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ABSTRACT

Binaries—two bodies of comparable mass that orbit a common center—influence

the evolution of gas and planets in their vicinity and are ubiquitous in star and

planet formation. And yet, because of the complexity binaries add to already com-

plex problems, they have often been excluded from consideration in theoretical and

observational work. In this dissertation, I present an exploration of the formation

and early evolution of binaries and their environments in four contexts: debris in the

Pluto-Charon system, dynamics in the Kuiper Belt of our Solar System, planetary

systems around binary stars, and variability in star-forming cores.

First, I explore the fate of debris that could have resulted from the giant impact

origin of the Pluto-Charon dwarf planet binary to look for observational signatures

of its formation that may persist to this day. Using N-body simulations, I esti-

mate the cratering rates on Charon’s surface that would result from collisions of

small debris from the post-formation debris disk, and I also make predictions for

the presence of a Pluto-Charon disk collisional family of debris that were ejected

from the binary that may still be orbiting in the Kuiper Belt today. Second, I

develop a machine learning algorithm to quickly and accurately classify the dynam-

ical population membership of observed Kuiper Belt objects. Current classification

methodologies require substantial human intervention, and with imminent surveys

expected to increase the number of known Kuiper Belt objects by an order of mag-

nitude, automated methods are required. I find good accuracy in my method and

characterize the reasons the algorithm can fail, including object rarity and the in-

herent ambiguity of classification in a time-dependent system. Third, I simulate the

dynamical evolution of the planet populations around both single and binary stars to

understand the influence of a close central binary on planetary system architecture.

I find that a central binary only changes the planet loss mechanism: planets around
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a binary are much more likely to suffer a catastrophic interaction with the binary

and be ejected from the system rather than undergoing a more gentle scattering

that can lead to collisions. Instead, the system architecture is primarily driven by

the most massive planet in the system regardless of the central object. Finally, I

study the time evolution of dense, star-forming cores using magnetohydrodynami-

cal simulations. I create an algorithm to link cores through time, and I find that

the structures we identify can have large variability in extracted quantities (such

as mass) in time despite the distributions of those quantities remaining stable. I

postulate that a large fraction of the variability could come from the structure iden-

tification algorithms, which rely upon relative measures of structure that can change

in time.
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CHAPTER 1

Introduction

Observational capabilities in the astronomical community are advancing rapidly; the

data collected are more detailed and numerous than ever before. Because of these

advances, it is imperative that computational astrophysics strives to match (or even

anticipate) observations so that we can better understand the universe around us.

To motivate the content of this dissertation, I will discuss four of the recent key

observatories that inspire the questions explored herein.

The Kepler satellite transformed exoplanet science with its first science release

in 2010. Kepler discovered over 2,700 transiting exoplanets in its ∼10 year mission

lifetime and helped increase the number of known planets by nearly an order of

magnitude.1 It made possible the discovery of small, rocky planets; it is now under-

stood that small planets are the most common type of planet, and the pre-Kepler

observations of exclusively massive planets represent only a small fraction of the

exoplanet demographics (e.g., Tabachnik and Tremaine, 2002; Batalha et al., 2013).

Observations also revealed that planetary architectures are far more varied and dy-

namic than we might expect in our own Solar System: as an example, systems

of tightly-packed inner planets (STIPS) like Kepler-11 host multiple rocky planets

at distances interior to the orbit of Mercury (Lissauer et al., 2011a). Previously-

unseen planet types like Kepler-16, the first “Tatooine” planet—a planet orbiting a

binary star—were also found (Doyle et al., 2011). Kepler has completely shifted the

paradigm of exoplanets and has left a huge and vibrant field in its wake.

The Atacama Large Millimeter/submillimeter Array (ALMA) is another tele-

scope that has revolutionized many fields of astronomy beginning with first light

in 2011. It provides an unparalleled sensitivity and resolution for many astronom-

ical objects, especially in star and planet formation. ALMA observed the HL Tau
1Data from exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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circumstellar disk at a resolution of only 3.5AU, revealing a multitude of gaps

and rings that could be indications of planet formation (ALMA Partnership et al.,

2015). Observations by ALMA have since shown that structure in protoplanetary

disks (asymmetries, gaps, rings) is nearly ubiquitous (e.g., Andrews et al., 2018;

Long et al., 2019). It has also provided important information on the chemical and

kinematic structure of protostellar cores and disks that are helping to unveil the

micro- and macro-physics that govern star and planet formation.

In 2015, the New Horizons spacecraft visited Pluto and made history as the

first flyby of a dwarf planet. The encounter revealed that Pluto and Charon were

far more complicated than anticipated. Pluto possesses a diverse geology, including

craters, mountains, glaciers, and valley networks, and was even observed to have a

complex layered atmosphere (Stern et al., 2018). Charon revealed a tantalizing lack

of small craters, which places tension on models of the Kuiper Belt (Singer et al.,

2016). New Horizons then flew by the cold classical contact binary Arrokoth in 2019;

this encounter, too, places strong constraints on the understanding of planetesimal

formation in our Solar System. New Horizons, with its high resolution view of minor

bodies, forced a reevaluation of our understanding of the outer Solar System.

Finally, the Vera Rubin Observatory and its Legacy Survey of Space and Time

(LSST) is expected to begin science operations in 2022. This survey will cover the

sky every ∼4 nights for at least 10 years and produce > 500 PB of images and cat-

alogs (Ivezić et al., 2019). Among other goals, LSST is expected to greatly increase

the census of small objects in the Solar System by about an order of magnitude: it

is projected to find one hundred thousands near Earth objects, 5 million asteroids,

and more than ten thousand Kuiper Belt objects. Bodies like asteroids and Kuiper

Belt objects provide insight into the formation and early evolution of our own plan-

etary system. They are a fossil record of chemical and dynamical processes in the

Solar System, and therefore, a thorough accounting of minor bodies will help inform

detailed planet formation models.

Each of these observatories challenged (or will challenge) the state of the art in

astronomical data analysis and interpretation. In the rest of this chapter, I give an
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overview of physical, observational, and theoretical results that further motivate my

research into the Kuiper Belt, planetary dynamics, and star formation.

1.1 Dynamics

In this section, I summarize some of the important, recurring physical concepts

that provide intuition and physical insight for the work presented later in this dis-

sertation. To be explicit in the definition of binarity used throughout this work,

I consider two objects orbiting a common center of gravity a “binary” if the mass

ratio m2/m1 is > 10%. I will use the term “primary” to refer to the more massive

component of a binary and “secondary” to refer to the less massive component, and

I use “host” for the body which a planet or disk orbits and “companion” for the

remaining component of the binary.

1.1.1 Dynamical Stability in N-body Systems

Dynamical stability, or the ability of systems to resist large orbital variations, is

a critical factor when considering the long-term evolution of planetary systems,

including our own Solar System. Mutual perturbations between bodies must be

small enough that the orbits are not catastrophically changed. Instability can be

defined in several ways. Most obviously, a system is unstable if planets are ejected

from the system (if they become gravitationally unbound), or if planets collide

with each other or a star. Many numerical works have chosen the somewhat more

restrictive definition of instability as the “Hill stability” criterion in which planets

cannot have close encounters (orbit crossing). Gladman (1993) explored Hill stability

for a system of two low mass planets and found that systems are stable as long as

they are separated by at least ∆ > 2.4((m1 + m2)/M)1/3, where ∆ is the scaled

spacing between the two bodies, m1 and m2 are the masses of the planets, and M

is the mass of the central star. For more complicated systems, it becomes useful to



17

define dimensionless planet spacing β in units of mutual Hill radii (RH,m) such that

RH,m =

(
m1 +m2

3M

) 1
3 a1 + a2

2
(1.1)

and

β =
a2 − a1

RH,m

(1.2)

Here, a1 and a2 are the semi-major axes of the planets. The dimensionless spacing

correlates well with the time to instability: systems that are more widely spaced in

β will have longer lifetimes. Gyr stability in systems with at least three planets has

been found to require initial β > 10 (Chambers et al., 1996; Smith and Lissauer,

2009; Pu and Wu, 2015).

One can also flip the idea of stability to constrain physical properties of systems.

For instance, mass is a difficult quantity to measure in systems with limited dy-

namical information like the Kepler exoplanetary systems or for the Pluto-Charon

circumbinary moons. By requiring orbital stability for Solar System timescales,

Youdin et al. (2012) was able to constrain the upper limit of masses for Nix and

Hydra years before the bodies were observed in detail by the New Horizons space-

craft. Fang and Margot (2012b) used dynamical spacing arguments to predict the

likelihood of unseen planets in Kepler two planet systems.

1.1.2 Binary-influenced Dynamics

Orbits are only integrable in generic systems containing at most two bodies. Thus,

a problem involving a binary and other bodies has no formally predictable solu-

tion for all time. All bodies in the system are free to exchange angular momentum

and energy, thereby changing their orbital elements such as eccentricity or inclina-

tion. However, there are approximations that can provide significant insight into

the expected dynamics of bodies in the presence of a binary. Specifically, the circu-

lar restricted three-body problem (CR3BP) makes the approximation of a massless

particle (frequently called a test particle) orbiting under the influence of two massive

bodies (a binary, for this purpose) that orbit each other with no eccentricity. In this
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system, there is only one conserved quantity: the Jacobi constant CJ , which is also

called the integral of relative motion.

CJ = 2U − v2 (1.3)

Here, U is a scalar pseudo-potential that contains both the centrifugal potential

(accounting for the Coriolis force) and the gravitational potential; v2 relates to the

kinetic energy. CJ in the synodic (rotating) frame can be expressed as

CJ = n2(x2 + y2) + 2

(
µ1

r1

+
µ2

r2

)
− (ẋ2 + ẏ2 + ż2) (1.4)

or in the sidereal (inertial) frame as

CJ = 2n(χφ̇− φχ̇) + 2

(
µ1

r1

+
µ2

r2

)
− (χ̇2 + φ̇2 + ω̇2) (1.5)

In equations 1.4 and 1.5, n is the mean motion of the binary (n = 2π/P with P

being the binary period), µ is the mass ratio of the stars such that µ = 1 = µ1+µ2 =

G(m1 +m2), and r is the position of the planet measured relative to each star. The

coordinates and velocities (x, y, z) and (ẋ, ẏ, ż) are measured in the rotating frame,

and (χ, φ, ω) and (χ̇, φ̇, ω̇) are measured in the inertial frame. In both of these

equations, the first term represents the rotational component, the second shows the

gravitational component, and the last shows the kinetic component of the relative

energy integral.

It is important to note that CJ in the CR3BP does not say anything about

predictable future trajectories (a body is not forced to remain in a static orbit);

rather, it constrains the region of space in which a test particle is allowed to orbit.

By removing the kinetic component of the particle’s orbit, a “zero-velocity” surface

shows these allowed regions. I present two examples of these zero-velocity surfaces

in Figure 1.1. In the equal mass case on the left, a particle with CJ = 4 can

only orbit around either individual star or outside the binary altogether. However,

a particle with CJ = 3 is essentially unconstrained except for two small islands

and can therefore change its trajectory to orbit either star, the binary, or some

combination thereof.

There are three consequences I would like to highlight.
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1. A body exterior to the binary can be forbidden from ever interacting directly

with the components of the binary as long as there is no outside influence.

Similarly, a body orbiting one of the stars can be forbidden from changing its

host (e.g., orbiting the other star or the binary center of mass).

2. On the other hand, for a select range of CJ a planet has the ability to move

freely between orbiting the primary and the secondary as is shown by the

contour for 3.55 in the right panel of Figure 1.1. This idea has been explored

in works such as Moeckel and Veras (2012) and Kratter and Perets (2012).

3. The zero-velocity surface “opens” to the exterior of the less massive component

of the binary before it opens to the exterior of the primary. This means that

more material that is initially exterior to the binary will have the opportunity

to interact with the secondary (e.g., collisions) before it reaches the primary

Holman and Wiegert (1999) explored the long-term (104 binary orbits) stability

of planetary orbits in binary systems using a large number of N-body simulations

and derived empirical formulae for the critical radius of stability (ac) for both bod-

ies orbiting one component of the binary and bodies orbiting the binary center of

mass.2 In this work, ac will be referred to as the binary instability limit. Because of

their simple dependence upon binary mass ratio, eccentricity, and semi-major axis,

these relations have been widely used in the literature despite updated and/or more

complete published relations (e.g., Quarles et al., 2020). For S-type orbits, Holman

and Wiegert (1999) report a critical semi-major axis for stability in their equation

1 of
ac
ab

= 0.464− 0.380µ− 0.631e+ 0.586µe+ 0.150e2 − 0.198µe2 (1.6)

where ab is the binary semi-major axis, µ = mcompanion/(mhost + mcompanion) is the

binary mass ratio, and e is the binary eccentricity. For an equal mass (µ = 0.5),
2In this and other works, orbits in binaries are often classified as S or satellite type for bodies

orbiting one component of the binary (circum-primary or circum-secondary; the Sun-Earth-Moon

system), or P or planetary type for bodies orbiting the binary barycenter (circumbinary; the moons

of the Pluto-Charon binary).
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Figure 1.1: Zero velocity surfaces and empirical binary stability limits ac at the
same scale for two binary mass ratios: an equal mass binary (left) and a binary
with a mass ratio similar to Pluto-Charon (right). The gray gradient and the
contours show the Jacobi constant, CJ that is the only conserved quantity in the
circular restricted three body problem; particles orbiting the star(s) cannot cross
the contour indicated by its unique value of CJ . The pink (purple) circles delineate
the region interior (exterior) to which planets have been found to have stable orbits
by Holman and Wiegert (1999).
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circular (e = 0) binary, this equation reduces to ac = 0.27ab. For P-type orbits, they

find in equation 3 a critical semi-major axis of

ac
ab

= 1.60 + 4.12µ+ 5.10e− 4.27µe− 5.09µ2 − 2.22e2 + 4.61µ2e2 (1.7)

An equal mass, circular binary then has ac = 2.4ab.3 The locations of these in-

stability boundaries is shown by the pink (inner ac) and purple (outer ac) lines

in Figure 1.1. The instability boundaries move slightly closer to (for circumstellar

orbits) or further from (for circumbinary orbits) the reported location with longer

integrations due to longer-term dynamical perturbations. This time dependence of

the instability boundary has been attributed to mean motion resonance overlap with

the binary (Mudryk and Wu, 2006; Sutherland and Kratter, 2019). The location of

the instability boundary can also change if other orbital characteristics are included

such as the inclination between the binary orbital planet and the particle’s orbit or

the initial mean longitude of the binary relative to the planet (Quarles et al., 2020).

1.1.3 Resonant Dynamics

Resonance—the commensurability of frequencies such as spin or orbit—is found

in many astronomical systems. It is prevalent in the Solar System, including

the well known examples of the Galilean moons of Jupiter (e.g., Sinclair, 1975),

Kirkwood gaps in the asteroid belt (e.g., Ferraz-Mello, 1994), resonant populations

in the Kuiper Belt (e.g., Chiang and Jordan, 2002; Chiang et al., 2003), and the

near-resonant orbits of the Pluto-Charon circumbinary moons (e.g., Showalter and

Hamilton, 2015). Resonance has also been seen in exoplanetary systems, such as

the well-publicized seven planet resonant chain in the TRAPPIST-1 system (Luger

et al., 2017). In this section, I briefly explain the basic intuition behind simple mean

motion resonances that are important in later chapters of this dissertation.

Mean motion resonance can be most simply described as a period ratio between
3In equation 5 of Holman andWiegert (1999), the authors report the somewhat different relation

ac = 2.3ab.



22

two bodies that can be described as a ratio of integers, or

P1

P2

=
p

p+ q
(1.8)

P is the orbital period of a body, and p and q are integers with p > q > 0 for the

exterior resonances considered in this dissertation.4 The variable q is sometimes

called the “order” of the resonance. For instance, the 3:2 resonance in the Kuiper

Belt is a first-order resonance that captures the Pluto-Charon binary into a stable

configuration with Neptune despite the fact that the binary’s orbit crosses that of

Neptune. Neptune orbits three times for every time Pluto-Charon orbits twice, and

the resonant perturbations in the system protect Pluto-Charon from collisions with

Neptune.

A body is found to be in resonance if it librates around some resonant angle φ.

This means that the time evolution of φ is bounded to some oscillation amplitude

∆φ instead of circulating (going through the full range 0−2π in time). The resonant

angle is defined as

φ = pλ1 − qλ2 − r1$1 − r2$2 − s1Ω1 − s2Ω2 (1.9)

In this equation, λ is the mean longitude (a mean orbital position), $ is the longitude

of perihelion (the angle at which an object comes closest to the central star), and

Ω is the longitude of the ascending node (the angle at which an object crosses from

below the reference plane to above), and r1, r2, s1, and s2 are integers that satisfy

the constraint p− q − r1 − r2 − s1 − s2 = 0.5

Libration often manifests itself in the orbital elements as periodic variations in

orbital semi-major axis and eccentricity. Different resonances, therefore, will have an

associated resonance width in semi-major axis that depends on the planet-star mass

ratio and the eccentricity. These resonant widths can overlap, thereby pumping the

eccentricity of the object in resonance and causing chaos; this is a major driver of
4Equation 1.8 is often written in terms of the mean motion n = 2π/P .
5Formally, λ = Ω +ω+M and $ = Ω +ω, where ω is the argument of perihelion and M is the

mean anomaly.
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dynamical instability (e.g., Malhotra, 1996; Morrison and Kratter, 2016; Sutherland

and Kratter, 2019).

1.2 The Role of Binaries at Different Scales

Binarity is a critical, but frequently overlooked, underpinning of the star and planet

formation process. Binaries are ubiquitous at scales from planetesimals (∼10 km)

to stellar systems (∼104 AU). I discuss the importance of binaries in three regimes

(the Kuiper Belt, planetary systems, and star formation) below.

1.2.1 The Kuiper Belt and Planetestimal Binaries

The Kuiper Belt is the collection of small bodies (Kuiper Belt objects, KBOs) that

lie beyond Neptune in our Solar System and encodes a record of early chemical

and dynamical evolution in the planet formation process.6 There are over 2,000

observed KBOs ranging in size from ∼1− 104 km (Bannister et al., 2018; Arimatsu

et al., 2019). Broadly, the Kuiper Belt hosts four dynamical populations (with

distinctions differing between different works, e.g. Gladman et al., 2008; Malhotra,

2019). KBOs are either classified as resonant (swept into mean motion resonances

with Neptune during migration), classical (relatively dynamically untouched), scat-

tering or scattered (having past, present, or future substantial changes in orbital

properties), and scattered disk/detached (objects beyond the classical Kuiper Belt

with semi-major axes a & 50AU that have minimal dynamical connection with

Neptune). I show a selection of close (a < 70AU) Kuiper Belt objects colored by

their Gladman et al. (2008) population in Figure 1.2. The resonant structure of the

Kuiper Belt and relative population of different resonances is directly linked to the

dynamical evolution and early migration of the giant planets (e.g., Nesvorný, 2015;

Chen et al., 2019b; Lawler et al., 2019).

The classical Kuiper Belt additionally preserves a wealth of information about
6More generally, objects with semi-major axes larger than that of Neptune are called trans-

Neptunian objects, or TNOs.
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planetesimal formation. Colors and composition of KBOs constrain early gaseous

disk composition and sedimentation mechanisms (e.g., Stern et al., 2019; Young

et al., 2020). The size distribution and binary fraction of KBOs also provide strong

limits on the formation mechanisms of planetesimals. Fraser et al. (2017) postulates

that a majority of classical KBOs were created in binaries, and Grundy et al. (2019)

show that the resolved Kuiper Belt binaries prefer binary orbits that are prograde

with respect to the orbit around the Sun. There is also now evidence of binary for-

mation channels all the way down to small scales with the New Horizons visit to the

cold classical contact binary Arrokoth (2014 MU69; Porter et al. 2019). By leverag-

ing these observational realities of KBOs, one can then limit formation mechanisms

to those that can reproduce all characteristics of the size distribution, compositional

variations, and binary properties. For instance, Nesvorný et al. (2019a) show how

the streaming instability planetesimal formation channel can produce a majority of

planetesimals that are binary and prograde with a size distribution consistent with

the observed Kuiper Belt.

Pluto-Charon

Arguably the most famous of the Kuiper Belt binaries, Pluto-Charon is a binary

dwarf planet and a member of the 3:2 resonant “Plutino” population of Kuiper Belt

objects.7 Pluto is the largest observed KBO8 with a radius of 1, 200 km, and it has

a mass about one one-thousandth that of Earth; its binary companion Charon has

a radius of 600 km and is 12% of Pluto’s mass (Stern et al., 2018). The binary

barycenter lies one Pluto-radius outside Pluto’s surface, and the binary orbits on a

nearly circular orbit with a period of about 6.4 days. Charon is thought to have

formed via giant impact in the early Solar System and tidally migrated to its current

location (Canup, 2005).
7Although it disappoints many, including the author’s father, Pluto-Charon is far cooler as the

preeminent binary dwarf planet than as the runt of the Solar System planets.
8Pluto is not, however, the most massive KBO: Eris is ∼25% more massive than Pluto (Brown

and Schaller, 2007).
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Figure 1.2: Eccentricity vs. semi-major axis for the sample of Kuiper Belt objects
used in Smullen and Volk (2020) and 3. The colors indicate the dynamical popula-
tion: dark blue are resonant KBOs, purple are classical KBOs, orange are detached
KBOs, and yellow are scattering KBOs. Vertical dashed lines show the location of
well-populated resonances. The green circles show the Kuiper Belt binaries from
Table 19 of Grundy et al. (2019). The well-know outer Solar System objects Nep-
tune, Pluto-Charon, and Arrokoth are shown in images at their present locations.

Four, icy circumbinary moons–Styx, Nix, Kerberos, and Hydra–orbit the Pluto-

Charon binary in circular (e < 0.006), coplanar (i < 1◦) orbits. These moons are

near, but not exactly in, mean motion resonances with the binary in 1:3:4:5:6 period

ratios (Showalter and Hamilton, 2015). However, the formation of the circumbinary

moons still proves elusive: the composition and delicate orbital configuration suggest

that the objects were not captured from the Kuiper Belt, but the Charon-forming

impact and subsequent tidal migration makes the bodies difficult to form in situ

(Ward and Canup, 2006; Lithwick and Wu, 2008b; Canup, 2011; Kenyon and Brom-

ley, 2014; Cheng et al., 2014b; Walsh and Levison, 2015; Woo and Lee, 2018).
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1.2.2 Stellar Binaries

Nearly half of all Sun-like stars reside in binaries (Raghavan et al., 2010; Moe et al.,

2019). Binarity is found to increase with stellar mass from ∼25% in M stars to

> 80% in O stars, with O stars even having a slight preference for more than

one companion star (Duchêne and Kraus, 2013). Thus, the universality of stellar

binarity has far-reaching impacts on astrophysical topics, including star and planet

formation (discussed below), supernova rates and types (Kochanek, 2009; Sana et al.,

2012), gravitational wave progenitors (Abbott et al., 2017), and cosmic reionization

(Madau and Fragos, 2017; Götberg et al., 2020).

Planets in Binaries

As shown in Section 1.1.2, the presence of a binary companion places strict limita-

tions on the dynamically stable orbits of planets. Despite this, planets have been

observed in a wide variety of stellar multiples in both circumstellar (S-type) and cir-

cumbinary (P-type) orbits as shown in Figure 1.3. The host binaries from Schwarz

et al. (2016) span the full range of mass ratios (q ∼ 0.1 − 1), have primary masses

from 0.1− 1.5 M�, and have binary semi-major axes from 0.03− 0.3AU for the cir-

cumbinary planets and 5AU to more than 103 AU for the circum-primary/circum-

secondary planets.

Circumbinary planets have primarily been discovered via transits by the Ke-

pler satellite. Because of irregular transit signals due to the motion of both planet

and binary, these planets have most frequently been discovered without automated

methods. There are roughly one dozen known circumbinary planets (Schwarz et al.,

2016), including the three planet circumbinary system Kepler-47 (Orosz et al., 2012,

2019). Circumbinary planet formation likely follows slightly different channels than

“traditional” planet formation. The inner gaseous/planetesimal disk around a bi-

nary experiences a forced eccentricity from the binary, leading to higher collisional

velocities between planetesimals that may inhibit planetary growth (Marzari et al.,

2013; Silsbee and Rafikov, 2015). Planets may form more efficiently in the outer
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Figure 1.3: A census of known planets in binaries with semi-major axis ab < 100AU
using the updated catalog from Schwarz et al. (2016). The horizontal axis shows
the planet-binary semi-major axis ratio, and the vertical axis shows the binary star
mass ratio. Green points show S-type (circum-primary or circum-secondary) planets,
while purple points show P-type (circumbinary) planets. The pink and violet lines
show the Holman and Wiegert (1999) empirical stability limits for a zero eccentricity
binary. Planets with circular binaries cannot have stable orbits in the grey shaded
region.

disk and migrate inward towards the circumbinary instability limit while gaining

moderate eccentricity (Pierens and Nelson, 2013) or outwards, thereby becoming

more difficult to observe (Pierens and Nelson, 2008). Additionally, circumbinary

planets may experience an increase in inclination (misalignment) due to the central

binary or an outer tertiary companion (Fabrycky and Tremaine, 2007; Muñoz and

Lai, 2015; Hamers et al., 2016). Coupled with the fact that the asymmetric poten-

tial of the central binary will always induce nodal precession in circumbinary planet

orbits, transiting circumbinary planets are rare and transient: circumbinary planets

only transit ∼10 − 50% of their orbits (Martin, 2017). For example, Kepler-453

b has precessed out of transit Welsh et al. 2015); however, because of precession,

most circumbinary planets will transit given sufficient observational time (Martin



28

and Triaud, 2015).

Binaries also play an important role in the formation and architecture of circum-

primary and circum-secondary systems. For instance, Moe and Kratter (2019) show

that binaries up to ∼100AU suppress circumstellar planet formation (with a roughly

linearly increasing suppression as binary orbits shrink). In some ways, this is not

surprising as an outer companion will truncate or regulate the amount of material

available to the planet-forming disk. Despite the proposed starving of circumstellar

disks, planets are still able to form: Kepler-444A hosts five rocky planets (total

mass ≈ 1.5M⊕) within 0.08AU despite the presence of an outer M-dwarf binary

with perihelion of 5AU Dupuy et al. (2016). Outer companions can also influence

the dynamical evolution of formed planetary systems. The eccentric Kozai-Lidov

effect, which sees an outer companion exciting eccentricity and inclination variations

in a planet, has been proposed as a mechanism by which wide giant planets can

experience tidal dissipation and become hot Jupiters (e.g., Naoz et al., 2012).9

Protostellar Binaries

Binarity is an important component of the star formation process. It has been shown

that many protostars form in binaries, and some companions are lost by the time

the stars reach the main sequence; Tobin et al. (2016) find a Class 0 multiplicity

fraction of ∼60% and a Class I multiplicity fraction of ∼25%. Additionally, the

protostellar binary separation distribution is found to be bimodal with peaks at 75

and 3000AU (Tobin et al., 2016). This suggests two primary formation mechanisms

for binaries: disk instability (gravitational fragmentation) for the close binaries (e.g.,

Machida et al., 2008; Kratter et al., 2010) and core instability (such as turbulent

fragmentation) for the wide binaries (e.g., Offner et al., 2010).

Binary companions can significantly impact the structure and extent of disks at

all timescales, which then greatly impacts the efficacy of planet formation. Outer

companions can incite warps and misalignments; for instance, they can incite dy-
9Moe and Kratter (2019) suggest that there is no evidence of an excess of observed wide com-

panions to hot Jupiter hosts.
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namical Kozai-Lidov cycles in the circumstellar disk causing the disk to become

inclined or eccentric (Martin et al., 2014). The presence of a binary companion can

hasten the dispersal of circumstellar disks (Kraus et al., 2011). Lee et al. (2019)

show that wide binaries can undergo orbital decay from > 104 AU to < 100AU on

∼Myr timescales due to dynamical friction. Outer companions have also been shown

to induce structure in older circumstellar disks: Wagner et al. (2018) observe that

the 10 Myr-old HD 100453 protoplanetary disk is sculpted by a wide companion at

∼ 100AU that incites spiral arms.

1.3 Overview of This Work

The above sections demonstrate why binarity is such an important consideration at

multiple scales, from the Kuiper Belt, to planetary systems, to star-forming cores.

Therefore, this dissertation utilizes a wide variety of numerical techniques and anal-

yses to explore the formation and early evolution of binaries and their environments

at different scales. I begin with the smallest scales: Chapter 2 presents an investi-

gation of the dynamics of debris around the Pluto-Charon binary that would have

resulted from Charon’s formation. By combining numerical simulations of a debris

disk around the binary with models of the debris disk, I posit expectations for cra-

tering rates on Charon’s surface due to the colliding debris, and I make predictions

for the characteristics of a family of bodies in the Kuiper Belt that were ejected from

the post-formation debris disk. In Chapter 3, I create a machine learning classifier to

classify the observational populations in the Kuiper Belt. This type of automated,

high accuracy scheme is critical for upcoming survey missions that will increase the

number of known Kuiper Belt objects by at least an order of magnitude. Moving

to full planetary systems, Chapter 4 explores the dynamical interactions of planets

around tight binary stars like the observed Kepler circumbinary planets and com-

pares the evolution of those planetary systems to the evolution of planetary systems

around single stars. At the largest scales, Chapter 5 investigates the time evolution

of star-forming cores identified with a hierarchical structure identification algorithm
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to understand the interpretation and evolution of physical quantities observed in

star-forming regions. Finally, Chapter 6 summarizes this work and presents future

continuations of these important research questions.
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CHAPTER 2

The Fate of Debris in the Pluto-Charon System

This chapter has been previously published as Smullen R. A., Kratter K. M., 2017,

MNRAS, 466, 4480 (DOI: 10.1093/mnras/stw3386)

Abstract

The Pluto-Charon system has come into sharper focus following the fly by of New

Horizons. We use N -body simulations to probe the unique dynamical history of this

binary dwarf planet system. We follow the evolution of the debris disk that might

have formed during the Charon-forming giant impact. First, we note that in-situ

formation of the four circumbinary moons is extremely difficult if Charon undergoes

eccentric tidal evolution. We track collisions of disk debris with Charon, estimating

that hundreds to hundreds of thousands of visible craters might arise from 0.3–5 km

radius bodies. New Horizons data suggesting a dearth of these small craters may

place constraints on the disk properties. While tidal heating will erase some of the

cratering history, both tidal and radiogenic heating may also make it possible to

differentiate disk debris craters from Kuiper belt object craters. We also track the

debris ejected from the Pluto-Charon system into the Solar System; while most of

this debris is ultimately lost from the Solar System, a few tens of 10–30 km radius

bodies could survive as a Pluto-Charon collisional family. Most are plutinos in the

3:2 resonance with Neptune, while a small number populate nearby resonances. We

show that migration of the giant planets early in the Solar System’s history would

not destroy this collisional family. Finally, we suggest that identification of such a

family would likely need to be based on composition as they show minimal clustering

in relevant orbital parameters.
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2.1 Introduction

New Horizon’s arrival at Pluto has brought a new spotlight to the Solar System’s

largest Kuiper belt dwarf planet and most well-known binary. Pluto and its largest

moon, Charon, have a mass ratio of about 0.12 (Brozovic et al., 2015). Thus, the

barycenter of the system lies between the two objects, and the regime of binary

dynamics is most applicable. Four circumbinary moons, Styx, Nix, Kerberos, and

Hydra, have also been identified. With the better characterisation of the Pluto-

Charon system stemming from the high-resolution view of New Horizons, we can

gain deeper insight into this system. This work aims to investigate two tracers of

Pluto and Charon’s formation: craters on the surface of Charon and debris that

escaped into the Kuiper belt.

