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Objectives: 	To determine the ef icacy of targeted luorescent
biomarkers  and  multiphoton  imaging  to  characterize  early
changes in ovarian tissue with the onset of cancer. Methods:
A  transgenic  TgMISIIR-TAg  mouse  was  used  as  an  animal
model for ovarian cancer. Mice were injected with luorescent
dyes  to  bind  to  the  folate  receptor  α,  matrix
metalloproteinases,  and  integrins.  Half  of  the  mice  were
treated  with  4-vinylcyclohexene  diepoxide  to  simulate
menopause. Wide ield luorescence imaging and multiphoton
imaging of the ovaries and oviducts was conducted at four and
eight  weeks of  age.  The luorescence  signal  magnitude was
quanti ied,  and  texture  features  were  derived  from
multiphoton imaging.  Linear discriminant analysis was then
used to classify mouse groups.
Results:	Imaging features from both luorescence imaging and
multiphoton imaging show signi icant changes (p<0.01) with
age, VCD treatment, and genotype. The classi ication model is
able  to  classify  different  groups  to  accuracies  of  75.53%,
69.53%, and 86.76%, for age,  VCD treatment,  and genotype
respectively. Building a classi ication model using

features  from  multiple  modalities  shows  marked
improvement over individual modalities.
Conclusions: 	This study demonstrates that using wide ield
luorescence  imaging  with  targeted  biomarkers,  and

multiphoton  imaging  with  endogenous  contrast  shows
promise for detecting early changes in ovarian tissue with
the  onset  of  cancer.  The  results  indicate  that  multimodal
imaging can provide higher sensitivity for classifying tissue
types than using single modalities alone.
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Introduction	Ovarian	Cancer

Ovarian cancer is a devastating disease with high mortality
rates because non-speci ic symptoms and lack of an effective
screening  test  leads  to  frequent  late  diagnosis.  In  the  U.S.
alone  there  are  more  than  20,000  new  cases  of  ovarian
cancer each year and approximately 14,000 deaths per year
[1]. However, if ovarian cancer is found and treated before
metastasis, the 5-year survival rate is 94% (versus 28% for
metastatic  disease)  [1,  2].  Unfortunately,  no  reliable  early
detection  technique  exists  [3].  Owing  to  the  challenges
associated with early disease detection, there is limited data
available  on  women.  Animal  models  can  provide  needed
information that will help develop an understanding of early
cancerous  changes  and  lead  to  future  development  of
screening  tests  for  women  that  are  at  high  risk  for
developing ovarian cancer.

The most common type of ovarian malignancy is derived
from  epithelial  cells  and  is  more  likely  to  occur  in
postmenopausal  women.  In  addition,  recent  studies  have
shown  that  some  ovarian  cancers  may  originate  in  the
fallopian tubes[4]. Thus, both the ovaries and fallopian tubes
may exhibit early tissue changes with the onset of cancer.

In this study we combine a menopausal mouse model and
transgenic ovarian cancer model and characterize ovar-
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ian and fallopian tube tissues in these models using optical
imaging  techniques.  The  information  on  tissue  changes
observed in  these  models  will  be  helpful  for  future studies
examining  neoplastic  and  cancerous  changes.  We  ind  that
using  structural  and  functional  imaging  techniques  such  as
multiphoton microscopy and wide ield luorescence imaging,
it is possible to detect changes in ovarian tissue.

Imaging	Modalities

Optical imaging methods are excellent for visualizing tissue
changes due to the high resolution and high sensitivity to
tissue changes. Due to the abundance of different modalities,
optical imaging enables the lexibility of imaging scales from
wide  ield  to  narrow  ield  (higher  resolution)  as  well  as
imaging either endogenous or exogenous contrast  sources,
including luorophores and scatterers.  Tissue luorophores
absorb incident light and subsequently emit light, generally
of a longer wavelength. The wavelengths and intensity of the
remitted  light  are  related  to  the  quantity,  type,  and
distribution of luorophores present.

Optical imaging techniques that have shown promise for
detection of ovarian cancer include luorescence imaging [5],
multispectral imaging [6], confocal imaging [7], multiphoton
microscopy  [8,  9],  photoacoustic  imaging  (PAI)  [10],  and
optical  coherence  tomography  (OCT)  [11],  among  others.
Re lectance and luorescence spectroscopy can differentiate
normal and neoplastic ovarian tissue but typically has poor
resolution  [12].  OCT  visualizes  details  of  tissue
microstructure  such  as  surface  epithelium,  follicles,  cysts,
collagen bundles, and vessels as well as potentially abnormal
changes such as invaginations and changes in tissue density,
but has inadequate resolution for cellular changes [13, 14].
Confocal microscopy produces subcellular-resolution images
that can be used to identify cancer occurring on the surface
of the ovary, but the depth of imaging is limited [7, 15]. PAI
has the largest depth of imaging (2 to 3 cm) and, owing to
differences  in  absorption  properties,  can  visualize  large
structures such as corpora lutea, follicles, and blood vessels
[16,  17].  Likewise,  malignant  and  normal  ovaries  in
postmenopausal  women  can  be  distinguished  by  their
different absorption properties. However, PAI has relatively
low resolution and may be confounded by benign conditions
with high vascularity or hemorrhage, or early-stage cancers
without signi icant vascularity changes [18].

Since  each  of  these  modalities  has  limitations  of
resolution,  ield  of  view,  and  use  different  contrast
mechanisms to provide sensitivity and speci icity to different
markers  of  early  disease,  we  propose  to  use  multiple
modalities,  speci ically,  wide ield luorescence imaging and
multiphoton microscopy, to get both large ield of view and
high  resolution.  Furthermore,  these  techniques  enable
visualization  of  exogenous  and  endogenous  luorophores,
respectively.

Wide ield 	 Fluorescence 	 Imaging 	 and 	Dye 	 Selection.
Wide ield  luorescence  imaging  (WFI)  illuminates  a  large
area  of  tissue,  so  that  high  resolution  information  from
entire  organs  can  be  viewed  quickly,  with  little  or  no
scanning.  In the case of a  mouse,  we are able to view the

entire reproductive tract including uterus, oviducts (murine
equivalent of fallopian tubes), and ovaries in a single image.
The addition of targeted luorescent dyes can provide both
qualitative and quantitative information on desired markers
in  the  tissue  and overall  tissue  composition.  A  number of
different light sources and ilters can be used to separate the
excitation and emission of luorophores of interest.

A number of commercial luorescent dyes are available for
tissue  characterization.  We  are  most  interested  in  tissue
markers that are potentially upregulated in cancer so that we
can understand the expression of these markers in the mouse
models that we use. The tissue markers that were of highest
interest to us and commercially available included folic acid,
matrix metalloproteinases and integrins.

Folic acid is an essential nutrient required by all living cells
for cellular division. Uptake of folic acid is necessary for the
metabolism of tumor cells. Folate receptor alpha (FR-α) is a
protein that uptakes folic acid by endocytosis and can be over-
expressed in ovarian epithelial cancers [19, 20].  Little to no
folate receptor expression was found in nonepithelial tumors
and in  normal  tissues,  while  signi icantly  higher expression
was found in ovarian carcinomas [21]. FR-α	promotes growth
of  tumors  by  its  modulation  of  folate  uptake  or  regulatory
signals [22]. The expression of FR-α	is normally restricted to
certain  tissues  where  the receptor  does  not  come in  direct
contact with the circulating folate [22]. In cancerous tissues,
FR-α	is available to circulating folate. It is suggested that the
expression  FR-α 	is  regulated  by  estrogen  receptor  (ER)
expression  in  tumors.  The  expression  of  elevated  estrogen
receptors in gynecological malignancies such as cervical and
ovarian  cancer  cell  lines  is  suggested  to  repress  the
expression of FR-α 	[23]. The activation of FR-α 	is associated
with  the  activation  of  signaling  pathways  that  induce
oncogenic transformation, such as the activation of oncogene
signal transducer and activator of transcription 3 (i.e., STAT3)
that  can  promote  growth,  proliferation,  and  survival  of
cancerous cells [24].

Matrix metalloproteinases (MMPs) also have an important
role in ovarian malignancies. MMPs interact with component
of  the  extracellular  matrix  to  carry  out  tissue  remodeling
pathways [25].  During ovulation,  the extracellular  matrix  is
degraded;  MMPs  mediate  the  breakdown  of  the  basement
membrane  which  is  required  for  the  release  of  the  oocyte.
Certain  MMPs  also  help  in  the  atresia  process.  There  are
approximately twenty-three members in the MMP family and
they  are  grouped  based  on  their  function  and  structure.
Increased  expression  of  MMP2  and  MMP9  was  found  in
epithelial  ovarian  cancer  cell  lines,  signi icantly  higher
expression  was  found  in  advanced  cancer  stages  [26].
Previous studies have also indicated that MMP-2 and MMP9
can be overexpressed early in cancer progression of human
ovarian carcinomas. It is suggested that there is a difference in
expression of  mRNA levels  of  MMP-9 in samples  of  normal
ovaries  and  polycystic  ovaries  of  postmenopausal  women.
Lower levels of MMP-9 mRNA were found in normal ovaries of
postmenopausal women in comparison to polycystic ovaries
[27]. MMP-9 and MMP-2 expression in ovarian cancer relates
to the ability of cancer cells  to invade and metastasize [28,
29]. Silencing of MMP-9 decreased the ability of cancer cells to
invade [26]. One of the main pathways that is altered by MMPs
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in cancer cells is the tumor growth factor (TGF) -  β	signaling
pathway,  which  is  known to  be  activated both  MMP-2 and
MMP-9. Altered expression levels of MMPs are known to affect
the  activity  of  other  MMPs,  growth  factors,  cytokines  and
epidermal  growth  factor  (EGF)  that  induce  oncogenic
transformation of cells [30].

