MAG_PSF quantity. These point-source objects are
separated from galaxies using “the modest classifier” from
the DES Y1 coadd catalog (Drlica-Wagner et al. 2018). To
further improve the purity of the point-source selection, we
apply a color cut MAG_PSF_R−MAG_PSF_I>1.5 as recom-
mended in Bechtol et al. (2015). This set of stellar objects is
below the saturation limit of the DES single exposures in g and
r, and is thus useful or quantifying the central component of the
PSF inside 10″. We derive the stacked light profiles of these
stellar objects as well as their uncertainties using methods
outlined in Section 3.
To study the farthest reaches of the DECam PSF, we use a

set of very bright stellar objects selected from the Gaia49

database (Gaia Collaboration et al. 2016). The first set contains
57 bright stellar objects of ∼8 mag in the Gaia G-band.
Although these objects are saturated in DES images in the
central 3″, they give high S/N when studying the outskirts of
the PSF beyond 20″. Finally, to derive the PSF radial profile
between 10″ and 20″, we select a set of moderately bright
stellar objects which contains 100 stars of ∼14 mag in the Gaia
G-band. These objects are also saturated in their cores in DES
images, but still have sufficient S/N at the radii where the
unsaturated stars have no signal left above the noise level. To
compute the light profiles of these bright objects, we adopt the
same image-processing procedure as described in Section 3,
and then a similar profile estimation procedure excluding the
subtraction of random point profiles and the requirement of no

Figure 5. Correlation factor of the stacked profile of the random points after the
subtraction procedures. The profile appears to be correlated on a scale of a few
arcseconds. This is because image imperfections are likely to affect a few
pixels at a time, causing correlated fluctuations. The Appendix lists a couple of
these examples.

Figure 6. Measurement of the simulated ICL+CG profile injected at the
random points. The upper panel shows the measured ICL+CG profile, and the
solid line shows the injected model. The method recovers the light profile of
the simulated ICL distribution out to ∼7 arcmin from the center, at a surface
brightness level of 30 mag arcsec−2. The lower panel shows the residual
between the measurement and the model, with the gray shaded area
representing the uncertainties of the measurements.

49 https://www.gaia-eso.eu
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bright stars within 526″. The light profile uncertainties of the
bright stars are estimated with a bootstrap approach by
randomly sampling the stars.

Figure 7 shows the radial profiles of the PSF in the g- and
r-bands for a composite of faint, intermediate, and bright stars.
The PSF is well characterized as a Gaussian of FWHM=1 15
(FWHM=1 043 for r, and 1 18 for g) at r<1 1, and by a
three-component broken power law, f≈r−4.13, 1 1<r<7 5,
f≈r−2.46, 7 5<r<60″, and f≈r−1.16, 60″<r<450″. The
effective seeing was slightly different for the g- and r-bands,
yielding a slight difference in profiles in the inner arcsecond. A
Moffat profile fits the inner profile to somewhat larger radii (1 5)
versus a Gaussian (1 1). The red shaded band gives a typical
profile range for a 14th magnitude r-band star at intermediate
radii, and the blue shaded band gives the typical spread in g-band
scattered light at larger radii. The slopes are identical in the g- and
r-bands within the uncertainties.

With these derived PSF profiles, for a point source, we estimate
that about 80% of the light is contained within a radius of 1″,
98.3% within 5″, 99.6% within 50″, and 99.9% within 400″. Note
that for the typical clusters measured here, 1 arcsec=3.943 kpc
(at redshift 0.25). In Section 7.2, we further discuss the PSF effect
on the interpretation of ICL results.

5. ICL+CG Profile

In Figure 8, we show the derived light profiles of the
individual clusters as well as their stacked light profile. These
are the raw ICL+CG profile measurements in this analysis.
Although on small scales within 0 5 of the cluster centers the
individual clusters show significant signals of ICL+CG,
stacking enables the light profile measurement of ICL at
distances beyond ∼0 5 out to ∼6′. In the rest of this section,
we consider the residual light contribution from cluster galaxies
and derive results such as ICL+CG color and ICL+CG

integrated luminosity. Although this paper is aimed at
analyzing the properties of ICL, we do not attempt to
quantitatively dissect ICL and CGs in the analyses. We
qualitatively refer to the diffuse light outside a few kiloparsecs
of the CG center as the ICL, and apply an ICL/CG radius cut
when making quantitative evaluations.

5.1. “Pure” ICL+CG Profile

With the procedures described in Section 3, we derive the
ICL+CG light profiles of each cluster. Unfortunately, not all of
the light in the raw profile is associated with the ICL or CG.
The light from the cluster foreground and background
structures has been accounted for with the random point
subtraction process in Section 3. Faint, unmasked cluster
galaxies and the cluster galaxy light leaking outside the
masking apertures constitute a cluster light residual in the raw
ICL+CG measurements. We estimate the residual from the
light profile of cluster galaxies.
We first derive the stacked light profile of non-CG cluster

galaxies (cluster satellite galaxies). The methods described in
Section 3, including the background residual and random light
profile subtractions, are applied to the same set of clusters, but
masking only objects brighter than 18 mag. Subtracting the
previously derived light profiles with masking to 22.4 mag
gives the radial light profile of non-CG cluster galaxies
between 18 and 22.4 mag.
For each of the clusters, we assume the luminosity of non-

CG cluster galaxies (cluster satellite galaxies) to follow a single
Schechter function (Schechter 1976), and derive (1) the
luminosity fraction between the 18 and 22.4 mag range and
(2) the luminosity fraction beyond 22.4 mag. For the Schechter
function parameters, we assume a faint-end slope of −1.0 and
the characteristic magnitude of 1.29 Le/h

2 at redshift 0.25
(Hansen et al. 2009). We further assume that the light profile of
cluster satellite galaxies in different luminosity ranges have the
same radial distributions (same shape of the radial light
profiles). With the above luminosity fraction estimates and the
measurement of non-CG cluster galaxy light profile between 18
and 22.4 mag, we derive the light profiles of cluster satellite
galaxies and the light profile of satellite galaxies fainter than
22.4 mag. The cluster satellite galaxies below 22.4 mag makes
up ∼4% of the total cluster satellite galaxy light in the redshift
range of 0.2–0.3.