McKinnon (1989), Canup (2005, 2011), and others have proposed and refined a

giant impact origin for the Pluto-Charon binary. Canup (2011) studied a variety of

collisions between Pluto and an impactor. The bodies can be either differentiated or

non-differentiated; different incoming trajectories are simulated to understand the

variations in the resultant system. A giant collision of this type will typically form

a moon, a disk, or both. This study finds that a body one third to half the mass of

the primordial Pluto will form Charon when it collides, although the newly formed

moon tends to form with high eccentricity and a pericenter close to Pluto (within a

few Pluto radii). If the impactor is differentiated, a disk is very likely and will have

mass anywhere from 0.001% of Pluto’s mass to Charon’s mass. A post-collision

disk may extend out to about 30 Pluto radii. After the Charon forming impact,

Charon is thought to migrate to its current position via tidal evolution. This tidal

evolution can either be eccentric (Cheng et al., 2014a) or circular (Dobrovolskis,

1989; Dobrovolskis et al., 1997; Peale, 1999) and should take at most a few million

years. Charon concludes its migration tidally locked to Pluto with a 6.4 day period

(semi-major axis of roughly 17 Pluto radii) and has eccentricity ≤ 5× 10−5.
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2.1.1 Pluto’s Moons

Despite a compelling explanation for the formation of Charon, a theory for the

emplacement of the four small circumbinary moons remains elusive. Many works,

such as Ward and Canup (2006), Lithwick and Wu (2008b,a), Canup (2011), Cheng

et al. (2014b), Kenyon and Bromley (2014), and Walsh and Levison (2015), have

tried to explain the location of the small moons. Dynamical stability studies by

Youdin et al. (2012) predicted low masses and high albedos for the moons, which

were confirmed by Brozovic et al. (2015), and New Horizons (Stern et al., 2015).

They find that the moons have masses of about < 1× 10−6, 3.1× 10−6, 1.1× 10−6,

and 3.3 × 10−6 relative to Pluto for Styx, Nix, Kerberos, and Hydra, respectively.

These limits suggest that the circumbinary moons are icy, consistent with an origin

in the disk from the Charon-forming impact. Nevertheless, many features of these

moons remain difficult to explain when accounting for the tidal history of Charon.

Specifically, the migration of Charon would easily destroy the extreme coplanarity

(< 0.5 ◦), low eccentricity (< 0.006), and the nearness to resonance (nearly 3:1, 4:1,

5:1, and 6:1 with Charon) (Brozovic et al., 2015).

The dynamical properties of the moons listed above are most consistent with

in-situ disk formation, yet the disks in the Canup (2011) simulations simply do not

have enough material at the moons’ current locations to form them. Many proposed

solutions have invoked resonant transport from the inner disk (where bodies form) to

the outer disk, but these methods often pump the eccentricities and/or inclinations

of the small moons well above the observed values. The corotation resonance from

Ward and Canup (2006) would not excite eccentricities, but this method requires

different Charon eccentricities to transport each moon. Thus, Lithwick and Wu

(2008b) and Cheng et al. (2014b) suggest that this mechanism is unlikely. Cheng

et al. (2014b) show a method to capture and transport disk material outward in

a low (albeit non-zero) eccentricity orbit though capture into multiple Lindblad

resonances while Charon is tidally evolving; however, they are unable to migrate

material at the 3:1 and 4:1 commensurability with Charon (the locations of Styx
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and Nix). Pires dos Santos et al. (2012) suggests that the current moons could come

from collisions of other bodies near Pluto in the Kuiper belt, but the collision time-

scales for massive enough objects are too long. Walsh and Levison (2015) suggest

that the moons could form from disruption of an existing satellite in the system.

This would provide a secondary disk, possibly at larger orbital radii, from which the

moons can form, but still struggles to account for the wide range of circumbinary

moon semi-major axes.

2.1.2 The Kuiper Belt and Collisional Families

The history of the Pluto-Charon system is tied to the history of the Kuiper belt

and Kuiper belt objects (KBOs). A plethora of works beginning from Malhotra

(1995b,a) have explored the early history of the Solar System and the sculpting of

the Kuiper belt via giant planet migration. In these scenarios, Neptune and Pluto

begin closer to the Sun than they are today. Neptune then migrates outward to

its current orbit and Pluto is captured into the 3:2 resonance. During this process,

Pluto’s orbit gains both eccentricity and inclination.

It is likely that the Charon-forming collision occurred early in the history of the

Solar System because the density of planetesimals was higher and thus collisional

time-scales shorter. Additionally, works such as Levison et al. (2008) propose that

there may be large numbers of larger objects (Pluto-sized) in the primordial Kuiper

belt, which means that the cross section for giant impacts was larger. Therefore,

Pluto and Charon have likely existed in their current state for most of the Kuiper

belt’s history and should record information about the surrounding population of

KBOs through cratering. Greenstreet et al. (2015) simulates the expected crater

size distribution on the surfaces of Pluto and Charon for both “divot” (discontinuous

double power law, e.g. Shankman et al., 2016) and “knee” (broken power law, e.g.

Bernstein et al., 2004; Fraser et al., 2014) Kuiper belt populations. The true size

distribution is still uncertain due to small samples and the likely presence of multiple

populations.

Another interesting feature of massive KBOs is the presence of collisional fam-
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ilies. Many KBOs, including the Pluto-Charon system, show evidence of giant

impacts that would produce a collisional family. The Haumea collisional family

originally reported by Brown et al. (2007) is the only identified collisional family

in the Kuiper belt. This family consists of roughly a dozen objects with similar

compositions and orbits to the dwarf planet Haumea. In Haumea’s case, the col-

lisional family was easily identified because the members share a striking spectral

feature and because the velocity dispersion of family members is about an order of

magnitude lower than expected (Schlichting and Sari, 2009). The typical collisional

family, however, should have velocity dispersions closer to the escape velocity from

the parent system, which is closer to one km s−1. Marcus et al. (2011) find that col-

lisional families in the Kuiper belt are difficult to distinguish using the same method

of low velocity dispersion used to find the Haumea family, but these families may

be possible to pick out using other methods, such as clustering in inclination. They

also estimate that there should be, at most, a handful of collisional families from

massive collisions and a few tens of families from progenitors of 150 km in size. The

Haumea collisional family is suggested to be old (from less than 1Gyr after Solar

System formation) and therefore may be primordial (Ragozzine and Brown, 2007).

Thus, the majority of collisional families might stem from a time when the Kuiper

belt was more dense, before dynamical stirring by Neptune. Leinhardt et al. (2010)

note that collisional families in the Kuiper belt and the main asteroid belt have

different characteristics due to Kuiper belt giant collisions tending to be slower and

more massive.

In this work, we investigate the evolution of a debris disk resulting from the

Charon-forming collision. We look at collisions onto Charon’s surface that might

leave visible craters. This crater population may contaminate measurements of the

KBO size distribution. We also look at the population of debris ejected into the

Solar System that might manifest as a Pluto collisional family in the Kuiper Belt.

In Section 2.2, we discuss the circumbinary dynamics in the Pluto-Charon system.

Section 2.3 presents our simulation methodology. Section 2.4 presents results for

collisions onto Charon’s surface, while Section 2.5 shows the properties of ejected
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particles.

2.2 Circumbinary Dynamics in the Pluto System

The origin of Pluto’s four circumbinary moons still remains a mystery. The destabi-

lizing influence of the binary almost certainly rules out in-situ formation if Charon

undergoes eccentric tidal evolution. As noted by Kenyon and Bromley (2014),Walsh

and Levison (2015), and Bromley and Kenyon (2015), the Holman and Wiegert

(1999) binary instability boundary provides strict limitations on the stable lo-

cations of particles around the Pluto-Charon binary. The location of this em-

pirical boundary, acrit, is a function of both binary eccentricity and mass ratio

(µ = MC/(MP + MC)), as shown in equation 2.1. The overwhelming majority

of particles that cross inside this boundary will go unstable in less than 104 orbital

periods and either eject from the system or collide with another body.

acrit/aPC =1.60 + 5.10e− 2.22e2 + 4.12µ− 4.27eµ

− 5.09µ2 + 4.61e2µ2
(2.1)

Simulations of Charon’s formation suggest that it may have formed with an

initial eccentricity as high as e = 0.8. Subsequently, Charon must undergo outward

tidal evolution to reach its current semi-major axis and low eccentricity. Tidal

evolution models such as Cheng et al. (2014a) require that Charon remain eccentric

for nearly the entire outward migration. If we apply the binary instability boundary

in equation 2.1 to the Cheng models (both the semi-major axis and eccentricity

evolution), we find that one or more of the circumbinary moons would be unstable

for any tidal evolution model except one with zero eccentricity. This is shown in

Figure 2.1, where we plot the location of the instability boundary against time for

different tidal evolution models. The colored lines show different initial eccentricities

for the constant ∆t model (solid) and constant Q model (dashed) (see Cheng et al.

2014a Sections 2.1 and 2.2 for a description of the ∆t model and constant Q model,

respectively). The semi-major axis evolution of Charon is shown in black, and the

present-day locations of the four moons are shown in red. Debris or moons interior to
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(below) any of these curves cannot survive the tidal evolution of Charon because the

instability time-scale is much shorter than the migration time-scale. For instance,

at the location of Hydra, the period is 38 days; 104 orbital periods is just over 1000

years and is much shorter than the Myr migration time-scale for Charon. Thus in

situ moon formation from the initial debris disk is inconsistent with these eccentric

tidal evolution models. It is possible to form the moons in situ if Charon’s orbit is

initially circular or if the eccentricity is damped early in the tidal evolution history.

Particles in the debris disk will encounter the instability boundary as it sweeps

outward with the migration of Charon. The debris that interacts with the instability

boundary will likely be ejected from the system or collide with Charon. Smullen

et al. (2016) find that circumbinary planets initially exterior to the instability bound-

ary will preferentially be ejected from the system when scattered toward the central

binary by other bodies. Compared to systems with a single central object, colli-

sions are much more rare (by up to an order of magnitude) in a binary system.

Those objects that collide will more often collide with the less massive body as

shown by Sutherland and Fabrycky (2015). This behaviour can be understood from

simple three-body dynamical arguments discussed in Section 5.2 of Smullen et al.

(2016). Thus, as Charon migrates outward, the instability boundary sweeps across

the previously unperturbed disk and causes new waves of particle loss.

2.3 Methods

We investigate the fates of debris in a disk from the formation of Charon. First,

we simulate the interaction of the Pluto-Charon system with a disk of test particles

in isolation and track the final outcomes of particles. In these simulations, we

examine the impact of collisions onto the surface of Charon. We also record all

ejected particles at Pluto’s Hill sphere, and then we inject these ejected particles

into the Solar System and integrate to understand the long-term behaviour of this

population of Pluto ejecta.

We utilise integrators in the Chambers and Migliorini (1997) N -body integra-
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Figure 2.1: The location of the binary instability boundary as a function of time for
different tidal evolution models. The solid lines show the constant ∆t model and
the dashed lines show the constant Q model from Cheng et al. (2014a). The color
denotes initial eccentricity. The black line shows the semi-major axis evolution of
Charon, and the red lines show the current locations of the four circumbinary moons.
In every case but the e = 0 model, the instability boundary sweeps over a present-
day location of one or more of the moons. Bodies that cross the instability boundary
will be driven unstable on short time-scales (less than 1000 years), so the moons
cannot have been formed in situ if Charon undergoes the tidal evolution presented
here.
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tor mercury. For integrations of the Pluto-Charon system itself, which has two

massive bodies, we use the Gauss-Radau variable time step integrator Radau in

the modified version of mercury presented in Smullen et al. (2016). We use the

Bulirsch-Stoer integrator BS for the forced migration simulations of the Pluto-

Charon system. For integrations of particles in the Solar System, we use the Hybrid

integrator from the unmodified version of mercury, which uses a Bulirsch-Stoer

integrator for close encounters and a symplectic integrator for all other time steps.

Both the isolated Pluto-Charon and the Solar System integrations have been

effectively parallelized by running smaller sets of test particles with the same sets

of massive bodies. This means, though, that our simulations do not finish with

identical ending conditions for the massive bodies because we allow close encounters

with test particles. When mercury uses an adaptive time step method, such as

the Bulirsch-Stoer or Radau integrators, the time step of the simulation changes.

In the Solar System integrations, the overall time of the simulation returns to the

symplectic time step after the close encounter has passed, but an imprint of the

change remains. Minute variations in the orbits during adaptive stepping routines

act as a source of “chaos” in the system, leading to significant variations in the final

conditions after long time scales. Because of the many massive bodies and long

time-scales in the Solar System these variations manifest themselves in all orbital

elements. In the Pluto-Charon system, where there are only two massive bodies,

the variations tend to manifest as differences in final mean anomaly.

2.3.1 Pluto-Charon System

To reach its current position, the Pluto-Charon binary must have migrated, but the

details of this migration are unknown. To this end, we implement three unevolving

Pluto-Charon orbits representing different stages of eccentric tidal evolution, and

we also implement a circular migration model.

For the constant orbit integrations, our initial conditions are motivated by the

Cheng et al. (2014a) tidal evolution models for Charon: we initialise Charon at

binary semi-major axis a = 5 rP and eccentricity e = 0.3, a = 17 rP and e = 0.3,
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and a = 17 rP and e = 0.0. Thus, we cover a set of Pluto-Charon orbits that span

the most compact to the widest at a plausible range of eccentricities.

Each integration begins with Charon at a mean anomaly M of 90 ◦ and is inte-

grated to 107 days, or roughly 1.5 million Pluto-Charon orbits at a = 17 rP. The

disk has 27060 test particles that range in barycentric distance from 0–65000 km

with eccentricities randomly drawn from a uniform distribution from 0 to 0.01 and

inclinations randomly drawn from a uniform distribution from 0 to 0.5 ◦. Walsh

and Levison (2015) find that a stable ring around the Pluto-Charon binary should

collisionally circularize in about a decade, meaning that any free eccentricity in the

debris’ orbit set from the progenitor collision should damp within a few decades.

While the disk will not be perfectly circular due to a forced eccentricity from the

binary, in the regions under consideration, the forced eccentricity will be less gener-

ally much less than 0.3 using the formulation from Leung and Lee (2013). Mudryk

and Wu (2006) note that the instability of circumbinary material is not a strong

function of initial eccentricity, so an initial lack of forced eccentricity will not impact

our results. The disk is then evolved under the influence of the binary, so within very

few orbital periods, the inner edge of the disk (just exterior to the binary instability

boundary) becomes slightly eccentric due to the forced eccentricity from the central

binary. The test particles are drawn such that the average spacing between any two

particles is constant; this is achieved by initialising the same number of test parti-

cles in 132 annular rings where the area of each ring is constant. Consequently, the

innermost rings have widths of several hundred to a few thousand km, while outer

rings will only be a few km in width. Our disk is unphysically large for the Canup

(2011) models of Pluto-Charon formation, but such a large simulated disk allows us

to convolve any physical disk model in post-processing. While our disk is initialised

around the Pluto-Charon barycenter, we tested a model with a Pluto-centerd disk

and found little change in particle fates.

We also implement the migration model described below in Section 2.3.3 in the

Pluto-Charon system to understand the differences in particle fates caused by an

evolving orbit. Charon migrates through the disk (which is the same as above) from
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5 rP to 17 rP. We run the simulations for 105 yr (about three times longer than the

constant orbit simulations).

We set the sizes of Pluto and Charon using spherical shapes and densities of

1.88 g cm−3 and 1.65 g cm−3, respectively. Particles are tracked to the surface

of the massive bodies by setting the massive body close encounter radius to one

physical radius, thereby ensuring that there are no extrapolation errors introduced

into collision rates. Particles are considered to be ejected when they reach a distance

equivalent to Pluto’s modern-day Hill sphere of about 0.06 AU (about 140 times the

initial disk extent in the simulations). We track Pluto-barycentric positions and

velocities at the ejected time step to use in our Solar System integrations.

As a test, we also integrated the present Pluto-Charon system with the four

circumbinary moons and the test particle disk. The presence of extra massive bodies

in the system results in extra particle loss, as the circumbinary moons help scatter

debris inwards. Most of these losses are through ejections instead of collisions.

Additionally, significant structure appears in the disk, such as co-orbital debris near

the small moons and shepherded rings between the moons. We choose to not analyse

these simulations in detail because we are concerned with the impact of the Pluto-

Charon binary alone. Additionally, due to the uncertain nature of the origin of the

circumbinary moons, there is no way to estimate the appearance of the system at

our different Pluto-Charon configurations.

At 107 days, our constant orbit simulations show median energy conservation

of ∆E/E = 1 × 10−11 and median angular momentum conservation of ∆L/L =

1× 10−11.

We integrate the Pluto-Charon system in isolation despite the potentially signif-

icant perturbations from the Sun on long time-scales. There are two major effects

the Sun could have on debris in the outer parts of Pluto’s Hill sphere: an induced

harmonic oscillation in specific angular momentum due to solar torques and secu-

lar perturbations causing Kozai oscillations. Following the example of Benner and

McKinnon (1995) and Goldreich et al. (1989), the Sun should drive a change in the

specific angular momenta of disk particles with a period equal to half of Pluto’s
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heliocentric orbital period, or about 124 years. The change in the mean specific

angular momentum simplifies to

δh

h̄
=

15

8

Pparticle

PPluto

e2
particle√

1− e2
particle

(2.2)

where Pparticle denotes the period of the particle in the disk, PPluto is the heliocentric

period of Pluto, and e is the eccentricity of the disk particle. For a disk particle

with e = 0.9 at 1000 Pluto radii from the barycenter (an orbital period of ∼8 years),

this constitutes only a 10% change in the angular momentum every century; for a

disk particle with the same eccentricity at 100 Pluto radii, the difference is less than

0.5%. Our simulations do not produce a population of high apocenter bodies that

remain in the simulation for more than about 200 years because things are scattered

out of the system very quickly. Thus, this induced oscillation from solar torques is

unlikely to impact our results. Similarly, Kozai oscillations induced by the Sun will

not affect the outcomes of our simulations. The Kozai timescale for Pluto-Charon

and a test particle as the inner binary and the Sun as the outer component, is a few

to a few thousand times Pluto’s heliocentric orbital period, depending on the period

of the test particle (Fabrycky and Tremaine, 2007). For the average disk particle,

the Kozai timescale will be longer than the length of our simulations. While both

of these effects will change the orbits of any debris that remains in the system over

long time-spans, the fates of particles quantified in this work should not be strongly

influenced by the Sun prior to leaving the Pluto-Charon Hill Sphere.

2.3.2 Solar System

We inject particles ejected from Pluto-Charon into the Solar System at three

different points in the Pluto-Charon heliocentric orbit: MP = 180 ◦ (apocenter),

MP = 90 ◦, andMP = 0 ◦ (pericenter). We also simulate test particles in an evolving

Solar System using the migration model described below in Section 2.3.3. We use

a Solar System model comprised of the Sun (with mass increased by the masses of

the four terrestrial planets), the four giant planets, and Pluto. The positions and
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velocities of the planets and Pluto are taken from the JPL horizons catalogue.1

We randomly sample 16000 test particles, distributed over 100 individual simula-

tions, from the full set of particles ejected from the simulation in which Charon has

a = 17 rP and e = 0.3. The test particles are boosted into the Solar System frame

from the isolated Pluto-Charon system by adding the Pluto-Charon barycenter po-

sition and velocity at the start of the simulation. We run two orientations of the

Pluto-Charon disk with respect to the Pluto-Charon heliocentric orbit. The first

set is aligned with Pluto’s heliocentric orbit, while the second set is aligned with

the present-day Pluto-Charon orbit, having i = 96.3 ◦, Ω = 223.0 ◦, and ω = 172.6 ◦

with respect to Pluto’s heliocentric orbit.2 We set the time step of the simulations

to be 200 days, and the hybrid changeover is set to 3 Hill radii. Planetary radii

are calculated using spheres with densities 1.33, 0.70, 1.30, 1.76, and 1.88 g cm−3

for Jupiter, Saturn, Uranus, Neptune, and Pluto, respectively. The ejection radius

is set to 2000 AU. We integrate the simulations for 1.5 Gyr, or about 6 million

heliocentric Pluto orbits.

At 1.5 Gyr, our median energy conservation is ∆E/E = 1×10−6 and our median

angular momentum conservation is ∆L/L = 4× 10−12.

2.3.3 Migration

We implement the Malhotra (1995a) migration model in both the isolated Pluto-

Charon system and the Solar System. In the model, migration is considered a drag

force. This drag acceleration takes the form

aaamigration = − v̂̂v̂v
τ

[√
GM�
afinal

−
√
GM�
ainit

]
exp

(
− t
τ

)
. (2.3)

In the Solar System integrations, the acceleration is applied to each of the giant

planets (Pluto is allowed to migrate naturally under the influence of Neptune). We

choose τ = 2× 106 years our migration time-scale, and we use the initial positions,
1Apocenter in the horizons catalogue occurs on 2114 Feb 22, M = 90 ◦ is on 2051 Dec 5, and

pericenter is on 1990 Jan 29.
2These angles are taken from the JPL horizons catalogue.
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Table 2.1: Initial conditions for migration: we show the initial semi-major axis,
prescribed change in semi-major axis, and initial eccentricity for the massive bodies
in our simulations. Pluto has no ∆a because it is allowed to naturally be captured
into the 3:2 resonance.

Planet ainit ∆a einit
(AU) (AU)

Jupiter 5.4 −0.2 0.048
Saturn 8.7 0.9 0.056
Uranus 16.3 2.9 0.046
Neptune 23.2 6.9 0.009
Pluto 32.0 — 0.050

eccentricities, and migration distances (∆a ≡ afinal − ainit) given in Table 2.1. The

orbital angles for the giant planets are the same as in the pericenter simulations,

and inclinations are set to the modern-day values. Pluto’s inclination is set to 0 ◦

relative to the plane of the Solar System. These values are all consistent with those

used in Malhotra (1995a). While this migration model is not as involved as those

in more modern works (e.g., Levison et al., 2008), it is adequate to explore some of

the impact of a dynamically evolving Solar System on the orbits of Pluto ejecta.

We use only this migration model as it is simple to implement; a more complicated

migration model is beyond the scope of this chapter.

We use the same hybrid integrator as we did for our non-migrating Solar System

simulations, and we adopt the same orbital angles for the giant planets and Pluto in

the migration simulations as we do in the pericenter run above in Section 2.3.2. We

again use 16000 initial test particles distributed over 100 simulations and run for

1.5 Gyr. The first 100 Myr of each simulation are run with a time step of 100 days,

and the final 1.4 Gyr are run with a time step of 200 days. Figure 2.2 shows the

final semi-major axes and eccentricities of the massive bodies (the four giant planets

and Pluto) in the simulations at the end of 1.5 Gyr. The expected values are shown

by the large black squares, and the initial values are shown by the colored squared

outlined in black. 60 of 100 runs with the disk aligned with Pluto’s orbit and 66 of

100 runs with the disk aligned with the modern Pluto-Charon orientation finished
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successfully with Pluto in the 3:2 resonance; these are the only ones presented in

Figure 2.2 and considered for the rest of the analysis. Most of the unsuccessful runs

saw Pluto ejected from the Solar System. All semi-major axes for the massive bodies

are within 1% of the expected semi-major axes. The eccentricities vary much more,

but do match the ranges encompassed by other Solar System migration models,

such as those presented in Tsiganis et al. (2005). The final inclinations are also very

close to modern-day values.

In the isolated Pluto-Charon system, the only body to which the migration

drag force is applied is Charon. The migration time-scale is set to τ = 104 yr.

We use the Bulirsch-Stoer integrator in the modified mercury and integrate for

105 yr. A migration time-scale of 104 years is short for proposed tidal evolution

models for Charon, but, due to computational limitations, we choose a shorter

time. However, the dynamics will scale similarly with longer tidal evolution time-

scales because the dynamical time-scale of test particles in these regions is very short

compared to the speed with which Charon moves radially outward. Particles inside

the binary instability boundary will be removed within about 104 orbital periods;

at the instability boundary of the initial Pluto-Charon orbit, this is around 100

yr, which is much shorter than the time it takes for Charon to migrate though the

region.

2.4 Fate of Debris: Collisions with Charon

2.4.1 Relevant Time-scales

The tidal evolution of Charon should take on the order of 1 Myr (Dobrovolskis,

1989; Cheng et al., 2014a). Collisions can occur at any time during or shortly after

the migration as the binary instability boundary excites disk material. Observations

from New Horizons presented in Singer et al. (2016) suggest that Charon’s surface

age is upwards of 4 Gyr and could stem from shortly after formation, so these

collisions should be preserved.

Because Charon is formed via a violent collision, the surface should not be solid
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Figure 2.2: The combined final eccentricities vs. semi-major axis for the giant plan-
ets and Pluto after 1.5 Gyr in the two sets of simulations that include migration.
The color denotes the body, and the large black squares show the modern-day values
for each body. The colored square outlined in black shows the initial conditions in
our simulations and can also be found in Table 2.1. Pluto migrates under Neptune’s
influence to its proper semi-major axis and eccentricity. The mean semi-major axis
for all simulated bodies is less than 1% different from the actual values. The eccen-
tricities have larger scatter but are consistent with other Solar System migration
models, as are the inclinations.



47

early in the binary’s history. Collisions would therefore not be preserved in this

era. Thus, we must estimate a time at which collisions would be recorded. If we

turn to the surface cooling time-scales of non-tidally heated bodies in the Solar

System, such as an estimated 103 years for an atmosphereless Mars from Monteux

et al. (2015) or 104–106 years for Earth from Spohn and Schubert (1991), Tonks and

Melosh (1993), and others, we can make a rough estimate that the much smaller

and icier Charon cooled on time-scales of a few hundred to a few thousand years

in the absence of other effects. The surface cooling time-scale is therefore much

smaller than the tidal evolution time-scale. Accordingly, a significant fraction of the

disk may be unperturbed when Charon solidifies and the continued accretion of disk

material should be imprinted on the surface. Note that this cooling time-scale does

not account for sources of internal heating, which we discuss in Section 2.4.4.

2.4.2 Collisions and the Disk

Figure 2.3 shows the colliding fraction as a function of barycentric distance for four

Pluto-Charon orbits: aPC = 5 rP and e = 0.3, aPC = 17 rP and e = 0.3, aPC = 17 rP

and e = 0, and a migrating Charon from aPC = 5–17 rP on a circular orbit. The

first three are representative of three phases of a proposed tidal evolution model for

Charon from Cheng et al. (2014a), while the last actually moves Charon through

the disk. The most compact configuration is similar to the orbit at ∼100 years

after impact. The wide, eccentric configuration is most similar to what is expected

around 104–105 years after impact and is where we see the most disk disruption take

place. Finally, the wide, circular case is similar to the Pluto-Charon system seen

today. The semi-regular decreases in colliding fractions in the circular case (third

panel) arise where low-order mean motion resonances (such as the 3:2, 2:1, 5:2, and

3:1) cause preferential ejection of material. This circular case is least realistic, as

the wide, eccentric Charon would have previously cleared out all of the debris able

to interact with a wide, circular Charon.

While the bulk of collisions should occur early, there will be craters from disk

debris throughout the migration. Both the most compact case (top) and the migrat-
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ing case (bottom) show a sharp decrease in collisions outwards of about 13000 km;

the collisions interior occur on time-scales of a few to a few hundred years, which is

comparable to the solidification time of Charon. Thus, neither of the collision pop-

ulations interior to 13000 km would be visible on the surface of Charon. However,

in both cases, a significant quantity of disk material remains exterior and interacts

with the evolving binary at a later time.

2.4.3 Craters on Charon’s Surface

We can estimate the number of craters visible on the surface of Charon for a given

disk profile and size distribution of disk particles. We calculate cratering for two

Pluto-Charon configurations: the a = 5 rP and e = 0.3 disk, as this is the stage with

the most dynamical evolution of the disk, and the migration model. Additionally,

we only take the material exterior to Charon’s orbit (outside the purple region in

Figure 2.3) for the constant orbit model because the binary instability boundary

would reach this location at roughly 1000 years in the Cheng et al. (2014a) constant

∆t model (see Figure 2.1); 1000 years is approximately the estimate for Charon’s

surface cooling time-scale. We only consider collisions originating outside of 14000

km in the migration model because the instability boundary will take about 1000

years to move to this location. Typical collision speeds should be roughly the escape

velocity from Charon added in quadrature with the relative velocity of the collider

and Charon, or about 0.5–1 km s−1. This velocity of about 0.5 km s−1 is about

a quarter of the expected velocities of 1–2 km s−1 for KBOs impacting Pluto and

Charon quoted in Greenstreet et al. (2015). We use an impactor-to-crater size

ratio of 5, which is a small but consistent value calculated using Charon’s escape

velocity in Greenstreet’s equation 5. New Horizons has a resolution of 1–1.5 km

on the surface of Charon for the largest data sets (Moore et al., 2016), so we take

“observable” craters to be those larger than 3 km, implying an impactor at least 600

m in diameter.

Canup (2011) finds that a debris disk from a Charon-forming impact can extend

up to 30 Pluto radii and will range in mass from 1020–1024 g. We adopt a disk with
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Figure 2.3: The fraction of disk particles colliding with Charon per radial bin as
a function of barycentric distance. The four panels show different Pluto-Charon
orbits: a = 5 rP and e = 0.3, a = 17 rP and e = 0.3, a = 17 rP and e = 0, and a
migration from 5–17 rP with zero eccentricity. The purple line shows the semi-major
axis of Charon, and the purple rectangle shows the radial extent of Charon’s orbit
(pericenter to apocenter). In some regions, upwards of 50% of material collides
with Charon. The outer edge of collisions is governed by the instability boundary;
exterior to this boundary, material is unperturbed.
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radial extent of 30 Pluto radii and mass 1022 g for our analysis, an optimistic but

not unrealistic disk. We convolve this disk model with the constant density, large

radius test particle disk in our N -body simulations. We then can calculate a disk

surface density parametrized by the disk surface density index β and radial extent

r over a Pluto radius rP such that

Σ(r) = Σ0

(
r

rP

)−β
. (2.4)

Σ0 is a normalisation factor calculated by equating the disk mass and the integrated

surface density. By multiplying the surface density profile from the giant impact-

motivated disk with our collision fractions from our simulated disk, we can calculate

a colliding mass per radial bin. Then, we must assume a particle size distribution to

find a number of colliders. We take this to be a power law parametrized by particle

size index q. Thus

N(s) = N0 (2s)−q , (2.5)

where s is the particle radius and N0 is found by assuming that each body is a sphere

with density ρ = 1 g cm−3, an icy composition, and that our particles range in size

from 1 cm to 5 km. We choose the upper limit of s = 5 km so that our debris is equal

in size or smaller than the existing moons. Decreasing either the upper or lower size

limit increases the number of visible craters, while increasing either limit decreases

visible craters because more of the fixed mass goes into larger bodies, dropping the

total number of colliders. Finally, we sum the number of colliders in all radial bins

as a function of size and calculate the number with radii greater than 300 m. These

are the impacts from the disk that would be visible on the surface of Charon with

New Horizons imaging.

Our estimates for the number of colliders as function of the particle size index q

and disk surface density index β are shown in Figure 2.4 for two of the Pluto-Charon

orbits we simulate. We take the a = 17 rP and e = 0.3 simulation as the most

optimistic case (most collisions) and the migration model as the least optimistic

(fewest collisions) for simulations in which Charon is near its current orbit. We

show typical values of β for protoplanetary disks (which normally range from 0.5–
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1.5) and proto-lunar disks (e.g., Charnoz and Michaut, 2015). The value of q = 3

labelled KBO is taken from crater size measurement on Charon from Singer et al.

(2016). At this value of q, we estimate that there may be hundreds to hundreds of

thousands of craters on the surface of Charon that stem from the Charon-forming

disk. We expect the craters to be evenly distributed across Charon’s surface because

Charon was not initially tidally locked to Pluto and the height of the disk at the

instability boundary (where the colliders typically originate) is comparable to the

size of Charon. However, these craters from the disk would be among the oldest on

the surface and among the smallest with the range of allowed particle sizes we have

chosen. Singer et al. (2016) note that there appears to be a lack of small craters

on Charon’s surface, which suggests fewer impacts originating from the disk itself.