Integrins  are  cell  surface  receptor  proteins  that  regulate
signal transduction between cells and the extracellular matrix.
These receptor proteins are composed of two subunits, the α
subunit and the  β 	subunit. The two subunits can combine to
create twenty-four integrin receptors [31]. Integrins play an
important role in integrating the extracellular matrix and the
cytoskeleton of cells. Overall, integrins have been known to be
interrelated with metastasis [32]. One integrin known to be
associated with cancer cell lines is  ανβ3.  Integrin  ανβ3  can be
upregulated in tumor cells and is associated with survival and
angiogenesis [33, 34]. The expression of integrin is found to
be  associated  with  epithelial  cadherin  (E-cadherin).  E-
cadherin  is  an  important  adhesion  molecule  that  forms
cellular junction and is expressed in epithelial cells. Elevated
levels  of  E-cadherin  expressed  in  ovarian  cancer  cell  lines
were silenced to test its effects on the integrin expression. It
was  found  that  loss  of  E-cadherin  up  regulates  αν 	integrin
expression  [35].  The  resulting  elevated  levels  ofαν 	integrin,
due to loss or down-regulation of E-cadherin, play a role in the
activation  of  signaling  pathways  involved  in  adhesion  and
metastasis  [35].  The  ability  of  cancer  cells  to  establish
themselves in distant sites is  largely regulated by integrins.
Integrins of ovarian cancer cell lines mediate the adhesion to
ibronectin, laminin and collagen which aid in further invasion

and tumor growth [36].

Multiphoton 	 Microscopy. 	In  multiphoton  microscopy
(MPM),  femtosecond pulsed laser  light  is  focused with high
numerical  aperture  optics  to  create  a  high  instantaneous
power  density  in  a  small  volume  of  tissue,  enabling
multiphoton  events  that  result  in  submicron  resolution
imaging with little out of focus signal generation. MPM using
nearinfrared  light  has  the  ability  to  image  the  same
luorophores  hundreds  of  microns  deeper  than  confocal

microscopy  using  ultraviolet  or  visible  light.  The  laser  is
scanned in two dimensions while the sample is moved in the
third  dimension  to  create  a  3-D  image  set.  In  two-photon
excited luorescence (2PEF), two photons are simultaneously
absorbed by a luorophore and then emitted as one photon at
a  higher  frequency  than the  incident  light.  Using  excitation
light  near  800  nm,  endogenous  luorophores  that  can  be
visualized  with  2PEF  include  proteins  containing  aromatic
amino acids (tryptophan, tyrosine, phenylalanine), metabolic
cofactors such as NADH and FAD, structural proteins such as
collagen  and  elastin,  and  a  variety  of  other  molecules
including  vitamins  and  lipopigments  [37,  38].  In  second
harmonic  generation  (SHG),  phase  matching  of  photons  in
noncentrosymmetric structures results in a scattering event in
which two photons are combined into a single photon at twice
the frequency of the incident light [39]. SHG is primarily used
for  visualization  of  collagen.  Light  collected from 2PEF and
SHG  are  separated  using  bandpass  ilters.  MPM  enables
visualization of changes in endogenous cellular luorescence
and collagen structure resulting from ovarian tissue changes,

including  cancer.  Likewise,  SHG  enables  visualization  of
changes  in  collagen  ibers  resulting  from  ovarian  tissue
changes.

Animal	Model.	The syngeneic TgMISIIR-TAg (TAg) mouse
[40, 41] expresses the transforming region of polyomavirus
simian virus 40 (i.e.,  SV40) under control of the Mu¨llerian
inhibitory substance type II receptor gene promoter, which is
expressed in ovarian epithelial cells, including fallopian tube
and endometrium [42].  All  TAg positive  (TAg+)  TgMISIIR-
TAg female mice develop bilateral epithelial ovarian cancer,
with invasive tumors in the ovaries evident in nearly all mice
by 8 weeks of age [43].

Repeated  exposure  to  the  chemical  4-vinylcyclohexene
diepoxide (VCD) has  been shown to  accelerate  the rate  of
atresia in small follicles in the ovaries of rats and mice and
lead to early ovarian failure [44, 45, 46]. Thus, VCD has been
useful for generating an animal model for menopause, even
in young animals.  In a previous study we have shown that
VCD dosing will cause ovarian failure in TAg+ mice and their
non syngeneic counterparts.

Materials	and	Methods	Animals

All  experiments  were  performed  per  NIH  guidelines,  and
protocols  were  approved  by  the  University  of  Arizona
Institutional Animal Care and Use Committee. C57Bl/6 wild
type  (WT)  female  breeder  mice  8  weeks  of  age  were
purchased from Jackson Laboratory.  Six  initial  TAg+ males
were obtained from the Fox Chase Cancer Center to start the
colony.  Animals  were  housed  in  microisolators  per  NIH
guidelines  and  allowed  a  7-day  acclimation  period  before
initiating the experiment. One to three C57Bl/6 females were
housed with one TAg+ male for mating. Pregnancy in females
was determined by the presence of a copulatory plug. Pups
were  born  on  days  20  -  21  following  mating.  Pups  were
evaluated for sex, and tail tips were collected from females
for genotyping at either the University of Arizona Genetics
Core  or  TransnetXY.  An  average  of  4  females/litter  were
obtained.  Approximately  one  half  the  females  carried  the
transgene (TAg+) and one half did not (WT).

Dosing

On  post-natal  day  7,  dosing  of  females  with  sesame  oil
(S3547; Sigma Chemical Company, St. Louis MO), or sesame
oil  containing  80  mg/kg  VCD  (94956;  Sigma  Chemical
Company,  St.  Louis  MO),  2.5  ml/kg  body  weight,  was
administered by intraperitoneal injection. Daily dosing with
sesame oil and VCD was continued for 15 days or 20 days.

Dye	Application

Fluorescent  imaging  dyes  included  IntegriSense  680
(NEV10645; PerkinElmer,  Waltham MA),  FolateRSense 680
(NEV10040; PerkinElmer, Waltham MA) and MMPSense 680
(NEV10126;  PerkinElmer,  Waltham  MA).  Dyes  were
prepared according to package instructions and kept in foil
wrapped tubes to protect from ambient light. Ovaries were
surgically exposed in live animals as described below and a
sterile pipette tip was used to place 50 uL of dye on to each
ovary,  or  100uL  of  dye  into  the  body  cavity  (for  control
organs),  resulting  in  a  total  of  100uL  of  dye  per  animals.
Organs were allowed to incubate with dye for 10 minutes in
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darkness  by  turning  off  lights  in  the  room  and  covering
animal organs with an elevated black drape (not in contact
with  the  animal).  Following  incubation,  mice  were
euthanized by CO2 inhalation and organs were explanted.

Organ	Explant	and	Tissue	Processing

Entire  reproductive  tracts  (including  uterus,  oviducts  and
ovaries)  were  explanted,  thoroughly  rinsed  in  saline,
weighed,  and  placed  on  a  non-re lective  black  pad  for
imaging.  Wide ield  luorescence  imaging  was  performed
irst,  followed  by  multiphoton  imaging.  Imaging  was

completed  in  approximately  30  minutes  post-explant.
Orientation  was  carefully  maintained  from  explant  to
imaging,  ixation,  paraf in  embedding,  and  sectioning,  by
maintaining  anatomical  orientation  at  explant  and  placing
the  reproductive  tract  ventral  side  up  on  ilter  paper
indicating  left-right  and  superior-inferior  locations.  After
imaging,  the  tracts  were  ixed  in  10%  Buffered  formalin
solution  for  20  -  24  hrs,  transferred  to  70%  ethanol,
dehydrated, embedded in paraf in blocks, and sectioned at
6µm	thickness. Histology sections were taken parallel to the
area imaged, allowing an enface	view of the imaged area.

Table  1  summarizes  the  number  of  mice  imaged  and
analyzed for MPM and WFI  of  luorescent  dyes.  The same
mice  are  imaged  for  both  MPM  and  WFI,  though  some
exhibiting  image  artifacts  were  excluded from analysis,  as
described in the following sections, which results in different
totals between MPM and WFI.

Wide ield	Fluorescence	Imaging

Wide ield luorescence imaging (WFI)  was performed with
an MVX10 microscope with a DP80 digital camera (Olympus,
Tokyo  JP),  and  ImageX  software.  Images  were  taken  at
exposure  times  of  2  s  (for  MMPSense  dye),  0.1  s  (for
FolateRSense), or 0.2 s (for Integrisense). Magni ication was
set to 0.8. Each channel was set to un-gated and a frequency
of 100,000. Light was iltered using the microscope’s CY5.5
ilter set, featuring a cut-on wavelength of 685 nm, excitation

band of 635 - 675 nm and emission band of 696 - 736 nm.
The excitation spectrum of these dyes does not overlap with
the wavelength used for MPM, as described next; thus, there
is  no  cross-interaction  between  luorescence  and  MPM
studies,  as  con irmed  by  examining  both  stained  and
unstained tissues with MPM.