Figure 7. Extended PSF of DECam+Blanco 4 m in the g- and r-bands. The
PSF is constructed by piecing together images of 19th, 14th, and 8th magnitude
stars, each of which samples the PSF at good S/N (without saturating) at a
different range of radii. g- and r-band average profiles are shown with solid
blue and red curves, respectively. The shaded red curve at 10″<r<20″ is
derived with 14th magnitude r-band stellar images, and the shaded blue curve
beyond 20″ is from 8th magnitude stellar profiles. This plot shows the profile
with the central surface brightness normalized to 0 mag arcsec−2. The black
curves offset above the measured profiles are fitted models containing a
Gaussian (dotted line, g-band)/Moffat (dashed line, r-band) central component
and then three broken power-law sections as described in Section 4.

Figure 8. This figure shows the ICL+CG profile measurements of individual
clusters (black lines) and the stacked result (red solid and dashed lines
indicating the mean and the uncertainties). Stacking significantly improves the
precision of cluster light profile measurement beyond 0.5 arcmin.
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Our masking apertures (2.5 Kron radii) may not fully enclose
the light of cluster galaxies due to their extended radial profiles.
Graham & Driver (2005) estimated that the unmasked
component makes up 0.1%–9.6% of the Sérsic (1963) galaxy
profiles. We aggressively assume the masking residual to be
9.6% of the cluster galaxy light. From the raw ICL profile of
each cluster, we subtract the light of faint, unmasked cluster
satellite galaxies below 22.4 mag and the residual light of the
masked galaxies assuming that they both have the same radial
distribution as the general cluster satellite galaxy population.

We correct the derived “pure” ICL+CG light profiles for
wavelength shifting (K-correction) and passive redshift evol-
ution (e-correction) to an observer redshift of 0.25 using a stellar
population template50 (Bruzual & Charlot 2003; Mancone &
Gonzalez 2012) with a single starburst of metallicity Z=0.008
at z=3.0. These corrected profiles are interpolated onto a
physical radius grid and then averaged to compute a stacked
“pure” ICL+CG profile, using the jackknife method.

The radial profiles of ICL+CG are shown in Figure 9. The
raw measurement is dominated by pure ICL+CG light to
∼100 kpc, beyond which the cluster galaxy residual becomes
relevant. The subtraction of the cluster galaxy residual
introduces significant noise to the pure ICL+CG detection.
Nevertheless, the stacked ICL+CG profile is measured with
high S/N to 1Mpc, reaching 30 mag arcsec−2.

Similar to the finding in Kravtsov et al. (2018), the “pure”
ICL+CG radial profile is best described with a combination of
three Sérsic models (Figure 10): a dominant core of Sérsic
index 1.34±0.023 and radius 9.13±0.24 kpc within the

inner 10 kpc, a bulge between 30 and 100 kpc with Sérsic index
3.1±0.08 and radius 52.1±2.2 kpc, and a diffuse comp-
onent dominant outside 200 kpc with index 2.1±0.4 and
radius 2.6±0.7 Mpc. The fitted Sérsic profile parameters are
listed in Table 1.

5.2. ICL+CG Integrated Luminosity

A significant fraction of the cluster stellar luminosity may be
contained in ICL+CG, which is a debated topic in the
literature. With the ICL+CG surface brightness profile derived
in the previous sections, we examine the integrated luminosity

Figure 9. This figure shows the derived ICL+CG profiles (upper panel) and the uncertainties of the measurements (lower panel). The cluster galaxy residual (red
point) is subtracted from the raw ICL+CG measurement (blue line) to derive the “pure” ICL+CG profile (red line). Uncertainties of the profiles are displayed as the
shaded regions (upper panel) and also shown in the lower panel. The ICL+CG profiles are measured with high S/N to 1 Mpc, although the subtraction of cluster
galaxy residual introduces significant noise (poisson noise) into the “pure” ICL profile.

Figure 10. The ICL+CG light profile can be approximated with three Sérsic
components (black solid line): a core disk component that is dominant within
10 kpc (dotted line), a bulge component that is dominant between 30 and
100 kpc (dashed line), and a diffuse component that is dominant outside
200 kpc (red dashed line).

50 http://www.baryons.org/ezgal/
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profile of ICL+CG at different radii as

òp= ¢ ¢ ¢( ) ( ) ( )f r r l r dr2 . 1
r

0

l(r′) is the ICL+CG surface luminosity profile from the
previous subsection, corrected to an observer frame of redshift
0.25. We compute the integrated ICL+CG luminosity for both
the “raw” and “pure” ICL+CG radial profiles, the results of
which are shown in Figure 11.

These integrated ICL+CG luminosity profiles are measured
with high S/N out to 1Mpc. Within ∼30 kpc, the integrated
luminosity increases steeply with radius because of the
contribution from the cores of the CGs. Outside ∼30 kpc, the
increase slows down, indicating that the light profile has
transitioned into a diffuse component.

The integrated luminosity within CGs and ICL is an
important quantity in understanding CG and ICL formation.
For example, Zhang et al. (2016) speculated that 30% to 60%
of the stars that merged into the CGs need to be deposited
outside 32 kpc at redshift 0 in order to explain the redshift
evolution of the CGs. We find that the ICL integrated
luminosity between 32 and 200 kpc makes up ∼42% of the
total ICL+CG luminosity. The ICL integrated luminosity
between 32 kpc and 1Mpc is even more significant, ∼3 times
as luminous as the luminosity enclosed within 32 kpc.
Interestingly, the integrated luminosity of the ICL does not
seem to converge within the radius range of 1Mpc. For a more
thorough consensus of ICL total luminosity, future studies may
have to investigate an even larger radius range.