The real disk is therefore likely comprised of smaller debris (less than a few km in

radius), smaller in radial extent, or has a steeper surface density index.

If it is possible to identify and date craters on Charon as stemming from the disk,

clues as to Charon’s tidal evolution outward can be inferred. Encounter velocities

tend to be lower when Charon is in an eccentric orbit because the encounters are

more likely to occur in the outer part of the orbit where orbital velocities are slower.

Thus, if we can assume a similar size of impactors through all stages of the tidal

evolution, epochs of an eccentric Charon would show smaller craters relative to a

circular Charon.

Note that we do not consider collisions with Pluto for two important reasons:

first, collisions with the more massive component of a binary are intrinsically rarer.

We see a factor of 3–4 reduction in the number of collisions with Pluto compared to

collisions with Charon. Secondly, the resurfacing time-scale of Pluto (specifically,

Sputnik Planum) has been estimated to be less than 10 Myr by Moore et al. (2016)

and Trilling (2016). The surface is therefore expected to be much younger than

Charon, although some regions may be much older and thus susceptible to disk

cratering. Any craters originating from disk debris in young areas would be erased

by recent or previous resurfacings.
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Figure 2.4: The number of colliders that would leave visible craters as a function
of particle size index q and disk surface density index β. The parent disk extends
to 30 rP and had a mass of 1022 g. The top panel shows the number of colliders for
Charon with static orbit a = 17 rP and e = 0.3 and the bottom panel shows the
same for the migrating Charon. Only bodies external to the maximum extent of
Charon’s orbit are considered in the eccentric case and external to the instability
boundary at 1000 years, located at 14000 km, in the migrating case (see the second
and fourth panels of Figure 2.3, respectively). Colliders are taken to be observable
if they are greater than 600 m in diameter, which should correspond to a crater at
least 3 km in diameter (3 km is twice the resolution of New Horizons). Also labelled
are typical values of β for protoplanetary and proto-lunar disks. The q value for
Kuiper belt objects is taken from crater size measurements on the surface of Charon
from Singer et al. (2016). For reasonable values of q and β, there should be hundreds
to a few tens of thousand craters on Charon’s surface from the Charon-forming disk.
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2.4.4 Internal Heating and Charon’s Surface

In the previous sections, we did not account for the effects of internal heating, either

through tidal or radiogenic processes. These two effects might prolong the era of a

liquid surface on Charon or cause slow resurfacing.

Jackson et al. (2008) parametrize the tidal heating rate per surface area (their

equation 3) as

h =

(
63

16π

)
(GMP)3/2MPR

3
C

Q′C
a−15/2e2. (2.6)

Here, P denotes Pluto and C denotes Charon, which have been changed from Jack-

son’s S (star) and P (planet), respectively. Q′ is the tidal dissipation parameter

and is given as Q′ = 3Q/ (2k2). Q is the tidal dissipation function (taken here to

be 100), and k2 is the Love number. In the analysis, Jackson et al. (2008) consider

anything with h > 2 to be highly volcanic, 2 > h > 0.04 to have enough heating

for tectonic activity, and anything less than this to have too little internal heating

to promote activity (what we refer to as dead). For reference, Jupiter’s moon Io

has h∼2− 3 W/m2, while Europa may have tidal heating as high as h∼0.2 W/m2.

Earth’s heating, which comes from radiogenic sources and the heat of formation, is

about 0.08 W/m2. We do not expect a surface in the volcanic regime to retain any

craters as resurfacing is very fast. Craters may be retained if the body is tectonic,

although relaxation of the surface material may make the craters smooth out or

fill in over time. Craters on dead bodies should not undergo significant evolution

without outside influence.

Figure 2.5 presents h vs a for an eccentric Charon. We adopt the constant

∆t semi-major axis evolution from Cheng et al. (2014a) (the solid black line in

Figure 2.1) and a constant eccentricity of 0.3. The two lines denote different values

of the Love number k2. Blue shows an estimate of Charon’s Love number from

Murray and Dermott (1999) Table 4.1, who estimate k2 = 0.006, and red shows a

rocky, Earth-like Love number of 0.3. We color regions based on the Jackson et al.

(2008) demarcations: yellow shows the volcanic region where tidal heating causes

violent and fast resurfacing, green shows the tectonic region where a solid surface
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may be slowly changed over time, and blue shows geologically dead bodies. We also

plot reference values for Io, Europa, and Earth. The factor of 50 difference between

the two Love numbers has a large impact on the expected observability of craters

from the disk. With a large Love number, Charon spends the majority of the early

evolution firmly in the volcanic region. It is therefore unlikely that the surface would

retain any craters as constant resurfacing is probable. With the lower, and likely

more appropriate, Love number, the time spent undergoing violent tidal heating is

less than our estimated cooling time-scale in Section 2.4.1. Thus, craters should be

imprinted as soon as the surface cools from formation.

For any craters to be visible, the surface needs to be solid and slowly changing

(for our purpose, in the tectonic regime) before the binary instability boundary

reaches the outer edge of the disk. Assuming the same disk extent of 30 rPused

above and using the e = 0.3 binary instability boundary in Figure 2.1, the surface of

Charon needs to solidify by, generously, about 5000 years after formation to retain

any craters from the debris disk. We can change the time spent in the volcanic

state most easily through k2, as shown above, or through eccentricity. If Charon

begins with a lower eccentricity, the time that Charon spends in the volcanic regime

is much shorter because tidal heating scales as e2. For e = 0.1 and k2 = 0.3, Charon

moves into the tectonic regime by about 800 years after formation. For a circular

migration scenario, Charon undergoes no tidal heating.

In the tectonic regime, craters may last on the surface for thousands to millions

of years. Moore et al. (1998) fin that craters on the surface of Europa may last

for up to 108 years. Because Charon should be absolutely cold by the end of the

tidal evolution at ∼106 years, craters from the tectonic regime may still be visible.

They may show similar features to impact craters on Europa noted by Moore et al.

(1998, 2001) such as shallow basins or relaxed crater walls. In extreme cases, the

craters may resemble more of a circular ridge than a true crater. This may be a

way to distinguish craters from the debris disk from KBO craters: as debris craters

will be among the oldest and may stem from a time when Charon had different

surface properties, the physical appearances of the two crater populations may be
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very different.

The other important source of internal energy, radiogenic heating, is orders of

magnitude smaller but may have an impact on Charon’s surface a few Gyr after

formation. Desch et al. (2009) run a full radiogenic heating model for Charon and

find that the heat flux through Charon’s surface peaks at 5 mW/m2 at 0.5-1.5 Gyr

after formation. This is enough heat flux to differentiate the interior of Charon

but cannot melt the crust, which is expected to be 60–85 km thick (Rubin et al.,

2014). Thus, once the surface of Charon has solidified, further heating should not

completely resurface the moon; this is consistent with surface age measurements

from Singer et al. (2016). Radiogenic heating is enough to make the surface malleable

and allow long-term relaxation of craters. Additionally, radiogenic heating may drive

cryovolcanism on Charon. Cryovolcanism could contribute to minor resurfacing by

filling in craters and causing erosion. Desch et al. (2009) estimate that around 120

m of ice will be deposited uniformly on the surface through cryovolcanism over the

past 3.5 Gyr, although later studies such as Neveu et al. (2015) suggest that this may

be an overestimate of the cryovolcanic activity because the surface may be difficult

to crack. While the few tens of meters of cryovolcanic residue is not enough ice

to completely remove kilometre-sized craters from the surface, when coupled with

more extreme relaxation early in Charon’s history, the oldest craters are likely to

be very eroded and difficult to find.

2.5 Fate of Debris: Ejections into the Solar System

2.5.1 Ejections and the Disk

As the binary instability boundary sweeps out through the disk with Charon’s mi-

gration, debris is more likely to be ejected from the system than collide with either

member of the binary. We show the ejecting fraction per radial bin in Figure 2.6 for

the four Pluto-Charon orbits described in Section 2.4.2. In the three non-migrating

orbits, ejections increase with radial distance in the disk. When migration is in-

cluded, ejections constitute a high fraction of particle loss from the outer edge of



56

Io

Europa

Earth

6 8 10 12 14 16 18
Semi-major axis/rP

10-2

10-1

100

101

102

103

T
id

a
l 
h
e
a
ti

n
g
 r

a
te

 (
W

/m
2
) Volcanic

Tectonic

Dead

102 yr

103 yr

104 yr

102 yr

103 yr

104 yr

105 yr

106 yr

Figure 2.5: The tidal heating rate per unit surface area for Charon’s tidal evolution
history. We apply the Cheng et al. (2014a) constant ∆t semi-major axis evolution
at constant e = 0.3 to equation 2.6. The blue line shows the tidal heating rate for
Charon with k2 = 0.006 from Murray and Dermott (1999) Table 4.1, and the dark
red line shows the tidal heating rate for a Charon with an Earth-like Love number of
k2 = 0.3. The yellow region shows what Jackson et al. (2008) consider volcanic, or
violently disturbed from tidal heating, green shows the tectonic regime where there
may be some surface activity, and blue shows heating rates that lead to a geologically
dead body. Io, Europa, and Earth have been labelled for reference. For the rocky
Love number, Charon’s surface would not cool enough to retain craters (cross the
volcanic-tectonic boundary) until nearly 104 years after formation. As the binary
instability boundary reaches the outer extent of the debris disk at around 5000 years
after formation, we would not expect to see any craters from the debris disk. With
the icy Love number, Charon should not experience significant tidal heating after a
few hundred years, so craters from the debris disk should be preserved.
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the initial instability boundary to the final instability boundary. The slight decrease

in ejection fraction as a function of radius occurs because particles are either put on

semi-stable eccentric or inclined orbits or have not yet been destructively perturbed

(put on an orbit that leads to loss). We do not include collisional damping of disk

particles, which Walsh and Levison (2015) show can help stabilise debris, especially

in orbits close to the instability boundary. Collisional damping time-scales are on

the order of a few tens to a few hundred years (about an order of magnitude shorter

than the instability time-scale), so this could have significant implications for the

survival of a ring near the instability boundary.

We record the positions and velocities of all ejected test particles with respect

to the Pluto-Charon barycenter when the test particles reach our ejection radius of

0.06 AU, roughly Pluto’s Hill radius at 40 AU. The particles are ejected at 1–15+

times Pluto’s escape velocity at the Hill sphere. Charon’s eccentricity is the main

factor in the ejection velocity; because encounter velocities are typically lower in the

eccentric case, ejection velocities are correspondingly lower (typically by a factor of

2–3). This effect is invariant of Charon’s semi-major axis. The majority of ejections

in the eccentric case have velocities between 1–5 times escape velocity, while the

circular case tends to have ejections with velocities 3–10 times escape velocity.

2.5.2 Debris in the Solar System

We release the ejected test particles from the isolated Pluto-Charon simulation with

orbit a = 17 rP and e = 0.3 into the Solar System so that we can track the evolution

of the Pluto-Charon disk debris. We simulate three configurations of the modern-

day Solar System (with Pluto at M = 0, 90, and 180 ◦, respectively) and one with

the migration model presented in Malhotra (1995a); we orient the Pluto-Charon disk

in two ways, labeled “Aligned with P-C heliocentric orbit” and “Misaligned with P-C

heliocentric orbit”, as described in Section 2.3.2. The fates of these disk-ejected test

particles after 1.5 Gyr are shown in Table 2.2. The integration including migration

retains the largest number of test particles, and the integrations with a misaligned

disk retain more test particles in all four initial Solar System configurations. The
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Figure 2.6: The fraction of disk particles ejected from the Pluto-Charon system
per radial bin as a function of barycentric distance. The figure follows the same
style as Figure 2.3. Ejections become more common in the outer parts of the disk.
In the migration case, the sharp increase in ejections outwards of 12000 km occurs
because the outer edge of the instability region sweeps through the disk and perturbs
bodies such that they eject instead of collide. Ejections are nonexistent outside the
instability boundary because the disk has not been perturbed.
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number of collisions is roughly constant throughout; the most common collisions by

far are with Jupiter, which account for nearly 50% of all collisions. Nearly equal

numbers of collisions occur with Neptune and Saturn at 10–20% each, while collisions

with the Sun and Uranus are rare (less than 10% each in most cases). Collisions

with Pluto are non-existent.

The semi-major axes and eccentricities of the remaining particles are shown in

Figure 2.7. In all cases, the majority of the remaining particles populate the 3:2

resonance alongside Pluto. Nearby resonances can also be populated. Specifically,

we see resonant populations around the 5:4, 4:3, 5:3, and 7:4 resonances with Nep-

tune; some other higher-order resonances may also be populated in between those

listed. We show the fraction of test particles in each resonance in Table 2.3. In

the simulations with a non-migrating Solar System, test particles with high initial

velocities are more likely to escape the 3:2. High velocity test particles are lost more

frequently in the misaligned disk, leaving a more dominant population in the 3:2.

The majority of bodies that end a simulation in a resonance other than the 3:2 are

near their initial resonance at the beginning of the simulation due to the additional

velocity from ejection modifying the orbital elements. For instance, a body ejected

at Pluto’s heliocentric apocenter with 10 times Pluto’s escape velocity at the Hill

sphere (meaning an addition of 140 m/s to Pluto’s orbital velocity of 3.7 km/s) will

have a new semi-major axis of 41.4 AU compared with Pluto’s semi-major axis of

39.5 AU. This places the body just interior to the 5:3 resonance. The occupation of

other resonances is more common for release near apocenter in the aligned simula-

tions because a small velocity change in the particle can cause a larger change in the

semi-major axis at apocenter. We see this trend disappear in the misaligned disk

because the high velocity particles are put onto unstable orbits when ejected from

the disk. In the migrating case, though, there does not appear to be a preference

with initial velocity. Particles in all five resonances are consistent with libration

around the center of φres = 180 ◦. Those in the 3:2 specifically tend to librate with a

higher amplitude than Pluto’s ∆φres = ±82 ◦: the amplitude of the libration of the

resonant angle is closer to 120 ◦.
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In the eight simulations presented here, a population of debris ejected from the

Pluto-Charon disk always remains in the Solar System. These bodies would consti-

tute a Pluto-Charon collisional family. Using the same methodology as presented

above to determine the number of craters on Charon’s surface, we can estimate the

properties of members of the family. We use the same disk mass and extent as be-

fore, but we relax the size constraints to allow the debris to grow to 30 km in radius.

This is about the size of Hydra. The inner cutoffs of the disk are maintained, as

it would take time for debris to coagulate into large sizes observable in the Kuiper

belt. We take “large” debris that could be observed by future surveys and constitute

a collisional family to be greater than 10 km in radius. For the Pluto-Charon orbit

with a = 17 rP and e = 0.3, we calculate that there would be a maximum of 70

objects ejected from the disk larger than 10 km. For the migrating Pluto-Charon, a

maximum of 200 objects larger than 10 km would be ejected. Only 7–21% of these

bodies survive to 1.5 Gyr with either disk orientation. We therefore estimate that

there could be 5–15 large KBOs stemming from the Pluto disk that gives the most

collisions, while the disk that gives the most ejections seeds the Kuiper belt with

14–42 bodies.

While we have used a smooth migration model in this work, it is possible that

the early history of the Solar System was more chaotic (e.g., the Nice model from

Tsiganis et al., 2005; Levison et al., 2008, among others). As long as a Solar Sys-

tem migration model can place Pluto in the correct orbit, our results should be

relatively unaffected. Because the debris ejected from the Pluto-Charon system is

very dynamically similar to other Kupier belt populations, there should be similar

dynamical evolution between ejected debris and the resonant Kuiper belt objects.

These members of a Pluto collisional family would be difficult to distinguish from

other KBOs. The particles in our simulations do not have any obvious association

in physical space or orbital angles with Pluto at the end of the simulations (perhaps

a slight clustering in both ω, the argument of pericenter, and Ω, the longitude of

ascending node). The most promising method to identify KBOs as members of

a Pluto family is through composition; they should have a composition similar to
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Table 2.2: Fate of particles in Solar System integrations: The first column shows
the orientation of the debris disk at the start of the simulation, the second column
shows the starting position of Pluto, the third shows the number of particles in the
sample, and the final three columns show the percentage of particles that remain in
the simulation, are ejected, or collide with massive bodies or the Sun.

Integration Ntot Remain Eject Collide
×103 % % %

Aligned
with P-C
heliocentric
orbit

Apocenter (M = 180) 16 13.1 85.5 1.4
M = 90 16 8.7 89.9 1.5
Pericenter (M = 0) 16 6.7 92.0 1.3
With Migration 9.6 20.7 78.2 1.1

Misaligned
with P-C
heliocentric
orbit

Apocenter (M = 180) 16 14.4 81.2 1.4
M = 90 16 8.9 89.4 1.7
Pericenter (M = 0) 16 11.4 87.3 1.3
With Migration 10.56 17.3 81.4 1.3

Pluto’s icy moons. Additionally, following the method of Brown et al. (2007) in

calculating the velocity dispersion of the collisional family, the plutino members of

our remaining debris have a low velocity dispersion of order 100–200 m/s.

2.6 Conclusions and Discussion

This work aims to investigate the impact of a debris disk from the Charon-forming

giant impact in both the Pluto-Charon system and in the Kuiper belt. We present

N -body simulations of the isolated Pluto-Charon binary to follow the fates (col-

lisions and ejections) of debris in the disk, and we also present simulations of the

evolution of this debris in the Solar System. We find the following:

1. The current circumbinary moons, Styx, Nix, Kerberos, and Hydra, did not

form in situ if Charon has an eccentric tidal evolution history. The Holman

and Wiegert (1999) instability boundary crosses at least one of the moons’

current positions if Charon has e > 0.048 at its current semi-major axis;

many realisations of the Charon-forming impacts from Canup (2005, 2011)

have the moon forming with eccentricity from 0.1–0.8. Thus, circumbinary

moon formation mechanisms must either invoke a circular tidal evolution for
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Figure 2.7: Eccentricity vs. semi-major axis after 1.5 Gyr for wight sets of simu-
lations in which ejected debris from Pluto is released into the Solar System. The
panels, from top to bottom, show debris initially released when Pluto is at apoc-
enter, M = 90 ◦, pericenter, and in a Solar System with migration. The columns
show the results for different initial orientations of the Pluto-Charon disk. color
denotes the initial velocity of the particle (when it leaves Pluto’s Hill sphere) rel-
ative to the escape velocity from Pluto. The black open circles show the current
location of Pluto. The dashed line on the left shows the location of Neptune, while
the blue dashed lines show the locations of first, second, and third order resonances.
While most of the particles are ejected, 60–80% of those that remain are trapped
in the 3:2 as a population of plutinos. The majority of other remaining particles,
which also tend to be the initially higher velocity particles, are captured into nearby
resonances.
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Table 2.3: Fraction of remaining particles in resonances: The first column shows
the orientation of the debris disk at the start of the simulation, the second shows
the starting position of Pluto, the third shows the number of particles that remain
in the simulations after 1.5 Gyr, and the last five columns show the percentage of
remaining particles that fall into the listed first, second, and third order resonances.

Integration Nrem 3:2 5:4 4:3 5:3 7:4
% % % % %

Aligned
with P-C
heliocentric
orbit

Apocenter 2112 67.1 0.1 0.1 6.3 6.3
M = 90 1423 61.6 0.1 0.1 6.7 2.2
Pericenter 1065 60.2 1.0 1.4 3.2 0.9
With Migration 2040 79.6 0.3 1.5 1.0 0.6

Misaligned
with P-C
heliocentric
orbit

Apocenter 2793 81.2 0.1 0.2 0.5 0.7
M = 90 1437 65.6 0.1 0.1 4.7 1.8
Pericenter 1824 74.0 0.2 0.1 0.7 0.4
With Migration 2259 83.3 0.3 1.6 0.9 0.3

Charon (or one that leaves Charon on a circular orbit long before it reaches its

current semi-major axis) or involve forming the moons after Charon reached

its current orbit (through capture, disruption of other bodies, or some other

mechanism).

2. The predominant loss mechanisms in a debris disk around Pluto-Charon are

collisions with Charon and ejections. The amount of clearing is a strong func-

tion of Charon’s eccentricity. Collisions are most common from particles that

begin close to Charon, while ejections begin to dominate in the outer disk. In-

cluding migration in the simulations causes ejections to increase dramatically

because the binary instability boundary interacts with previously unperturbed

disk material as the Pluto-Charon orbit expands. Walsh and Levison (2015)

find that including collisional evolution in the disk may stabilise material on

shorter time-scales, but interactions with the instability boundary will always

cause particle loss.

3. Collisions with Charon are most common for a wide orbit, eccentric Charon,

such as may have existed near the end of the tidal evolution process. Collisions

with Charon are the least common if migration is included. Ejections dominate
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exterior to Charon’s orbit in the wide, eccentric case when Charon undergoes

eccentric tidal evolution because the instability boundary is large. Ejections

dominate the majority of the disk in the migration case because of the moving

instability boundary.

4. Assuming a reasonable, realistic (albeit optimistic) disk from Canup (2011)

and accounting for a surface solidification time-scale of a few hundred to a few

thousand years, we predict hundreds to thousands of craters visible by New

Horizons on the surface of Charon that stem from the disk and not incident

KBO collisions. It would be difficult to disentangle these populations from

size alone as crater-to-impactor size ratios (collisional velocities) are similar.

It is probable that the debris has a different size distribution than KBOs, in

addition to a different average impact velocity, so the presence of two distinct

crater populations on the surface of Charon might give insight into the disk.

The apparent lack of small craters on Charon noted by Singer et al. (2016)

already has implications on the extent or composition of a debris disk.

5. Violent tidal heating during the early tidal evolution of Charon may prevent

craters from forming on the surface. If the surface solidifies while tidal heating

is still warming the interior, craters should form but may relax. Radiogenic

heating later in the system’s history (Gyrs after formation) may contribute

to more surface relaxation and/or cryovolcanic resurfacing. While neither

process should cause the oldest craters to disappear, old craters, such as those

originating from the debris disk, may appear to be filled in or have indistinct

crater walls. The physical appearance of old craters may help distinguish

craters from the disk and craters from KBOs.

6. About 80–90% of material ejected into the Solar System is lost within 1.5 Gyr,

regardless of initial Pluto position or inclusion of migration. The material that

remains tends to reside in the 3:2 resonance with Neptune, thereby maintaining

a similar orbit to Pluto. Some material populates nearby resonances, especially

the 5:4, 4:3, 5:3, and 7:4 resonances. The material that remains does not show
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any strong correlation at the end of the simulations with the initial position

of Pluto or the other planets. The objects in resonances, especially in the 3:2,

have resonant angles consistent with librating orbits.

7. Using the same methodology that was used to calculate crater numbers and

the most optimistic ejection profile, we estimate anywhere from 14–42 icy

bodies greater than 10 km in radius could be produced through ejections from

the Pluto-Charon disk, forming a “Pluto disk collisional family.” Larger, more

easily observable members of a Pluto collisional family may originate from

the Charon-forming impact itself, such as is seen with the Haumea collisional

family. Members of the collisional family should have similar icy composition

to the original disk and a low velocity dispersion. We find no evidence that

a collisional family will be disrupted by the migration of the giant planets in

the early Solar System, nor will it be disrupted through secular or resonant

effects over Gyr time-scales.

The formation of the Pluto-Charon binary and its moons remains both a fas-

cinating and frustrating problem, especially with the enhanced view of the system

provided by the New Horizons flyby in July 2015. Through potentially observable

tracers such as craters from the debris disk on the surface of Charon or the presence

of a Pluto collisional family, we might be able to better constrain the formation and

early evolution of this intriguing system.
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CHAPTER 3

Machine Learning Classification of Kuiper Belt Populations

This chapter has been accepted to MNRAS as Smullen, R. A. and Volk, K. 2020

(DOI: 10.1093/mnras/staa1935)

Abstract

In the outer solar system, the Kuiper Belt contains dynamical sub-populations

sculpted by a combination of planet formation and migration and gravitational

perturbations from the present-day giant planet configuration. The subdivision

of observed Kuiper Belt objects (KBOs) into different dynamical classes is based

on their current orbital evolution in numerical integrations of their orbits. Here

we demonstrate that machine learning algorithms are a promising tool for reducing

both the computational time and human effort required for this classification. Using

a Gradient Boosting Classifier, a type of machine learning regression tree classifier

trained on features derived from short numerical simulations, we sort observed KBOs

into four broad, dynamically distinct populations–classical, resonant, detached, and

scattering–with a >97 per cent accuracy for the testing set of 542 securely clas-

sified KBOs. Over 80 per cent of these objects have a > 3σ probability of class

membership, indicating that the machine learning method is classifying based on

the fundamental dynamical features of each population. We also demonstrate how,

by using computational savings over traditional methods, we can quickly derive a

distribution of class membership by examining an ensemble of object clones drawn

from the observational errors. We find two major reasons for misclassification: in-

herent ambiguity in the orbit of the object–for instance, an object that is on the

edge of resonance–and a lack of representative examples in the training set. This

work provides a promising avenue to explore for fast and accurate classification of
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the thousands of new KBOs expected to be found by surveys in the coming decade.

3.1 Introduction

3.1.1 The Kuiper Belt

The Kuiper Belt consists of many sub-populations of small bodies in the outer solar

system. The orbital distribution of Kuiper Belt objects (KBOs) records the complex

early dynamical history of the solar system’s giant planets as well as a variety of

current dynamical processes (see, e.g., Morbidelli et al., 2008; Dones et al., 2015). In

order to use observations of KBOs to constrain processes in the current and early so-

lar system, they must be classified into different dynamical groups. The classification

of these populations is a critical first step towards identifying distinct compositional

classes in the Kuiper Belt that might be indicative of formation processes (e.g.,

Pike et al., 2017) and constraining models of the early dynamical evolution of the

solar system by making direct comparisons between models and observations (e.g.,

Nesvorný, 2015; Nesvorný et al., 2019a,b; Chen et al., 2019a).

Different classification schemes exist for the Kuiper Belt, but here we will use

Gladman et al. (2008)’s scheme. Briefly, this scheme divides KBOs into classical

belt objects, scattering objects, resonant objects, and detached objects, the detailed

definitions of which are described in more detail in Section 3.2.1. Classical belt

objects are a mixture of dynamically cold and dynamically excited KBOs mostly

in the semi-major axis range a ∼ 36 − 50 au; identifying these objects in an ob-

servational sample is important because the dynamically cold sample of classical

objects are generally thought to have formed in situ and to represent a remnant of

the original planetesimal disc (see, for example, the recent results about the pri-

mordial origins of the classical KBO Arrokoth McKinnon et al. 2020). Resonant

objects are those in mean motion resonances with Neptune. Resonant objects are

of particular importance for constraining the dynamical history of the outer solar

system; while some KBOs are merely temporarily resonant (see, e.g., Lykawka and

Mukai, 2007; Yu et al., 2018), the large number of KBOs in resonance with Neptune
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is best understood to be a result of resonant capture during the epoch of plane-

tary migration in the early solar system (see, e.g. Morbidelli et al., 2008; Malhotra,

2019). Detached objects are those KBOs that (on the 10Myr dynamical time-scale

of the Gladman et al. (2008) scheme) do not appear to experience significant or-

bital evolution, i.e., they are dynamically ‘detached’ from the giant planets. These

objects are important to identify because their current orbits are difficult to obtain

through interactions with the currently known planetary system. Truly detached

objects must have been dynamically perturbed on to their current orbits either by

large bodies or by processes in the early solar system that are not longer extant

(e.g., rogue planets Gladman and Chan 2006, close stellar flybys Kaib et al. 2011,

interactions within the sun’s birth cluster Brasser et al. 2012, resonant drop-out

while Neptune migrates Lawler et al. 2019). Scattering objects are those that are

currently being strongly dynamically perturbed by direct gravitational interactions

with Neptune, thus reflecting current solar system conditions.

3.1.2 Machine Learning Classification in Astronomy

Astronomy has long been an ideal field for applications of machine learning–

statistical methods that learn to recognize data based on patterns and inference–due

to the large data volume and wide range of problem complexity. Beginning with sim-

ple clustering and neural network applications for galaxy classification (e.g, Adorf

and Meurs, 1988; Storrie-Lombardi et al., 1992), astronomers have been adopting

more varied and sophisticated machine learning methodologies to utilize the full

spectrum of information contained in both observations and simulations. Indeed,

the importance of machine learning integration in future astronomy programs has

been discussed in many works, such as Nord et al. (2019).

Several recent investigations in astronomical machine learning use time-

dependent features from the outputs of numerical simulations for classification. For

instance, Tamayo et al. (2016) use a standard machine learning classifier and fea-

tures derived from semi-major axis and eccentricity in short N-body simulations to

predict the orbital stability of three planet systems. McLeod et al. (2017) use cos-
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mological simulations and a neural network to predict the mass of the Local Group.

Lam and Kipping (2018) train a deep neural network to predict the stability of

circumbinary planetary systems using only four dynamical features derived from

N-body simulations. Choudhary et al. (2019) shows how machine learning meth-

ods (in this case, a Hamiltonian neural network) can even learn to predict orbital

dynamics (such as long-term chaotic or non-chaotic orbits) without the need for

numerical simulations. For dynamically-evolving systems, a single snapshot in time

is insufficient for classification and thus, it is critical to incorporate more complex,

time-dependent data for a complete prediction.

A methodology to quickly and accurately classify new objects in dynamical pop-

ulations is especially critical for solar system purposes. The Vera Rubin Observa-

tory’s Legacy Survey of Space and Time (LSST) is expected to find millions of solar

system objects, including a few tens of thousands of new KBOs (see, e.g., Schwamb

et al., 2018; Ivezić et al., 2019). Traditional classification procedures for the Kuiper

Belt, particularly, require some level of human intervention/verification for nearly

every object, which quickly becomes unsustainable with ballooning data size. A

more efficient tool for dynamical classification of KBOs detected by LSST will be

needed (Schwamb et al., 2019).

Thus, in this chapter, we demonstrate the efficacy of a machine learning clas-

sification algorithm on separating observed KBOs into their component dynamical

populations. This method allows for fast and accurate classification while substan-

tially reducing the need for human intervention. We describe the data and machine

learning algorithm in Section 3.2. We then show the results of our classifier on the

testing data, including the robustness of our results, in Section 3.3. Finally, in Sec-

tion 3.4, we discuss the implications of our investigation and explore improvements

to the methodology shown herein.

3.2 Data and Methods

The goal of a classification scheme is to take the observed orbits of KBOs, run
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numerical integrations of their evolution, and then classify the objects into dynam-

ical categories based on these integrations. In Section 3.2.1, we describe the set

of KBOs used as the training and testing data for the machine learning classifier;

these KBOs have been previously classified according to the Gladman et al. (2008)

scheme. Section 3.2.2 then describes the training and refinement of the machine

learning algorithm for classifying the KBOs.

3.2.1 Kuiper Belt Observations and Classification

Here we describe the data set of observed KBOs used in this chapter, which is the

set of KBOs that was examined in Volk et al. (2017) (all multi-opposition objects

beyond Neptune available in the Minor Planet Center1 database as of late 2016)

combined with the set of classified objects from the Outer Solar System Origins

Survey reported by Bannister et al. (2018). The classifications of these ∼2300 KBOs

were produced following the procedures detailed in Gladman et al. (2008). Briefly,

an orbit is fit to the observations of each object using the Bernstein and Khushalani

(2000) orbit-fitting code. Then, the uncertainty in that orbit fit is estimated by

finding the largest deviations in semi-major axis on either side of the best-fitting

orbit that does not produce observational residuals that are more than 1.5 times

worse than the residuals from the best-fitting orbit. This produces three versions,

or ‘clones’ of the observed KBO that are integrated forward in time under the

gravitational influence of the Sun and the four giant planets (using SWIFT; Levison

and Duncan 1994) for 10Myr.

For objects with semi-major axes beyond Neptune, the dynamical evolution of

each clone (as determined by the time evolution of barycentric orbital elements) is

then classified into the following categories.