Wide ield	Fluorescence	Image	Analysis

Images were examined by eye and excluded from analysis if
saturation occurred. Based on prior pilot analysis the images
with the best exposure times for each dye were selected to
maximize the signal without observing saturation. Analysis
was performed using ImageJ software [47]. For each organ, a
40×40 pixel square was placed in the center of the organ and
the mean signal intensity in the region was recorded. This
was done for both left and right ovaries and oviducts.
Multiphoton	Imaging

MPM imaging was performed with a single-beam multiphoton
microscope (TrimScope, LaVision BioTec, Bielefeld, GE) using
a  Titanium:Sapphire  laser  light  source  (Chameleon  Ultra2,
Coherent,  UK) that  was coupled to the scanner unit,  with a
pulse  width  of  120  femtoseconds  at  the  sample.  The  laser

intensity  was  adjusted  to  35  mW 	average  power  with  an
electro-optical modulator (EOM 350-80; Conoptics, Danbury,
CT).  A  waterimmersion,  coverslip-corrected,  20X
magni ication,  0.95-NA  objective  (MRD77200  Nikon,  Tokyo
JP) was used for imaging. The excitation wavelength was set
to  780  nm,  and  SHG  and  2PEF  image  data  were  recorded
simultaneously.  A  bandpass  ilter  (FF01-377/50;  Semrock,
Rochester  NY)  and  a  dichroic  mirror  (Di01-R405-25X36;
Chroma, Bellows Falls, VT) were used to collect light for SHG
and a  bandpass  ilter  (HQ450/100M-2p-25;  Chroma) and a
dichroic mirror (505dcxr; Chroma) were used to collect light
for 2PEF. Images were taken at 5  µm 	depth increments from
the surface of the tissue to 50 - 100  µm 	depth. Imaging was
completed  in  less  than  ive  minutes  per  image  stack  Two
image  volumes  were  collected  from  two  locations  on  the
ovary. The irst image value was approximately in the center
of the ovary and the second was between the center of the
ovary  and  the  oviduct.  Two  image  volumes  were  also
collected from two separate  locations  the  oviduct:  the  irst
near the ovary and the second farther away from the ovary.
All images had a 400 µm	× 400 µm	 ield of view and contained
1024 × 1024 pixels with 14-bit gray scale resolution.

Multiphoton	Image	Analysis

Images were examined by eye and excluded from analysis if
they had artifacts (e.g. debris, fur in the image) or had signal
in  less  than  approximately  50%  of  the  image  area.  On  the
basis of visual examination of cellular and collagen features, it
was expected that previously developed analysis algorithms
using computation of spatial frequency content and standard
gray-level  co-occurrence  matrix  (GLCM)  parameters  and
Fourier  transform  parameters  may  be  able  to  quantify  the
tissue variations observed by eye.

Images were quantized to 8-bit before analysis. We applied
two methods of texture analysis to extract features from the
acquired MPM images. The irst is based on constructing and
analyzing the Grey-Level Co-occurrence Matrix (GLCM) [48].
The  GLCM  is  a  spatial  histogram  that  describes  the
distribution of grey-level values in an image. Each entry in the
GLCM, p(i,j|d,θ), corresponds to the probability of a pixel with
a  grey-level  of  (i)  being  a  distance  (d)  pixels  away  from  a
neighboring pixel with a grey-level of (j) in the (θ) direction.
With an image quantized into Ng	grey levels, the GLCM is an Ng

x  Ng 	matrix. For a twodimensional image, four directions for
(θ) are possible: 0 degree, 45 degree, 90 degree, 135 degree.
In this study, we ixed (d) at one pixel (3.9 µm	in object space),
and computed the GLCM for the four possible directions. All
images  were  normalized  and  quantized  to  8-bit  (intensity
ranging  between  0  and  255).  From  the  GLCM,  we  then
computed thirteen texture features introduced by Haralick in
1973 [48], averaged
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over the four directions for θ.
We  computed  a  second  set  of  features  by  analyzing  the

discrete  Fast  Fourier  transform  (FFT)  of  the  image  in  2D,
which  describes  the  distribution  of  spatial  frequencies
present in an image. After applying the FFT, the image was
normalized so that all pixel values summed to one. Then, we
summed the pixel values in a small disk centered at the origin
and recorded the result. The radius of this disk was iteratively
increased  and  the  summed  pixel  value  within  its  area  was
recorded until the disk radius had reached 80% of the image
half-width, beyond which primarily noise remains. This was
effectively the cumulative distribution function (CDF) of the
energy density as a function of radial spatial frequency; taking
the difference between the values of this curve for any two
radial  frequencies gives the proportion of  energy contained
within  a  speci ic  frequency  band.  Images  that  were  highly
homogenous had higher energy density associated with lower
spatial  frequencies.  On  the  other  hand,  images  with  more
inhomogeneity  had  more  energy  density  corresponding  to
higher  spatial  frequency.  We  then  parameterized  the
distribution by itting the CDF curve to the following equation,
which we qualitatively found to it the curve well:

y	= axb	+ c (1)

Where y	is the value of the CDF for a given spatial frequency
x. The frequency distribution was thus described by the three
features: a, b, and c, which were used to differentiate between
the different experimental groups. Combining these with the
thirteen  Haralick  features  gave  a  set  of  sixteen  texture
features total. The analyses were completed in Python using a
computer with an Intel Core I-4710HQ CPU (2.50 GHz) and 16
GB DDR3L memory.

Statistical	Analysis

In this study, two types of statistical analyses were used to
determine whether differences in imaging features could be
observed between experimental groups. First, feature values
between  individual  mouse  groups  were  compared  using  a
Student’s  t-test.  Equal  variance  was  not  assumed.  For  each
experimental  variable  (age,  treatment,  genotype),  four
pairwise  comparisons  can  be  assessed,  totaling  twelve
comparisons. Table 2 summarizes the different comparisons
that are investigated for each variable.

To adjust  the analysis  for  the multiple comparisons,  the
Benjamini-Hochberg technique is applied [49].  For  a  given

false discovery rate (FDR),  the Benjamini-Hochberg critical
value is calculated for each comparison and compared to the
p-value to determine which comparisons are signi icant [50].
All twelve comparisons shown in Table 2 were considered to
be  part  of  a  single  family.  Differences  were  considered
statistically signi icant for an FDR of 0.1. For those features
within this threshold, the signi icance is denoted on igures
using the standard notation of p <	0.05 (denoted *), p <
0.01 (denoted **), p <	0.001 (denoted ***).

TABLE	2.	Statistical	signi icance	is	assessed	for	four	comparisons	
for	each	experimental	variable.	Classi ication	models	are	built	
for	each	of	four	comparisons	within	a	variable.	(4	-	four	weeks	
age,	8	eight	weeks	age,	W	-	wild	type,	T	-	TAg+,	S	-	treated	with	
vehicle	sesame	oil,	V	-	treated	with	VCD).

Age Treatment Genotype

Comparison
s

4WS - 8WS
4WV - 8WV

4WS - 4WV
4TS - 4TV

4WS - 4TS
4WV - 4TV

4TS - 8TS 8WS - 8WV 8WS - 8TS

4TV - 8TV 8TS - 8TV 8WV - 8TV

Next,  a  classi ication model  is  built  to  classify  mice into
separate groups using linear discriminant analysis. The same
twelve comparisons shown in  Table 2 are  considered.  For
each,  a  separate  classi ication  model  is  built  as  described
below. Ultimately, the classi ication performance is averaged
for each variable to assess the overall ability of the imaging
features to discriminate tissue for a given variable. Separate
classi ications are attempted using features produced from
individual imaging modalities, as well as one attempt where
all features are combined into a single set.

Feature	Selection	and	Classi ication

Classi ications were irst  attempted using ive feature sets,
each derived from a separate modality: two for SHG of the
ovaries  and  oviducts,  two  for  2PEF  of  the  ovaries  and
oviducts, and one for WFI both of the ovaries and oviducts.
The features from both organs are combined in WFI since
only two features are available. In addition, a classi ication
was attempted using a feature set containing all features

TABLE	1.	Number	of	mice	imaged	and	analyzed	for	multiphoton	and	wide ield	imaging	of	 luorescent	dyes.	The	same	mice	are	
imaged	for	both	MPM	and	WFI,	though	some	exhibiting	image	artifacts	were	excluded	from	analysis	(hence	different	totals).	(4	-	
four	weeks	age,	8	-	eight	weeks	age,	W	-	wild	type,	T	-	TAg+,	S	-	treated	with	vehicle	sesame	oil,	V	-	treated	with	VCD).

4WS 4TS 4WV 4TV 8WS 8TS 8WV 8TV

MPM Ovary 14 12 13 13 13 13 11 8

MPM Oviduct 14 12 13 13 13 13 11 8

MMPSense Ovary 8 8 5 7 12 9 5 5

MMPSense Oviduct 7 8 5 7 11 9 5 5

FolateRSense Ovary 5 5 5 5 6 8 5 5

FolateRSense Oviduct 5 5 5 5 6 8 5 5

Integrisense Ovary 5 6 5 5 5 5 5 5

Integrisense Oviduct 4 6 5 2 5 5 5 3
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Fig. 1. Example images taken using MMPSense dye for wild type (a)
and TAg+ (b) female mice at eight weeks dosed with sesame oil.

combined.
For each classi ication model using features from SHG or

2PEF,  sixteen  features  are  available  to  use  in  the
classi ication  model,  as  described above in  Section 1.  Two
features are available for the WFI classi ication: mean signal
for the ovaries, and mean signal for the oviducts. In addition,
a  classi ication  model  was built  using  a  selection  from  all
available features: the sixteen features from each of the four
MPM modalities are combined with two features from WFI.
In this case, the total number of features is 64.