We also compute the integrated luminosity of the non-CG
cluster galaxies (cluster satellite galaxies), using the light
profile measurements of these galaxies in Section 5.1. The
derivation of this satellite galaxy luminosity is susceptible to
modeling uncertainties of the galaxy luminosity function and
the galaxy-masking apertures. Nevertheless, the results are
shown in Figure 12, in comparison with the integrated
luminosities of ICL+CG.

Within 200 kpc, the integrated luminosity of ICL+CG
surpasses the total luminosity of cluster satellite galaxies
(non-CG cluster galaxies). Outside 200 kpc, the satellite galaxy
luminosity becomes paramount to that of ICL+CG. We further
estimate the ratio of ICL+CG in the total cluster stellar
luminosity, which is computed as the sum of ICL+CG and
non-CG cluster galaxies. We refer to this quantity as the ICL
+CG fraction, as in Burke et al. (2015). The ICL+CG fraction
gradually drops when we enlarge the radius of the luminosity
integration, reaching 44±17% at 1Mpc.

5.3. ICL+CG Color

Using our measurements of the ICL+CG profiles in both
the g- and r-bands, we further derive the ICL+CG color
profile (Figure 13). The g-band ICL+CG measurement has a
greater level of noise compared to the r-band measurement
(Figure 13 upper panel), because of less accurate estimation of
cluster galaxy residual. Because the color measurements
require high S/N flux measurements in both the g- and
r-bands, our color derivation is only robust to 90 kpc from the
center. Outside 90 kpc, the color measurements are dominated
by noise.
We compare the ICL+CG colors to those of the cluster CGs

and the satellite red sequence galaxies selected by redMaPPer.
These galaxy colors are derived with the MODEL_MAG
magnitudes in the DES database (Drlica-Wagner et al. 2018),
K-corrected to z=0.25 as is done for the ICL+CG profiles.
Overall, the core component of the ICL+CG profile appears to
be consistent with the CG measurement in the DES database,
but the ICL color beyond ∼20 kpc is more consistent with the
average color of the satellite red sequence galaxies. The ICL
+CG color also displays a radial trend of becoming bluer at a
larger radius. We find that the color trend in the central 10 kpc
of the ICL+CG combination is likely caused by the PSF
differences in the g- and r-bands (see Section 7.2 for detailed
discussions). Between 10 and 90 kpc, a χ2 minimization gives
a significant radial gradient,

 - º
-

= - ( ) ( )
( )

( )g r
d g r

d rLog
0.152 0.027, 2

indicating a robust color radial trend.

6. Cluster Mass Dependence

6.1. More ICL in Richer Clusters

The redMaPPeralgorithm adopts richness, denoted by λ, as
a mass proxy, which is defined as the number of cluster red
sequence galaxies above a luminosity threshold. Using this
richness quantity as a cluster mass proxy, we examine the
variation of ICL surface brightness with mass.
The ∼300 clusters studied in the paper are further divided

into three subsamples, 20�λ<30, 30�λ<50, and

Table 1
Fitted Parameters of the ICL r-band Radial Profile to Sérsic

Models, = ´ -( ) ( ( ) )I r Ie b r Reexp n
n1

Iea n Re
(flux/arcsec2)

First Sérsic Component 9830±162 1.34±0.023 9.13±0.24 kpc
Second Sérsic

Component
8846±1046 3.07±0.08 52.1±2.2 kpc

Third Sérsic
Component

9.1±3.3 2.1±0.4 2.6±0.7 Mpc

Note.
a Ie has been scaled so that the magnitude zero point of I(r) is 30.

Figure 11. Integrated ICL+CG luminosity within different radii. The inset
figure shows the same plot but with log scaling. Within ∼30 kpc, the integrated
ICL+CG luminosity steeply increases with distance because of the dominance
of the CGs. The increase slows down outside ∼30 kpc, indicating that the light
distribution has transitioned into a diffuse component.
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λ�50, representing three cluster mass ranges with mean
masses of 1014.09, 1014.30, and 1014.61Me/h (Melchior et al.
2017). We derive the stacked ICL+CG profiles of these three
subsamples as shown in Figure 14. The ICL is more luminous
in richer and hence more massive clusters. The core
components within ∼10 kpc of the ICL+CG profile appear
similar among the three cluster richness subsamples, in
agreement with the inside-out growth scenario (e.g., van
Dokkum et al. 2010; van der Burg et al. 2015) wherein the

cores of the CGs form early and the accreted CG stellar content
is deposited onto the outskirt at a later time. The “inside-out”
trend is further demonstrated in the integrated luminosity
profiles (Figure 15). Richer clusters are more abundant in the
total ICL+CG luminosity, but the differences start outside
20 kpc and rapidly enlarge at larger radii.

6.2. ICL+CG and Cluster Mass Distribution

Interestingly, after scaling the ICL+CG profiles by the radii
of clusters, the radial profiles of ICL+CG in different richness
ranges appear similar (Figure 14). In this exercise, instead of
stacking together ICL+CG radial profiles in terms of physical
distances, we stack them in radial bins of r/R200m, with R200m

derived from the mass–richness relation in Melchior et al.
(2017). This is the first evidence of ICL distribution being
“self-similar,” as in the self-similarity of cluster mass or gas
distributions (e.g., see a review in Kravtsov & Borgani 2012)
wherein their radial profiles are indistinguishable after scaling
with a characteristic radius.
We further examine the resemblance between the ICL and

cluster mass distributions, by comparing their radial profiles.
The state-of-the-art constraint of cluster mass distribution
(including dark and baryonic matter) comes from weak lensing
studies, yet cluster surface mass profile is not a direct
observable from weak lensing,51 and its reconstruction can be
noisy. In this comparison, we use a cluster surface mass density
model from McClintock et al. (2019),52 which is a combination
of a Navarro–Frenk–White (NFW) model (Navarro et al. 1997)

Figure 12. Integrated ICL+CG luminosity (red) and non-CG cluster galaxy luminosity (blue) within different radii. Within the inner 200 kpc, ICL+CG luminosity is
more abundant than that of the non-CG cluster galaxies. Outside 200 kpc, the total luminosity of non-CG cluster galaxies becomes higher. Within 1 Mpc, the
luminosity of ICL+CG makes up 44% (bottom panel) of the total cluster stellar luminosity computed as the sum of the non-CG cluster galaxies and the ICL+CG.