1. Resonant objects show libration of a mean motion resonance argument for

more than 50 per cent of the 10Myr span. Mean motion resonances occur

when a KBO’s orbital period is commensurate with Neptune’s orbital period,
1www.minorplanetcenter.net

www.minorplanetcenter.net
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which results in the libration (rather than circulation) of some combination

of the KBO’s mean longitude λKBO, Neptune’s mean longitude λN , and the

KBO’s longitude of perihelion $KBO and/or longitude of ascending node ΩKBO

(see Murray and Dermott 1999 for a complete description of mean motion

resonances); an example is Neptune’s 3:2 resonance in which Pluto-Charon

resides, for which the angle φ = 3λKBO−2λN−$KBO librates around φ = 180◦.

2. Scattering objects are objects whose semi-major axes a change by more than

1.5 au over the course of the 10Myr integration. This is a result of gravitational

interactions with Neptune that change the energy (and therefore semi-major

axis) of the objects’ orbit. In practice, most scattering objects have perihelion

distances q . 37−38 au, the rough boundary where strong direct interactions

with Neptune are possible at perihelion (e.g., Gladman et al., 2002).

3. Detached objects are objects with large eccentricities (e > 0.24) but that

do not experience significant changes in semi-major axis (∆a < 1.5 au) over

10Myr. This indicates a lack of strong interactions with Neptune; detached

objects typically have semi-major axes a & 50 au and large perihelion dis-

tances.

4. Finally, classical objects are KBOs that do not fall into any of the above

categories. Objects in the ‘main’ classical belt have semi-major axes between

the 3:2 and 2:1 resonances with Neptune (39 au < a < 48 au); ’inner’ classical

objects fall interior to the 3:2, and ‘outer’ classical objects are exterior to the

2:1. (See Gladman et al. 2008 for full discussion of the motivations for these

classification boundaries).

These classifications are determined by a combination of simple time-series analysis

and visual inspection of the orbital evolution.

Table 3.1 breaks down how our ∼2300 KBO data set is divided between these

four categories. The table is divided into secure and insecure classifications; secure

classifications are those objects for which all three clones behave similarly during
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Table 3.1: Overview of Observed KBO Catalog

Population Secure Insecure
All 1805 500
Resonant 642 184

3:2 333 14
2:1 71 6
7:4 51 31
5:2 48 7
5:3 45 11
4:3 26 3
3:1 11 9

Classical 998 151
Main 941 139
Inner 43 6
Outer 14 5

Detached 74 90
Scattering 91 75

the 10Myr integrations while insecure objects are those with differing classifications

between clones of the same object. Insecure classifications are often the result of

large uncertainties in the orbit of a KBO, although sometimes it reflects an object

with a very well-determined orbit being near the boundary of dynamical classes

(often being very near the edge of one of Neptune’s mean motion resonances). We

use only the ∼ 1800 securely classified objects in our training and initial assessment

of machine learning algorithms (Section 3.2.2 and Section 3.3); we discuss how the

classifier performs on the insecure objects in Section 3.4.1.

3.2.2 Classifier Selection and Training

A supervised machine learning classifier, such as we use here, must have labelled

(pre-classified) data to train and test upon so that we can calculate a method accu-

racy.2 Thus, we make the critical assumption that the Gladman et al. (2008) 10Myr

classification of KBOs described above represent the ‘true’ class of the object for
2The data features for all best fit orbits in the sample and the classifier developed in this article

can be found at https://github.com/rsmullen/KBO_Classifier.

https://github.com/rsmullen/KBO_Classifier
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our chosen classification scheme. There are other possible classification schemes

for observed objects (e.g., Elliot et al., 2005); the approach we take here should, in

principle, be generalizable to any classification methodology.

Data Features

A machine learning classifier is trained on features, or properties of an object. For

this classification problem, we compute various statistics of the numerical integra-

tions generated for the classification procedure described in Section 3.2.1; these

statistics are then used by the classifier to identify the true KBO population that an

object belongs to. The simulations output barycentric semi-major axis a, eccentric-

ity e, inclination i, argument of pericentre ω, longitude of the ascending node Ω, and

mean anomaly M at fixed time intervals (which, for the fiducial simulations, occur

every thousand years). For the purposes of this chapter, we discard M because this

angle (for a fixed orbit) simply varies linearly in time and its evolution depends only

on semi-major axis. We take subsamples of the data from time t = 0 to a range of

final times and record the initial, final, minimum, maximum, mean, standard de-

viation, and maximum deviation of the remaining five osculating orbital elements.

We also take step-wise time derivatives at each simulation output and calculate the

minimum, maximum, mean, and maximum deviation of the time derivatives. We

do not normalize any of the features. In total, we compute 11 features for each of

the five orbital elements, leading to a total of 55 features per object used in our

classification. To be explicit, every clone of an observed KBO (e.g., best fit orbit,

minimum or maximum orbit from observed errors) is treated as an independent

object. While many of the features may be highly correlated, the nature of the

classifier used herein (described in Section 3.2.2) reduces the risk of overfitting due

to these correlations.

The simulations used for the current classification methodology run to 10Myr.

However, many of the dynamical signatures indicative of class membership can

be seen on shorter time-scales (for example, single libration cycles for many of

Neptune’s mean motion resonances are ∼104 years). Thus, we explore classi-
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fication accuracy along the time axis. We output features with final times of

5 × 103, 104, 5 × 104, 105, 5 × 105, 106, 5 × 106, and 107 years. If shorter numeri-

cal integrations are sufficient to securely classify the majority of objects, then it

would be possible to leverage the same computational power per object to more

thoroughly explore the uncertainty range in the orbit fits. Because of the evolving

nature of KBO orbits, the 10Myr classification may not actually describe the orbital

behavior passed to the classifier. We discuss this further in Section 3.4.1.

Choosing and Refining a Classifier

Machine learning classification algorithms have been developed and optimized for a

multitude of purposes. Each has a type of data that it will classify most accurately.

Thus, it is important to test a variety of classifiers to find the best tool for these

data. We therefore test 15 of the multi-class classifiers available in scikit-learn

(Pedregosa et al., 2011) with default parameters.3 First, we test the support vec-

tor machine classifiers: Support Vector Classifier (SVC) and Linear Support Vector

Classifier (LSVC). Support vector machines try to create classes that are as well sep-

arated as possible in the multi-dimensional feature space; these classifiers work best

when classes are more discrete rather than more continuous. The next ensemble of

classifiers are the tree classifiers, which include Gradient Boosting Classifier (GBC),

Random Forest Classifier (RFC), AdaBoost Classifier (ABC), Extra Trees Classi-

fier (ETC), and Decision Tree Classifier (DTC). Tree classifiers use many layers of

binary classifications based on features to sort data into classes and are commonly

the choice for the type of multi-class classification problem explored herein. We also

test linear model classifiers, which classify based on a linear combination of features,

include Logistic Regression (LR), Passive Aggressive Classifier (PAC), Ridge Clas-

sifier (RC), and SGD Classifier (SGDC); Quadratic Discriminant Analysis (QDA)

is a similar classifier that uses a quadratic instead of linear decision function (the

function that returns a binary true or false classification for an object). The last few
3For transparency and reproducibility, we use a seed of 30 for all instances of a random number

generator.
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classifiers tested are Gaussian NB (GNB; based on Bayes’ theorem), K-Neighbors

Classifier (KNC; computing classes based on clustering in high-dimensional feature

space), Gaussian Process Classifier (GPC; based on Laplace approximation), and

Multi-layer Perceptron classifier (MLPC; a simple neural network classifier).

We show the accuracy of the different classifiers in Figure 3.1. The left panels

show the accuracy of classifiers trained on a 30 per cent hold-out, meaning that a

random 30 per cent of the data are reserved for testing the accuracy of the method

trained on the other 70 per cent of the data. While objects in the 30 per cent

hold-out testing set are randomly selected from the full ensemble of data, we use

the same testing set throughout this work. The right panels of Figure 3.1 show the

classifier accuracy in a 5-fold cross validation, meaning that the data are split into 5

subsections. New initializations of the classifier are trained on four subsections and

tested on the fifth for all combinations of the subsections. The reported accuracy

is then the average accuracy of the 5 different iterations of the classifier. Two of

the classification methods, LSVC and LR, did not converge (the required accuracy

was not reached in a reasonable number of iterations) and are therefore not shown

in the figure. The poorest performing algorithm shown is GPC; GPC is susceptible

to overfitting (fitting specific features in the training set instead of the broad popu-

lations) in multi-class classification when different classes occupy similar parameter

spaces and therefore shows poor accuracy with the testing set. Most of the tree

classifiers performed exceedingly well across all time slices, achieving > 90 per cent

accuracy without further refinement.

Based on these results, we choose the Gradient Boosting Classifier (GBC) as the

algorithm used for classification throughout the rest of this chapter. We also choose

an integration length of 100 kyr as our fiducial choice: this time subset reaches high

accuracy in the classifier (> 97 per cent without additional refinement), represents

more than 100 orbital periods for most distant objects, and requires a very compu-

tationally inexpensive simulation.

The next step is to maximize the accuracy of the Gradient Boosting Classifier

by optimizing the hyperparameters of the classifier, which are the parameters that
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Table 3.2: Hyperparameter search ranges to optimize method accuracy

Parameter Default Search Range
Lossa Deviance {Deviance, Exponential}
Learning Rateb 0.1 {0.1–1} with step 0.05
Nestimators

c 100 {10–500} with step 10
Maximum Depthd 3 {1–6} with step size 1
Maximum Featurese None {None, Auto, Sqrt, Log2}
a The function used to quantify the accuracy of the
method.

b The scale of the step length in the gradient descent,
which controls overfitting.

c The number of regression trees in the classifier.
d The height of the regression tree.
e The size of the subset of features considered when split-
ting a node.

control how the classifier learns. A basic description of these parameters and the

impact they have on GBC is given in the scikit-learn user guide4 For the purposes of

reproducibility, we show the five hyperparameters we tested and the range searched

in Table 3.2; using all combinations of these variables, we search for the most accu-

rate and efficient combination to use for the rest of this work. The hyperparameters

are validated using a 5-fold cross validation technique. This is a similar approach for

hyperparameter optimization as taken in, for example, Tamayo et al. (2016). The

top five most accurate combinations of hyperparameters are then given in Table 3.3.

The chosen classifier hyperparameters are given in the bottom line of the table; they

create the classifier that has the best combination of speed and accuracy, achieving

an average ∼98 per cent accuracy on our data with a 5-fold cross validation (with a

maximum accuracy of 99.2 per cent on any individual fold), and a 98.5 per cent ac-

curacy with the same 30 per cent hold-out split we use for Figure 3.1. The choice of

a small learning rate (which dampens fluctuations in the algorithm training process)

leads to a classifier that should be fairly robust against overfitting.
4scikit-learn.org/stable/modules/ensemble.html.

https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
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Figure 3.1: The accuracy of different machine learning classifiers as a function of
simulation length. The bottom panels zoom in on the upper 15 per cent of the
upper panels. The left panels show accuracy when a random 30 per cent of the
data are held out for testing, while the right panels show the accuracy for 5-fold
cross validation, in which a random 20 per cent of the data is held out for each of
5 iterations and the final accuracy is the averaged accuracy of all iterations. Every
line is labelled with the acronym provided in the text. The best combination of
accuracy and simulation length is achieved with the Gradient Boosting Classifier
(GBC; thick blue line) at 105 yr, which is marked with a small red circle in each
panel.
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Table 3.3: Highest accuracy hyperparameter combinations

Rank Loss Learning Nestimators Max Max Accuracy
Function Rate Depth Features

1 Deviance 0.2 140–500a 3 Log2 97.9± 0.9
2 Deviance 0.1 130 3 Log2 97.9± 1.1
3 Deviance 0.15 360 1 Log2 97.9± 1.3
4 Deviance 0.3 320 1 Sqrt 97.9± 1.4
5 Deviance 0.15 500 1 Log2 97.8± 1.3
Best b Deviance 0.1 130 3 Log2 97.9± 1.1
a All classifiers in this range of estimators gave identical results
b The best classifier was chosen based on a combination of speed
and accuracy.

3.3 Results

In this section, we describe the characteristics of our machine learning classifier

tested on the fiducial data set (100 kyr simulations of the ∼1800 securely classified

KBOs) with the features described above. We explore the data features that lead to

a good classification, study the probabilities of class membership to determine how

well our algorithm might perform on unknown data, and investigate the performance

of our algorithm on error-space clones of KBOs used in the classifier. We then explore

the performance of the algorithm on other types of objects, such as the insecurely

classified observed KBOs, in Section 3.4.

3.3.1 Object Classification and Feature Importance

The performance of the best-fitting classifier is shown in Figure 3.2. Of the 542 ob-

jects in the testing set, only eight were misclassified. To dissect the physical intuition

behind the classifier, we show the most important features that drive classification

in Figure 3.3. The two most important features for classification are the standard

deviation in semi-major axis (σa) and the maximum time derivative of the argument

of pericentre (max ω̇). We show how objects occupy the parameter space for these

two features in Figure 3.4. Other parameters, including the spread of eccentricities

and the changes in inclination, become important for further refinement of classes.
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As Figure 3.4 shows, the misclassified objects (identified by red boxes) typically

lie along the boundary of multiple classes in feature space. Some of these objects

are also near the boundaries between classes apparent in Figure 3.2; in several cases,

the misclassified objects undergo late-simulation orbital evolution that changes the

population the object belongs to in the 10Myr simulations. Generally, the classifier

performs quite well on the majority of resonant objects despite the lack of semi-

major axis normalization in the feature creation. In addition, the classifier is able

to distinguish detached objects from classical KBOs despite the lack of a strong

differentiation between the populations in terms of their orbital evolution (which is

quite stable in both classes).

Figure 3.4 shows that, typically, classical objects have the smallest deviation

in semi-major axis between the classes. The resonant objects have a much larger

σa because they undergo periodic changes in a and e as they librate in their reso-

nances. Detached objects lie somewhere between classical and resonant. Scattering

objects have the largest σa because of Neptune’s influence on their orbital evolution.

Classical objects tend to have a large, positive max ω̇, while detached and resonant

objects have a smaller value (or even negative value, for ∼20 resonant KBOs). The

longitude of perihelion, $, is a sum of the argument of perihelion ω and the lon-

gitude of ascending node Ω. For KBOs that are not strongly influenced by mean

motion or secular resonances, $ precesses and Ω regresses at rates determined by

the net gravitational influence of the time-averaged orbits of the giant planets (see

the discussion of secular theory in Murray and Dermott 1999). These rates generally

decrease with increasing semi-major axis with the exception of a sparsely populated

region a = 40 − 42 au in the classical belt where there are secular resonances (see,

e.g., Chiang and Choi, 2008). Thus it makes sense that the relatively small range

of semi-major axes for the classical KBOs translates into a relatively well-defined

range of max ω̇ in Figure 3.4, and the more distant detached objects generally have

lower values of max ω̇. For the resonant objects, the evolution of ω is influenced

by resonant dynamics; the very small or negative values of max ω̇ for some objects

likely reflect so-called ‘Kozai’ libration within mean motion resonances (e.g. Mor-
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bidelli and Moons, 1993), where Ω̇ and $̇ cancel, leading to libration of ω. For

scattering objects, max ω̇ varies broadly, reflecting their wider range of semi-major

axes and that their orbits undergo significant changes. Reassuringly, all of the mis-

classified objects lie upon a boundary between populations in Figure 3.4, indicating

that there is a physical ambiguity in the object’s orbital evolution that the classifier

is picking out.

We show distributions of and correlations between the top four features (σa,

max ω̇, ∆ȧ, and σe) in Figure 3.5. Again, in most of these parameter spaces, the

misclassified objects fall along a boundary between different classes. Similarly, the

misclassified objects are never absolute extrema; rather, they tend to have middling

values. None of the distributions for different classes are well-separated in any

individual features, and the ordering of the peaks changes. This demonstrates that

a two-parameter correlation is unable to uniquely separate the four classes, but a

highly-multidimensional classification, such as is constructed by the classifier, is able

to pick out nuances that lead to accurate classifications.

3.3.2 Probability of Class Membership

For an automated method of object classification to be viable, a majority of objects

should have a high probability of correct class membership, and ideally all of the

misclassified objects will have low class membership probabilities. In the classifica-

tion algorithm, each object is assigned a probability of membership for each of the

classes such that the sum of all individual probabilities is one, and the assigned class

is that with the highest probability. We show the probabilities of class membership

for the four populations of correctly classified objects and the misclassified set in

Figure 3.6. Most objects, especially the common resonant and classical KBOs, have

high probabilities of membership. Over 80 per cent of the testing set has a greater

than 3σ probability of class membership: 79 per cent of resonant KBOs, 88 per cent

of classical KBOs, 11 per cent of detached, and 75 per cent of scattering objects

have very high probabilities of belonging to the correct population. The detached

objects have lower probabilities when compared to the other classes because there
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Figure 3.2: The classes of objects identified, plotted in the standard orbital plot
of eccentricity vs. semi-major axis. The training data are identified as small black
points in the background, while the testing data are shown by the larger coloured
points. Misclassified objects are identified by red squares, where the background
colour in the square shows the true class and the ‘x’ shows the computed class. We
achieve a 98 per cent accuracy in our classifier using the 542 objects in our testing
set.
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Figure 3.3: Relative importance of the top ten features (from top to bottom: most to
least important) used by the classifier to sort objects into their populations. The sum
of all feature importances adds to one. As can be seen, the most important orbital
features for classification are the standard deviation of semi-major axis (which will
be indicative of scattering or libration) and the maximum rate of change of the
argument of pericentre.
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along boundaries between classes.
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are relatively few detached objects with secure classifications, so they are under-

represented in the training set. Many of the observed ‘detached’ objects are either

near the edges of mean motion resonances with Neptune or have orbit-fit uncertain-

ties that encompass these resonances, thereby leading to lower class membership

probabilities. None of the misclassified objects has a probability greater than 2σ.

By using even a conservative probability of membership cutoff of 3σ ≈ 99.7 per cent,

we may be able to reduce the burden of human intervention substantially should

a method like this be incorporated into a KBO classification pipeline. We explore

this further in Section 3.4.

We can also examine the distribution of class probabilities for each object, which

we show in Figure 3.7. The misclassified objects have a spread of class probabilities

that is much smaller than other objects. Additionally, the class with the second

highest preference is typically, but not always, the correct class, meaning that the

classifier did pick up on some of the features associated with the correct classification.

Most of the test set objects have well-stratified probabilities, indicating that one

class is highly favored. Figure 3.7 shows that the classical KBOs typically are

very dominant in preference for their true class, with resonant classification being

consistently the next highest (though still low) probability. Classicals have a much

lower probability of being detached or scattering. Resonant, and scattering objects

have little preference for the class with the second highest probability. There is a

mild preference amongst the detached objects for a resonant classification being the

next most probable. This is likely a reflection of the fact that the observed detached

KBOs do tend to fall relatively close to resonances with Neptune.

3.3.3 Object Clone Classification

The machine learning classifier presented above provides a more automated and

computationally less expensive method to classify individual objects. As such, one

particularly useful application of this type of algorithm is to make a more reliable

classification pipeline with an expanded consideration of the orbit-fit uncertainties

for each observed KBO. A machine learning classifier could be used to classify ‘error
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Figure 3.7: Probability of membership in all four classes for each object, with ob-
jects separated into quadrants based on their true class. Each location along the
horizontal axis in a panel shows a different object. An object’s probability of mem-
bership for each of the four classes are shown as colour-coded dots (which sum
to one) along that vertical line. Objects that were misclassified are identified by
red squares. The number of correctly classified objects shown in the resonant and
classical panels has been reduced to one hundred for visual clarity. From this, we
can see that resonant objects and classical KBOs typically resemble each other the
most due to the stratification of class probabilities, while detached and scattering
objects don’t have an obvious trend for the ordering of other class probabilities.
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clones’ of an observed object that are initialized with perturbations in orbital ele-

ments drawn from the observational error space of the KBO. Because we have used

shorter numerical integrations (100 kyr) in our classification scheme, we can run

∼100 simulations of error clones for the same computational cost as the traditional

10Myr integration. Additionally, the inclusion of error clones in the classification

provides better leverage on the probability of class membership: if the clones agree

with the classification of the best fit, the object’s classification can be better trusted.

We first investigate the classifications of the minimum and maximum error clones

for each object in the testing set (drawn following the methodology of Gladman et al.

(2008) and described in Section 3.2.1). We call the collection of the independently

classified minimum, best fit, and maximum clones for each observed KBO a ‘clone

set’ that we can analyse as an ensemble. Because our training and testing data draw

only from the securely classified KBOs, these clones have the same true classifications

as the best-fitting clones. The error clones were classified using the fiducial GBC

classification algorithm trained on original training set of securely classified, best

fit KBOs. The classification of these objects is shown in Figure 3.8. The majority

of clones agreed with both the true class and the best fit class: 98 per cent of

clones agreed with the best fit, and 97 per cent of clones agreed with the true value.

There is no preferential population or area of parameter space in which the clone

classification under-performs.

The 17 misclassified clone sets (out of 541 in the testing set) are explored further

in Figure 3.9. Six of the sets had all clones agree with each other (meaning that

the best fit and error clones were systematically misclassified), and 15 had at least

one clone agree with the best fit. There is no preference for the type of clone

disagreement seen: we find all populations mixed among the clones and true values.

To better understand the behavior of clones in the full error space, we select

six clone sets that agreed with both each other and the true classification and six

clone sets that disagreed and ran simulations for an additional 250 clones randomly

sampled from the observational uncertainties. To do this, we use the orbit uncertain-

ties and corresponding covariance matrix calculated in the Bernstein and Khushalani
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(2000) orbit-fitting procedure to generate clones. This samples an uncertainty range

somewhat different from the Gladman et al. (2008) minimum and maximum clones

because the covariance matrix does not account for potential systematic uncertain-

ties in the astrometry reported for the objects. The classifications of these clones

are shown in Figure 3.10.

For illustrative purposes, we now discuss the individual behavior of the rightmost

six objects from Figure 3.10. We find that, in most instances, only the extreme

maximum and minimum error clones, or clones close to the extrema, differ from the

best fit value. Four of six clone sets agree with the best fit value entirely. The clone

ensembles also have very similar probabilities of class membership with one another

(less than 0.2 dex for the examples shown here except for K14B64W5, which has a

spread of nearly two orders of magnitude) and have similarly stratified probabilities

in all classes (meaning that the probability ordering of one object’s clones frequently

does not change across the error space).

K11Uf2Q only has three differing clones, which agree with the classification of the

maximum error clone, and the best fit agrees with the ‘true’ classification. Similarly,

K14Wp0S’s clones agree with both the best fit value and the true classification,

and only the minimum error clone disagrees with all other clones. Both of these

cases show the power of using a large ensemble of clones: the machine learning

method correctly identifies that the dynamical behavior of the vast majority of the

ensemble is consistent, with only a few clones at the edges of the uncertainty range

showing different physical evolution. This provides a strong constraint on the true

classification of the observed object.

The error clone classifications of K15RR7W, K15VG7P, and l1152 all consistently

disagree with the ‘true’ classifications of the objects. K15VG7P is in a mixed-

argument resonance, and the classifier incorrectly identifies it as a classical object.

K15RR7W is a Neptune Trojan (in the 1:1 mean motion resonance with Neptune).

The classifier did not perform well at identifying low eccentricity Trojans as resonant
5We refer to individual objects by their packed designations; see https://www.

minorplanetcenter.net/iau/info/PackedDes.html

https://www.minorplanetcenter.net/iau/info/PackedDes.html
https://www.minorplanetcenter.net/iau/info/PackedDes.html
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objects. We discuss the underlying reasons for these kinds of misclassifications in

Section 3.4.1. KBO l1152 is a weakly (∼2 au) scattering object on longer time-

scales (∼0.5Myr), but has a very stable semi-major axis on the short time-scale

integration used by the classifier; therefore, the classifier correctly identified the

population based on the information used but failed relative to the full 10Myr

integration. These three objects highlight the fact that these kinds of errors in

the machine learning classifier will need to be addressed and/or characterized to be

able to see the full benefits of error clone analysis. We discuss possible avenues of

improvement in Section 3.4.3.

Only one object, K14B64W has substantial disagreement in clone classification

across the clone ensemble. K14B64W’s clones are classified as 36 per cent resonant,

57 per cent detached, and 8 per cent scattering. There is no obvious patterning of

clone classification in semi-major axis, eccentricity, or inclination space; the identi-

fied class appears to be randomly distributed. However, visual examination of the

clones show variable dynamical evolution. This object intermittently librates in a

high-order resonance. Thus, the ambiguity in the machine learning classification of

clones reflects the diversity of dynamical evolution across the uncertainty range for

this observed orbit.

3.4 Discussion

Here we discuss in more detail the dominant reasons for errors in the machine learn-

ing classifier, both in the data set classified above and in two additional data sets

to which we have applied the trained classifier. We suggest some future improve-

ments that could be made to increase the accuracy of machine learning as applied

to dynamical classification in the outer solar system.

3.4.1 Reasons for Misclassification

We examined in detail many of the cases of misclassification by the GBC classifier

to get a sense of the dominant reasons for misclassification. Some of the misclassi-
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Figure 3.8: Eccentricity vs. semi-major axis for clones of secure objects. Small black
points in the background show the training data, while the small points show the
clones where all three objects had the same classification and were correctly sorted
into the true class. Squares show KBOs in which at least one of the clones was not
assigned the ‘true’ class (∼3 per cent of the testing data). The background colour
of the square depicts the true class, while the coloured circle in the middle shows
the class of the best-fitting orbit.
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Figure 3.9: Comparison of the classification of the clones that did not agree with each
other and/or the true value. Each column shows the true class (square), maximum
error clone (up triangle), best fit orbit (circle), and minimum error clone (down
triangle) for one object, with colours corresponding to the same classes used in
previous plots, such as Figure 3.8. We find objects where all three clones agree with
each other but disagree with the true value (e.g., second set from the right), and we
find instances in which at least two clones disagree with each other (e.g., left-most
example).
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orbit (circle). Most of the objects on the right have a majority of clones agree with
each other; K14B64W is the only object that has substantial disagreement between
clones.
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fied objects are KBOs whose orbital evolution is just inherently ambiguous. These

include cases where a judgement call was made to determine the ‘true’ classification;

examples of this include objects on the border between scattering and detached (i.e.,

semi-major axis variations very close to the empirical limit of 1.5 au determined by

Gladman et al. 2008). In other ambiguous cases, the true classification is resonant

because an object’s resonant angle librates for the majority of the 10Myr simulation,

but that libration is intermittent. Some of these intermittently resonant objects are

not librating at the very start of the integrations, so the machine learning classifier

is not wrong, strictly speaking, when it classifies those as non-resonant based on

short integrations; Figure 3.11 shows an example of this kind of ‘misclassification’.

We see a few similar instances of misclassification of true scattering objects as de-

tached where the object’s short-term orbital evolution is quite stable, but longer

integrations show it will scatter on 10Myr time-scales. In these cases, the use of

the shorter integration time-scale results in a different classification than for longer

integrations because the dynamical behavior changes significantly over time. There

are other instances, however, when the short-time-scale behavior can predict the

classification on longer time-scales, even if the short-time-scale behavior does not

meet the Gladman et al. (2008) definitions; an example of this is when the machine

learning classifier correctly identifies a scattering object even though its semimajor

axis does not undergo significant changes in the 100 kyr integrations. While the

classifications based on shorter integrations perform well overall compared to the

10Myr integrations in the Gladman et al. (2008) scheme, this kind of behavior does

highlight that classifications can be time-dependent.

Other cases of misclassification are likely due to limitations of the training set.

For instance, the algorithm is not always able to distinguish between classical and

detached objects. This is likely partly because there are relatively few detached

objects in the data set on which to train and partly because the boundary between

classical and detached in the Gladman et al. (2008) scheme is slightly arbitrary at

smaller semi-major axes where these two populations share similar current orbital

evolution.
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In the misclassifications described above, the classifier tends to assign more equal

probabilities to two or more classes, and the wrong ‘best’ class is typically not

strongly favored. The one instance we find in our data set where the classifier assigns

a high probability to the wrong class membership is for resonant objects librating

in mixed eccentricity and inclination type resonances. The vast majority of reso-

nant KBOs discovered to date librate in eccentricity-type mean motion resonances,

meaning that the resonant angle involves the KBO’s longitude of perihelion and the

libration causes coupled variations in the KBO’s semi-major axis and eccentricity.

However, there are a few (∼10) resonant KBOs that have librating resonant angles

that involve both the KBO’s longitude of perihelion and the longitude of ascending

node. These mixed-type resonances are generally weaker than the eccentricity-type

resonances, so the variations in semi-major axis and eccentricity are less pronounced;

there are also variations in inclination not seen in eccentricity-type resonances. The

classifier, which is essentially trained only on eccentricity-type resonances, therefore

does not have the statistical power to recognize this alternative form of resonance.

The dominance of eccentricity-type resonances in the training set likely also con-

tributes to the classifier’s poor performance identifying low-eccentricity Neptune

Trojans. The 1:1 resonant argument does not involve the longitude of perihelion, so

it does not produce strongly coupled variations in a and e like most of the resonant

population. We discuss how these insights could lead to improved machine learning

classifiers in Section 3.4.3.

Classification of Insecure Objects

In the analysis presented above, we only show the classification of securely classified

KBOs. We now investigate the performance of the fiducial classifier (trained on

the secure objects) on the best-fitting orbits of the 500 KBOs from Table 3.1 with

insecure classifications according to the Gladman et al. (2008) scheme. The overall

accuracy for this data set was unsurprisingly lower than for the secure objects at 75

per cent. Additionally, the probabilities of class membership were somewhat lower.

Only about 70 per cent of correctly classified classical KBOs had more than a 3σ
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K11Uf1B: 3:2 Resonant KBO misclassified as Classical KBO

Figure 3.11: Semi-major axis and resonant angle as a function of time for a misclas-
sified object. In the top panels, the black line shows the semi-major axis and the
grey lines show the pericentre and apocentre distance. The bottom panels show the
resonant angle (assuming libration in the 3:2 resonance) with the centre of libration
(180◦) indicated by the horizontal dashed line. The left panels show the simulation
used in the classifier (105 yr), while the right panel shows the simulation used to
compute the true class (107 yr). This object shows one of the major reasons for
misclassification: a dynamical event happens past the time of the simulation fed
to the classifier (in this case, the object scatters into the 3:2 resonance at around
3Myr). The classifier correctly identified this object as a classical KBO given the
short simulation it was given, but the long-term dynamical behavior clearly indicates
that the object exists in the 3:2 resonance.
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probability of class membership, and the other three classes contained < 40 per cent

correctly classified objects with high probability.

A reasonable fraction (∼15 per cent) of misclassified insecure KBOs possessed

a high (3σ) probability of class membership. Of the incorrect classifications, we

closely examined the 50 KBOs (about 40 per cent of misclassified objects) with (in-

correct) classification probabilities at> 95 per cent confidence. Of these, 6 are KBOs

whose orbital evolution dances along the borders between classes; for the integration

provided to the classifier, the algorithm made a reasonable choice. Another 7 are

mixed-argument resonant objects that were incorrectly deemed classical due to the

lack of representative objects in the training sample. There are 13 resonant KBOs

that are only intermittently resonant and are not librating over the 100 kyr time-scale

integrations and were thus misclassified. Finally, 7 KBOs had ‘true’ classifications

that differ from the behavior of the best-fitting orbit: the Gladman et al. (2008) pro-

cedure assigns classifications based on the minimum and maximum clones in cases

where those both agree even if they disagree with the best-fitting orbit, meaning

that the GBC classifier correctly identified the class of the best-fitting orbit. Thus,

we have only 17 KBOs that were unambiguously misclassified. Most of those 17

KBOs have true classifications that place them in high-order resonances (which are

inherently more rare in the training data set) and/or have libration at very large

amplitude within their resonances (meaning they are nearly non-resonant). Overall

this is consistent with the reasons for misclassification found in the main data set.