For each feature set, the classi ication proceeded by irst
removing redundant by calculating the correlation matrix for
the feature set.  For each pair  of  features that  were highly
correlated (correlation >	0.85) [51, 52], one feature from the
set was removed (the feature which yielded a lower average
p-value using the statistical test described above).

We exhaustively tested the classi ication performance of
feature  subsets  consisting  of  six  or  fewer  features,  as  the
literature  suggests  that  high  performance  can  typically  be
achieved with two to ive features [51, 53, 54]. To evaluate
how well  a set of features could separate different classes,
we used the trace of the ratio of the between-class scatter
(SB)  and  within-class  scatter  (Sw),  which  has  successfully
been applied in similar scenarios.

To classify  the data,  we used linear discriminant analysis
[55],  which  has  been  applied  frequently  in  the  scope  of
medical image classi ication[56, 57, 11]. For our classi ication,
we  reduced  the  dimension  to  the  number  of  linear
discriminants that  account  for  99% of  the variance  in  each
case,  before  generating  the  optimal  decision  boundary.  To
validate  the  model,  we  used  leave-one-out  cross-validation.
The  accuracy  for  classifying  based  on  age,  genotype  and
treatment was calculated for all four possible comparisons for
each variable (Table 2), and averaged to yield the inal result.
Additional  details  regarding  our  classi ication  process  have
been previously described [11, 52].

Results	Wide ield	Fluorescence	Imaging

Example images for WFI are shown in Fig. 1 for WT (a) and
TAg+  (b)  mice  using  MMPSense.  It  is  visually  apparent  in
these images that the luorescence magnitude for TAg+ mouse
ovaries and oviducts is signi icantly higher than WT. Results
for  quantifying  the  WFI  signal  in  the  ovaries  and  oviducts,
along  with  analysis  of  differences  between  genotype  are
summarized in Fig. 2 for MMPSense (a) FolateRSense (c), and
Integrisense  (c).  The  results  show  that  all  three  dyes
signi icantly change in  signal  magnitude for  eight  week old
mice  dosed  with  sesame  oil.  In  addition,  MMPSense  is
signi icantly  elevated  for  four-week  VCDdosed  mice,  and
Integrisense is elevated for eight-week VCDdosed mice. These
results  were  observed  for  both  ovaries  and  oviducts.  A
comprehensive comparison between individual experimental
groups is summarized in Appendix 1.

Multiphoton	Imaging

Fig. 3 shows composite MPM images for an ovary deep within
the organ (a), and at a more super icial depth in the organ (b),
as well as MPM images of an oviduct (c: deep, d: super icial).
At  different  depths,  the  images  show  signi icantly  different
features,  such  as  the  organization  of  the  collagen  matrix
(represented by SHG imaging in green in Fig.  3),  as well  as
local  metabolic  activity  and  lipofuscin  concentration
(represented by 2PEF imaging in red).

Fig.  4  shows individual  MPM images  for  a  wild type and
TAg+ mouse at eight weeks, dosed with sesame oil. Visually,
the SHG images seem to exhibit a more disordered collagen
structure in the TAg+ mice, which would be quanti ied with
texture analysis. Furthermore, the 2PEF images,  particularly
those of the ovaries,  seem to show local metabolic changes.
The brighter signal could suggest enhanced metabolic activity,
or may indicate increase accumulation of lipofuscin, which has
been observed to increase both due to age and the presence of
disease [8].

The  texture  analysis  results  showed  that  many  texture
features  were  signi icant  for  comparisons  between  each
variable. Table 3 summarizes the number of features for each
modality that were signi icant for at least one comparison for
each variable (see Table 2).  Each MPM modality yielded an
appreciable number of features that were signi icant for
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*), p <	0.01 (denoted **), p <	0.001 (denoted ***).

at  least  one  comparison  of  each  variable.  Comparisons  of
tissue  changes  due  to  age  yielded  the  highest  number  of
signi icant features overall. SHG imaging of the oviducts was
most  sensitive  to  tissue  changes  caused by VCD treatment,
with 10 features showing signi icance.  2PEF imaging of  the
oviducts also showed many features that were signi icant to
the variable of VCD treatment. SHG imaging of the oviducts
and 2PEF imaging of the ovaries yielded many features that
showed signi icant differences between genotype groups. This
may suggest that early tissue changes occur in the oviducts,
primarily structurally,  whereas early metabolic changes are
observed  in  the  ovaries,  but  the  tissue  microstructure  is
affected  to  a  smaller  degree.  Appendix  II  includes  a

Fig. 2. Signal intensity for wide ield luorescence imaging using MMPSense (a), FolateRSense (b), and Integrisense (c). (4 - four weeks age, 8 -
eight weeks age, W - wild type, T - TAg+, S - treated with vehicle sesame oil, V - treated with VCD). Statistical signi icance is only denoted for
comparisons between genotype groups. Differences were considered statistically signi icant for p <	0.05 (denoted
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comprehensive list of feature values and standard deviations
for each modality, categorized by mouse group.

Fig.  5  shows  an  example  texture  feature’s  ability  to
differentiate between genotype for SHG and 2PEF imaging of
the ovaries and oviducts. There is a wide variety of features
that  show high statistical  power,  depending on which two
experimental groups are of interest. In Fig. 5, statistical sig-

Fig.  3.  Composite  MPM  images  (green  –  SHG,  red  –  2PEF)  for
different  depths  for  an  eight-week  wild  type  mouse.  The  ovaries
deep (a), and super icial (b). The oviducts deep (c), and super icial
(d).

TABLE	3.	Number	of	texture	features	for	each	MPM
modality	that	are	statistically	signi icant	for	at	least	one	
comparison	for	each	variable.	The	comparisons	are	listed	in	
Table	2.

Age Treatment Genotype

SHG Ovaries 6 4 4

2PEF Ovaries 7 3 6

SHG Oviducts 11 10 10

2PEF Oviducts 4 6 5
ni icance is only shown for genotype comparisons, as those
are most clinically relevant.

Classi ication

Classi ication models were built for each comparison shown
in Table 2, using features from SHG and 2PEF imaging of the
ovaries and oviducts, as well as WFI imaging of both organs.
Additionally,  a  classi ication  model  was  built  with  all
features combined into a single set. The classi ication results
are summarized in Table 4 below, averaging across the four
comparisons  for  each  variable.  Parenthesis  in  Table  4
represent the number of  features used to build the model
achieving the stated accuracy. We see that in no case is six
features needed; four and ive features is the most common.
For  the  classi ication  using  all  features,  we  see  that  four
features yields the highest accuracy.

When combining all features into a single set, the highest
classi ication  accuracy is  achieved for  classifying  based  on
age  and  genotype,  though  we  see  that  slightly  higher
accuracy can be achieved for treatment classi ication using
either 2PEF ovary or SHG oviduct features. This may be due
to

Fig. 4.  Sample SHG (top row) and 2PEF (bottom row) images for a
wild type and TAg+ female mouse at eight weeks, both dosed with
sesame oil.

the metric used for feature selection not directly translating to
classi ication  accuracy.  Unsurprisingly,  features  from  SHG
ovary  imaging  yielded  the  poorest  results,  which  can  be
expected,  given  the  poor  ability  for  discrimination  using
individual  features.  The  classi ication  performance  did  not
vary  signi icantly  between  individual  comparisons  for
genotype  or  age;  though,  it  was  observed  that  classifying
fourweek treatment groups (4WS-4WV) and (4TS-4TV) mice
performed  substantially  worse  than  the  eight-week
comparisons (by approximately 30%).

Fig. 6 illustrates an example of using the set of features for
2PEF of the ovaries to classify mice based on genotype (four
week mice dosed with sesame oil) using linear discriminant
analysis.  Fig. 6a shows the results of projecting the samples
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onto  the  irst  two  linear  discriminants.  Fig.  6b  shows  the
corresponding ROC curve for this classi ication using all four
linear  discriminants.  In this  case,  the  result  is  shown using
two discriminants for visualization purposes, when all

0.05 (denoted *), p <	0.01 (denoted **), p <	0.001 (denoted ***).

TABLE	4.	Classi ication	results	between	experimental	groups	
when	using	linear	discriminant	analysis.	The	number	of	
features	used	to	build	the	model	for	each	case	are	shown	in	
parenthesis	next	to	the	accuracy.	Four	comparisons	exist	for	
each	variable.	The	results	shown	here	are	averaged	over	all	
four.

Age Treatment Genotype

SHG Ovaries 0.711 (5) 0.614 (5) 0.572 (5)

2PEF Ovaries 0.718 (5) 0.728 (5) 0.503 (4)

SHG Oviducts 0.747 (5) 0.716 (5) 0.725 (4)

2PEF Oviducts 0.733 (5) 0.698 (5) 0.561 (4)

WFI 0.572 (2) 0.589 (2) 0.581 (2)

All	Features 0.755	(4) 0.695	(4) 0.868	
(4)

classi ication models performed best with at least four (with
the exception of WFI, where only two are available).