Figure 13. g- and r-band radial profiles (upper panel) and color profile of pure
ICL+CG (lower panel). For comparison, we also show the average colors of
the CGs and satellite red sequence members (K-corrected to z=0.25), selected
with the redMaPPer algorithm, and the ICL+CG colors derived in Zibetti et al.
(2005). The shaded regions represent the uncertainties of the color
measurements.

51 Weak lensing directly measures excess matter density enclosed within a
radius, rather than the surface mass density at that radius.
52 https://tmcclintock.github.io/code/cluster_toolkit
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and a two-halo matter correlation model, projected onto the
plane of the sky:
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In the above equations, x ( ∣ )r M c,NFW and x ( ∣ )r Mh2 represent
the cluster matter correlation functions in the one-halo and two-
halo regimes of a cluster with mass M and concentration c.

ρm(z) represents the universe mean matter density at redshift z.
S( ∣ )r M c z, , is the surface mass density at distance r on the
plane of the sky, integrated along the line-of-sight distance χ.
We compute S( ∣ )r M c z, , at the mean masses of the three
cluster richness subsamples, 1014.09, 1014.30, and 1014.61Me/h,
assuming the concentration to be 5 and the redshift to be 0.25.
The ratio between the ICL+CG luminosity and the cluster

surface mass density is shown in Figure 16. This luminosity-to-
mass ratio is at its highest within 100 kpc. As found in the
cluster matter distribution in multiwavelength observations
(Newman et al. 2013a, 2013b), the core of galaxy clusters is
dominated by the stellar mass of the CGs, which would explain
the high ICL to cluster mass ratio near the center.
The ratio drops with enlarging radius. Between 100 kpc and

1Mpc, the ICL luminosity-to-cluster-mass ratio no longer
displays a noticeable radial trend, which is 10−2.85±0.09 at
r=215 kpc and 10−2.84±0.4 at r=985 kpc, in the medium
richness bin. Because the cluster surface mass density
(McClintock et al. 2019) and the ICL surface brightness
(Section 5.1) both drop by a factor of ∼10 in this radial range,
the flatness of the ICL+CG luminosity-to-mass ratio indicates
that the ICL luminosity distribution closely follows the cluster
mass distribution. Moreover, throughout the 100 kpc to 1Mpc
radial range, the ICL+CG luminosity-to-cluster-mass ratios are
similar among the three cluster richness subsamples, further
evidence that the ICL+CG luminosity profile is self-similar
and traces the overall cluster mass distribution.
The 100 kpc to 1Mpc radial range is also coincident with

where the ICL+CG profile transitions into an extended diffuse
component (Figure 10). Thus, this transition potentially marks
a physical separation of ICL and CG.

7. Systematics

7.1. Sky Subtraction

Sky subtraction near bright galaxies or stars is a known
difficulty in processing imaging data. It is common for the
processing software or pipelines to overestimate the sky level
around bright objects because of light contamination from the
objects, and hence oversubtract the sky background. This kind

Figure 15. Integrated ICL luminosities at different radii of clusters in different
richness ranges. The inset figure shows the same plot but with log scaling. The
integrated ICL luminosities appear similar within ∼30 kpc regardless of cluster
richness. As the distance increases, richer clusters contain more ICL, which
means that the ICL dependence on cluster richness is mainly driven by the
diffuse light outside the cores of the CGs.

Figure 16. Ratios between ICL+CG luminosity and total cluster mass at
different radii. Outside 100 kpc, the ICL luminosity-to-cluster-mass ratio
appears flat within uncertainties, an indication that ICL luminosity traces the
cluster mass distribution. Interestingly, the radial range of ratio flattening is
coincident with where the ICL+CG profile transitions into a diffuse component
(Figure 10). Note that the ICL+CG profiles have been rebinned by a factor of
15 outside 100 kpc from Figure 14 to reduce noise.

Figure 14. Upper panel: ICL profiles of clusters in different richness ranges.
The ICL is more luminous and extended in richer systems. Lower panel: ICL
profiles appear to be “self-similar,” in that after scaling with cluster radius
(R200m), the ICL profiles of clusters in different richness ranges are
indistinguishable.
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of effect is particularly detrimental to the detection of low
surface brightness light near bright galaxies, and in our case,
the detection of faint diffuse light around the CGs.

In this paper, the sky levels are estimated and subtracted
during three processes:

1. Sky level is estimated for each exposure image and
subtracted before the single-exposure images are
coadded.

2. In Section 3.2, residual sky background is estimated and
subtracted again by sampling the light profiles of random
points that cover the footprint of the cluster sample to
account for cluster selection effects (i.e., we only look for
clusters in sky regions that are not in immediate
proximity to bright stars or nearby galaxies).

3. In Section 3.2, residual background light is again
estimated as the flux level at a distance of ∼7 arcmin
(about ∼1.6 Mpc at redshift 0.25) from the cluster center
and then subtracted to reduce the cluster-to-cluster
variations of the ICL detection.