A typical observed set of KBOs will have a mix of secure and insecure classifi-

cations, so we can estimate the expected probability distribution for our classifier

by mixing insecure objects into our test set. Our overall set of KBOs has ∼20 per

cent insecure classifications (see Table 3.1), so adding a randomly chosen set of 135

insecurely classified KBOs to our testing set of 542 securely classified objects results

in a typical mix of secure and insecure objects. The expected combined probability

distributions from the machine learning classifier for this set of KBOs is shown in

Figure 3.12. The features we noted in Section 3.3.2—a large fraction of high prob-

abilities for correctly classified objects and a large fraction of low probabilities for
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misclassified objects—still hold true, which bodes well for the future applicability

of this methodology. About 75 per cent of correctly classified objects have > 3σ

probability of class membership, while more than 70 per cent of misclassified objects

have probabilities less than 2σ. The small tail of high probability misclassifications

results from objects suffering from classification time-scale ambiguity as described

above.

3.4.2 Classification of DECam Objects

The recent publication of observations of 131 new KBOs discovered using the Cerro

Tololo-DECam (Wasserman et al., 2020) provides an independent set of objects on

which to test the trained machine learning algorithm. Using the astrometry pro-

vided by the Minor Planet Center, we followed the Gladman et al. (2008) procedure

described in Section 3.2.1 to determine the ‘true’ classifications of these new KBOs.

From this procedure, we find 54 classical, 52 resonant, 18 detached, and 7 scattering

KBOs in this data set.

We then classify all of the DECam data using the GBC classifier developed

above (which uses the same training set of objects as the classifier in Section 3.3).

We do not remove objects with insecure classifications from the data set, as we aim

to characterize the performance of the classifier on ‘unknown’ data with a fairly

typical mix of secure and insecurely classifiable objects, as would happen if this

methodology was folded into a blind pipeline analysis. Without any modifications

to the algorithm, the machine learning classifications agreed with the true classifi-

cations 92.4 per cent of the time, as shown in Figure 3.13. We have 10 objects that

do not agree with the true classification, and seven of those are objects that have an

insecure true classification. The misclassifications in this data set occupy a similar

parameter space to misclassifications in our fiducial testing set: the classifier finds

ambiguity in a few low eccentricity resonant objects and an object that is close to

the classical–detached boundary.

We show the best-fitting class probability in Figure 3.14. In this figure, we do

not differentiate between the correct classifications and misclassified objects in an
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Figure 3.12: Cumulative probability distributions for the combined secure and inse-
cure sample (representing 30 per cent of our overall KBO sample, with ∼80 per cent
secure and ∼20 per cent insecure). The plot follows the conventions of Figure 3.6.
Many of the misclassified objects with high probability are misclassified due the
differences in time-scales between the 10Myr Gladman et al. (2008) classification
scheme and the 100 kyr method presented herein: the dynamics observed on shorter
time-scales are consistent with a different class than the dynamics seen on longer
time-scales.
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effort to simulate the distribution that might be expected from a blind classification

of unknown data. Similarly to the fiducial data set and the joint secure/insecure

analysis in Section 3.4.1, a majority of classical (63 per cent) and resonant (62 per

cent) objects have best-fitting probabilities of > 3σ. Only one of the ten misclassified

objects (K13RC4O, a true resonant classified as a classical) is a ‘false positive’ with

a best-fitting probability of 3.00σ; this object is in a mixed-argument resonance,

and the true classification is insecure.

Because this data set is very manageable in size, we visually examined the dy-

namical evolution of each clone of the 131 new KBOs to determine exactly how well

the machine learning algorithm did and to identify features of the objects classified

incorrectly or classified at low probability. We find that every false classification

made at > 90 per cent confidence was the result of the true classification being a

mixed-argument resonance. The majority of both the misclassifications and true

classifications made at lower probabilities are either resonant objects with low ec-

centricities or very small semi-major axis libration or are objects whose ‘correct’

classifications are a judgment call because they are on the border between different

dynamical classes. The algorithm generally gives lower probabilities to the detached

classifications. An examination of the ‘true’ detached KBOs in this data set reveals

that they are mostly insecure classifications; 15 of the 18 detached KBOs are close to

the boundaries of resonances with Neptune, and an additional 2 nearly have enough

semi-major axis mobility on 10Myr time-scales to be classified as scattering rather

than detached. Thus, the lower probabilities for class membership are appropriate.

3.4.3 Improvements to the Classifier

Alternate Features

In this work, we have used only the features that are simplest to directly extract

from the numerical simulations in the machine learning classifiers. However, one

could imagine that more dynamically-motivated features, such as pericentre dis-

tance, could improve classifications, especially of objects like the Neptune Trojans
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(objects in the 1:1 resonance) or scattering objects that cross Neptune’s orbit. To

test if new features improves the classification, we compute the pericentre distance

for all objects at each simulation step and extract the same set of features described

in Section 3.2.2 (mean, standard deviation, time derivative, etc.) to add to the

feature ensemble used to train the classifier. We also add some additional features

for the orbital angle evolution: we include the total slope of ω and Ω, which are in-

tended to be less sensitive to short time-scale variations than ω̇. Using the same set

of objects in the training and testing sets, albeit with the new features, we achieve

the same accuracy as found for the fiducial data. The best-fitting probability distri-

butions are nearly identical; the cumulative fractions vary by less than 0.07 across

all bins for all classes. The ordering and relative influence of feature importances

are the only change resulting from the addition of new features. The second most

important feature in the fiducial data, max ω̇, is replaced by the slope of ω, and the

initial pericentre distance becomes the third most important feature. However, be-

cause pericentre is a higher-dimensional combination of features that already exist

in the data, little new information is added to the classifier, leading to no better

accuracy in object classification.

Synthetic Kuiper Belt Catalogs

The classifier developed herein has the most difficulty classifying less common ob-

jects, such as objects in mixed-argument resonances. The dominant factor in the

classifier’s struggle with these types of objects is low number statistics. Because

only a few examples are known across the entire Kuiper Belt, there aren’t sufficient

numbers in the training set for the classifier to extract a strong set of features that

characterizes the population well. To alleviate this issue, one could create a more

balanced data set (meaning that there are more equal numbers in different pop-

ulations) using simulated objects. The benefits of a synthetic catalog include an

extremely well-characterized input sample and the ability to include large numbers

of objects in every population class. The larger number of objects in a synthetic

data set would also allow separation of some classes into sub-components. This
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would be particularly useful for identifying different kinds of resonant behavior. If

the mixed-argument resonant objects, which have different characteristic a, e, and i

evolution compared to the eccentricity-type resonant objects, were included in the

classifier as an independent class, the classifier would likely achieve a better and

more accurate classification for this population. This approach might also help with

classifying intermittently resonant objects; feeding the classifier a labelled set of

objects that are not librating during the 100 kyr integrations but that will librate

for the majority of a 10Myr integration might help it identify features associated

with being on the boundary of a resonance. Just as with an observed data set, a

synthetic data set runs the risk that any type of object not included in the synthetic

data set (such as a type of resonance not yet seen) may not be properly classified;

but conversely, in a synthetic data set, one could include theoretically hypothesized

or predicted populations of objects not yet observed. A synthetic catalog might

also be more useful for sub-classifying resonant objects into their specific resonances

rather than into one bulk class of resonant objects. This idea will be explored in a

future paper.

3.5 Conclusions

In this chapter, we successfully demonstrate that very short (∼100 kyr) numerical

integrations can be used to classify observed KBOs into their dynamical populations

(resonant, classical, detached, and scattering) with high accuracy (> 90 per cent).

We use 1805 KBOs that have secure classifications as the fiducial data set and take

the traditional 10Myr classification as the ‘true’ classification; the data consist of

642 resonant, 998 classical, 74 detached, and 91 scattering KBOs. We find the

following.

1. A gradient boosting tree classifier, which is a multi-class machine learning

classifier that uses several initializations and layers of sorting trees for clas-

sification, achieves a 98 per cent accuracy on the fiducial testing set of 542

securely classified KBOs. We find that the most important data features for



106

classification are the standard deviation of semi-major axis (σa) and the max-

imum time derivative of the argument of pericentre (max ω̇).

2. we find that ∼80 per cent of our fiducial testing set has a > 3σ probability

of belonging to the correct class. Misclassified objects typically have a much

lower probability of class membership (< 2σ), making them easy to differ-

entiate. Almost all of the objects assigned higher probabilities of incorrect

classifications (i.e., potential false positives) are objects that are in mixed-

argument mean motion resonances with Neptune; this is an uncommon type

of resonance inadequately sampled in our training set.

3. Misclassified objects tend to lie along the boundaries between populations in

feature space, indicating that the classifier is picking up on ambiguity between

dynamical populations. Many of these objects have orbital evolution that

makes their true classifications difficult to determine.

4. Objects drawn from the observed error space of known KBOs typically have

the same classification and probability of class membership as the best fit.

Because the machine learning algorithm operates on a shorter integration time-

scale than the fiducial 10Myr classifications, a promising avenue for future

classification pipelines is to use those computational savings to better explore

the uncertainty range of the observed KBOs’ orbit fits. We demonstrate how

a large ensemble of clones can be used to better verify population membership

for an object and to provide insight into the intrinsic physical variability of an

orbit’s observed error distribution.

5. we test our algorithm on a completely new data set of 131 KBOs recently

released from a DECam survey (Wasserman et al., 2020) and find a 92 per

cent agreement with the ‘true’ classifications despite only 75 per cent of the

objects having a secure true classification. This successful performance on an

unknown data set with a mix of secure and and insecure ‘true’ classifications

that is typical for surveys indicates that a machine learning classifier will be



107

viable for any new observed KBOs.

We have shown that a simple machine learning classifier will be a viable and

valuable tool for classifying KBOs in the LSST era. We are able to substantially re-

duce both the computational and human resources needed to label observed KBOs

into their dynamical populations, which will be critical as the number of objects

grows by an order of magnitude in the next several years. Methods like this have

also recently been proven successful for asteroid family members (Carruba et al.,

2020). There are a number of improvements to the work presented here that would

enable this methodology to be more reliable for expected large survey observations.

Most importantly, a large synthetic training set should be created; such a training

set would allow for more accurate classification of rarely-observed dynamical types,

prepare for classification of as-yet unobserved object types, and perhaps enable for

a more detailed division of dynamical classes (e.g., classifying into individual reso-

nances). Being able to accurately and efficiently classify Kuiper Belt observations

will enable science by allowing for detailed comparisons of planet formation and

evolution models with the Kuiper Belt today.

Acknowledgements

We thank our reviewer Jean-Marc Petit for his thoughtful analysis of our work.

We thank Leon Palafox for input on an early iteration of this project, and we

thank Kaitlin Kratter for helpful comments on this manuscript. RAS acknowl-

edges support from the National Science Foundation under Grant No. DGE-

1143953. KV acknowledges support from NSF grant AST-1824869 and NASA grants

NNX14AG93G, NNX15AH59G, and 80NSSC19K0785.



108

CHAPTER 4

Planet Scattering Around Binaries: Ejections, Not Collisions

This chapter has been previously published as Smullen R. A., Kratter K. M., Shan-

non A., 2016, MNRAS, 461, 1288 (DOI: 10.1093/mnras/stw1347)

Abstract

Transiting circumbinary planets discovered by Kepler provide unique insight into

binary star and planet formation. Several features of this new found population,

for example the apparent pile-up of planets near the innermost stable orbit, may

distinguish between formation theories. In this work, we determine how planet-

planet scattering shapes planetary systems around binaries as compared to single

stars. In particular, we look for signatures that arise due to differences in dynamical

evolution in binary systems. We carry out a parameter study of N -body scattering

simulations for four distinct planet populations around both binary and single stars.

While binarity has little influence on the final system multiplicity or orbital distri-

bution, the presence of a binary dramatically effects the means by which planets

are lost from the system. Most circumbinary planets are lost due to ejections rather

than planet-planet or planet-star collisions. The most massive planet in the system

tends to control the evolution. Systems similar to the only observed multi-planet

circumbinary system, Kepler-47, can arise from much more tightly packed, unstable

systems. Only extreme initial conditions introduce differences in the final planet

populations. Thus, we suggest that any intrinsic differences in the populations are

imprinted by formation.
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4.1 Introduction

In the early part of this decade, a long-awaited discovery was made: the first tran-

siting circumbinary planet from Kepler . This planet, Kepler-16, was reported by

Doyle et al. (2011). Since then, another eleven circumbinary planets (CBPs) have

been found, including the only known circumbinary multi-planet system, Kepler-47

(Orosz et al., 2012). While the sample of planets is still small, a few unique charac-

teristics have emerged. Welsh et al. (2014) observe that there are no very massive,

close-in planets, and the known planets tend to reside close to the stability limit of

the binary. Although these trends might arise coincidentally due to the small sample

size, if real, they hint at differences in the formation and evolution of planets around

binary and single stars. In this work, we aim to tease out whether circumbinary

disks might preferentially form lower mass planets near the stability boundary, or if

dynamical processes sculpt the systems into what we observe.

Transiting CBPs provide important insight into planet formation and planetary

dynamics because we can investigate the interplay and timeline of binary star for-

mation and planet formation. Most simply, formation “in-situ" around the binary

is strongly favored. Armstrong et al. (2014) find that the observed CBP population

is consistent with formation in a co-planar disk, unless the formation efficiency for

CBPs drastically exceeds that for single stars. This similarity aside, the formation

mechanisms for CBPs may be somewhat different than those posited for planets

around single stars. Circumprimary/secondary protoplanetary disks are often trun-

cated or less massive in close binaries, leaving less planet-forming material, while

circumbinary disks can be as massive as a single-star disk (Harris et al., 2012).

In contrast, the population of the debris disks around binaries do not show flux

deficits, as might be expected given the reduced mass in the parent population (Ro-

driguez et al., 2015). Martin et al. (2013) propose that CBP formation might happen

more efficiently in dead zones (quiescent regions in the disk mid-plane), which could

produce gas giants easily. On the other hand, the binary can excite substantial

eccentricity in the protoplanetary disk, inhibiting planet formation near the binary.
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The eccentric disk gives rise to eccentric planetesimals which suffer high velocity

collisions that lead to erosion instead of growth, pushing planet formation to larger

radii (Marzari et al. (2013), Silsbee and Rafikov (2015)) . If a planet instead forms

in the outer disk and migrates inward due to tidal interactions with the disk, one

might still expect planets to exist close to the stars, which Bromley and Kenyon

(2015) posit to be the likely scenario. Pierens and Nelson (2013) find that a planet

forming in the outer disk can migrate toward the stability limit but will probably be

pumped to moderate eccentricity along the way. Additionally, Pierens and Nelson

(2008) find that massive planets, if they exist around binaries, are probably found

at larger radii because tidal torques from the binary cause outward migration.

We must also consider planet formation in the presence of binary evolution.

There is a lack of observed planets around short period binaries (periods less than

about 7 days; Armstrong et al. (2014), Martin and Triaud (2014)). Models proposed

in Mazeh and Shaham (1979) and Fabrycky and Tremaine (2007) suggest that these

binaries form on wider orbits and then migrate due to tidal circularization stemming

from Kozai oscillations induced by a tertiary companion. Martin et al. (2015) suggest

that this is prohibitive for CBP existence around a tight binary, while Muñoz and Lai

(2015) and Hamers et al. (2016) posit that CBPs may just become very misaligned.

Both of these scenarios would provide a dearth of transiting CBPs around close

binaries.

Formation alone, however, does not explain the present-day orbits in planetary

systems around single stars. Previous works, such as Chambers et al. (1996), Faber

and Quillen (2007), Jurić and Tremaine (2008), Chatterjee et al. (2008), Smith and

Lissauer (2009), Raymond et al. (2010), Lissauer et al. (2011b), and Pu and Wu

(2015) have looked at the impact of planet scattering on planet populations around

single stars. Mustill et al. (2014) and Veras and Gansicke (2014) have extended

this to understand dynamical evolution over the full stellar lifetime. Specifically,

Jurić and Tremaine (2008), Chatterjee et al. (2008), and Pu and Wu (2015) have

found that the observed exoplanet sample is consistent with significant sculpting by

dynamical evolution. This naturally raises the question of how scattering is modified
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around binaries.

The addition of a second massive body substantially changes stability very close

to the binary. Holman and Wiegert (1999) have shown empirically that orbits within

about two times the binary semi-major axis are unstable on very short timescales,

suggesting that neither planets nor the natal disk should exist in this region. How-

ever, it is unclear how significantly planets on wider orbits will be impacted except

at special locations such as mean motion resonances with the binary. One possible

avenue of further evolution is the modest eccentricity excitation at semi-major axis

2-10 times the binary semi-major axis, which may fundamentally change the course

of planet-planet scattering and thereby change the resultant population. In this

work we aim to understand the impact of the binary on planet populations sculpted

by planet-planet scattering. By isolating the role of the binary in any differential

evolution due to scattering, we can determine which differences are imprinted by

formation.

To address the interplay between the formation and dynamical evolution of cir-

cumbinary planets, we perform N-body integrations of planets around single and

binary stars. We study the binary’s impact on a wide range of different planet

populations, investigate the changes in orbital properties as a result of dynamical

processes, and compare the resultant populations around single and binary stars.

We first review previous work in Section 4.2. In Section 4.3, we discuss the methods

used to carry out our study and explain our choice of systems and planet populations.

Section 4.4 details the differences we see between the various planet populations and

between planetary systems around single and binary stars. Section 4.5 discusses the

physical intuition for the reduction of collisions, the role of giant planets in system

evolution, and the observable properties of our systems.

4.2 Planetary Stability

While any system of three or more bodies may be chaotic, there are several limiting

cases where orbits are well behaved. The simplest case is that of two planets around a
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single star that are Hill stable, which means that they cannot suffer close encounters.

Gladman (1993) explored Hill stability for low mass, low eccentricity, co-planar

bodies and found that systems of two planets are Hill stable for orbital separations

greater than ∆ > 2.4((m1 + m2)/M∗)
1/3 where m1 and m2 are the masses of the

planets and M∗ is the mass of the central star; here, the orbital radius of the inner

planet is taken to be 1.

Multi-planet stability is often referenced to the two-planet Hill stability limit by

measuring planet spacing in terms of a mutual Hill radius:

R H,m =

(
m1 +m2

3M∗

) 1
3 a1 + a2

2
(4.1)

where a1 and a2 are the semi-major axes of the planets. We define the dimensionless

spacing of planets in terms of mutual Hill radii as:

β =
a2 − a1

R H,m
(4.2)

Note that in some regimes, β may not provide the best metric for planetary sta-

bility (see Morrison and Kratter (2016)). Previous works such as Chambers et al.

(1996), Faber and Quillen (2007), Smith and Lissauer (2009), Shikita et al. (2010),

Lissauer et al. (2011b), and Pu and Wu (2015) have studied the impact of β on the

dynamical “lifetime,” meaning the timescale for planets to enter crossing orbits, for

systems of three or more equal mass planets around a single star. They find that

the lifetime of a system decreases with increasing planet mass, planet eccentricity

(e), and system multiplicity, and increases with the initial spacing measured by β.

Chambers et al. (1996) suggested that Gyr stability requires β >10 for > 3 planet

systems and Smith and Lissauer (2009) found that a spacing of β >8 is required

for Myr stability in systems with five or more equal mass planets. Kratter and

Shannon (2014) investigated two-planet circumbinary systems and found that they

are long-term stable (108 binary orbits) with β >7. Because we are interested in

CBPs of higher multiplicity and non-constant mass, we therefore might expect our

planet distributions to require larger spacing than this in order to be stable for tens

to hundreds of millions of binary orbits.
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4.3 Methods

4.3.1 Integrator

Our integrations are carried out with a Gauss-Radau variable timestep integrator

in a modified version of the N -body orbital integration package mercury from

Chambers and Migliorini (1997). The standard variable time step orbit integrators

included in the code such as Bulirsch-Stoer and Gauss-Radau are agnostic about the

number of massive bodies or hierarchy of the system, and therefore are well suited

to planet-binary integrations in general (Youdin et al., 2012; Kratter and Shannon,

2014; Sutherland and Fabrycky, 2015). While binary symplectic integrators exist

(Chambers et al., 2002; Beust, 2003), these still require switching to a B-S style

integration to resolve close encounters. If encounters are common, the integrator will

be forced to use B-S integration schemes for a significant fraction of the integration.

Because of mercury’s origins as a planetary system integration package, most

calculations are carried out in heliocentric coordinates. While this poses no challenge

for the main N -body integration for some integrators, any part of the code which

relies on assumptions of Keplerian orbits about a central body requires modification,

such as the close encounter checks. The changes to mercury described herein

remove this assumption when the user sets a flag for a central binary in one of the

input files. This new version of the code is available for download online.1 We briefly

describe the main modifications below. All of our integrations were carried out with

the Everhart (1985) Radau integrator, although the modifications should work with

other adaptive time step methods.

• For circumbinary systems, we treat close encounters between any two bodies

in the same way, in contrast to the standard mercury practice of treating

encounters with the central star separately. For any pair of bodies, the code

searches for close encounters based on the current Cartesian state vectors. For

the Radau integrator, interactions flagged as close encounters do not effect
1https://github.com/rsmullen/mercury6_binary
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the overall time stepping in the code. This is in contrast to hybrid symplectic

integrators that use a close encounter flag to choose interactions to further

resolve. For the Radau integrator, the variable time step ensures that inter-

actions down to the close encounter radius of a particle are well resolved. For

planet encounters, we use 1 RHill as the close encounter radius, following pre-

vious work (Jurić and Tremaine, 2008). For stars, we use the empirical stellar

mass-radius relationship from Demircan and Kahraman (1991) to determine

the radii as a function of mass. We set the close encounter radius to three stel-

lar radii for our fiducial runs. Note that the central body radius and second

star’s radius are set in the subroutine “mfo_user_centralradius,” which can

be easily modified to incorporate any prescription.

• Collisions, like close encounters, are also calculated for every pair of bodies

based on Cartesian state vectors. They are calculated based on extrapola-

tion from the close encounter radius over a time step. We use mercury’s

third order interpolation scheme for all bodies, which ignores the gravitational

contributions of all other bodies during the encounter. For planet-planet en-

counters, the choice of close encounter radius between 1/4 and 1 RHill does not

change the number of planet-planet collisions, so we have chosen the default

of 1 RHill to avoid the computational cost of very small time steps. For star-

planet encounters, where ignoring the gravitational accelerations from one of

the stars is most severe, the time step is always sufficiently short compared

to the orbital period that the star moves of order 1 stellar radius during the

extrapolated encounter. The time step is guaranteed to be small, 1/1000th

of an orbital period, because the small close encounter radius for stars forces

very high time resolution during close approaches. To achieve even better ac-

curacy for stellar collisions, one can set the close encounter radius equal to the

collision radius to force the integrator to resolve all collisions explicitly. We

find that the number of stellar collisions for an equal mass binary is exactly

the same for close encounter radii from 1 to 3 stellar radii; however, because of
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the inherent chaos of the systems and the different time resolutions, the time

of collision, and the binary component that suffered a collision, may change.

• The standard mercury routines for calculating Jacobi coordinates and plan-

etary Hill radii must also be modified to account for both re-ordering of planets

and the offset between the system center of mass and the central body. We

include a new Jacobi coordinate routine that employs a bubble sort algorithm

to re-order bodies by distance before performing a coordinate transform from

heliocentric coordinates. Hill radii for close encounters are calculated using

the distance from the system center of mass, rather than semi-major axis, and

incorporate the enclosed mass instead of the mass from a single central body.

• Finally, we apply the bug fix reported in De Souza Torres and Anderson (2008)

that fixes a status initialization problem, although this is not used in the

current study.

Using this modified version of mercury, we obtain an average energy conser-

vation of about 10−5 over our 10Myr (3× 108 binary orbits) integration time, with

ranges from 10−7 to 10−5. Our angular momentum conservation is of order 10−5.

Jurić and Tremaine (2008), who also used a custom version of mercury found an

energy error of up to 10−4 using their hybrid symplectic/Bulirsch-Stoer scheme.

We have also performed a code comparison with another publicly available in-

tegrator, Rebound, (Rein and Liu, 2012). We employ their 15th order integration

scheme which is similar to Radau, but conserves energy significantly better (Rein

and Spiegel, 2014). The trade off is of course a dramatic (order of magnitude) in-

crease in run time, which made it unfeasible for use in this parameter study. While

Rebound automatically treats encounters between any pair of bodies equivalently

and operates in barycentric coordinates, one must modify collision routines and en-

sure that the system does not drift out of the box by frequently resetting the system

back to the center of mass. For integrations of identical initial conditions drawn

from our fiducial sample we achieved very good agreement between the two integra-

tors (0.1% difference for planet-planet and planet-star collisions and 1.7% difference
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in ejections and remaining planets when the systems are run to 105 years). Note

that, due to the highly chaotic nature of the orbits, numerical errors introduced by

the different integration algorithm are expected to produce small changes in orbit

outcomes for a given planet. Additionally, the ejection algorithms, in particular, are

different (mercury ejects from a sphere, while Rebound ejects from a cube), so

we expect small differences in the outcomes from these effects, as well.

4.3.2 Planetary Initial Conditions

There are two major influences on the long term evolution of CBPs: the properties of

the binary system and the structure of the planetary system. Because the primordial

conditions of circumbinary systems are uncertain, we consider a range of planet

populations and binary configurations to investigate the dependence upon initial

conditions. We do not use the observed planetary statistics for our populations

because observed systems may already be sculpted by scattering.

Our systems are initialized with ten planets that have been randomly drawn

from the planet populations described below. Our fiducial binary is equal mass

and circular with components of 0.5M� separated by 0.1 AU, which gives a 10 day

period. We make no assumptions about stability other than re-sampling any planet

that falls within the Holman and Wiegert (1999) circumbinary stability limit of

apl < (2.278 + 3.824eb − 1.71e2
b)ab (equation 5 in their text) where apl is the planet

semi-major axis computed from the system barycenter and ab and eb are the semi-

major axis and eccentricity of the binary. This resampling forbids initial conditions

interior to the probable disk truncation edge. Planets are unlikely to have formed or

even migrated into this region and may contribute to overall system destabilization,

thus polluting our statistics. We apply the same initial semi-major axis cutoff for

planets around a single star as we do for the binary to ensure consistency between

our populations, although no such restrictions exist around single stars. Thus, very

short period planets are initially forbidden around single stars but can be scattered

inward during the simulation.

Each distribution is integrated with both our fiducial binary and a single star
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with a mass of 1M� making the effective central mass in both cases the same. For a

subset of planet populations, we vary the binary eccentricity and/or mass ratio (we

define mass ratio as µ = M2/M1); these variations are listed in Table 4.1. Although

we only study one binary orbital period herein, our results are mostly scalable to

wider periods, as we discuss in Section 4.5.3.

For all populations, we assume the eccentricity and inclination (i) distributions of

Jurić and Tremaine (2008), who used a Rayleigh distribution with scale parameter

e = 0.1 and i = 5.73 ◦. Inclinations are somewhat uncertain, so we remain with

the low inclination distribution to represent a mostly flat disk formation scenario,

such as suggested in Fang and Margot (2012a). The eccentricity we use is roughly

consistent with the observations of Van Eylen and Albrecht (2015), who find that

observed planets follow a Rayleigh distribution with scale parameter e = 0.05.

Our mass and semi-major axis distributions are described below. All orbital

elements henceforth are described with respect to the system barycenter.

JT08 This distribution serves as our reference sample and is taken directly from the

Jurić and Tremaine (2008) “c10s10” ensemble to compare CBPs to previous

simulations around single stars. Planet masses are drawn from a log uniform

sample ranging from 0.1 to 10 MJ and semi-major axes are drawn from a log

uniform sample between 0.1 and 100 AU.

MMHR The MMHR (matched mutual Hill radius) distribution matches the initial

planet-planet spacing of JT08, as measured by the mutual Hill radius spacing,

but with lower mass planets and smaller semi-major axes. The planets are

drawn from a log uniform distribution spanning 1 to 160 M⊕ in mass and log

uniform from 0.1 to 1.7 AU in semi-major axis. We choose this population to

highlight the impact of binary-planet perturbations. The dynamical spacing

of planets (a measure of the strength of inter-planet perturbations) is the same

as in JT08, but binary perturbations will be stronger because of the compact

nature of the population.

Mordasini This planet population is modeled after the population synthesis models
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of Mordasini et al. (2009a,b). The semi-major axes span a range from 0.1 to

15 AU with a peak at 3 AU. The masses span 1–104 M⊕, with a dominant peak

at low mass and small peaks around 1 MNeptune and 1 MJ. The Mordasini

data from which our distributions are taken do have a correlation in mass-

semi-major axis space; however, our randomly drawn planets do not take this

two-dimensional density into account.

LM In order to capture the properties of observed exoplanets around single stars,

even though the present-day distribution may not be primordial, we create the

LM (low mass) planet population. We apply the empirical planetary mass-

radius relations from Weiss and Marcy (2014), Lissauer et al. (2011b), and

Wolfgang and Laughlin (2012) to observed radii distributions from Morton

and Swift (2014), Fressin et al. (2013), and Lissauer et al. (2011b) to create an

average mass distribution for exoplanets. We then match an analytic expres-

sion for the probability distribution function using an exponential with flat

probabilities at m < 3 M⊕ and m > 40 M⊕, as shown in equation 4.3.

P (m) =


1; m < 3 M⊕

(2.758×m−0.745 − 0.133) /1.083; 3 M⊕ < m < 40 M⊕

(2.758× 40−0.745 − 0.133) = 0.043; m > 40 M⊕

(4.3)

Figure 4.1 shows the average mass distribution in the thick black line and

the analytic fit used for the LM distribution in the thick magenta line. We

draw masses from 1–104 M⊕; most planets have masses less than 20 M⊕. The

semi-major axes are drawn from a gamma distribution with mean 4.5 AU and

range approximately 0.1–15 AU.

4.3.3 Integration Parameters

We integrate 100 different realizations for each system architecture for 10Myr. Each

system begins with 10 planets. A planet is considered ejected if it travels more
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Figure 4.1: The derived probability distribution for planet masses in the LM
planet sample. Each line indicates a probability distribution of planet mass in
Earth masses. Each of the three colors (red, teal, and blue) represents a different
completeness-corrected radius distribution derived from the Kepler planet sample.
The different line styles denote the mass-radius relation applied to each observed
radius distribution. The thick black line is the average of all of the red, blue, and
teal lines. The magenta line shows our analytic expression for the probability dis-
tribution using an exponential function with flat probabilities at M < 3 M⊕ and
M > 40 M⊕ as shown in equation 3. We use this mass distribution to produce an
observationally motivated planet sample.
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than 1000 AU from the primary star.2 Note that, for the widely spaced planet

populations, there is a small subset of high eccentricity, high semi-major axis planets

that are removed from the system while still bound. However, these planets are a

minority and would likely not contribute greatly to the further dynamical evolution

of the system. Collisions between all objects are allowed in a mass and momentum

conserving form (we do not allow collisional erosion or tidal dissipation).

Planetary radii are calculated using mass and an assumed density of ρ = 1g/cm3.

This assumed density best describes a normal giant planet, such as Jupiter. For the

range of densities of known Kepler systems, we underestimate the radius by at most

a factor of two for the least dense planet and overestimate by a factor of three for

the most dense planet. Our assumption of a constant density should have negligible

impact on planetary collisions; in fact, because most of our planets are smaller than

Jupiter, we should more frequently overestimate the radii and therefore overestimate

collisions.

It is important to note that this problem is scale free aside from collisions, which

of course set an absolute radius. Otherwise, binary and planetary orbits can be

scaled up or down, with the timescale adjusted accordingly. Because we find that

collisions of any kind are relatively rare for most distributions, the trends presented

here should be applicable to wider circumbinary systems. In these systems one would

expect collisions to occur even less frequently due to increased distances between

objects.