Appendix II contains a table showing the features that are
selected  to  build  the  classi ication  model  when  using  the
feature  set  including  all  modalities.  There  are  twelve
comparisons  total  (four  for  each  age,  genotype,  and
treatment). Highest accuracy was achieved when using four

features for each variable.  This results in 48 total features
being  selected over the  twelve  possible  comparisons.  The
majority of features used in the classi ication models were
texture features of 2PEF imaging. Features from the oviducts

and  ovaries  seem  to  be  equally  represented.  There  are
several  comparisons that  use SHG features  of  the oviduct,
but ultimately no classi ication model used SHG features of
the  ovary,  and  WFI  intensity  of  the  ovaries  was  only
represented in two classi ication models.

Discussion	Wide ield	Fluorescence	Imaging

The  results  show  that  VCD  dosing  does  not  have  a
pronounced effect on MMPSense and FolateRSense signal at
four  weeks  of  age,  but  at  eight  weeks  of  age  VCD  dosing
signi icantly  reduced  the  amount  of  MMPSense  and
FolateRSense signal in both genotypes and organs. Similarly,
VCD dosing changed the Integrisense signal in both organs
and genotypes at four and eight weeks. This may suggest that
integrins  are  more  rapidly  and  strongly  affected  by  the
menopausal tissue changes induced by VCD dosing.

In all three dyes, the genotypic changes in the luorescence
signal is most sensitive for eight-week old mice, particularly

Fig. 5. One example texture feature chosen for each: (a) SHG ovaries, (b) SHG oviducts, (c) 2PEF ovaries, (d) 2PEF oviduct. (4 four weeks age,
8 - eight weeks age, W - wild type, T - TAg+, S - treated with vehicle sesame oil, V - treated with VCD). Statistical signi icance is only denoted
for comparisons between genotype groups. Differences were considered statistically signi icant for p <
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Fig. 6. Example of the classi ication model between four-week wild
type and four-week TAg+ female mice, both dosed with sesame oil
(a), and the corresponding ROC curve for the decision boundary (b)
to differentiate mice into different genotypes.

those dosed with sesame oil,  for all three dyes. VCD-dosed
mice show changes in MMPSense signal at four weeks, and
Integrisense  signal  at  eight  weeks.  This  may  suggest  that
MMPs or FR-α	may have more utility as a biomarker for pre-
menopausal women, whereas changes in integrins could be
observed both pre- and post-menopause.  Interestingly,  the
Integrisense signal decreases for TAg+ mice at eight weeks
with sesame oil, whereas it is elevated for VCD mice, further
suggesting  that  VCD  dosing  has  a  strong in luence  on  the
integrin concentration.

Multiphoton	Imaging

General  trends  in  the  results  indicate  that  the  SHG  signal
tends to be altered primarily with age, and less so genotype
or  treatment,  whereas  the  2PEF  signal  changes  roughly
equally  with all  variables.  In  the oviducts,  there are many
changes  in  both  SHG  and  2PEF  signal  observed  for  all
variables.  Of  the  different  genotype  comparisons,  that
between eight-week old mice  dosed with VCD yielded the
most texture features that were statistically signi icant. This
group  in  particular  may  be  most  representative  of  post-
menopausal older women,  where risk of ovarian cancer is
elevated.

Contrast  generation  for  SHG  signal  is  well-known to  be
dominated  by  collagen  [58,  59],  directly  tying  the  image
texture to the tissue microstructure. In previous studies, we
con irmed  the  presence  of  lipofuscin  in  mouse  ovaries

producing 2PEF signal [8]. In particular, local deposition of
lipofuscin  increased  with  age,  which  is  expected,  as
lipofuscin  is  a  known  marker  of  senescence  and  lipid
oxidization  [60].  Lipofuscin  has  also  been  observed  in
primates and human reproductive physiology, suggesting a
similar biochemical composition [61, 62]. The luorescence
excitation of lipofuscin falls between 340 - 395 nm	and peaks
in  emission  between  430  -  460  nm 	[63],  which  would  be
excited by twophoton events with the 780  nm 	laser in this
study,  and collected with out ilter set.  A number of other
endogenous  luorophores,  including  FAD,  NADH,  collagen,
and elastin, can experience two-photon excitation using the
laser  wavelength  of  780  nm 	[63].  FAD  does  not  have
appreciable luorescence within the bandwidth of our ilter
set. However, NADH, a cofactor used in metabolic processes
in the mitochondria,  has  an emission peak between 440 -
460  nm,  which  is  within  our  ilter  range.  Therefore,  we
expect to see 2PEF signal originating from the NADH in the
cell  cytoplasm.  Collagen  and  elastin  are  both  found  in
connective  tissue  and  have  broad  excitation  and  emission
spectra; hence, some signal is expected from these sources.
Given the relatively low abundance of elastin, collagen will
be the predominant source of luorescence from connective
tissue  [64,  65].  Based  on  the  relative  abundances  of  each
luorophore, as well as the excitation and emission spectra,

the majority of our 2PEF signal is expected to originate from
NADH  and  lipofuscin,  in  addition  to  a  component  from
collagen.  Considering  the  physiological  role  of  these
luorophores, the signal in 2PEF images can be attributed to

each of  these  by observing the texture  and  pattern  of  the
signal. Hence, this suggests that the signal collected by this
modality  describes  local  cellular  and  lipid  metabolism,  as
well as levels of age-related degeneration.

These results are generally consistent with observations in
our previous  in	vivo 	study, where ovaries and oviducts were
surgically  externalized  for  imaging  at  four  weeks,  the  mice
were survived, and a second surgery externalized the ovaries
and oviducts for imaging at eight weeks. In both studies, many
texture  features  for  SHG  and  2PEF  showed  signi icance
between  age  groups.  Both  studies  found  that  treatment
changes could be observed in  SHG and 2PEF,  though fewer
features were signi icant in the past study compared to this
one. Additionally, the in	vivo	study showed that 2PEF imaging
of the ovaries was signi icant to changes in genotype, which is
supported here. In this study we also see signi icant changes
with genotype in  the SHG and 2PEF images  of  the  oviduct.
Overall, this ex	vivo	study has more signi icant features for all
variables  than  for  the  in 	vivo 	study.  One potential  cause  of
discrepancy is that at eight weeks of age, mice imaged in	vivo
will have signi icant scar tissue due to the surgery for imaging
at  four  weeks  of  age,  which  may  mask  feature  changes.
Another  potential  source  of  discrepancy  is  that  the  initial
surgery to apply luorescent dyes was more invasive in this ex
vivo	study in order to incubate both ovaries, whereas only one
ovary  was  incubated  for  the  in 	 vivo 	study.  However,  no
scarring was observed and little in lammation can occur in the
short time period over which the study was conducted.

Even so, we see that age tends to have the largest in luence
on the image texture, as we see that many different features
are signi icant. This dependence on age however, is consistent
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with tumor phenotype, both in terms of organ and age. In this
model, there are neoplastic changes in the oviduct at four and
eight weeks [43]. At four weeks some TAg+ tumor cells are
observed in the ovary, but the tissue is predominantly normal.
At  eight  weeks,  the  extent  of  TAg+  cell  has  increased  to  a
signi icant degree. Histology on this mouse model previously
reported  showed  that  up  to  50%  of  the  ovary  could  be
invaded by TAg+ cells by eight weeks of age [43].

Classi ication

The positive results suggest that using multiple modalities can
provide  complementary information,  allowing for  improved
performance  in  tissue  classi ication.  In  particular,  the
genotype  classi ication  accuracy  improved  tremendously
using the multimodal feature set.

Interestingly, the speci ic 2PEF texture features for both the
oviduct and the ovary are similar. The top four features are
Difference Variance,  and Angular Second Moment (ASM),  or
Energy,  for  2PEF  images  of  the  ovaries  and  oviducts.  The
presence  of  the  same  texture  feature  occurring  for  both
organs is somewhat surprising,  as it  could be expected that
these contain redundant information. However, this is not the
case,  as  the  irst  step in  the  feature  selection is  to  remove
correlated  features.  In  general,  ASM  is  a  measure  of
homogeneity. These results suggest that the homogeneity for
the  2PEF  signal  in  both  the  ovaries  and  oviducts  changes
signi icantly for all three variables. This may indicate that the
underlying  tissue  metabolism and  lipofuscin  concentrations
are affected under different conditions,  with some variables
lending  themselves  to  higher  homogeneity.  Difference
Variance  is  a  measure  of  dispersion  of  the  signal  level
differences relative to the mean. High values for this feature
indicate that adjacent pixels have high probability of having
substantially  different  values.  Seeing  this  feature  occur  in
many classi ication models could suggest that the microscopic
luctuations in the 2PEF signal are generated by the different

experimental  variables.  Considering  that  these  features  are
useful for classifying samples for all three variables indicates
that  they contain an abundance of  information about tissue
changes with regards to age, treatment and genotype.

While  these  results  are  promising,  next  steps  include
implementing  a  more  complex  classi ication  scheme,  for
example using machine learning.  Furthermore,  we used the
TAg genotype as a proxy for  disease,  since all  TAg+ female
mice  developed  some  disease  by  eight  weeks  Further
experimentation may be able to determine if  trends can be
established  between  imaging  features  and  the  severity  and
extent of disease.