In the above steps, (2) and (3) are by definition either far away
or not correlated with cluster locations, hence we do not
consider them to be contaminated by the light of the CGs. As
previously mentioned in Section 2.2, the sky level estimation
in step (1) is derived through modeling the variation of light
over the 3 deg2 DECam focal plane and thus should be
relatively insensitive to the presence of individual bright
galaxies or stars.

Nevertheless, we investigate whether or not the sky level in
step (1) may have been overestimated near the cluster center. In
this exercise, we look into the sky background maps estimated
for the single-exposure images covering the redMaPPerCGs,
and directly compare the sky values estimated at the location of
the cluster center and at locations away from the center.

For each of the ∼300 clusters analyzed in the paper, we
search for single-exposure images that cover at least the central
2.06×2.06 arcmin2 region of the cluster.53 Because of the
survey nature of DES, the central region of each cluster may
not fully appear within one exposure image, and we would like
to avoid comparing sky levels in different exposures as they
may vary significantly. For those single-exposure images that
fully overlap with the cluster’s central 2.06×2.06 arcmin2

regions, we compute the sky flux difference between the cluster
center location and locations at distances away from the
centers, with the differences rescaled to a magnitude zero point
of 30 for each exposure.

Figure 17 shows the sky value differences between the cluster
center and locations that are at distances of 0.14, 0.45, and
1.36 arcmin, corresponding to physical distance separations of 33,
106, and 320 kpc at z=0.25. If the sky level is indeed
overestimated at the cluster center, we would expect the differences
to be shifted to the positive side, and the shifts may become larger
at larger distances. However, neither of these trends appear to be
present in this test. The mean of the differences is at a flux level
of ∼0.1 arcsec−2 between the cluster centers and locations
1.36 arcmin away from the centers, significantly under the ICL
flux limit in this work (30mag arcsec−2 at ∼1Mpc corresponds to
a flux of ∼1 arcsec−2 with a magnitude zero point of 30).

7.2. PSF Effect

A frequently debated topic in the study of galaxy low surface
brightness light envelope is the effect of PSFs. As noted in
Moffat (1969), King (1971), Racine (1996), and Bernstein
(2007), the telescope and instrument PSFs almost always have
an extended component that radially extends several arcse-
conds or arcminutes. This is also shown to be true for the
DECam images on the Blanco telescope in Section 4. In
previous studies about whether or not faint light envelope light
exists around galaxies (D’Souza et al. 2014; Duc et al. 2015)
including the Milky Way and other spiral (Sackett et al. 1994;
Zibetti et al. 2004; Zibetti & Ferguson 2004; van Dokkum et al.
2014; Zheng et al. 2015) or elliptical galaxies (Tal & van
Dokkum 2011), de Jong (2008) and Sandin (2014, 2015)
showed that the extended component of the telescope and
camera PSF may partially or largely account for the observed
galaxy light halo and its color gradient.
In this section, we consider whether or not the extended

component of DECam/Blanco PSFs can explain the ICL
measurements in this paper. The measurement of the extended
wings of the PSF and ICL profiles do not have sufficient S/N to
allow the smooth deconvolution of the PSF from the ICL. To
evaluate the effect of PSFs, we creates a simulated ICL profile,
convolve it with a PSF, and examine the difference in the ICL
profiles before and after the convolution (Figure 18). The
unconvolved ICL profile is modeled with the three Sérsic
components as described in Section 5.1, and we convolve it to the
extended PSF model derived in Section 4. We find that the PSF
convolution only significantly alters the shape of the ICL within
the inner 10 kpc and is negligible outside 100 kpc at redshift 0.25.
To estimate the effect of PSFs on the ICL color measurements,

we compute the color shifts when convolving the ICL profile
model to the g- and r-band PSF models from Section 4. Driven by
the wider PSF FWHM in the g-band compared to that in the
r-band, PSF convolution produces an artificial trend of bluer color
at a large radius within the inner 10 kpc, which informs us not to
analyze the ICL color gradient in this radial region. The color shift
caused by PSF convolution is negligible outside 10 kpc.

7.3. Masking of Cluster Galaxies

As discussed in Section 5.1, the raw ICL measurements
contain light from faint unmasked cluster galaxies, as well as

Figure 17. The differences in the sky level estimations between the cluster
centers and locations away from the cluster centers. These difference are
calculated by subtracting the sky level at a distance from the sky level at the
cluster center, rescaled as the flux per arcsec2 with a magnitude zero point of
30. See Section 7.1 for discussions on the implications of this figure.

53 The size of each DES CCD image is approximately 8.77×17.5 arcmin2

and varies slightly depending on the CCD location on the focal plane.
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residual light outside the masks of the already masked galaxies.
These contributions are subtracted from the raw ICL measure-
ments to derive pure ICL profiles, by assuming (1) a luminosity
function of cluster galaxies and that (2) 9.6% of the galaxies’
light leaks to the outside of the masks.

As discussed in Section 5.1, we assume a single Schechter
luminosity function to estimate the light residual from faint
unmasked cluster galaxies. As with the parameters of the
Schechter function, given recent measurement uncertainties of
the cluster galaxy luminosity function (e.g., Lan et al. 2016;
Ricci et al. 2018), we find that varying the faint-end slope
parameter by ±0.2 or the characteristic magnitude parameter
by ±0.5 mag changes the estimated fraction of residual light
by ∼1%.

Notably, we have ignored possible deviations from a single
Schechter function caused by faint dwarf cluster galaxies. Lan
et al. (2016) estimated that the faint component of cluster
galaxies has a normalization factor about 8% of the brighter
ones, with a characteristic magnitude ∼3.5 mag fainter and a
faint-end slope of ∼−2.0. Such a faint dwarf galaxy
component makes up less than 1% of the total light of the
bright component, and hence ignored in our analysis.