4.4 Results

The primary difference we observe between planetary systems around single and

binary stars is the loss mechanism of unstable planets. Circumbinary planets are

lost almost exclusively by ejections, whereas single star planetary systems undergo

a substantial number of planet-planet and planet-star collisions. The evolution at
2We do not account for the offset of the primary from the system center of mass, as this distance

is negligible in comparison to the ejection radius.
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10Myr has reached a near steady state; most systems have non-crossing planetary

orbits that have changed little over the last few Myr. Figure 4.2 shows the average

number of planets remaining in the system as a function of time. Figure 4.3 shows

the outcomes for planets in the four populations. Despite the differences in outcome,

single stars and binaries asymptote towards similar orbital distributions, except for

the most compact, packed initial populations.

Though the final distributions of orbital elements for each planet population are

relatively invariant with central object, each planet population retains a “memory” of

its original state, which can be seen in Figure 4.4; the shapes of the final distributions

vary significantly between different initial populations.

Scattering does not appear to account for the pileup of observed planets near the

stability limit, nor do binaries preferentially lose massive planets close to the binary.

Scattering thus does not reproduce these noticeable features of the observed CBP

population. However, the fate of planets that begin or are scattered close to the

binary star (within ∼ 10ab) is different from those that never enter this region, as

we explore in Section 4.5.3. We discuss in Section 4.5.4 that the presence or absence

of a giant planet has greater impact on the dynamical evolution of a system than

the central object.

4.4.1 Differences Between Single and Binary Planet Populations

The four planet distributions around the fiducial binary show a factor of ∼ 20–30

reduction in planet-star collisions. Planet-planet collisions are reduced by 1–2 times,

and ejections are enhanced by factors of 1.5–2.5. We provide a physical explanation

for these differences in Section 4.5.2. The average number of planets remaining

in a system as a function of time is generally similar between the single star and

the binary case. Systems reach 10Myr with 2–4 planets remaining, on average.

Figure 4.2 shows the time evolution of the number of planets in the system.

JT08 The JT08 set of initial conditions is the only one in which we have a direct

comparison to previous work. We present the results of the Jurić and Tremaine
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Figure 4.2: The average number of planets remaining per system as a function of
time for each planet distribution. Red lines show the fiducial equal-mass, circular
binary planetary systems and black lines show the single star planetary systems.
Other colors show variations of the central binary (in e or µ). The dotted black
line shows the JT08 single star case as a reference. In every case but MMHR, the
single and binary systems lose very similar numbers of planets. However, the rate
of loss can vary, with the binary systems tending to lose planets faster at early
times. In contrast to the other distributions, the LM planet population is still
dynamically evolving at 10Myr because low mass planet-planet encounters rarely
lead to ejections.
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(2008) “c10s10” integration alongside our own in Table 4.1 and see that the

single star integrations are consistent.

Over our 1000 planet sample for each of the binary and single star tests, we

found a nearly equal number of remaining planets, an enhancement of 1.3 in

ejection rates for the binary case, a reduction of 17.6 times in the number of

planet-star collisions, and a factor of 2.1 reduction in planet-planet collisions.

The loss mechanism is shown graphically in the first column of Figure 4.3,

which depicts the fractional distribution of planet outcomes at 10Myr. The

average number of planets remaining at the end of the integration times is

also shown in Table 4.1, which lists both the fiducial binary (e = 0;µ = 1)

and variations on binary eccentricity and mass ratio. Because we don’t run all

variations on the binary to 10Myr, we include data from the fiducial binary at

the shorter times for comparison. We find that the differences between planet

populations around different binaries are small.

MMHR In the binary population, we found a reduction of 1.4 times in the number

of planets remaining, an increase of 2.4 times the ejection rate, and reductions

of 25.8 and 2.2 in planet-star and planet-planet collisions relative to the single

star case. The large increase in ejections in the binary case can be attributed

to the compactness of the population (the median MMHR semi-major ax is

∼0.6 AU or 6ab, as opposed to 49ab, 20ab and 22ab for JT08, Mordasini, and

LM, respectively). The fractional loss rates for this set of initial conditions

can be seen in the second column of Figure 4.3, and the average number of

planets remaining in the system can be seen in Table 4.1.

Mordasini Despite having wildly different planet mass and semi-major axis distri-

butions, the Mordasini population behaves most similarly to the JT08 popula-

tion. On average, each Mordasini system will have one giant planet (M > MJ),

which leads to the similarities in evolution (see Section 4.5.4). Comparing the

binary and single star planet populations, there is no significant change in the

number of planets remaining, a factor of 1.3 more ejections for CBPs, and
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reductions of 28.6 and 1.6 in planet-star and planet-planet collisions, respec-

tively. The outcomes of planets in this integration are shown in the third

column of Figure 4.3 and in Table 4.1.

LM This is our least active sample due to the wide initial spacing in mutual Hill

radii and low average planet mass. The results for this planet population

should be interpreted with caution because about 50% of systems are still

undergoing significant dynamical evolution at 10Myr. We show the compar-

ison of binary and single outcomes in the fourth column of Figure 4.3 and in

Table 4.1.

Figure 4.4 compares the initial and final distributions of single and circumbinary

planetary systems for the four planet populations. The semi-major axis distribu-

tions are broadened as planets are scattered to larger distances (or smaller, in the

single star case, albeit rarely). The peaks of the final eccentricity distributions are

similar to the initial distributions, but with a tail at high eccentricities. Lower mass

planets are preferentially lost, leaving dominant populations of higher mass planets.

The inclination distributions (in the binary case, as measured relative to the bi-

nary’s angular momentum axis) also develop a small tail at higher inclinations, but

the majority of planets follow the initial distributions. Finally, the β distributions

narrow and shift to higher values, peaking between 10 and 30 RH,m. This is similar

to the observed packing of Kepler single star systems reported in Fang and Margot

(2013) and Malhotra (2015).

The MMHR planet population has the most variation between the single and

binary cases, with the semi-major axis, eccentricity, and inclination all having an

Anderson-Darling p-value less than 1%. Thus, an initially compact and packed

planetary system evolves differently around a binary. Although both binary and

single star systems are initialized without very close-in planets, single stars accumu-

late a sizable population of short period planets. Independent of central object, the

MMHR planets show significant mass accretion due to collisions; the final popula-

tion has a maximum mass two times higher than the initial maximum mass. JT08
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Figure 4.3: Pie charts showing the fate of planets in each distribution at 10Myr for
both binary (top row) and single (bottom row) stars. The columns correspond to
the JT08, MMHR, Mordasini, and LM planet populations from left to right. Going
counterclockwise, red shows the fraction of planet remaining in each system. Blue,
navy, and cyan indicate the fraction of planets lost by ejections, stellar collisions and
planet-planet collisions, respectively. Although the number of remaining planets is
roughly constant between single and binary systems, the loss mechanism is very
different. The planets around binaries suffer far fewer collisions in exchange for far
more ejections.

and LM have different eccentricity distributions between single and binary (tending

to lower eccentricities in the binary case), and Mordasini and LM have different

inclination distributions (tending to lower inclinations in the binary case). For all

populations, the mass and β distributions are similar between the single and bi-

nary cases. In both cases, the typical separation in β is a significantly larger than

the minimal value for stability in idealized calculations (Smith and Lissauer, 2009;

Kratter and Shannon, 2014).

4.4.2 Differences Between Planet Populations

We find that planet-star collisions remain roughly constant across all distributions,

planet-planet collisions increase with decreased initial semi-major axis range, the

number of remaining planets increases with increasing initial mutual Hill radius
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Table 4.1: Outcome Fractions: The first column denotes the central object in the
system. The second column shows the integration time in Myr. The next columns
show the percentage of the initial planet populations that remained in the system,
were ejected, or suffered planet-star or planet-planet collisions. The percentages
here denote fraction of the total population, which will only be impacted by Poisson
noise (32 planets, for our 1000 planet ensemble).

System Int. Time Stay Eject Planet-Star Planet-Planet
Myr % % % %

JT08
Jurić and Tremaine (2008) c10s10 100 26 48 18 8
Single 10 28.7 51.8 14.1 5.4
Binary 10 29.3 67.3 0.8 2.6
Binary 0.5 42.3 54.3 0.8 2.6
Binary; µ = 1; e=0.1 0.5 42.0 54.0 1.5 2.5
Binary; µ = 1; e=0.5 0.5 41.6 56.5 0.7 1.2
Binary; µ = 0.5; e=0.25 0.5 46.2 50.7 0.5 2.6
MMHR
Single 10 26.5 26.6 12.9 34.0
Binary 10 19.6 64.2 0.5 15.7
Mordasini
Single 10 28.6 48.8 14.3 8.3
Binary 10 31.0 63.3 0.5 5.2
Binary 1 36.3 59.0 0.5 4.2
Binary; µ = 1; e=0.3 1 31.9 63.3 1.2 3.6
LM
Single 10 48.1 30.1 9.0 12.8
Binary 10 43.5 42.7 0.4 13.4
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Figure 4.4: Histograms showing the initial and final distributions of orbital elements
for the four planet populations. From top to bottom, the rows depict the JT08,
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Each panel is independently normalized by the black initial distribution. We use
the Anderson-Darling test to compare the single and binary distributions in each
panel. Most of the properties of the planet distributions are minimally affected by
the presence of the binary; however, we do see that the CBPs tend to be lower in
eccentricity and inclination and that the tighter the initial a distribution, the more
different the single and binary populations become (for instance, MMHR).
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spacing, and ejections seem to increase with increased average planet mass and

planetary compactness, consistent with Morrison and Malhotra (2015). Despite all

systems beginning with 10 planets, there are significant differences in the typical

number of planets remaining in a system around the fiducial binary at the end

of 10Myr. The LM population keeps the most planets (about 4, although half

of systems still have planets on crossing orbits). Mordasini and JT08 each retain

about 3, and MMHR systems are left with only 2 on average. In JT08, a massive,

widely spaced distribution, the binary plays little role in the rate of planet loss.

The MMHR planets are much more impacted by the binary because of the small

semi-major axes: the binary clears out planets very fast. The Mordasini population

behaves very similarly to JT08, which is likely due to the presence of a massive planet

in most systems (later discussed in Section 4.5.4). Finally, the LM planets have a

wider initial spacing in mutual Hill radii, so planet-planet perturbations are weaker,

leading to longer instability times. Additionally, because the planets are mostly

low mass, an average planet-planet close encounter will not be able to overcome

the system escape velocity. Thus, to be removed from the system, a planet must

interact with a rare giant planet or star, or wait for a relatively rare planet-planet

collision. This leads to the “long-term” (several tens of millions of years) survival

of planets from this population; note that this is still short compared to the main

sequence lifetime of the central stars. There is little difference between the final

inclination and eccentricity distributions, although there is a small population of

high eccentricity, high inclination planets around binaries for all populations.

4.4.3 Impact on Stellar Binary Orbit

The binary’s orbital parameters are impacted very little by the dynamical evolution

of the planets; most experienced less than a 1% change in their orbital character-

istics. The most significant changes are seen in the JT08 binary, but even those

changes are small. For instance, binary inclinations (measured with respect to the

total angular momentum vector of the system) never reach greater than 20 ◦ in

the most extreme case, the maximum final stellar eccentricity in initially circular
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systems is 0.11, and the semi-major axis never changed by more than 0.005 AU

(5%).

4.5 Discussion

4.5.1 Stability of Resultant Planetary Populations

We have conducted our above analysis after only 10Myr of evolution. While long

term evolution will still occur, the rate of planet loss (shown in Figure 4.2) appears

to level off for all populations but LM. A small number of systems in the other

populations still have orbit crossings, a sign of ongoing dynamical evolution. The

number of orbit crossings for each of the four distributions in the single and binary

cases are shown in Table 4.2. We find that, at 10Myr, the binary systems tend to

have fewer orbit crossings as compared to the single star systems. Additionally, as

seen in Figure 4.2, the binary systems lose planets faster. The more rapid onset

of planet ejections in the binary case is likely responsible for the reduction in any

other kind of collision. Unstable, high eccentricity planets are ejected before they

can interact with other planets. All of these effects combined may cause the binary

planet populations to be dynamically colder after 10Myr. If we apply the planet-

packing metrics used by Kratter and Shannon (2014), we find that our final systems

are consistent with being minimally packed, rather than sparse, meaning that the

addition of planets in between existing pairs would likely trigger instability.

Some systems with high numbers of orbit crossings remain stable for nearly

the length of the integration, especially for the LM planet population. In these

instances, the kick velocities of the planet-planet encounters are much less than the

escape velocity from the system. These planets will likely remain in the system until

a planet-planet collision or a planet-star encounter occurs. When we extend the full

complement of single-star LM integrations to 108 years, we find that the rate of

planet loss remains constant at about 1 planet per decade of logarithmic time with

no sign of reaching a constant number of planets in the system.

We find similar multiplicities to previous N -body integrations from Jurić and
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Table 4.2: Orbit Crossings at 10Myr: The number of systems with orbit crossings at
10Myr for both single and binary systems. The first column shows the distribution.
The next three columns show the number of binary systems having no, one, or two or
more orbit crossings at 10Myr. The final three columns show the same information
for the single star systems.

Dist. Binary Single
0 1 2+ 0 1 2+

JT08 82 16 2 73 26 1
MMHR 87 12 1 62 28 10
Mordasini 77 10 13 79 10 11
LM 49 6 45 41 15 44

Tremaine (2008), Chatterjee et al. (2008), and Raymond et al. (2010), despite all

of these studies being carried out around single stars and with very different ini-

tial planet populations and initial multiplicities of 10+, 3, and 3, respectively. All

assume massive planet populations, which is consistent with our finding that ini-

tial planet mass has the largest influence on the final system multiplicity, which is

discussed in more detail in Section 4.5.4.

4.5.2 Absence of Stellar Collisions in Circumbinary Systems

For all circumbinary populations, the dominant form of planet loss is ejection. In-

deed, ejections begin to dominate earlier in the CBP case than in the single star

case. These rapid ejections are triggered when planets cross into the instability

region of the binary described in Section 4.3.2. As planets get pumped to higher

eccentricities by planet-planet interactions, the pericenter will enter the unstable

region around the binary. Consistent with Holman and Wiegert (1999), ejections

typically occur on timescales of tens to hundreds of planetary orbits after the initial

crossing into the instability region. For all sets of initial conditions, over 70% of the

planets that had a recorded distance less than 2.23ab (the empirical Holman and

Wiegert (1999) instability boundary) are ejected. 70% is a rough estimate due to

coarse output timesteps in our data that may not record every planet that crossed

the instability boundary. In a high-cadence output test of JT08 CBPs integrated to
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100 kyr, more planets are recorded within the instability region, as expected.

The reduction of planet-star collisions can be understood using intuition gained

from the circular restricted three-body problem (CR3BP). The CR3BP is a well

known solution to the three-body problem in which a test particle orbits in the

gravitational potential of two massive bodies on a circular orbit. While our systems

inherently violate the assumptions of the CR3BP due to planets having mass and

interacting with one another, we can still gain insight from approximating our sys-

tems as multiple instantaneous CR3BPs with each planet as a test particle orbiting

the binary, similar to Moeckel and Veras (2012) and Kratter and Perets (2012). One

can constrain the allowed orbits of test particles in a binary using the constant of

motion, the Jacobi constant, shown in equation 4.4. Here, n is the mean motion

of the binary (n = 2π/T with T being the period, which is unity for our circular

binary), µ is the mass ratio of the stars such that µ = 1 = µ1 + µ2 = GM and

µ1 = µ2 = 0.5 for our equal mass binary, and r is the position of the planet mea-

sured relative to each star. The coordinates and velocities (x, y, z) and (ẋ, ẏ, ż) are

measured in the inertial frame.

CJ = 2n(xẏ − yẋ) + 2

(
µ1

r1

+
µ2

r2

)
− ẋ2 − ẏ2 − ż2 (4.4)

The CR3BP allows us to calculate zero velocity curves for test particle orbits

with a given CJ , which denote regions in phase space where a given test particle can

and cannot orbit. These are shown in the top row of Figure 4.5, where the dashed

circle in all panels depicts the Holman and Wiegert (1999) instability boundary for

the binary shown. The bottom row of Figure 4.5 shows value of the Jacobi constant

for a particle on a circular Keplerian orbit at a particular (x, y) location. A planet

with a given Jacobi constant cannot cross a zero velocity contour of the same value.

Comparing the plots in the first column of Figure 4.5, we see that a planet

with CJ = 6 can reside on a circular orbit outside the instability boundary, but

can also just penetrate the unstable region. If this happens, the planet will be

strongly perturbed by the binary and it’s orbit will become chaotic. However, a

planet with CJ = 6 cannot collide with either star because the zero velocity contour
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completely surrounds both stars. Thus a small perturbation from another planet

might easily trigger an ejection by sending the planet into unstable region around

the binary. However, a small kick would not result in a planet-star collision, because

without a substantial change in energy, orbits intersecting the stars are prohibited.

Alternatively, a very strong planet-planet encounter causing CJ to decrease to ∼ 3

would open up the orbital phase space to allow a collision with either star because

the zero velocity contours are completely open on both sides. Because all of the

planets in our simulations begin outside the instability boundary, with CJ > 4, they

cannot collide with the binary unless an outside perturbation changes the constant of

motion. Since most planets have much larger values of CJ , very strong planet-planet

kicks are necessary to cause collisions. Note that Szebehely and McKenzie (1981)

effectively predicted the empirical Holman and Wiegert (1999) boundary based on

zero velocity curves.

In a high-cadence test, most planets that cross into the instability region do

not have a CJ such that a stellar collision is possible, yet every planet that does

collide has an external interaction that changes the energy in the system such that

a collision is allowed according to the instantaneous value of CJ . This suggests

that despite the inherent simplifications in the above model, CJ provides a useful

constraint on available orbital phase space. A large fraction of planetary orbits

achieve a CJ that allows them to penetrate the instability region without ever being

able to collide with a star. These planets can easily be ejected from the system on

short timescales, before they are likely to suffer another planetary encounter that can

further decrease CJ . This leads to the > 20 times decrease in planet-star collisions

and can account for some of the increase in ejections. It is also important to note

that a planet with CJ ≤3.46 is not guaranteed to collide; this value of the Jacobi

constant allows a planet to slip through the zero velocity surface at just the right

phase and interact with the stars. There are still large regions of space that disallow

collisions altogether. Direct interactions with the stars are only unconstrained in

space for CJ <3.

Our analysis is consistent with the findings of Sutherland and Fabrycky (2015);
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they find that ejections are the most common fate of unstable test particles around

binaries, and that collisions are primarily with the secondary star (in the second

column of Figure 4.5, the critical contour by the secondary opens at a higher Jacobi

constant than for the primary star). The work from Sutherland and Fabrycky

(2015) also shows that the trends seen herein hold for moderate eccentricity binaries

where the CR3BP is inapplicable. We illustrate how changes in CJ correspond with

planetary encounter in Figure 4.6, where we show the distance from the barycenter

and the Jacobi constant for a system drawn from the JT08 distribution. In this

figure, the purple planet collides after undergoing interactions that change the Jacobi

constant.

It has been suggested by Laughlin and Adams (1997) and Gonzalez (1997) that

the collisions of planets with the host stars may provide atmospheric pollution,

leading to a measurable metallicity increase. Although the planet-metallicity cor-

relation is likely dominated by formation effects rather than pollution (Youdin and

Shu, 2002), the effect might still be measurable (Mack et al., 2014). Thus, if cir-

cumbinary disks and circumstellar disks have similar planet formation efficiencies,

we can speculate that planet-hosting close binaries might show a deficit in pollution

signatures as compared to single stars due to the sharp reduction in collisions.

In addition to the reduction of stellar collisions, we see a marked increase in

ejections. Thus, if circumbinary systems form over-packed, we might expect that

a portion of the population of free floating planets, as suggested by Sumi et al.

(2011), originate from binary systems. Veras and Raymond (2012) note that the

free floating planet population cannot be explained by planet scattering in single star

systems alone. The potentially large contribution of free floating planets from bina-

ries is particularly important for microlensing, which is extremely prior-dependent

for interpreting detections. However, known the free-floating planet population is

mainly comprised of massive planets, which might be intrinsically rare around close

binaries. Additionally, known CBP hosts, with their short periods, represent a small

fraction of the total binary star population (Raghavan et al., 2010).
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Figure 4.5: Zero velocity contours (top row) and the Jacobi constants for planets
on circular orbits (bottom row) for two mass ratios. Both the gray-scale gradient
and colored contours show the value of CJ and are scaled to the same range in all
plots. The axes are dimensionless distances scaled to the binary semi-major axis.
The dashed circle in each plot shows the Holman and Wiegert (1999) instability
boundary. In the top panel, orbits cannot cross contours of the same color, thereby
forbidding regions of phase space for a planet. For CJ . 3.46, a planet can collide
with the binary; for any higher value of the Jacobi constant, scattering is the only
interaction allowed. Comparison with the bottom row reveals that planets beginning
on circular orbits exterior to the instability boundary have CJ too large to collide
with either star, but may still penetrate the region in which orbits are unstable.
We find that while planet-planet perturbations of course violate the CR3BP and
change the value of CJ and thus the parameter space available to orbit, interactions
in between encounters behave according to the present value of CJ . This leads to
a much larger number of ejections and a smaller number stellar collisions compared
to the single star case.
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Figure 4.6: Distance from the barycenter (top) and instantaneous Jacobi constant
(bottom) for six planets drawn from the JT08 distribution during the first 100 years
of an integration. The solid black line in the top plot shows the behavior of the
secondary star while the dashed line is the Holman and Wiegert (1999) instability
boundary. In the bottom plot, the dotted line shows CJ = 3.46, where the zero
velocity curves permit stellar collisions. The planet denoted by the purple line that
begins at 0.33 AU collides with the star at 70 years. The black points show close
encounters between the purple planet and other planets in the system. After these
close encounters, CJ decreases such that the planet can first cross the instability
region and then collide with the star. Every planet that collides with the binary has
a similar evolution.
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4.5.3 Extent of Binary Influence

We highlight the influence of the binary on planet populations in Figure 4.7, which

shows the minimum recorded pericenter distance (relative to the system barycenter)

q for ejected planets in the JT08, MMHR, and Mordasini planet populations. The

histograms have been normalized to the total number of planets in the system so

that the relative heights of the histograms are indicative of the total population of

ejected planets. For all three populations, planets around a single star have closer

pericenter passages, whereas the binary effectively removes planets once they ap-

proach the instability region (the dashed line). The planets in circumbinary systems

are preferentially ejected if they pass within 10ab, or 1 AU.

Examining the four planet populations jointly, planets that come within 1 AU

of the binary, regardless of initial semi-major axis, have a &80% chance of being

removed from the system. Conversely, planets that never come within 1 AU have a

40–80% chance of remaining in the system, depending on the population. Dynamical

evolution leads to 51% and 76% of planets crossing within 1 AU despite only 25%

and 29% of planets initially being at separations closer than 1 AU for the JT08

and Mordasini, respectively. Thus, we find that the binary has a strong influence

on the planet population within order 10ab. This explains why only the MMHR

distribution, which populates this semi-major axis range heavily, shows significantly

different final planet statistics between binary and single stars.

Although we have focused on very tight binaries in this study, our results are

scalable to wider binaries than we have explored here because planet loss is domi-

nated by ejections. Planetary and stellar radii set some absolute scale, but orbital

periods and timescales may be rescaled. Although planet-planet collision rates de-

cline at larger absolute semi-major axes, these collisions are a small impact on the

overall population and would only be smaller when scaled.
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Figure 4.7: Ejected planets binned by minimum recorded pericenter distance for
JT08, MMHR, and Mordasini populations. The red line shows planets around a
single star and the blue line shows planets around a binary. The vertical dotted line
depicts the Holman and Wiegert (1999) instability boundary. The histograms have
been normalized to the full 1000 planet sample. While planets around a single star
can get much closer to the star, many more close-in planets are removed from the
system due to the binary. The circumbinary planets dominate ejections in all cases
out to about ten times the binary semi-major axis.
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4.5.4 Role of Giant Planets in Planet Multiplicity

Observed CBPs lack close-in large planets, as noted in Martin et al. (2015). While

this could be a bias of small number statistics, we explore the possibility of it

being a dynamical effect. We find that planet multiplicity is a strong function

of the highest initial mass in the system, as is shown in Figure 4.8, but there is

no statistical difference between planet populations around single stars and binary

stars. Specifically looking at our numerical results for Mordasini and LM planetary

systems around binaries, systems with Jupiter mass planets undergo very different

evolution than their lower mass counterparts. We find that it is rare for systems

beginning with a planet the mass of Jupiter or greater to have a multiplicity greater

than five. Indeed, in the LM case especially, there appears to be a large break in the

median highest initial mass in a system between systems containing four and five

planets. Systems with four planets have a median highest mass of about 2MJ, while

systems with five planets have a median mass of about 60M⊕, or about 3.5MNeptune.

In Figure 4.9 we present the resultant orbital elements for the LM and Mordasini

CBPs (in the same format as Figure 4.4) but split into systems having or lacking

a Jupiter. In the Mordasini case, the resultant eccentricity and β distributions are

statistically different for the high and low mass cases. The eccentricity of systems

with a Jupiter mass planet is generally lower; both still peak at around 0.1, but the

systems without a Jupiter have a small population of high eccentricity planets. The

β distributions are also statistically different, with the high mass systems having a

peak around 8 and the low mass systems having a peak around 15. This is consistent

with the low mass systems being stable for Gyr timescales, if we apply the Smith

and Lissauer (2009) results for single stars. The LM systems are where the greatest

differences are seen. The eccentricities, semi-major axes, and β distributions are

statistically dissimilar. The high mass systems tend to have smaller semi-major

axes, eccentricities, and mutual separations. The β distribution peaks around 5 for

the systems with massive planets and 30 for systems without. These characteristics

all suggest that the absence of a high mass population of circumbinary planets is
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not the result of different dynamical evolution. The increase in dynamical evolution

in the presence of a giant planet was also seen by Hands and Alexander (2016).

Systems lacking giant planets are more widely spaced in mutual Hill radii. Be-

cause the outcome of planet-planet perturbations is controlled by the more massive

body, systems without a massive planet have a larger probability of non-catastrophic

planet-planet interactions. Thus, the systems can stay intact at high multiplicity.

However, as will be discussed in Section 4.5.5, we find no correlation between in-

trinsic multiplicity and the number of transits seen in a system for the populations

studied here. Therefore, the lack of observed giant planets stems from either small

number statistics or formation.

4.5.5 Observables

In order to make a rough comparison with Kepler detections, we make a simpli-

fied calculation of the number of planets that would transit based on the following

limiting assumptions. We assume that the systems are seen along i = 90 (edge

on) for the binary systems. We also neglect planets’ orbital evolution over our as-

sumed 5 year “mission lifetime” and limit ourselves to planets having at most a 2

year period. Martin and Triaud (2015) show that, given enough time, nearly all cir-

cumbinary planets are expected to transit due to precession effects, so these results

are only valid for short duration monitoring. We find that 10–30% of systems have

at least one transiting planet; only 1–5% show more than one transit. The number

of systems showing a given number of transits is shown in Table 4.3. There is no

correlation between observed multiplicity and intrinsic multiplicity. To provide a

comparable sample around the single stars, we assume an equatorial line of sight

and calculate transits. While this is an oversimplification, as stars are randomly

oriented with respect to the observer, randomly choosing lines of sight would only

decrease the number of observed transits and we want to compare transit rates for

comparably-aligned systems. We find a slightly higher number of transits for the sin-

gle star systems, but the planets around a single star can reside closer to the central

star in a stable orbit and are therefore more likely to transit. Similarly, the number
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Figure 4.8: The highest initial mass in the system as a function of multiplicity for
the four planet populations. The binary systems are in blue (shifted left) and the
single star systems are in red (shifted right). The small points show the highest mass
for an individual system, the symbols (circle for binary and square for single) show
the median value of all systems at each multiplicity, and the error bars encompass
the 10th-90th percentiles. The dashed lines show the highest and lowest initial
masses for a population. The colored numbers (blue below and red above) show the
number of systems that fall into each multiplicity bin. We can see that the presence
of a Jupiter-mass planet appears to restrict the multiplicity to be less than about
5. However, the multiplicity of single and binary star systems is overall similar,
so intrinsic differences in observed populations are likely due to formation and not
scattering.
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variations in the β distributions in particular, showing that the presence of a Jupiter
strongly influences the evolution and structure of a planetary system.
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Table 4.3: Number of transits: The number of systems showing transits. The first
column shows the planet population. Each subsequent pair of of columns (binary
on the left and single star on the right) shows the number of systems with a given
number of transits.

Dist. 0 1 2 3+
Binary Single Binary Single Binary Single

JT08 88 87 12 13 0 0 0 0
MMHR 81 66 15 30 4 4 0 0
Mordasini 75 71 24 28 1 1 0 0
LM 77 80 21 12 2 7 0 1

of transits is a function of the compactness of a planet population’s semi-major axis

distribution. We find no correlations with the probability of a transit and planet

mass, but the mass of transiting planets is roughly consistent with the mass of the

initial distribution. This confirms that the dearth of giant planets on close-in orbits

is not the result of different scattering behavior around binaries. The fraction of

observed single planet systems to observed multi-planet systems is consistent with

the known Kepler systems from Batalha et al. (2013).

Kepler-47 We also investigate the ability of our simulations to create a system

like Kepler-47, which has three nearly unstable planets close to the central binary

(binary period of 7.5 days and planet periods 49.5, 187, and 303 days (Welsh et al.,

2015)). While not common, we find that both the LM and Mordasini populations

finish the 10Myr simulation with a handful of moderate multiplicity, tightly packed

(both dynamically and physically) systems. However, the majority of three planet

systems have average semi-major axes much larger than the true Kepler-47. Thus,

Kepler-47 could be the remnant of a system sculpted by dynamical evolution but

would require rather extreme initial conditions.

4.6 Conclusions

We have performed N-body simulations of planet-planet scattering around single

and binary stars to tease out the influence of a central binary on the dynamical

evolution of the system. Our modified version of the mercury code has been
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released online. Our most important findings are as follows:

1. The average loss rate for planets is very similar between single star planetary

systems and CBPs for a range of initial orbital distributions, though there is

a weak dependence on the compactness of the initial semi-major axis distri-

bution. Planets packed closer to the binary will be more perturbed.

2. The loss method between single star and binary systems is very different. Cir-

cumbinary systems always have far more ejections than the single star plane-

tary systems, and both planet-planet and planet-star collisions are suppressed

around binaries (planet-star collisions often by an order of magnitude). Using

intuition based off the CR3BP, these reductions are expected because the or-

bital phase space in which planets are perturbed and rapidly ejected is much

larger than the phase space allowing stellar collisions. We speculate that the

reduction of collisions in circumbinary systems may lead to a measurably lower

atmospheric metallicity in close binaries than in single stars or wide binaries.

3. There are few differences in the final orbital distributions of planets around

single and binary stars. The final planet populations have characteristics that

depend mostly on the initial populations, not on the central object. We see no

evidence for a planet pileup around the binary instability boundary. We also

find that systems similar to Kepler-47, while not common, are not prohibited

by scattering.

4. Systems with a giant planet evolve differently than those without one. The

highest multiplicity systems do not have massive planets. However, the pres-

ence of a giant planet has a similar impact on single and binary star systems.

We have shown that intrinsic differences in the populations of CBPs and exo-

planets around single stars likely arise from differences in formation or disk-driven

orbital evolution. We see no evidence that the lack of observed giant planets nor

the pile-up of planets around the binary instability boundary can be attributed to
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planet-planet and planet-star scattering. And yet, the binary does impact planets

that come within roughly a factor of 10 of the binary semi-major axis. Planets

born in-situ on close-in orbits are most likely to evolve differently around binary

and single stars. However, this parameter space is where planet formation is most

likely inhibited around binaries due to the excitation of the disk and planetesimal

eccentricities close to the stars. If planet formation around binaries is very efficient,

circumbinary systems might be responsible for a population of free floating planets.