Conclusion

In this manuscript, we assessed the potential of multiphoton
microscopy and luorescence imaging for evaluating ovarian
tissue health. We imaged  ex 	vivo 	a transgenic mouse model
that developed ovarian cancer using WFI with targeted dyes
that  bound  to  the  folate  receptor,  integrins,  and  matrix
metalloproteinases, as well as MPM (SHG and 2PEF imaging).
In both the signal magnitude collected by WFI, and in texture
analysis features of MPM images based on the grey-level co-
occurrence  matrix,  as  well  as  features  describing  the

frequency  content  of  these  images,  we  showed  that  it  is
possible  to differentiate between experimental  groups (age,
genotype  and  reproductive  status)  with  high  statistical
signi icance (p<0.01). We then used a combination of features
from all  modalities  to  build a  classi ication  algorithm using
linear  discriminant  analysis,  showing  that  we  can  classify
different ages, VCD treatments, and genotypes with accuracies
of 75.53%, 69.53%, and 86.76%, respectively. Using features
from  multiple  modalities  yields  the  highest  performance,
indicating that multimodal imaging is a promising approach
for detecting early ovarian tissue changes.
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Appendix	I:	Wide ield	Fluorescence	Imaging	Results
TABLE	5.	Wide ield	 luorescence	signal	intensity	(± the	associated	standard	deviation)	for	different	 luorescent	dyes	applied	to	the	
ovaries	and	oviducts	all	eight	mouse	groups.

4WS 4TS 4WV 4TV 8WS 8TS 8WV 8TV

MMPSense Ovary
3976 ±
1443

6372 ±
4836

4045 ±
4836

8847 ±
4617

7303 ±
2751

11041 ±
2353

5469 ±
1525

6122 ±
3167

MMPSense Oviduct
4391 ±
1720

8206 ±
5521

3849 ±
1423

8084 ±
4728

8773 ±
2351

12879 ±
1530

7029 ±
2436

7680 ±
2378

FolateRSense Ovary
4872 ±
122

4427±
2421

2726 ±
1331

4473 ±
2425

4127 ±
1783

7243 ±
2701

3835 ±
1551

4471 ±
692

FolateRSense Oviduct
7374 ±
2476

7051 ±
3713

3318 ±
656

4908 ±
2784

6445 ±
3192

9890 ±
2988

6069 ±
3111

6457 ±
1764

Integrisense Ovary
4134 ±
1604

4825 ±
2294

7297 ±
2621

9194 ±
4339

9315 ±
2890

4921 ±
2360

3302 ±
1715

10612 
±
3648

Integrisense Oviduct
5250 ±
1782

6424 ±
2650

8390 ±
2739

10101 ±
4775

9821 ±
1872

6162 ±
2273

3446 ±
1555

13896 
±
1688
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TABLE	6.	Names	of	texture	features	computed	from	the	GLCM.	Additional	information	can	be	found	in	the	literature.

Feature Number Feature Name

F1 Angular Second Moment (Energy)

F2 Contrast

F3 Correlation

F4 Sum of Squares: Variance

F5 Inverse Difference Moment

F6 Sum Average

F7 Sum Variance

F8 Sum Entropy

F9 Entropy

F10 Difference Variance

F11 Difference Entropy

F12 Information Metric of Correlation 1

F13 Information Metric of Correlation 2
Appendix	II:	Multiphoton	Imaging	Texture	Analysis	Results



TABLE	7.	Individual	multiphoton	texture	feature	values	and	associated	standard	deviation	for	four-week	mice.

Modality & Feature 4WS 4TS 4WV 4TV

SHG Ovary F1 4.11E-2 ± 5.86E-2 8.94E-2 ± 1.18E-1 7.25E-2 ± 5.70E-2 4.64E-2 ± 5.24E-2

SHG Ovary F2 1.42E+2 ± 1.02E+2 9.94E+1 ± 8.23E+1 7.54E+1 ± 7.36E+1 6.92E+1 ± 5.71E+1

SHG Ovary F3 8.27E-1 ± 6.35E-2 7.94E-1 ± 7.82E-2 8.00E-1 ± 6.78E-2 8.26E-1 ± 5.39E-2

SHG Ovary F4 5.73E+2 ± 4.05E+2 3.68E+2 ± 3.33E+2 2.92E+2 ± 3.58E+2 2.41E+2 ± 2.10E+2

SHG Ovary F5 3.26E-1 ± 1.40E-1 3.94E-1 ± 1.71E-1 4.08E-1 ± 1.29E-1 3.66E-1 ± 1.21E-1

SHG Ovary F6 6.28E+1 ± 2.07E+1 5.01E+1 ± 1.79E+1 5.44E+1 ± 1.44E+1 5.60E+1 ± 1.47E+1

SHG Ovary F7 2.15E+3 ± 1.53E+3 1.37E+3 ± 1.26E+3 1.09E+3 ± 1.36E+3 8.95E+2 ± 7.83E+2

SHG Ovary F8 5.99 ± 1.17 5.26 ± 1.39 5.23 ± 1.08 5.54 ± 1.06

SHG Ovary F9 9.08 ± 2.07 7.90 ± 2.40 7.77 ± 1.85 8.27 ± 1.77

SHG Ovary F10 1.11E-3 ± 1.35E-3 1.15E-3 ± 1.16E-3 9.96E-4 ± 6.44E-4 9.56E-4 ± 1.19E-3

SHG Ovary F11 3.78 ± 8.75E-1 3.42 ± 9.08E-1 3.39 ± 6.99E-1 3.49 ± 6.67E-1

SHG Ovary F12 -2.06E-1 ± 3.67E-2 -1.89E-1 ± 5.25E-2 -2.08E-1 ± 4.59E-2 -2.09E-1 ± 4.16E-2

SHG Ovary F13 9.04E-1 ± 7.16E-2 8.42E-1 ± 1.14E-1 8.81E-1 ± 6.93E-2 8.98E-1 ± 7.38E-2

2PEF Ovary F1 2.89E-2 ± 1.84E-2 2.96E-2 ± 2.26E-2 2.32E-1 ± 2.56E-1 8.48E-2 ± 9.28E-2

2PEF Ovary F2 3.06E+1 ± 4.12E+1 3.09E+1 ± 3.69E+1 5.36 ± 4.35 8.84 ± 6.59

2PEF Ovary F3 7.47E-1 ± 1.24E-1 7.09E-1 ± 1.16E-1 6.12E-1 ± 1.40E-1 7.14E-1 ± 1.11E-1

2PEF Ovary F4 9.14E+1 ± 8.71E+1 1.27E+2 ± 1.74E+2 1.25E+1 ± 1.33E+1 3.81E+1 ± 3.78E+1

2PEF Ovary F5 4.06E-1 ± 1.42E-1 3.97E-1 ± 1.25E-1 6.18E-1 ± 2.07E-1 5.16E-1 ± 1.34E-1

2PEF Ovary F6 4.28E+1 ± 8.12 4.25E+1 ± 7.68 3.60E+1 ± 4.25 3.80E+1 ± 4.02

2PEF Ovary F7 3.35E+2 ± 3.17E+2 4.77E+2 ± 6.74E+2 4.46E+1 ± 4.90E+1 1.44E+2 ± 1.46E+2

2PEF Ovary F8 4.47 ± 9.53E-1 4.51 ± 8.86E-1 2.98 ± 1.41 3.73 ± 9.93E-1

2PEF Ovary F9 6.81 ± 1.83 6.87 ± 1.62 4.32 ± 2.26 5.46 ± 1.60

2PEF Ovary F10 1.50E-3 ± 9.45E-4 1.24E-3 ± 7.40E-4 5.55E-3 ± 6.21E-3 2.04E-3 ± 1.36E-3

2PEF Ovary F11 2.81 ± 8.46E-1 2.84 ± 7.31E-1 1.83 ± 7.98E-1 2.23 ± 4.64E-1

2PEF Ovary F12 -1.19E-1 ± 4.87E-2 -1.15E-1 ± 5.48E-2 -1.11E-1 ± 3.54E-2 -1.26E-1 ± 5.43E-2

2PEF Ovary F13 7.17E-1 ± 9.96E-2 6.92E-1 ± 1.26E-1 5.73E-1 ± 1.87E-1 6.68E-1 ± 1.55E-1

SHG Oviduct F1 1.17E-1 ± 5.97E-2 1.15E-1 ± 1.20E-1 2.26E-1 ± 1.21E-1 8.67E-2 ± 4.04E-2

SHG Oviduct F2 1.06E+2 ± 8.79E+1 1.28E+2 ± 1.19E+2 7.06E+1 ± 5.21E+1 9.68E+1 ± 7.76E+1

SHG Oviduct F3 9.10E-1 ± 1.66E-2 8.55E-1 ± 6.95E-2 8.55E-1 ± 8.58E-2 8.80E-1 ± 2.33E-2

SHG Oviduct F4 6.61E+2 ± 5.25E+2 6.46E+2 ± 7.81E+2 4.24E+2 ± 4.07E+2 4.47E+2 ± 3.58E+2

SHG Oviduct F5 4.94E-1 ± 1.05E-1 4.54E-1 ± 1.61E-1 5.78E-1 ± 1.21E-1 4.59E-1 ± 8.42E-2

SHG Oviduct F6 5.25E+1 ± 1.60E+1 5.46E+1 ± 2.32E+1 5.16E+1 ± 9.37 5.85E+1 ± 1.32E+1