The second contamination to the ICL measurement, the
residual light outside the masks of the already masked galaxies,
is assumed to be 9.6% of the total light of those galaxies, which
is likely an overestimation according to Graham & Driver
(2005). We do not see a significant reduction in the raw ICL
+CG brightness when adjusting the masking apertures from
2.5 Kron radii to 3.5 Kron radii. Thus, we expect the “pure
ICL”+CG profile computed in this paper to be an under-
estimation, and the true “pure” ICL+CG profile to be between
the “pure” and “raw” measurements.

Finally, our cluster galaxy residual subtraction process does
not consider the existence of the recently discovered ultra-
diffuse galaxies (see van Dokkum et al. 2015 and the
referenced papers). Neither have these galaxies been given
consideration in the cluster galaxy luminosity function models
used in the paper. Therefore, our “pure” ICL+CG profile
contains light from these ultradiffuse galaxies. Distinguishing

them will require a better understanding of these lesser-known
objects in the future.

8. Summary and Discussion

This paper develops methods to measure low surface
brightness ICL centered on the cluster CG, which are tested
with random points and simulated ICL+CG profiles, and also
applied to the study of the DECam PSFs in the g- and r-bands
for averaged DES Y3 observations. We estimate the light
residual in raw measurements of ICL+CG profiles from cluster
satellite galaxies and consider systematic effects from the sky
background subtraction procedure, from the extended wings of
the DECam PSFs and from assumptions about the luminosity
function of cluster satellite galaxies.
Following the high S/N detection of ICL+CG radial

profiles, we study a variety of ICL properties—radial
distribution, integrated luminosity, color profile, and the
connection between ICL distribution and the cluster mass
distribution. The ICL extends out to 1Mpc from the cluster
centers at a surface brightness level of 30 mag arcsec−2. The
ICL outside 30 kpc of the CGs is ∼3 times as luminous as the
ICL+CG central component within 30 kpc. The ICL also
displays an interesting self-similarity feature wherein their
radial profiles appear similar after scaling by the cluster R200m,
and the ICL radial distribution closely follows the overall
cluster mass distribution.

8.1. Comparison to Previous Observational Studies

A very similar work to this one is described in Zibetti et al.
(2005, hereafter Z05), wherein g, r, and i images from the
SDSS of ∼600 galaxy clusters at redshift 0.2–0.3 were stacked,
and ICL+CG profiles out to 700 kpc from the CG centers were
derived. Our analyses shared some similar ICL findings to Z05
—both works have found the ICL to have a shallower profile
than the CGs in the core, bluer ICL g−r color at a greater
distance, and more luminous ICL in richer clusters, yet the core
component of the CGs have a similar luminosity regardless of
the cluster richness.
Not all results in the two works agree, however. Notably, the

ICL profile derived with our method is much brighter than that
in Z05, as shown in Figure 19. While Z05 estimated the ICL

Figure 18. The effects of the PSF on the measurement of the flux profile (upper
panel) and color profile (lower panel) of the ICL+CG, tested with a simulated
ICL+CG profile. We create the simulated ICL+CG profile at z=0.25 using a
combination of three Sérsic models (Section 5.1) and convolve it respectively
with the average DES Y3 g and r PSFs derived in Section 4. The upper panel
shows the difference in flux per arcsec2 before and after the PSF convolution in
the r-band. The lower panel show the g−r color difference before and after
PSF convolutions in the g- and r-bands. We find that the PSF shifts both the
flux profile and the color profile, but only within the inner 10 kpc. See
Section 7.2 for more detailed discussions.

Figure 19. Our ICL+CG radial profile (DES r-band, red shaded region) in
comparison to the measurements in Z05 (SDSS r-band, blue shaded region).
Our measurements agree remarkably well with Z05 within 100 kpc, yet are
much brighter than Z05 outside 100 kpc. The different background estimation
methods partially explain the differences—when offsetting our ICL flux
measurements to 0 at 1 Mpc (as is done in Z05), our measurement agrees better
with Z05 (dashed gray line). See Section 8.1 for discussions.
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surface brightness to be 32mag arcsec−2 in the r-band at around
700 kpc, our results show that the ICL surface brightness is above
32mag arcsec−2 even at 1Mpc. Several methodological differ-
ences may have contributed to this discrepancy. Most impor-
tantly, Z05 chose to evaluate the sky background level as the
average flux in a 100 kpc annulus centered at 1Mpc from the
cluster center, which offsets the ICL flux level to 0 in that radial
range. Our nominal method offsets the ICL flux level to 0 at
∼1.8Mpc, and if we offset our measured ICL flux to 0 in the
same radial range as Z05, our ICL surface brightness drops to
∼31.5 mag arcsec−2 at 700 kpc, close to the estimation in Z05.
The rest of the differences may be due to the applications of
K- and e-corrections (wavelength shifting with redshift and
galaxy passive evolution), as well as cluster selection methods.
Overall, our analysis is based on a much improved cluster sample
with better techniques to quantify sky background and PSFs and
account for sky selection effects associated with the cluster
sample.

Many other studies have investigated ICL properties to a
great distance, albeit with fewer clusters (e.g., Krick et al. 2006;
Gonzalez et al. 2007; Krick & Bernstein 2007; Rudick et al.
2010; Guennou et al. 2012; Giallongo et al. 2014; Montes &
Trujillo 2014; Burke et al. 2015). With deep images from
Hubble or ground-based telescopes, these works have mea-
sured the ICL to surface brightness levels beyond
25 mag arcsec−2 and out to at least 100 kpc from the CG
centers, sometimes close to a surface brightness limit of
30 mag arcsec−2.