Thus, while dynamical evolution may not hold the key to creating intrinsic differ-

ences in circumbinary and single star planetary systems, it may provide the crucial

observational evidence we need to understand these differences.
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CHAPTER 5

The Highly Variable Time Evolution of Star-forming Cores Identified with

Dendrograms

This chapter has been submitted to MNRAS as Smullen, R. A., Kratter, K. M.,

Offner, S. S. R., and Lee, A. T. 2020

Abstract

We investigate the time evolution of dense cores identified in molecular cloud simula-

tions using dendrograms, which are a common tool to identify hierarchical structure

in simulations and observations of star formation. We develop an algorithm to link

dendrogram structures through time using the three-dimensional density field from

magnetohydrodynamical simulations, thus creating histories for all dense cores in

the domain. We find that the population-wide distributions of core properties are

relatively invariant in time, and quantities like the core mass function match with ob-

servations. Despite this consistency, an individual core may undergo large (>40%),

stochastic variations due to the redefinition of the dendrogram structure between

timesteps. This variation occurs independent of environment and stellar content.

We identify a population of short-lived (<200 kyr) overdensities masquerading as

dense cores that may comprise ∼20% of any time snapshot. Finally, we note the

importance of considering the full history of cores when interpreting the origin of

the initial mass function; we find that, especially for systems containing multiple

stars, the core mass defined by a dendrogram leaf in a snapshot is typically less

than the final system stellar mass. This work reinforces that there is no time-stable

density contour that defines a star-forming core. The dendrogram itself can induce

significant structure variation between timesteps due to small changes in the density

field. Thus, one must use caution when comparing dendrograms of regions with dif-
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ferent ages or environment properties because differences in dendrogram structure

may not come solely from the physical evolution of dense cores.

5.1 Introduction

Understanding the early progression and end state of star formation is fundamental

to many areas of astronomy, from modeling the formation of galaxies to studying the

assembly of planetary systems. Stars form in dense molecular cores embedded within

gravitationally contracting filamentary structures (André et al., 2010; Arzoumanian

et al., 2013; Smith et al., 2014; Arzoumanian et al., 2019). On core scales, gravity sets

the dominant dense core properties (Goodman et al., 2009; Lee et al., 2014b; Storm

et al., 2016), while turbulence is thought to regulate the star formation efficiency

and core formation, including properties like core rotation (Padoan et al., 2012;

Chen and Ostriker, 2018). There is also a population of observed, pressure-confined

cores that will likely not form stars if left untouched, although these objects may

later collapse due to shock interactions (Seo et al., 2015; Keown et al., 2017; Kirk

et al., 2017; Chen et al., 2019a). Despite an understanding of this broad process of

star formation, there are still many open questions. These include the relationship

between observed core masses and the initial mass function, the time evolution of

dense core properties, the role of the physical environment in the star formation

process, and the formation mechanisms of bound binary (or higher order multiple)

systems, among others.

Previous works have attempted to answer some of these questions by looking

at individual snapshots of observed regions or simulations, yet few have ever at-

tempted to correlate the evolution of individual cores with the broad core property

distributions reported in the literature. The interplay between the time evolution

of individual cores and their contribution to distributions of core properties may

be especially important when understanding the connection between the core mass

function (CMF) and stellar initial mass function (IMF) (Offner et al., 2014, and

references therein). There is still debate about whether the IMF directly inherits its
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shape from the CMF (e.g., Padoan and Nordlund 2002; Hennebelle and Chabrier

2008; Hopkins 2013) or is independent of core masses (e.g., Bonnell et al., 2001;

Bate et al., 2003; Clark et al., 2007). The IMF is frequently fit with the form of

a power law at high masses and a log-normal distribution at lower masses as first

demonstrated in Chabrier (2003). Subsequent work has suggested that the IMF is

mostly independent of star-formation physics such as accretion rate and star for-

mation inefficiency (Hennebelle, 2012; Cunningham et al., 2018), but may depend

on local environmental properties like the global radiation field and local magnetic

fields (Offner et al., 2009; Bate, 2009; Dib et al., 2017; Guszejnov et al., 2017; Lee

et al., 2017; Cunningham et al., 2018; Ntormousi and Hennebelle, 2019). Thus, it is

imperative to know how individual cores may contribute to the interplay between

the CMF and IMF evolution.

A fundamental aspect to properly interpreting both simulation snapshots and ob-

servations of star-forming regions is understanding what overdensities are identified

as cores. Core identification in both observed star-forming regions and simulations

has been a topic of active investigation for decades. Beginning with the by-eye iden-

tification of structure in molecular clouds from Blitz and Stark (1986), the field has

expanded in two dominant directions. The first direction is the singular identifica-

tion of dense clumps, which started from the watershed segmentation algorithm of

Williams et al. (1994). This developed into the clumpfind algorithm that has been

utilized extensively. Other core-finding methods that return singular clumps include

the gradient-tracing scheme FellWalker (Berry, 2015), GaussClumps (Stutzki and

Guesten, 1990), which fits Gaussians to all peaks in the data, and cutex (Molinari

et al., 2011), which looks for curvature changes in the data, among others. The other

method of core identification is using hierarchical structure methods. Early hierar-

chical structure methods such as the structure trees from Houlahan and Scalo (1992)

then evolved into the commonly adopted dendrogram algorithm first presented in

Rosolowsky et al. (2008). Dendrograms connect structures in star-forming regions

from filaments to dense cores and allow a better understanding of the hierarchical

nature of the star formation process (Goodman et al., 2009).
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Each core identification algorithm comes with its own often subtle biases that

must be understood in the context of the analysis performed (e.g., Li et al., 2019).

For instance, GaussClumps and cutex only fit elliptical sources, but GaussClumps

can easily handle overlapping sources (Stutzki and Guesten, 1990) and cutex works

well with large background variations (Molinari et al., 2011). clumpfind has been

found to be sensitive to input parameters but is widely available (e.g., Berry, 2015).

FellWalker clumps can sometimes have artificial splitting due to the cleaning process

but tends to be more robust to noise (Berry, 2015). Dendrograms can be sensitive

to the algorithm tuning choices but provide the best understanding of the physical

environment surrounding cores (Rosolowsky et al., 2008). The above is not a com-

prehensive list of the benefits and drawbacks of core identification methods, but it

serves to show that every algorithm in use will work better in some situations as

compared to others.

Simulations have become a critical tool to interpret the necessarily-incomplete

window provided by observations in star-forming regions, especially as simulations

have grown in resolution and complexity. For instance, Mairs et al. (2014) note the

importance of high resolution observations in recovering the full mass and detailed

structure of star-forming cores. Observations at moderate resolution tend to miss

mass and structure due to averaging errors (Offner et al., 2012; Mairs et al., 2014).

Similarly, Beaumont et al. (2013) reach the important conclusion that position-

position-velocity observations carry uncertainties of 40% in computed quantities

when compared to a three-dimensional simulation. Effects like gas superposition

along the line of sight, line opacity obscuring core structure, and mapping obser-

vational (PPV) space to physical (PPP) space contribute confusion to an accurate

physical interpretation of cores from observations, because the line-of-sight structure

of a core can be easily miscalculated (e.g., Ostriker et al., 2001; Ballesteros-Paredes

and Low, 2002; Shetty et al., 2010; Beaumont et al., 2013).

In this chapter, we explore the time evolution of star-forming cores identified

with dendrograms and work to understand the role of the dendrogram algorithm

itself in the properties of identified cores. We begin by creating an algorithm to
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link dendrogram structures through time, which we describe in Section 5.2. The

robustness of this methodology depends on several tunable parameters, and we

explore the effect of the three major parameters in Section 5.3. We present the

time evolution of the identified cores, the distributions of core properties, and other

results of note in Section 5.4, and we then explore the reasons for the variability

we find in Section 5.5. Finally, Section 5.6 notes the implications of our findings,

including the importance of full core histories and the limitations of the dendrogram

algorithm. Section 5.7 summarizes our findings.

5.2 Methodology

In this work, we aim to trace the histories of cores in simulations of star formation

to test the robustness of core parameters measured throughout a core’s lifetime.

Here, we discuss the magnetohydrodynamic simulation used in this work, describe

our method of core identification, and present our new core tracking method. We

describe the fiducial choices for our core identification and linking methodology in

this section and test the impact of variations in these choices in Section 5.3.

5.2.1 A Note on Nomenclature

The meaning of the word “core” is not well defined between works. Observationally-

based definitions of cores, collected in Chen et al. (2019a) and references therein,

include “dense cores”, which are regions that have a dominant thermal velocity and

low virial α (virialized), “starless cores” that do not have a protostar and are not

virialized, “prestellar cores” that do not have a protostar but are virialized, and

“protostellar cores”, which do have protostars and are virialized. Cores can also be

defined in simulations as the material that accretes onto a star particle (e.g., Bate

et al., 2003), or the region of dense material at a single snapshot (e.g., Ntormousi

and Hennebelle, 2019).

This chapter explores differences between algorithmic, physical, and phenomeno-

logical understandings of dense cores in star formation. Toward that goal, we use
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the term leaf for a dense structure inside contours identified with a dendrogram, the

term overdensity for a physical collection of dense gas in the simulations, and the

term core for the loosely-defined, observationally motivated dense structures that

may form stars.

5.2.2 Simulations

Our simulation initial conditions are identical to those of run W2T2 in Offner and

Arce (2015). These conditions are intended to model a piece of a local, Gould

Belt star-forming region like the Perseus molecular cloud. For our purposes, the

simulation represents a prototypical turbulent molecular cloud that serves as a test-

bed for our core identification and tracking method; the properties of the cloud

itself have little bearing on our methodology as we are investigating trends in the

evolution of core structure. We outline the initialization and parameters of the

simulation below.

We run a magnetohydrodynamical (MHD) simulation of a∼3800 M�(7.5×1036 g)

gas cloud using the Orion2 code (Klein, 1999; Krumholz et al., 2007; Li et al., 2012).

Orion2 is a 3-dimensional adaptive mesh refinement (AMR) MHD grid code that

includes physics such as self-gravity, ideal MHD (Li et al., 2012), and Lagrangian

accreting sink particles (Krumholz et al., 2004; Lee et al., 2014a). Our simulations

are initialized on a 2563 base grid that corresponds to 5 pc on a side with periodic

boundary conditions in all spatial dimensions. We expect little influence on core

evolution from our choice of boundary condition as compared to a global molecular

cloud simulation.

These simulations refine the spatial resolution based on the Jeans number J such

that

J ≡ ∆xi
λJ

< 0.125, (5.1)

where ∆xi is the cell size at the current level i and λJ = (πc2
s/Gρ)1/2 is the

Jeans length (Truelove et al., 1997). When J > 0.125, finer cells with size ∆xi are

added, thus resolving the Jeans wavelength with higher resolution. Our simulations
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have 5 refinement levels over the base grid, which defines our minimum resolution

as ∼4034 AU per cell for the 2563 grid at level 0 and the maximum resolution as

∼126 AU per cell for the cells refined to level 5. These sizes are defined based on

the mean gas density in the simulation of ρ0 = 5 × 10−21 g cm−3 (1300 cm−3) and

the mean sound speed of 18800 cm s−1. In regions undergoing gravitational collapse,

gas is removed from the grid and replaced with a sink particle if J > 0.25 on the

finest level (Krumholz et al., 2004). Sinks accrete mass and momentum from gas

within a radius of four cells at level 5 as well as interact gravitationally with the

surrounding gas.

We generate the cloud initial conditions through a turbulent driving phase that

proceeds without gravity, which produces self-consistent turbulent gas density and

velocity distributions (e.g., Mac Low, 1999; Li et al., 2004; Offner et al., 2008).

The simulation begins with a uniform density, uniform temperature of 10 K and a

uniform magnetic field in the z direction, Bz = 13.5µG, which corresponds to an

initial thermal pressure to magnetic pressure ratio (plasma β) of β = 8πρ0c
2
s/B

2
z

= 0.1. Then the gas is stirred for two gas crossing times by perturbing the gas

velocities with a random velocity distribution that corresponds to a flat distribution

in Fourier space with wave numbers k = 1− 2. At the end of the driving phase, the

gas reaches a turbulent steady state with a turbulent power spectrum P (k) ∝ k−2

and β = 0.02 (Offner and Arce, 2015; Offner and Liu, 2018). Finally, self-gravity is

turned on, and we evolve the simulation for approximately 70% of a global free-fall

time (tff =
√

3π/32Gρ0 ' 1.5 Myr).

We adopt a barotropic equation of state of the form p = ρc2
iso[1.0 + (ρ/ρc)

γ−1],

where ciso is the sound speed for 10 K gas, ρc is the critical density at which the

gas transitions from isothermal to adiabatic and γ = 5/3 is the adiabatic index.

We choose an effective critical density that is comparable to the Jeans density on

the maximum AMR level, ρc = 7 × 10−15 g cm−3. This value is smaller than the

expected critical density for dense gas, ρc ' 10−14 g cm−3 (Masunaga et al., 1998),

in order to produce some warming when the maximum gas densities are reached.

This lower critical density acts to eliminate contiguous small scale fragmentation,
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which would otherwise occur within isothermal filaments at high resolution (Kratter

et al., 2010) and roughly approximates the influence of radiative feedback, which is

expected to heat the gas once protostars form (Offner et al., 2009).

The time evolution of the dense gas is shown in Figure 5.1. The density thresh-

olds used in this plot correspond to the densities of the AMR refinement thresholds

(computed from Equation 5.1). The simulations end with about 70M�of mass in

25 sink particles. The fraction of mass in the densest gas shows more variability

because of mass accretion onto the sink particles. Most of the dense cores are formed

in one large filament that spans the majority of the volume.

5.2.3 Structure Identification

Dendrograms are a common tool used to identify dense structures in both sim-

ulations and observations of star-forming regions; many previous works have used

them to find and identify properties of bound clumps and filaments (e.g., Rosolowsky

et al., 2008; Goodman et al., 2009; Beaumont et al., 2013; Burkhart et al., 2013; Lee

et al., 2014b; Seo et al., 2015; Storm et al., 2016; Friesen et al., 2016; Keown et al.,

2017; Wong et al., 2017; Nayak et al., 2018; Chen et al., 2018). Dendrograms also

provide a metric to quantify the structure of molecular cloud emission and associ-

ated physical properties (e.g., Boyden et al., 2016; Koch et al., 2017; Boyden et al.,

2018; Koch et al., 2019). For example, Goodman et al. (2009) demonstrated that

dendrograms produce more physically reasonable identifications of cores in 3D spec-

tral line data compared to another previously popular algorithm, clumpfind. As

an additional benefit, dendrograms naturally identify nested features and therefore

reflect the relationship between structures of different sizes in the data. Thus, we

choose dendrograms as our structure identification algorithm to better quantify the

interpretation of this widely adopted method. However, because of the fundamental

similarities between all core identification methodologies–that cores are identified

from peaks in quantities such as density or emission–the results of this work should

be generally applicable across algorithms.

A dendrogram is a tree algorithm that identifies hierarchical structures in any
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Figure 5.1: Time evolution of dense gas in our simulation. The blue colored lines
indicate the total mass above a given density across time, while the purple line shows
the mass of sink particles across time. The lowest density shown, 5× 10−21 g cm−3,
corresponds to a number density of approximately 1300 nH2 cm−3, while the high-
est density of 2 × 10−17 g cm−3corresponds to a molecular hydrogen density of
5× 106 cm−3.
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input quantity in a 2- or 3-dimensional grid. A dendrogram contains leaves (the

most refined structure), trunks (the lowest level structure that may contain refined

substructure), and branches (structures that connect leaves to other branches or

trunks). The dendrogram initialization is commonly defined by three parameters:

the background level cutoff that defines the base of the tree, the minimum differ-

ence (height) between two nested structures in the quantity being dendrogrammed

required to create a new branch or leaf, and the minimum size of an identified struc-

ture. The dendrogram is built by first identifying the maximum value in the grid.

The algorithm then iteratively searches adjoining cells and uses the size and den-

sity increase criteria to determine if a new branch or leaf needs to be created. The

tree ends when the background cutoff value is reached. Neighboring leaves can be

children of a single branch if they are both contained in the spatial bounds of the

branch. A region can contain multiple unconnected trees if an area surrounding two

structures is below the background cutoff. Note that dendrograms are inherently

relative structures because they are computed based on the maximum value in a

region. This work utilizes the astrodendro Python package.1

We carefully consider how we optimize the three parameters (background cutoff,

minimum density increase for new structure creation, and minimum structure size)

that define how a dendrogram is built2. The background cutoff will set the fraction

of gas in the simulation included in the dendrogram and impact the total height

of the tree (peak to minimum density, which will likely also impact the number of

structures in a tree) and the number of branches that can be created. The minimum

density increase to create new structure sets a height at which new branches and

leaves are created: a smaller value allows smaller density increases to be considered

as new structure, while a larger value makes the creation of new structure much

more stringent. Finally, the minimum structure size influences the size and internal

complexity of an identified core. Too large of a size means that we might group

individual compact structures into one leaf, while too small of a size might over-
1http://www.dendrograms.org/
2In the astrodendro package, these variables are named min_value, min_delta, and min_npix
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resolve substructure in the star-forming cores we wish to study (e.g., lumps in a

disk-like overdensity).

The background density threshold is a major limitation to the complexity of

the dendrogram. A low background density threshold connects more of the cloud

structure, including filaments, but these structures would not be readily observ-

able in traditional tracers. On the other hand, a high density threshold might

prematurely truncate low density structure. We use a fiducial density threshold

of ρ = 7 × 10−20 g cm−3 (1.8 × 104 cm−3), which is the density needed to refine

a cell from level 0 to level 1. The threshold density chosen herein roughly corre-

sponds to the minimum density observed in ammonia emission (n & 104 cm−3 or

ρ = 4 × 10−20 g cm−3), so the structures identified in our dendrograms would be

observed in synthetic observations (Flower et al., 2006). This creates a dendrogram

that contains only a few percent of the data by volume and consistently contains the

same dense structures throughout the entire simulation time. As seen in Figure 5.1,

our fiducial density encompasses a roughly constant mass (around 100 M�) over the

length of the simulation. Variations of the background density cutoff are described

in Section 5.3.1.

We next consider the density increase to create a new leaf. This parameter

impacts the inclusion of low-density structures in our dendrograms. A small density

increment produces many nested structures, and these new structures (typically

intermediate branches) do not add to the understanding of either leaf structure

or the hierarchy. A large density increment leads to very large leaves and begins

to under-resolve the dense structures that best resemble dense cores by combining

multiple overdensities into one leaf. We therefore chose a factor of 3 increase in

density as the fiducial density contrast required to create a new leaf. This choice is

further discussed in Section 5.3.2.

Finally, we set the fiducial minimum size of a structure to be 125 voxels (3-

dimensional cells; at our fiducial grid size, one voxel is (1000AU)3). The minimum

size of 125 voxels is large enough to encompass compact structures, such as pro-

tostellar disks, without being small enough to allow clumpy sub-structures to split
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into multiple leaves. At our fiducial resolution, this leads to a minimum leaf size

of about (5000 AU)3, although most structures are substantially larger. For com-

parison, the dendrograms of Friesen et al. (2016), who investigate the size and mass

of embedded clumps in the Serpens South protocluster, have a smallest effective

radius of ∼0.02 pc or ∼4100AU. Typical observed core sizes from works such as Seo

et al. (2015) and Keown et al. (2017) are 10−2–10−1 pc, so our minimum size resolves

structures in our simulation that are similar to observed cores. The choice of the

other two dendrogram initialization parameters can, in some instances, negate the

utility of the minimum size. If the background density threshold is high and the

density increase is large, small structures will be not be able to be resolved and ev-

ery structure will exceed the minimum structure size. With our fiducial parameters,

structure can approach the minimum size but the majority of leaves have volumes

of a few hundred to a few thousand voxels (core sizes & 0.05 pc).

While dendrograms can be computed for any scalar quantity, we choose to com-

pute dendrograms on the three-dimensional density grid. The large dynamic range

of physical density in our simulations means that a logarithmic scaling better traces

the physical structures. Therefore, to define structures in our simulations, we com-

pute a dendrogram with periodic (wrapping) boundary conditions on the log of the

density field at each simulation snapshot. The dendrogram routine can only search

a uniform grid, so we must apply a covering grid to our AMR simulations. Covering

grids interpolate the AMR data onto a fixed grid of size 256 · 2i in each dimension

where 256 is the base size of the simulation and i is the level for which we want to

create the grid. We define our dendrogram on a level 2 covering grid with each cell

having a side length of 1.5 × 1016 cm, or about 0.005pc ≈ 1000 AU. Our choice of

fiducial resolution is discussed in Section 5.3.3.

Our choice of parameters leads to dendrograms containing about 80 leaves in all

but the earliest timesteps when gravitating structure has barely started to collapse.

An example of the dendrogram computed with these fiducial parameters at an inter-

mediate timestep (40% tff) is shown in Figure 5.2. Many of the leaves (> 50%) are

isolated and not part of a larger structure that contains further refinement due to
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Figure 5.2: An example of the dendrogram computed with fiducial parameters at
an intermediate timestep. The right panel shows the tree colored by the volume of
the leaf. Black stars denote the presence of sink particles in the leaf. The x-axis has
no physical meaning; the structures have been roughly sorted by peak density. The
left panel shows the x− y projection of the leaves. Pink circles denote the location
of sink particles with sizes scaled by the mass of the sink.

our choice of background density cutoff; however, these leaves tend to be of relatively

low-density, and most will likely not form stars as they are temporary structures (see

further discussion in Section 5.4.4). Most leaves (> 80%) do not form sink particles

by the end of the simulation, and leaves containing one sink particle are about 2-3

times more common than leaves hosting multiple sink particles. Sink-hosting leaves

can decrease in peak density after sink formation due to accretion of high-density

gas onto the sink particle.

With the dendrogram defined, we output a catalog of important leaf parameters

at each timestep (density, position, velocity, magnetic fields, etc.) using the full

AMR grid that falls within the volume of the uniform-grid leaf surface. This catalog

is then used to perform the linking algorithm defined in the next section.

5.2.4 Linking Structures Through Time

Once the 3-D structures are constructed for every timestep, we link them through

time. We take a two step approach by first linking structures between consecutive

timesteps and then by reconstructing a structure’s full path through time.
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Pair-wise Linking

To match structures between timesteps, we use a geometric search that relies upon

simulation outputs being frequent enough that structures do not move significantly

(more than about half of their size) between outputs. Beginning with an individual

leaf (la) at timestep ta, we search for all leaves at timestep tb where the center of

mass of la is within the surface of a leaf at tb. We then reverse the search such

that we look for the center of mass of a time tb leaf to be within the surface of a

time ta leaf. We do allow for an offset of the center of mass from the boundary of

the leaf in two dimensions because of the possibility of dendrogram contours being

defined differently between consecutive timesteps as discussed below. The choice

of this offset is described in Section 5.3.4, but our fiducial value is set to 10 grid

cells at level 2. A leaf at one timestep can be associated with multiple leaves at the

next timestep, and we describe the consequences of this further below. This search

is then continued between all consecutive pairs of timesteps (i.e., ta ↔ tb, tb ↔ tc,

etc.).

There are four cases that result from the pair-wise linking as shown in Figure 5.3.

Leaves can be uniquely identified with a single structure between ta → tb and tb → ta.

This is most common and leads to a single path between timesteps (panels “standard”

and “offset”). However, multiple leaves can be found at one timestep that map back

to a single leaf at the adjacent timestep. If the single leaf is at an earlier timestep

and the multiple leaves are at a later timestep, this is a “split”. If the single leaf is at

a later timestep and the multiple leaves are at an earlier timestep, this is a “merger”.

In our simulations, splits and mergers are most frequently due to dendrogram leaf

boundaries being drawn to encompass multiple nearby overdensities, not actual

physical merging or fragmentation. Physical evolution can happen but is difficult

to disentangle from the changes in dendrogram contours.

In the 170 output timesteps of our simulation, we link 11,000 leaf pairs; 10,500

of those are securely linked, meaning that we identify the same linked pair looking

forward and backward. We find ∼200 splits and mergers. About 60–70% of linked
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pairs have no offset, and the average offset of the remaining linked pairs is about 10

cells (∼0.05 pc).

We initially incorporated the velocity information, specifically the leaf center-of-

mass velocity, (which includes the contribution from any sink particles that may be

present in the leaf), into our algorithm to help inform the direction of motion to

uniquely track a leaf through time and reduce the number of nearby, unassociated

leaves linked. However, because of variability in the computation of dendrogram

structures between timesteps, the leaf center of mass does not always move in pre-

dictable patterns. Therefore the addition of velocity information does not improve

our linking. To demonstrate this issue, we present two examples of leaf behavior

in Figure 5.4. The error bars in the upper panels have been doubled in length to

be more visible. The left panels shows what a well-behaved leaf looks like: the leaf

center of mass at the next time is within the position expected from the velocity.

However, a significant number (& 25%) of our leaves have a history that look more

like the right panels, where at certain times, the dendrogram contours are redrawn

to include more material. This then changes the center of mass of the leaf and the

expected position of the leaf center is wildly offset from the computed location of

the center of mass. The leaf centers at consecutive timesteps are typically within the

leaf contours, meaning that the less complicated geometric search discussed above

is more reliable for our data. We do encounter a few pathological cases where a

reconstruction cannot be performed in an automated way, such as when the leaf is

shaped like a banana– the center of mass lies outside the leaf contour and is therefore

computed to have a large offset to the leaf boundary at the next timestep.

Path Reconstruction

The last step to fully trace the histories of overdensities in our simulations is to

transform the pairwise linking into a coherent path through time. We use the

terminology “path” to denote a single set of related leaves through time and “path

family” to denote a group of paths that were found to be related to a single starting

leaf. For the analysis presented herein, we work backward in time (from the end
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Figure 5.3: A cartoon of the cases that result from the pair-wise linking. Blue
colors indicate earlier times and the purple colors indicate later times. The top
is the “standard” linking where the center of mass at one timestep (filled circle) is
found within the volume at the other timestep (open contour). The “offset” linking
allows there to be a small offset (∆) between the leaf center of mass and the leaf
volume at consecutive timesteps, which typically arises from dendrogram contours
being redrawn to include more material. “Splits” and “mergers” are cases in which
a leaf at one timestep can be associated with more than one leaf at a consecutive
time. Note that, while this cartoon is shown in 2-D, the linking in our data is done
in 3-D.
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Figure 5.4: Two examples of leaf behavior illustrated by sink-hosting leaves. The left
column shows an ideal behavior where the leaf structure evolves smoothly, while the
right column shows a leaf that undergoes significant dendrogram structure variations
in time. The upper panels show the x − z positions of a leaf through time. The
black line show the center of mass of the leaf through time, while the red line shows
the position of the sink particle in the leaf. The error bars on the black line show
the “expected” position of the leaf at the next timestep given the velocity of the
center of mass of the leaf. The bottom panels show a selection of the projected leaf
contours at the times indicated by colored points in the top panel. The solid circles
denote the center of mass of the leaf and the star indicates the position of the sink
particle. The lower right panel demonstrates a common barrier to velocity-based
linking: the dendrogram leaf contours can change significantly between timesteps,
offsetting the center of mass of the leaf from the expected position.
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of the simulation to the start) because the most relevant structures to compare to

observations are the compact overdensities found in well-evolved regions at later

times in the integration. Because we use a fixed starting point in time, cores may

be traced at different evolutionary stages.

we start by selecting a leaf (l0) from the cohort of leaves at the final timestep

(t0). We search through the linked pairs t0 ↔ t1 to find the leaf at t1 linked to l0.

This found leaf is added to the path. We then check if the leaf at t1 is associated

with any other leaves at t0. We then iteratively repeat this process to search for

matches to the earliest leaf in the path going backward in time.

For the cases where there are mergers (two or more leaves at an earlier time

being associated with only one leaf at a later time), we add one of the leaves to

the current path and then add new paths to the path family by copying the current

path and appending the other merged leaf. Each path in the path family is then

reconstructed independently.

For the cases where there are splits (two or more leaves at a later time being

associated with only one leaf at an earlier time), we create a new path and recursively

search in the opposite direction (from early times to late times) to find the path(s)

associated with the new leaf.

Path families can have many component paths because each new split or merger

effectively doubles the number of paths in a path family. While not always indicative

of physical interactions, a large-number path family does indicate that the structure

lives in a crowded area of the simulation volume.

5.3 Parameter Variations

All core identification algorithms include tunable parameters, and the dendrogram

algorithm we adopt here is no exception. In observational studies, the parameters are

chosen based on the noise, sensitivity and resolution of the data. When analyzing

simulation data there is more flexibility in parameter choice. Consequently, we

explore a variety of parameter values to assess the physical impact of our parameter
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choices, including background cutoff density, density increment to create a new

structure, grid resolution, and linking distance ∆. Thus, in this section, we explore

how variations in these parameters impact our reconstructed path families. While

the minimum leaf volume at constant resolution is also a tunable parameter, we

find negligible impact on the final dendrogram structure when varying this quantity

within reasonable limits.

5.3.1 Background cutoff

The background cutoff influences the tree complexity, leaf structure, and computa-

tional requirements of a dendrogram. Values near the mean density in the simulation

(5×10−21 g cm−3) include too much gas that never participates in the star formation

process. Very large, low density structures affiliated with the filamentary structure

are commonly identified as leaves. Values at high-density (level 2 refinement density

or higher, or around 3 × 10−19 g cm−3 ∼ 8 × 104 cm−3) exclude an extremely large

portion of the gas (& 99%), including gas at early times that will eventually fall in

to a dense core. The level 2 refinement density corresponds to a Jeans length of 0.08

pc, which is smaller than typically observed cores. The dendrogram would be less

likely to resolve any structure larger than this, which includes most of the objects

that resemble observed cores; instead, the algorithm would only identify small peaks

in larger overdensities. For these reasons, and the physical arguments described in

the previous section, we use the fiducial density of 7× 10−20 g cm−3.

5.3.2 Density Increment

The contrast required to create a new structure in the dendrogram mainly impacts

the low-density structure identified in the tree. We compare density increases of

factors of 2, 3 (my fiducial choice), 4, 5, and 10 and find little difference between

the leaves identified, although the trees themselves are quite different. We show

the comparison of factors of 2, 3, and 5 in Figure 5.5. All high-density structure

is contained in all trees; the major differences arise in the low-density structures.
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Every sink particle lives in a nearly identical leaf, meaning that the important

structures for star formation are not impacted greatly by our choices of density

contrast parameter.

The trees computed with large density contrasts identify much less structure

because overdensities must be much more significant to be added to the tree. This

means that, in dense regions especially, two neighboring overdensitites may be en-

closed in one leaf. Small density contrasts can lead to very low density leaves being

added to the tree. These leaves are insignificant temporary perturbations above the

background cutoff and add a level of unnecessary “noise” to the linking process.

Burkhart et al. (2013) perform a similar analysis by varying the density increase

required to create a new structure (δ in that work) and comparing the resulting den-

drograms across a suite of MHD simulations. They find that dendrogram structure

varies significantly with δ and can provide information about the relative importance

of shocks, self-gravity, and super-Alfvénic turbulence.

5.3.3 Resolution

The size and shape of structures in the dendrogram are highly correlated with the

resolution of the uniform grid used to compute the dendrogram. When all other

parameters are kept fixed, an increase in resolution, unsurprisingly, allows for both

more refined structures and physically smaller structures. The algorithm identifies

more structures because each increase in the level of the uniform grid provides a

factor of 8 increase in the number of cells, meaning that there is more flexibility to

define compact structure. Physically smaller structures are identified because the

minimum size of a structure is fixed at 125 cells; therefore, each increase in level

decreases the minimum required physical volume of a structure by a factor of 8.

We compute our fiducial dendrogram at level 2. 10243 cells in the volume gives

a 1000AU/cell resolution. We also tested level 3 (20483 cells; 500AU/cell) and

level 4 (40963 cells; 250AU/cell) resolution. The memory required for producing a

dendrogram at the full level 4 volume was prohibitive. We therefore use a subset

of the volume of size [2048, 2048, 1536] at level 4 (about 10% of the volume) that
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Figure 5.5: A comparison of dendrogram leaves given different density increments.
On the left, the purple, green, and orange contours demarcate leaves from dendro-
grams with a 2x, 3x, and 5x density increase (contrast) required to create a new
leaf, respectively. Contours are shown over a density projection of the simulation
with darker colors indicating denser regions. Red circles show the locations of sink
particles and are scaled by sink mass. The right panels show the full dendrograms
for each density increment. The different trees trace out the same dense material,
indicating that our results are relatively invariant of the choice of contrast.
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contains 15 of our 24 sink particles and many of the structures identified at level 2.