SHG Oviduct F7 2.54E+3 ± 2.01E+3 2.45E+3 ± 3.01E+3 1.63E+3 ± 1.58E+3 1.69E+3 ± 1.35E+3

SHG Oviduct F8 5.14 ± 8.65E-1 5.25 ± 1.41 4.35 ± 1.07 5.41 ± 7.07E-1

SHG Oviduct F9 7.35 ± 1.49 7.69 ± 2.33 6.19 ± 1.68 7.82 ± 1.23

SHG Oviduct F10 9.29E-4 ± 3.76E-4 1.16E-3 ± 1.03E-3 2.18E-3 ± 2.91E-3 7.81E-4 ± 2.88E-4

SHG Oviduct F11 3.27 ± 6.44E-1 3.42 ± 9.27E-1 2.91 ± 6.67E-1 3.46 ± 5.69E-1

SHG Oviduct F12 -3.07E-1 ± 3.88E-2 -2.61E-1 ± 5.17E-2 -2.94E-1 ± 3.64E-2 -2.91E-1 ± 3.42E-2

SHG Oviduct F13 9.56E-1 ± 1.50E-2 9.15E-1 ± 7.50E-2 9.04E-1 ± 9.96E-2 9.60E-1 ± 1.35E-2

2PEF Oviduct F1 5.13E-2 ± 2.90E-2 5.01E-2 ± 3.04E-2 3.16E-1 ± 2.98E-1 1.05E-1 ± 1.07E-1

2PEF Oviduct F2 2.32E+1 ± 3.35E+1 1.64E+1 ± 2.71E+1 3.46 ± 2.73 4.98 ± 3.28

2PEF Oviduct F3 7.21E-1 ± 8.41E-2 6.72E-1 ± 1.02E-1 6.93E-1 ± 1.91E-1 6.44E-1 ± 1.65E-1

2PEF Oviduct F4 4.73E+1 ± 5.43E+1 2.75E+1 ± 3.79E+1 9.55 ± 8.82 1.24E+1 ± 1.20E+1

2PEF Oviduct F5 4.74E-1 ± 1.31E-1 4.76E-1 ± 1.06E-1 7.02E-1 ± 1.90E-1 5.74E-1 ± 1.12E-1

2PEF Oviduct F6 3.97E+1 ± 5.98 3.70E+1 ± 4.87 3.41E+1 ± 2.52 3.57E+1 ± 2.33

2PEF Oviduct F7 1.66E+2 ± 1.85E+2 9.36E+1 ± 1.26E+2 3.48E+1 ± 3.35E+1 4.45E+1 ± 4.51E+1

2PEF Oviduct F8 4.20 ± 8.25E-1 4.08 ± 6.84E-1 2.56 ± 1.41 3.52 ± 9.14E-1

2PEF Oviduct F9 6.17 ± 1.55 5.99 ± 1.27 3.55 ± 2.13 4.99 ± 1.39

2PEF Oviduct F10 1.35E-3 ± 7.79E-4 1.35E-3 ± 6.66E-4 4.78E-3 ± 4.53E-3 2.12E-3 ± 1.08E-3

2PEF Oviduct F11 2.62 ± 7.97E-1 2.56 ± 6.37E-1 1.59 ± 7.83E-1 2.08 ± 4.35E-1

2PEF Oviduct F12 -1.55E-1 ± 4.41E-2 -1.37E-1 ± 4.65E-2 -1.55E-1 ± 5.14E-2 -1.58E-1 ± 7.20E-2

2PEF Oviduct F13 7.77E-1 ± 5.59E-2 7.30E-1 ± 9.36E-2 6.04E-1 ± 2.24E-1 7.03E-1 ± 1.96E-1

SHG Ovary α 9.95E-1 ± 7.38E-4 9.95E-1 ± 1.11E-3 9.95E-1 ± 1.04E-3 9.95E-1 ± 2.02E-3

SHG Ovary β 1.89 ± 1.39E-2 1.90 ± 1.86E-2 1.90 ± 2.23E-2 1.89 ± 2.65E-2

SHG Ovary γ -3.22E-4 ± 6.06E-4 4.99E-05 ± 9.63E-4 1.92E-4 ± 1.03E-3 1.39E-4 ± 1.61E-3

2PEF Ovary α 9.91E-1 ± 1.53E-3 9.92E-1 ± 1.35E-3 9.92E-1 ± 1.04E-3 9.91E-1 ± 1.33E-3

2PEF Ovary β 1.93 ± 3.12E-2 1.92 ± 3.25E-2 1.94 ± 2.93E-2 1.91 ± 3.03E-2

2PEF Ovary γ 3.36E-3 ± 6.74E-4 2.91E-3 ± 9.29E-4 3.12E-3 ± 1.10E-3 2.80E-3 ± 1.15E-3
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SHG Oviduct α 9.96E-1 ± 8.00E-4 9.96E-1 ± 1.49E-3 9.95E-1 ± 1.26E-3 9.96E-1 ± 1.58E-3

SHG Oviduct β 1.88 ± 1.52E-2 1.88 ± 1.94E-2 1.89 ± 1.80E-2 1.87 ± 2.22E-2

SHG Oviduct γ -6.55E-4 ± 6.02E-4 -7.33E-4 ± 9.88E-4 -2.06E-4 ± 8.46E-4 -8.68E-4 ± 1.23E-3

2PEF Oviduct α 9.92E-1 ± 1.69E-3 9.92E-1 ± 1.45E-3 9.92E-1 ± 1.37E-3 9.92E-1 ± 1.66E-3

2PEF Oviduct β 1.93 ± 2.44E-2 1.95 ± 1.83E-2 1.91 ± 6.70E-2 1.93 ± 2.08E-2

2PEF Oviduct γ 2.84E-3 ± 9.77E-4 2.93E-3 ± 8.22E-4 2.37E-3 ± 1.82E-3 2.59E-3 ± 1.06E-3
18

TABLE	8.	Individual	multiphoton	texture	feature	values	and	associated	standard	deviation	for	eight-week	mice.

Modality & Feature 8WS 8TS 8WV 8TV

SHG Ovary F1 1.31E-1 ± 1.44E-1 1.06E-1 ± 1.31E-1 9.18E-2 ± 4.76E-2 5.69E-2 ± 5.41E-2

SHG Ovary F2 3.90E+1 ± 4.58E+1 3.02E+1 ± 2.89E+1 4.48E+1 ± 4.09E+1 1.10E+2 ± 1.11E+2

SHG Ovary F3 8.07E-1 ± 1.26E-1 8.29E-1 ± 7.73E-2 8.43E-1 ± 1.20E-1 8.65E-1 ± 5.47E-2

SHG Ovary F4 2.69E+2 ± 4.21E+2 2.37E+2 ± 3.70E+2 2.37E+2 ± 2.30E+2 5.31E+2 ± 5.94E+2

SHG Ovary F5 5.25E-1 ± 1.77E-1 5.14E-1 ± 1.56E-1 5.07E-1 ± 1.04E-1 3.78E-1 ± 1.39E-1

SHG Ovary F6 4.10E+1 ± 1.48E+1 4.34E+1 ± 1.39E+1 4.35E+1 ± 9.12 5.82E+1 ± 2.54E+1

SHG Ovary F7 1.04E+3 ± 1.64E+3 9.19E+2 ± 1.46E+3 9.05E+2 ± 8.84E+2 2.02E+3 ± 2.27E+3

SHG Ovary F8 4.51 ± 1.40 4.63 ± 1.30 4.79 ± 8.50E-1 5.64 ± 1.33

SHG Ovary F9 6.41 ± 2.28 6.54 ± 2.06 6.78 ± 1.39 8.38 ± 2.26

SHG Ovary F10 4.43E-3 ± 5.87E-3 3.59E-3 ± 4.35E-3 2.04E-3 ± 1.68E-3 7.35E-4 ± 4.45E-4

SHG Ovary F11 2.63 ± 9.40E-1 2.63 ± 7.99E-1 2.81 ± 6.16E-1 3.54 ± 8.61E-1

SHG Ovary F12 -2.53E-1 ± 4.39E-2 -2.57E-1 ± 4.69E-2 -2.73E-1 ± 9.25E-2 -2.22E-1 ± 3.83E-2

SHG Ovary F13 8.55E-1 ± 1.25E-1 8.71E-1 ± 1.05E-1 8.92E-1 ± 1.07E-1 9.01E-1 ± 9.16E-2

2PEF Ovary F1 1.20E-1 ± 1.12E-1 1.82E-1 ± 1.78E-1 9.79E-2 ± 1.07E-1 1.44E-2 ± 9.87E-3

2PEF Ovary F2 9.53 ± 1.19E+1 1.01E+1 ± 1.34E+1 1.57E+1 ± 1.76E+1 2.84E+1 ± 1.26E+1

2PEF Ovary F3 7.32E-1 ± 1.16E-1 7.89E-1 ± 1.29E-1 7.53E-1 ± 1.10E-1 7.90E-1 ± 5.44E-2

2PEF Ovary F4 7.23E+1 ± 1.13E+2 9.79E+1 ± 1.51E+2 8.52E+1 ± 1.70E+2 1.58E+2 ± 1.50E+2

2PEF Ovary F5 5.88E-1 ± 1.20E-1 6.42E-1 ± 1.78E-1 5.26E-1 ± 2.13E-1 3.30E-1 ± 8.48E-2