A frequently investigated ICL property in these works is the
fractional contribution of the ICL to the total cluster stellar
content. Around redshift 0.2–0.3, there is a great dispersion in
the reported values. Burke et al. (2015) found the ICL fraction
to be around 20% at redshift 0.25 in the CLASH survey data,
while Krick & Bernstein (2007) estimated the fraction to be
6%–20% in 10 nearby clusters, or around 10% at redshift 0.25.
Going to a slightly lower redshift range of 0.16–0.20,
Feldmeier et al. (2004) estimated the ICL fraction to be around
10% with four Abell clusters. Note that these three works have
defined the ICL as the diffuse light fainter than a surface
brightness limit, usually around 25–26 mag arcsec−2 in B- or V-
bands, which roughly correspond to >20 kpc in our analysis.
On the higher side, Gonzalez et al. (2007, 2013) estimated the
ICL+CG to make up 33% of the total cluster stellar mass
within r200 in the redshift range of 0.03–0.13, or 20%–50% in
the redshift range of 0.05–0.24 within r500. Toledo et al. (2011)
found the ICL+CG fraction to be >40% within 500 kpc for
one cluster at redshift 0.29, and Morishita et al. (2017) found
the fraction within 300 kpc to be between 15% and 60%. The
reported ICL fraction varies with the radial range of the
comparison. For one cluster of redshift 0.44, Presotto et al.
(2014) estimated the ICL+CG fraction to be >50% within
100 kpc/h, or 20% within 350 kpc/h, or 8.2% within R500. Our
measurement of the ICL+CG luminosity fraction to be
44±17% at radius 1Mpc is on the high end compared to
previous observations, although still within the range of those
reports.

Another frequently visited ICL property is the color, which
informs us about its stellar population. Most imaging studies
have found ICL+CG colors to be comparable to an old stellar
population with a radial trend of becoming bluer at a greater
distance (e.g., Montes & Trujillo 2014; Presotto et al. 2014;
Mihos et al. 2017; Huang et al. 2018b; DeMaio et al. 2018),

which is further supported by spectroscopic studies of the ICL
+CG stellar composition (Adami et al. 2016; Edwards et al.
2016; Johnston et al. 2018). Our results of the ICL color being
consistent with the cluster red sequence galaxies and becoming
bluer with distance agree with those previous conclusions
(e.g., Z05, as shown in Figure 13). The color gradient of ICL in
particular indicates that the ICL is likely produced from
disruptions of dwarf galaxies or tidal stripping of cluster
member galaxies. The former mechanism is expected to create
an ICL color gradient as the disrupted dwarfs at different radii
have different masses and colors. The latter mechanism, the
tidal stripping of galaxies, becomes stronger closer to the
cluster center and will be able to strip the redder, inner parts of
the cluster galaxies. Major mergers are not likely to be the main
ICL formation mechanism, as it would give rise to a more
uniform ICL color profile (e.g., Eigenthaler & Zeilinger 2013;
Contini et al. 2018b).

8.2. Comparison to Simulations

A few simulation studies have attempted to include the ICL
(Rudick et al. 2006; Murante et al. 2007; Purcell et al. 2007;
Guo et al. 2011; Rudick et al. 2011) but balancing between the
properties of the general cluster galaxy population and the
properties of CG and ICL is a challenge (Puchwein et al. 2010).
Using semianalytical methods, Contini et al. (2014, 2018a)

investigated different pathways to ICL formation, such as
stripping and merging relaxation, and found that regardless of
these mechanisms, the ICL has experienced rapid redshift
evolution in late times. At redshift 0, the ICL+CG may make
up 30%–50% of the total cluster stellar content, or close to such
a quantity at redshift 0.25.
Recent developments in hydrodynamics simulations are also

producing encouraging ICL results. In high-resolution dark
matter and baryon resimulations of massive cluster-sized halos
incorporating AGN feedback, Martizzi et al. (2014) were able
to identify diffuse ICL envelopes, extending to a few hundreds
of kiloparsecs, around the CGs. Between surface brightness
limits of 25 and 27 mag arcsec−2 in the V-band, the ICL makes
up 20%–60% of the total light of the CG and ICL combination.
The surface brightness limits applied in Martizzi et al. (2014)
roughly correspond to a 30–80 kpc radial range. Our estimation
of the fraction of the ICL in the ICL+CG combination in such
a radial range is 28% (Figure 11), which agrees with the reports
in Martizzi et al. (2014).
Pillepich et al. (2018) carried out a detailed study of the ICL

with the IllustrisTNG hydrodynamics simulation suites. In
particular, Pillepich et al. (2018) investigated the ICL radial
distribution, and found the ICL stellar mass profile to be as
shallow as that of dark matter, with a similar power-law radial
dependence. The ICL stellar mass outside 30 kpc, or outside
100 kpc of the cluster center, scales with cluster mass with a
power-law index close to 1. Our observation that the ICL traces
the overall cluster mass distribution supports such a finding. As
with the amount of the ICL, for a ´ M3 1014 cluster,
Pillepich et al. (2018) found that the ICL stellar mass outside
30 kpc of the CG center is about three times as massive as the
inner 30 kpc of the CG+ICL combination ( ´ M3 1012 versus
´ M1 1012 ), and the ICL outside 100 kpc is approximately

equal to the CG+ICL stellar mass within 100 kpc
( ´ M2 1012 ). The ICL+CG fraction in the total cluster
stellar content is 50%, which is on the high end of previous
observational studies. However, both the Pillepich et al. (2018)
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and the Contini et al. (2014, 2018a) estimations are in excellent
agreement with the results from our analysis.

Modeling-wise, Behroozi et al. (2013, 2018) also included
an ICL component, called intrahalo light (IHL), in their efforts
to provide a self-consistent halo model to quantify the average
galaxy star formation history from various galaxy observables.
For a halo of mass ´ M1 1014 , Behroozi et al. (2018) also
found that ICL/IHL has a rather late formation time, increasing
rapidly by ∼3 times between redshift 0 and 1. Near redshift 0,
the ICL/IHL contributes ∼30% of the total halo stellar mass.

8.3. ICL Self-similarity

A rather interesting result from this analysis is that the ICL
radial profile appears self-similar—it scales with cluster R200m

inferred from cluster richness. In addition, starting from
100 kpc and out to 1Mpc, the ICL profile appears to trace a
theoretical cluster mass profile model. This is one of the first
direct evidence establishing a connection between the ICL and
the cluster mass radial distribution. Prior to this work, Montes
& Trujillo (2019) examined the surface brightness contours of
the ICL and the weak lensing mass maps of six galaxy clusters
studied by the Hubble frontier program and found (1) visual
similarity between the two and moreover, (2) compatible
contour shapes with a quantitative shape estimator, in various
radial ranges. Montes & Trujillo (2019) noted the potential of
using the ICL observation to trace the cluster mass distribution.
The results from our analysis provide additional direct evidence
to such a conclusion.

Prior to the analyses in this paper and those presented in
Montes & Trujillo (2019), hints of a connection between the
ICL and cluster mass distributions can be found in a few
observational and simulation studies that examine the radial
profile of the ICL or the scaling between the ICL stellar mass
and cluster mass. For example, Zibetti et al. (2005) found that
the ICL profile is reasonably approximated by an NFW model
(Navarro et al. 1997). A few other observational works have
noted a stronger correlation between cluster mass and ICL
stellar mass or luminosity outside the CG cores (e.g., DeMaio
et al. 2018; Huang et al. 2018a). While the accuracy of the ICL
tracing cluster mass distribution awaits further investigations,
this similarity may provide another channel to explore the
origin of the ICL, if different ICL formation mechanisms, e.g.,
tidal stripping or dwarf galaxy disruption, have different radial
or cluster mass dependence. Furthermore, as noted in Montes
& Trujillo (2019), this phenomenon, if confirmed, provides
another extraordinary opportunity to observationally constrain
the cluster mass distribution.

Another possible explanation of this phenomenon is that the
ICL simply traces the luminosity distribution of cluster satellite
galaxies, which then traces the cluster mass distribution.
We have examined the radial light profile of the cluster satellite
galaxies derived in Section 5.1 and compared it to the
theoretical cluster mass profile model, but cannot determine if
the ICL is a better or worse tracer of cluster mass than satellite
galaxies, given the large uncertainties of those measurements. It
would be worthwhile to revisit this topic with a larger cluster
sample in the future.

8.4. Outlook

With the successful detection of the ICL in this paper, an
interesting topic to explore next is its redshift evolution, which

will provide more clues about its origin. The depth and
wavelength coverage of the DES produce volume-limited
cluster samples up to redshift ∼0.65 in Y1 data and up to
redshift ∼0.8 with the first three years of data (Y3). The
increased volume of the redMaPPercluster sample at a higher
redshift and hence the increased sample size partially offset the
dimming effect of the ICL with distance and may allow for ICL
detection up to redshift ∼0.65, which will provide preliminary
answers to whether or not the ICL has experienced much
redshift evolution.
The method developed in this paper can also be applied to

studying low surface brightness light around other types of
galaxies in DES data. We note that we have employed this
method to analyze the faint light halo around luminous red
galaxies (Rozo et al. 2016) in an upcoming study (Y. Leung
2019, in preparation).
Finally, based on the ICL surface brightness results

presented in this work, the ICL may become a significant
systematic effect for cluster weak lensing studies with future
cosmic surveys such as the Large Synoptic Survey Telescope
(LSST), because of ICL contamination in the flux measure-
ments of weak lensing source galaxies. For this aspect of THE
ICL study, we refer the readers to Gruen et al. (2018).
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this paper are available on the DES data release page:https://
des.ncsa.illinois.edu/releases/other/paper-data. Readers inter-
ested in comparing to these results are encouraged to check out
the release page or contact the corresponding author for
additional information.
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Appendix
Examples of Noise Sources in ICL Detection

While examining the masked images of the clusters, we
identified a few cases that increase the noise level of ICL
detection. Three of them are noted below as examples. These
noted contaminations are not structures associated with the
redshift 0.2–0.3 clusters, therefore we expect their net effects to
be canceled out in the process of “stacking” and background
subtraction. However, these cases can contribute correlated
noise on a scale of a few pixels or produce the noise spikes seen
in the ICL figures.

1. Bright stars or nearby galaxies (e.g., galaxies below
redshift 0.05). The unmasked light residual in the
outskirts of these objects can be bright enough to cause
significant contamination to the faint ICL detection on a
scale of tens of arcseconds. Examples of such cases can
be seen in Figure 20. Note that we have implemented a
random point subtraction process to account for the fact
that the cluster sample selection method avoids looking
for clusters in close proximity to these objects.

2. Coadding discontinuity in the images. This can be caused
by different background residual levels in the processed
single-exposure images, or CCD readout differences in
the same exposure. Because DES does not purposely
place clusters at certain locations in the camera field of
view, this effect should be canceled out in the “stacking”
process. An example of such a case can be seen in
Figure 20.

Figure 20.Masked r-band images of one cluster in our analysis, centered on the CG. The left panel shows the entire 4000×4000 pixel (1 pixel=0 263) image, and
the right panel is a DS9 1/2 zoom-in of the same cluster. Bright galaxies or stars above 22.4 mag in the i-band other than the CG have been masked, but the unmasked
fainter objects can be seen in the right panel. The black ellipticals indicate the CG location. The dotted circles indicate regions with bright foreground stars, which
show visible unmasked light residuals. The dotted boxes indicate regions with sky flux discontinuities from coadding multiple single exposures. The gray bar below
the image indicates the flux level while both of the images have a magnitude zero point of 30.
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3. Transient objects (e.g., astroids). We noticed these
objects as they may appear to be particularly bright in
one exposure but disappear in another. These objects are
often not cataloged in the DES coadd object database, as
the object-detection process is only based on the coadded
images of DES r-, i-, and z-band observations. For the
same reason, these contamination cases are more
common in the g-band rather than in the r-band. Again,
their contamination can be canceled out by “stacking.”
An example of such a case is shown in Figure 21.
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