2PEF Ovary F6 3.50E+1 ± 8.26 3.47E+1 ± 8.55 3.92E+1 ± 7.67 4.62E+1 ± 6.29

2PEF Ovary F7 2.80E+2 ± 4.39E+2 3.82E+2 ± 5.91E+2 3.25E+2 ± 6.64E+2 6.03E+2 ± 5.89E+2

2PEF Ovary F8 3.54 ± 8.41E-1 3.33 ± 1.24 3.97 ± 1.19 5.01 ± 5.51E-1

2PEF Ovary F9 4.97 ± 1.32 4.57 ± 1.99 5.72 ± 2.17 7.72 ± 9.93E-1

2PEF Ovary F10 3.16E-3 ± 2.20E-3 3.07E-3 ± 2.25E-3 3.49E-3 ± 4.59E-3 7.20E-4 ± 3.51E-4

2PEF Ovary F11 2.01 ± 5.32E-1 1.84 ± 7.87E-1 2.32 ± 9.60E-1 3.13 ± 4.19E-1

2PEF Ovary F12 -1.75E-1 ± 7.74E-2 -2.11E-1 ± 9.03E-2 -1.83E-1 ± 7.46E-2 -1.32E-1 ± 5.40E-2

2PEF Ovary F13 7.06E-1 ± 1.42E-1 7.33E-1 ± 1.57E-1 7.67E-1 ± 8.65E-2 7.72E-1 ± 1.01E-1

SHG Oviduct F1 1.70E-1 ± 1.14E-1 1.10E-1 ± 9.74E-2 1.13E-1 ± 5.65E-2 6.46E-2 ± 2.64E-2

SHG Oviduct F2 2.27E+1 ± 2.71E+1 3.67E+1 ± 3.09E+1 5.29E+1 ± 5.44E+1 1.46E+2 ± 7.99E+1

SHG Oviduct F3 8.81E-1 ± 3.75E-2 8.87E-1 ± 4.01E-2 9.19E-1 ± 2.06E-2 9.09E-1 ± 1.71E-2

SHG Oviduct F4 1.45E+2 ± 1.92E+2 2.26E+2 ± 2.26E+2 4.15E+2 ± 5.44E+2 9.44E+2 ± 6.35E+2

SHG Oviduct F5 6.19E-1 ± 1.40E-1 5.41E-1 ± 1.37E-1 5.51E-1 ± 8.98E-2 4.09E-1 ± 7.96E-2

SHG Oviduct F6 3.40E+1 ± 8.14 4.28E+1 ± 1.19E+1 4.32E+1 ± 1.24E+1 6.72E+1 ± 1.92E+1

SHG Oviduct F7 5.59E+2 ± 7.44E+2 8.68E+2 ± 8.78E+2 1.61E+3 ± 2.12E+3 3.63E+3 ± 2.47E+3

SHG Oviduct F8 3.93 ± 1.03 4.73 ± 1.12 4.67 ± 6.55E-1 5.87 ± 7.43E-1

SHG Oviduct F9 5.37 ± 1.68 6.57 ± 1.81 6.45 ± 1.10 8.56 ± 1.28

SHG Oviduct F10 3.36E-3 ± 2.67E-3 1.79E-3 ± 1.84E-3 1.42E-3 ± 9.40E-4 6.74E-4 ± 2.88E-4

SHG Oviduct F11 2.30 ± 7.39E-1 2.72 ± 7.66E-1 2.75 ± 5.30E-1 3.72 ± 5.73E-1

SHG Oviduct F12 -3.19E-1 ± 6.14E-2 -3.21E-1 ± 5.08E-2 -3.34E-1 ± 5.26E-2 -2.89E-1 ± 3.37E-2

SHG Oviduct F13 9.13E-1 ± 3.85E-2 9.38E-1 ± 4.85E-2 9.51E-1 ± 2.18E-2 9.63E-1 ± 1.41E-2

2PEF Oviduct F1 1.48E-1 ± 1.03E-1 2.07E-1 ± 1.71E-1 1.29E-1 ± 1.03E-1 2.76E-2 ± 1.56E-2

2PEF Oviduct F2 5.81 ± 4.42 4.62 ± 5.45 9.23 ± 8.28 1.70E+1 ± 8.38

2PEF Oviduct F3 7.85E-1 ± 1.30E-1 7.16E-1 ± 1.54E-1 7.66E-1 ± 9.42E-2 7.46E-1 ± 6.52E-2

2PEF Oviduct F4 4.94E+1 ± 6.93E+1 2.71E+1 ± 5.74E+1 2.62E+1 ± 2.11E+1 4.73E+1 ± 3.26E+1

2PEF Oviduct F5 6.45E-1 ± 9.50E-2 6.90E-1 ± 1.55E-1 5.96E-1 ± 1.74E-1 4.05E-1 ± 8.19E-2

2PEF Oviduct F6 3.35E+1 ± 9.19 3.23E+1 ± 8.13 3.55E+1 ± 4.04 4.07E+1 ± 3.15

2PEF Oviduct F7 1.92E+2 ± 2.74E+2 1.04E+2 ± 2.27E+2 9.56E+1 ± 7.66E+1 1.72E+2 ± 1.23E+2

2PEF Oviduct F8 3.31 ± 8.74E-1 3.04 ± 1.13 3.54 ± 9.99E-1 4.66 ± 4.27E-1

2PEF Oviduct F9 4.48 ± 1.23 4.06 ± 1.74 4.94 ± 1.76 6.96 ± 8.16E-1

2PEF Oviduct F10 2.79E-3 ± 2.01E-3 4.60E-3 ± 5.35E-3 2.41E-3 ± 2.57E-3 7.57E-4 ± 2.58E-4

2PEF Oviduct F11 1.88 ± 4.53E-1 1.65 ± 7.08E-1 2.10 ± 8.14E-1 2.90 ± 3.91E-1

2PEF Oviduct F12 -2.05E-1 ± 1.06E-1 -2.21E-1 ± 1.04E-1 -1.99E-1 ± 6.58E-2 -1.56E-1 ± 4.63E-2



2PEF Oviduct F13 7.41E-1 ± 1.47E-1 7.27E-1 ± 1.57E-1 7.77E-1 ± 8.86E-2 8.13E-1 ± 5.79E-2

SHG Ovary α 9.94E-1 ± 1.23E-3 9.94E-1 ± 1.47E-3 9.94E-1 ± 2.31E-3 9.94E-1 ± 1.19E-3

SHG Ovary β 1.90 ± 1.70E-2 1.89 ± 2.52E-2 1.89 ± 3.02E-2 1.89 ± 2.61E-2

SHG Ovary γ 1.09E-3 ± 7.62E-4 1.00E-3 ± 1.31E-3 5.51E-4 ± 1.61E-3 3.93E-4 ± 1.25E-3

2PEF Ovary α 9.91E-1 ± 1.57E-3 9.90E-1 ± 1.96E-3 9.91E-1 ± 1.14E-3 9.91E-1 ± 4.83E-4

2PEF Ovary β 1.92 ± 2.56E-2 1.90 ± 4.12E-2 1.94 ± 3.21E-2 1.93 ± 1.70E-2

2PEF Ovary γ 3.14E-3 ± 1.23E-3 3.27E-3 ± 1.51E-3 3.98E-3 ± 9.28E-4 3.58E-3 ± 4.12E-4

SHG Oviduct α 9.93E-1 ± 9.75E-4 9.94E-1 ± 2.51E-3 9.94E-1 ± 2.11E-3 9.95E-1 ± 1.69E-3

SHG Oviduct β 1.89 ± 1.73E-2 1.87 ± 2.22E-2 1.87 ± 2.90E-2 1.87 ± 1.90E-2

SHG Oviduct γ 1.35E-3 ± 8.41E-4 1.86E-4 ± 1.83E-3 1.95E-4 ± 1.47E-3 -4.55E-4 ± 1.14E-3

2PEF Oviduct α 9.90E-1 ± 2.25E-3 9.91E-1 ± 2.22E-3 9.91E-1 ± 1.37E-3 9.91E-1 ± 1.16E-3

2PEF Oviduct β 1.91 ± 4.32E-2 1.92 ± 4.20E-2 1.92 ± 5.44E-2 1.94 ± 1.41E-2

2PEF Oviduct γ 3.95E-3 ± 1.87E-3 3.52E-3 ± 1.47E-3 3.30E-3 ± 1.16E-3 3.53E-3 ± 5.17E-4
TABLE	9.	Optimal	features	selected	for	classi ication	in	order	of	frequency	used.	Four	classi ications	were	tested	for	each	variable	
(12	comparison),	where	four	features	are	used	in	each	case.	This	produces	forty-eight	total	features	selected	when	using	the	
feature	set	composed	of	all	available	features.

Number of classi ications using each feature

Modality Feature Age Genotype Treatment

2PEF Oviduct Difference Variance 3 3 3

2PEF Ovary ASM / Energy 2 3 2

2PEF Oviduct ASM / Energy 3 2 1

2PEF Ovary Difference Variance 1 1 2

2PEF Oviduct Sum Average 1 1 1

2PEF Oviduct IDM 1 1 1

SHG Oviduct Difference Variance 1 1 1

2PEF Ovary Correlation 1 1 1

2PEF Ovary Sum Average 1 0 1

SHG Oviduct Alpha 1 0 1

WFI Ovary Intensity 1 1 0

2PEF Ovary IDM 1 0 1

SHG Oviduct ASM 0 1 0

2PEF Ovary α 0 1 0