Other than resolution, we compute the dendrograms for each case using the same

fiducial parameters as described above in Section 5.2.3. The comparison volume

contains 40 level 2 leaves, 52 level 3 leaves, and 63 level 4 leaves.

The contours of leaves at the three levels are shown in Figure 5.6. As seen in

the left panel, the contours at all levels broadly agree. Only in the densest regions

do the leaf volumes differ significantly. The right panel shows one of these dense

regions: a triple system in a complicated overdensity illustrates how differences in

the resolution can change the leaf structure. The level 2 dendrogram encloses all

triple members in one leaf. The level 3 dendrogram draws the central binary in one

contour but excludes the tertiary component along the z-direction. The tertiary’s

local overdensity is not large enough to create an independent leaf. The level 4

dendrogram assigns all the small overdensities in the greater disk-like overdensity

to their own leaves.

Figure 5.6 suggests that level 4 is too sensitive to substructure: the overdensity

of one physically bound system is often split into sub-structures such that we lose

information about the bound core. It is not possible to compute important system

quantities such as gravitational potential or virial parameter without having the full

bound structure contained in a single leaf.

Next, we asses the utility of the level 3 dendrogram. Ideally, we want to minimize

large changes in the density contours while including all important structure (or

sink particles) in a given overdensity. To this end, we compare the derived leaf

parameters between leaves tracing the same physical structure at level 2 and level

3 in Figure 5.7. The correlation in mass, peak density, and velocity dispersion is

very good (typically within a factor of 3) despite the fact that there is a factor

of 8 difference in the minimum volume. Outliers below the one-to-one correlation

in all panels except velocity dispersion arise from the population of small, low-

density leaves that are identified as independent structures at level 3. These small

overdensities are typically included as part of a larger level 2 leaf at the lower

resolution, but the low density of the structures means that the mass-weighted
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Figure 5.6: Contours of leaves from trees computed on uniform grids at AMR levels 2
(the fiducial choice in this work), 3, and 4 in purple, green, and orange, respectively.
The contours are shown over a density projection of the simulation with darker
colors indicating denser regions. Red circles show the locations of sink particles and
are scaled in size relative to their mass. The black dashed line in the left panel
indicates the extent of the comparison volume. As is seen in the left panel, the
contours at all levels broadly agree. The right panel reveals that only in the densest
regions do the leaf volumes differ significantly. This region contains an overdensity
that surrounds a bound triple system. The sink particles outlined in white comprise
the central binary (5M�and 2M�), while the small circle outlined in black is the
tertiary companion (0.8M�). The tertiary is separated from the central binary by
a few thousand AU.

parameters such as velocity dispersion are mostly agnostic about their inclusion.

Leaves above the one-to-one line in the same panels come from ambiguities in the

correlation of leaves across resolution, but they constitute a small fraction of the

total number of leaves shown. Patterns of points forming lines in any of the panels

are indicative of time evolution. Thus, we conclude that the difference in leaves

identified at level 2 and level 3 does not impact our understanding of dense core

evolution.
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Figure 5.7: A comparison of derived leaf parameters between correlated leaves at
level 2 and level 3. The panels show gas mass, peak density, volume, and velocity
dispersion. Points are colored by the volume at level 3. The horizontal axis shows
the values of leaves computed on level 2 and the vertical axis shows the value for the
corresponding leaf computed at level 3. The black dashed line shows the one-to-one
correlation, while the dotted lines show a factor of three difference. The correlation
in mass, peak density, and velocity dispersion is very good despite the fact that
there is a factor of 8 difference in the minimum leaf volume.
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5.3.4 Linking Distance

While the aforementioned parameters control the construction of the dendrogram

at each time snapshot, the linking distance is the crucial parameter that controls

the history of structures (∆ in the “offset” panel in Figure 5.3). The linking distance

is the distance between the center of mass of a leaf at one timestep and the surface

of the leaf to which it has been linked. Linking distance will simultaneously impact

the number of paths in a family and the number of timesteps traced in an individual

path. Typical leaf sizes are of order 0.2 pc, so we test linking distances of 0 cells

(no offset; a leaf center is within the contour at the neighboring time), 10 cells

(∼104 AU; about a typical leaf radius), 100 cells (∼105 AU; about 10 leaf radii),

and 200 cells (∼2 × 105 AU). Our goal is to robustly identify leaves with common

histories without permitting too many uncertain connections while, at the same

time, allowing for variations in dendrogram leaf contours.

We present the results of our investigation in Figure 5.8. There are minimal

variations between the 100 cell and 200 cell linking distances, so we only present the

100 cell results in the figure. For most path families, specifically those of isolated

leaves, linking distance does not make a difference in the number of paths recon-

structed. The smaller two linking distances, on average, create smaller numbers of

paths in the family. Some of this is due to large variations in dendrogram contours

between timesteps; the changes in the leaf boundaries can be larger than the linking

distance. Linking distance does have a much stronger impact on the length of a

path history, however. Larger linking distances typically lead to longer paths, while

a linking distance of 0 can sometimes artificially truncate a path.

The linking distance becomes an important consideration for leaves in dense

environments, which is also where the majority of sink particles reside, including the

many bound multiple systems. In these environments, leaves can exhibit significant

variation in structure between timesteps, and therefore a very small linking distance

will result in frequent premature truncation of paths. However, because of the

proximity to many dense structures, it is easy to link two nearby, but not physically
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Figure 5.8: Comparison of different linking distances. The colored shapes represent
different linking distances. The top panel shows the number of paths in a family
(the unique combinations of leaf histories identified for a single starting leaf). The
horizontal axis is arbitrary and simply serves to order the leaves. Vertical lines
connect the the path families for a single leaf at different linking distances. Black
stars along the bottom indicate the presence of at least one sink particle in a leaf.
The bottom panel shows the maximum fraction of the total simulation time traced by
a path family; ordering matches the top panel. The choice of linking distance is most
significant in dense environments where there are many leaves in close proximity.

interacting, structures, leading to a large increase in the number of paths in a family.

We adopt 10 grid cells as our fiducial linking distance because it allows some

variation in the dendrogram leaf contours without leading to linking with many

nearby, unassociated leaves. We are still able to identify paths through a substantial

fraction of the simulation time, but we don’t reach the extremely numerous, and

less physically meaningful, path families found with larger linking distances.
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5.4 Results: Core Properties and Evolution

We have identified dense core analogs using dendrograms at multiple simulation

outputs and reconstructed the time evolution of these leaves. We now study the

broad distributions of leaf properties (such as is frequently done in other work, both

observational and computational) and the time evolution of individual leaves in our

simulations. We summarize our findings below.

5.4.1 Core Property Distributions vs. Individual Core History

We study both the distribution and individual evolution of the large sample of

leaves in our simulation. Every parameter distribution we investigate is relatively

constant in time. However, the individual evolution of a leaf can be quite variable.

We present an example of this dichotomy in Figure 5.9. The mass distribution does

not vary significantly in time; major variations are only seen at the earliest times

when structure is beginning to collapse due to self-gravity. The bottom panel reveals

that a leaf may have a computed gas mass that can span upwards of an order of

magnitude in time, and the typical evolution does not smoothly vary from time to

time. Note that in these (and all future figures), time is measured relative to the

beginning of the simulation.

To better understand the relative variability in core evolution, we use a parameter

called the coefficient of variation (CV), which is defined as the standard deviation

of a parameter (σ) divided by the mean (µ) of that parameter. This quantity allows

us to directly compare leaf properties of varied units and physical scales and has

units of percent. For our analysis, we consider paths that are tracked for more

than 15 kyr and compute the standard deviation of the total path. Because of

the rapid evolution in both volume and density of leaves at early times due to the

introduction of gravitationally collapsing structure, we exclude the earliest ∼30% of

the simulation from our computation of the CV.

Table 5.1 presents the minimum, mean, and maximum variation of 16 different

parameters: total mass, gas mass, leaf volume, leaf size, mean density, oblateness,
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virial parameter, the Mach number of gas in the core, the Mach number of the

core in the simulation volume, the Alfven Mach number of the core, the angular

momentum magnitude, the variation in the angular momentum orientation, the

magnetic field magnitude, the variation in the magnetic field orientation, and plasma

β. While there are few substantial trends to remark upon for individual quantities,

for completeness, we report CVs for the entire ensemble of parameters studied in our

analysis. We have separated the paths into three bins in each section. Under each

bin is the number of individual paths that fall into the bin. The final line in each

table section is ∆, which is the spread in CV (maximum CV minus minimum CV)

for the collection of quantities and is designed to show the variation in variability

for each bin.

Size of Path Family

We first split our full contingent of paths by the number of paths in a family. Paths

with n = 1 are isolated; they typically show the least variation. However, these paths

are, on average, shorter than paths in other bins that can lead to suppressed varia-

tion. Paths with n ≥ 10 are typically in very dense environments and are therefore

most susceptible to being linked to multiple nearby leaves. This can cause varia-

tions to be artificially high as physically unassociated cores (overdensities that don’t

physically interact in space) are linked in the same path; the large CV of volume

in the non-isolated paths hints that leaf contour changes (arising from structures

bouncing above and below the structure refinement threshold due to minute changes

in the local density field) may cause the large CVs in other parameters.

Number of Sinks

We then group paths by the number of sinks in the leaf at the final timestep. Paths

with n = 0 are starless overdensities. The starless paths with low CVs are typically

short-lived, low-density leaves. The paths containing multiple sink particles are

frequently part of large path families in dense regions where physically independent
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overdensities are identified as related due to a temporary co-location or dendrogram

contour changes that cause multiply-linked leaves.

Length of Path

Finally, we divide the ensemble of paths by their length. The shortest paths

(< 75kyr) are frequently temporary overdensities and therefore have little physi-

cal evolution over the time they are traced as indicated by the low CVs. However,

there are also short paths with high variability that belong to a large path family.

The longest paths (lifetimes greater than 250kyr) have little correlation with the

size of the path family or the presence of stars, so the CVs in the final bin span a

large range.

General Trends

The path histories we trace have significant variation– frequently upwards of 40% in

CV. In all three methods of dividing paths presented in the table, the average CV

increases from left to right, meaning that shorter lived, isolated, starless cores tend

to have less variability. However, the maximum CV does not show the same trend,

indicating that any given path can vary significantly.

It is also important to note that a low variability in one parameter does not

indicate low variability in all parameters. This is demonstrated with the parameter

∆ at the bottom of each section. This quantity shows the maximum difference in

the CV of the 16 parameters for each leaf, or the maximum variation in the variation

of our computed properties. The average ∆ in all cases is over 50%, meaning that

the majority of paths have little correlation in the amount of variability in different

quantities. Thus, the computed properties of observed overdensities identified with

dendrograms may not correlate well with the physical evolution of the bound core

itself.
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Figure 5.9: Core mass distribution vs. individual core evolution. The top panel
shows the distribution of gas mass in the cores across time. The bottom panel
shows the gas mass evolution of a subset of reconstructed paths through time; dark
purple lines show leaves without sinks particles, blue lines show leaves with a single
sink particle, and green lines show leaves with multiple sink particles. While the
broad distribution of gas mass is nearly invariant in time, any individual leaf may
have large variations in its reconstructed history.
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Table 5.1: Coefficient of variance range for different core properties. The CV is
defined as the standard deviation divided by the mean of a quantity.

Number of paths in a family
n = 1 1 < n < 10 n ≥ 10
(34) (89) (790)

Quantity Min Mean Max Min Mean Max Min Mean Max
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Total mass 9 27 53 12 55 213 9 42 153
Gas mass 9 27 53 10 57 279 13 52 144
Volume 1 17 61 10 68 266 18 67 152
Size 1 31 277 4 52 246 6 27 243
Mean density 2 17 96 3 56 196 12 67 244
Oblateness 1 26 89 16 43 92 15 38 74
Virial α 3 27 75 8 49 214 14 41 254
InternalM 1 10 34 4 24 65 4 22 49
TotalM 0 6 20 2 11 40 5 13 28
AlfvenM 2 11 30 6 32 104 11 30 72∣∣∣~j∣∣∣ 3 38 154 18 77 242 10 80 189

(Max(~j)-Min(~j))/Mean(~j) 0 25 64 5 27 53 11 31 61∣∣∣ ~B∣∣∣ 1 12 56 1 27 54 4 24 60

(Max( ~B)-Min( ~B))/Mean( ~B) 1 17 45 6 29 71 10 31 48
Plasma β 2 16 67 6 51 156 14 43 140
∆ 19 59 272 31 110 270 36 94 262

Number of sinks at final timestep
n = 0 n = 1 n > 1
(520) (85) (308)

Quantity Min Mean Max Min Mean Max Min Mean Max
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Total mass 9 54 213 9 44 213 21 25 110
Gas mass 9 54 279 11 51 207 24 48 157
Volume 1 61 266 7 53 190 28 77 196
Size 1 39 277 6 29 246 13 14 31
Mean density 2 53 185 17 61 196 18 83 244
Oblateness 1 36 89 29 51 92 15 38 59
Virial α 3 49 141 9 44 96 15 28 254
InternalM 1 26 55 5 19 61 4 15 65
TotalM 0 14 25 3 11 28 6 11 40
AlfvenM 2 19 104 8 28 72 15 47 57∣∣∣~j∣∣∣ 3 64 189 10 56 242 21 109 185

(Max(~j)-Min(~j))/Mean(~j) 0 28 64 8 30 61 22 35 53∣∣∣ ~B∣∣∣ 1 20 56 11 22 43 8 33 60

(Max( ~B)-Min( ~B))/Mean( ~B) 1 26 71 12 32 50 13 37 45
Plasma β 2 37 79 3 38 154 14 53 156
∆ 19 90 272 45 85 241 53 105 262

Length of path history
t < 75kyr 75kyr < t < 250kyr t > 250kyr

(35) (21) (857)
Quantity Min Mean Max Min Mean Max Min Mean Max

(%) (%) (%) (%) (%) (%) (%) (%) (%)
Total mass 9 54 213 10 42 81 9 43 153
Gas mass 9 62 279 10 41 81 11 51 144
Volume 1 60 266 2 36 102 5 67 152
Size 1 29 217 6 44 171 6 29 277
Mean density 2 35 196 3 37 110 5 65 244
Oblateness 1 31 62 9 41 92 10 38 76
Virial α 3 35 254 14 47 141 8 42 144
InternalM 1 14 50 5 14 32 2 22 65
TotalM 0 6 18 1 9 17 2 13 40
AlfvenM 2 27 104 4 17 38 7 30 72∣∣∣~j∣∣∣ 3 52 232 5 59 154 10 80 242

(Max(~j)-Min(~j))/Mean(~j) 0 24 52 8 22 64 7 31 61∣∣∣ ~B∣∣∣ 1 17 48 5 15 45 4 25 60

(Max( ~B)-Min( ~B))/Mean( ~B) 1 25 71 7 22 43 8 30 50
Plasma β 2 36 154 3 26 67 15 43 156
∆ 19 85 270 31 80 166 34 95 272
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5.4.2 Isolated, Starless Cores

Naively, we might expect the long-lived, isolated, starless cores in our simulations to

show the least variation. Observed lower density cores can have lifetimes of upwards

of 1Myr, which suggests that these cores should vary slowly over their lifetime if they

are free from external influence (André et al., 2014). Thus, we analyze these isolated

cores separately; Table 5.2 shows the coefficient of variance for the 18 isolated (one

path in the family), long lived (t > 75kyr), starless leaves. While some vary by only

a few percent, other paths have variability of CV> 40% for the 15 parameters in the

table. This indicates that these leaves have large computed variability, in contrast to

our naive expectation. The individual leaf evolution tracks are shown in Figure 5.10,

where we plot mean density, mass, volume, and virial parameter. Most leaves show

fairly large stochastic variations in individual quantities on short timescales. These

variations are commonly due to changes in the physical structures included in the

dendrogram leaf rather than significant physical evolution. However, a few of our

leaves (namely, those plotted in purple), show relatively quiescent evolution over

their full lifetime, which are akin to the structures identified in Chen et al. (2019a).

These quiescent cores will contribute to the statistics of core property distributions

while not participating in the star formation process, thereby confusing the mapping

of the core mass function to the initial mass function of stars (e.g. Offner et al., 2014).

5.4.3 Virial Evolution of Cores

Despite the wide variability in the time evolution of other core properties identified

with dendrograms, the virial evolution of leaves does trend in the expected direction

of lower virial numbers with time as seen in the lower panel of Figure 5.11. This

fits the classic view of star formation where a magnetized core undergoing global

gravitational contraction will eventually become supercritical and collapse to form

a star (Mouschovias and Spitzer, 1976). However, our core tracking algorithm does

not find strong evidence that a leaf with low virial α will form a star as shown in Fig-
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Figure 5.10: Individual core evolution for the long-lived, isolated, starless cores in
our simulation. We show mean density, gas mass, volume, and virial parameter in
the four panels. Most cores show stochastic variation on the order of a factor of a
few over the course of their lifetimes.
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Table 5.2: Coefficient of variance range for isolated, long-lived, starless cores

Quantity Min (%) Mean (%) Max (%)
Total mass 10 30 53
Gas mass 10 30 53
Volume 2 18 61
Size 6 45 277
Mean density 3 17 54
Oblateness 9 33 89
Virial α 14 35 75
InternalM 2 12 27
TotalM 1 8 20
AlfvenM 4 15 30∣∣∣~j∣∣∣ 5 48 154

(Max(~j)-Min(~j))/Mean(~j) 8 28 64∣∣∣ ~B∣∣∣ 5 14 56

(Max( ~B)-Min( ~B))/Mean( ~B) 7 21 45
Plasma β 6 21 67

ure 5.11. Note that we are using the simplified gravitational α (which is frequently

used in observations, e.g., Kirk et al., 2017) and not computing the full virial α

that includes boundary terms. Most leaves (> 70%), especially those hosting sink

particles, do finish the simulations with α < 2. However, a substantial population

of the long-lived, starless leaves have α < 2 as well. Many of these low-α leaves

persist for longer than a local free-fall time (a few hundred kyr) without forming a

star. Thus, virial α is not necessarily the best predictor of future star formation;

other physics, such as pressure or magnetic support, are important factors in the

global evolution of a core.

5.4.4 Short-lived Overdensities

We observe a population of short-lived, low-density peaks arising from turbulent

flows that contribute a level of “noise” to the interpretation of long-term core evo-

lution, since they do not go on to collapse and form protostars. These overdensi-

ties account for about 25% of path families identified when tracing paths forward
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Figure 5.11: Core property distribution vs. individual core evolution of the virial
parameter. The top panel shows the distribution of the virial parameter of the cores
across time. The bottom panel shows the virial evolution of a subset of reconstructed
paths through time. Coloring is the same as Figure 5.9.
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from an intermediate timestep. We identify this temporary population of “imposter

cores” as having lifetimes less than 200 kyr and densities less than 1× 10−18 g cm−3

(2.5 × 105 cm−3), as can be seen in Figure 5.12. The majority of isolated paths

occupy a much lower density and shorter lifetime than the general path population.

Most of the paths in the low-density and short lifetime region also show the trend

that the maximum density (which is typically also less than 10−18 g cm−3) is higher

than the last identified density (the ending density of the path), suggesting that

these leaves are physically temporary overdensities that decay below the threshold

density required to be identified in the dendrogram. The free-fall time of these over-

densities is about 100 kyr; because the free-fall time is roughly equivalent to the

overdensity lifetime, these objects are not dominated by gravitational collapse.

The presence of this substantial population of imposter cores could introduce a

bias in the instantaneous core mass function. These overdensities have gas masses

of order one solar mass and sizes of roughly a tenth of a parsec, which is similar to

masses and sizes of observed cores and may therefore masquerade as pre-star-forming

cores. Thus, at any given time, roughly 15-25% of cores identified in a region may be

from this temporary population. We performed a two-sample Kolmogorov-Smirnov

test on the computed core properties of imposter cores compared to all other cores

at the same time: we could not distinguish differences in the distributions of any

parameter except density. For instance, gas mass and virial parameter both have a

p-value of 3% and K-S statistic of 0.4; if the p-value is high (our preferred cutoff is

more than 1%) and the K-S statistic is low (our preferred cutoff is less than 0.6), we

cannot claim that the two samples are drawn from different populations. Indeed,

p-values for our computed parameters except for density are typically above 3-5%

and K-S statistics are typically less than 0.5. Thus, imposter cores are not easily

separated from any other population of cores, so they will complicate the correlation

of core and stellar properties. These temporary overdensities are explored in more

detail in Chen et al. (2020).
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Figure 5.12: Starting and ending densities of isolated objects. The background
histogram shows the starting and ending peak densities of all paths (top and bottom,
respectively) plotted against the length of the path. The purple points denote
isolated paths. There is a substantial population of low-density leaves with lifetimes
less than 150 kyr (25% of all path families) that are temporary, non-gravitating
overdensities that disperse and fall below the dendrogram floor.



182

5.4.5 Core Mass Function

We measure the core mass function (CMF) of our simulation. We show our CMF

through time in Figure 5.13 together with mass functions from the literature. We

compute the total core mass, which includes mass from both gas and sink particles.

We compare our CMF to the fiducial CMF from Guszejnov and Hopkins (2015),

the observed CMF from Alves et al. (2007), the initial mass function (IMF) inferred

from observations from Chabrier (2003), and a log normal distribution. The CMF

in our simulation agrees well with the observed CMF of the Pipe dark cloud from

Alves et al. (2007) and with other observational CMFs not plotted here such as

those observed in Perseus, Serpens and Ophiuchus from Enoch et al. (2008), Aquila

from André et al. (2010) and Könyves et al. (2015), and Vela C from Massi et al.

(2019). We also find a good agreement with a Chabrier (2003) system IMF scaled

by a factor of 6. We do not, however, create the population of low mass cores of

the Guszejnov and Hopkins (2015) model. We also do not create the population

of low mass sinks particles seen by other simulations such as Bate (2012) despite

our ability to create sink particles with masses much less than 1M�(although this

is expected due to the coarse spatial resolution).

As is seen in the figure, our CMF is relatively invariant through time. Our peak

mass is constant at around 1.4M�with a range from about 0.3− 10 M�. There is a

small apparent bias towards higher masses at earlier times, which is a byproduct of

low number statistics and the lack of significantly refined structure in our simulations

shortly after gravity is turned on. The constant nature of the CMF is likely due to

two effects. The dendrogram introduces new leaves when temporary overdensities

are significant enough to warrant leaf creation, leading to the transient population

of low-mass “cores” discussed above that balances the small physical growth of per-

sistent cores and the algorithmic fragmentation of more massive leaves into smaller

structures. The trend of nearly constant CMF across time in a singular environment

is seen in other simulations, such as Cunningham et al. (2018), where cores mass

distributions do not show significant mass evolution after formation. As described
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above, any given leaf can occupy a wide range of the total mass space as we track it

through time, but the ensemble of leaves maintains a constant distribution in time.

Thus, the CMF derived from a dendrogram population does not necessarily correlate

with the final IMF of the region; the stochastic nature of leaf mass evolution makes

it very difficult to compute a relationship between a core mass at any snapshot and

the resultant stellar mass.

We compare the CMF derived from the leaf gas mass to the CMF derived from

more observationally-motivated core definitions including the leaves that eventually

form stars (equivalent to prestellar and protostellar cores), leaves with α < 2, and

leaves that are Jeans unstable for their mean density. All of these different popula-

tions produce quantitatively similar results, as shown in Figure 5.14. The CMFs all

have peaks slightly higher than 1M�, a spread of about two orders of magnitude,

and are invariant in time. We therefore conclude that any structures not involved

in the traditional star-formation process (e.g., transient overdensities) have little

impact on the derived CMF. Computing the CMF based on different properties in

observations also produce similarly invariant CMFs (e.g. Sokol et al., 2019).

The highly variable masses of identified leaves through time means that we can-

not infer the IMF by looking at a population of cores identified with dendrograms

at a given time snapshot. While there may be an underlying physical evolution of

star-forming cores, the instantaneous properties of a region identified by a dendro-

gram cannot be assured to correlate with that evolution. we reiterate that our goal

in this work is not to measure CMFs in detail but to (a) show that our results are

comparable to observations and (b) illustrate that the apparent similarities between

observed CMFs and IMFs may not derive from a simplistic evolution of the former

to the latter.

5.5 Results: Insights from Methodology

It is imperative to understand the impact of the dendrogram algorithm on cores

identified in both simulations and observations due to the algorithm’s wide pop-
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Figure 5.13: The core mass function (CMF) across time in our simulations. The
purple to yellow color scale show our normalized core masses for a selection of
timesteps. We plot the total core mass, which includes mass from both gas and
sink particles. The mass function of our sink particles (which are equivalent to a
protostar and compact disk) is shown in the thick gray line. We also show the
fiducial CMF from Guszejnov and Hopkins (2015), the observed CMF from Alves
et al. (2007), and the initial mass function (IMF) inferred from observations from
Chabrier (2003). We plot a log normal in black.
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Figure 5.14: The core mass function for different core definitions. Solid lines show
an average CMF across time, while the shaded regions show the minimum and
maximum bins across time. Blue shows the CMF of all leaves in the simulation
(which is what is shown in Figure 5.13). The other colors show core selections that
might be more physically motivated: purple shows cores that have masses greater
than the local Jeans mass, and green shows cores that have virial α < 2. All mean
CMFs overlap except at the lowest mass end, where some of the low mass cores
don’t satisfy the stricter Jeans or Virial criteria.
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ularity in the literature. In this section, we discuss the insights into the use of

dendrograms gained from this work.

We have used dendrograms to identify dense structures in our simulations of a

star-forming region, but we have also demonstrated a limitation of dendrograms:

because dendrograms identify relative variations in structure, leaf structure may

vary significantly between timesteps due to small variations in the local density

structures. Dendrograms are built beginning from the maximum value, so any

variations in that maximum may cascade into substantial changes in the resultant

dendrogram architecture.

An example of this phenomenon is shown in Figure 5.15. The left and right

columns depict neighboring timesteps. Despite very little physical evolution be-

tween timesteps (a ∼5% change in the peak density), the dendrogram identifies leaf

structure quite differently. This translates to a nearly order of magnitude variation

in the volume of the sink-hosting leaf and substantial variation in the computed

properties of the leaf.

The two leaves in the right panel that are part of the sink-hosting sub-tree (the

two left-most leaves in the dendrogram) are not physically interacting over the course

of the simulation. They are simply nearby overdensities. However, because of the

variations in the dendrogram structure, our algorithm identifies these two leaves

as belonging to the same path family. Thus, one of the major failings of tracking

overdensitites identified via dendrogram through a simulation to study core evolu-

tion is that it becomes difficult to disentangle physical evolution from “algorithmic”

artifacts. In other words, there is no easy, automated way to differentiate between

physical structure change and dendrogram structure change.

The change in consecutive dendrograms arises because of small variation in the

relative properties of structures (typically intermediate density structure). Fig-

ure 5.16 aims to illustrate the issue. Structures 1, 2, and 3 are shown at two

consecutive times. The physical properties of the structures (peak and width, in

this cartoon) don’t change between the top (earlier time) and bottom (later time).

However, their relative locations with respect to one another do change. The struc-
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Figure 5.15: The dendrograms of a small volume in consecutive timesteps. The left
and right columns depict different timesteps. The upper panels show the dendrogram
structure colored by leaf volume. The starred leaf in each panel is the leaf containing
the dominant overdensity in the middle panels. The middle panels show the leaf
contours over a grayscale density projection of the simulation. Dotted contours show
the trunk, dashed contours show branches, and solid contours show leaves. Despite
very little physical evolution between timesteps, the dendrogram identifies different
tree structure, leading to significantly different leaf morphologies. The bottom panel
shows the impact of the different leaf structure on computed leaf properties for the
leaf starred in the upper panels. Critical quantities such as mass show significant
differences between the two times that can only be attributed to the redefinition of
the leaf contours.
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tures have moved closer to one another and therefore the saddle point between them

has become shallower. This causes the nodes (horizontal lines) to be at different

heights at the two different times. At the earlier time, the node is low enough that

both structures 2 and 3 exceed the density increase criterion (indicated by the pink

vertical lines), while at the later times, the node is at a high enough density that

the individual density peaks are not significant enough to allow substructure to be

identified.

To further explain the example presented from this work, the second leaf in the

right panel of Figure 5.15 is just above the density refinement criterion at its physical

location in that timestep. However, the peak density in that region drops by 4% in

the left panel, which then leads to the overdensity not being quite “peaky” enough to

satisfy the density refinement when compared with the maximum peak. This is not

a problem unique to our density refinement criterion: any density refinement chosen

will exhibit these artifacts to some degree due to the relative nature of dendrogram

structure identification. Even observationally, these issues may be seen: differences

in resolution or noise levels in observations of the same region may lead to changes

in the computed hierarchy. Any variation between consecutive observations in the

region around a peak dendrogram can lead to variations in the contour drawn by

the dendrogram.

5.6 Discussion

5.6.1 Interpreting the IMF from the CMF

One natural question we can ask in this work is how the instantaneous core masses

correlate with the stars they form, which can provocatively be described as translat-

ing a CMF into an IMF. We plot this in Figure 5.17, where we show the total sink

mass at the end against the initial masses of leaves that merge into the final over-

density. First, there is a wide array of scatter in the initial leaf masses that doesn’t

correlate well with the final sink mass; some of this scatter may result from the lack

of feedback in our simulations, which is expected to create overmassive sink parti-
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Figure 5.16: Cartoon explanation of the origin of algorithmic structure variation in
time. Structures 1 (blue), 2 (purple), and 3 (green) are shown at two consecutive
times. The physical properties of the structures (peak and width) don’t change
between the top (earlier time) and bottom (later time). However, their relative
locations with respect to one another do change: structures 2 and 3 move closer
to one another, thereby increasing the density of the saddle point between them.
This causes the nodes (horizontal black lines) to be at different heights at the two
different times. At the earlier time, both structures 2 and 3 exceed the density
increase criterion (indicated by the pink vertical lines), while at the later times,
the individual density peaks of 2 and 3 are not significant enough to allow for
substructure to be identified.
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cles, and some may arise from the fact that a protostar can accrete from outside the

initially bound gas core. This observation is consistent with other works for low to

intermediate-mass stars such as Smith et al. (2009) and Mairs et al. (2014). Second,

the sum of all component leaf masses seems to be a very important consideration,

especially when considering the growth of systems containing multiples.

The young, typically singular, sink particles fall above the 1:1 correlation in

Figure 5.17, indicating that the nascent overdensity is the primary reservoir of gas

that accretes onto the protostar by the final snapshot of the simulation. Older

sinks and systems containing multiple sinks frequently have individual leaf masses

below the 1:1 line. Because protostellar outflow feedback is expected to reduce

stellar masses by at least a factor of three compared to the case without feedback

(Offner et al., 2014; Offner and Chaban, 2017), we also indicate the 3:1 sink:leaf

mass ratio with a dot-dashed line. For the most massive multiple systems, the

component leaves (which constitute the idealistic “gas reservoir” for the protostars)

still do not lie above the aforementioned feedback relation, but the sum of the leaf

masses puts these systems into a comparable space as other systems. For instance, if

the expected reduction in mass due to feedback was included, the rightmost system

in Figure5.17 would likely have a total sink mass of ∼5 M�and a combined leaf

(core/reservoir) mass of ∼6 M�; however, all component leaves for that system that

would be measured in a CMF have masses . 3 M�. The leaves would then appear

to contain sufficient mass to form the stars, but we caution that this, and even the

simple 3:1 relationship, is an oversimplification of the nature of protostellar feedback

and its cumulative effect on the surrounding gas.

It is important to note that the systems containing multiple stars do not form

from multiple leaves containing single stars merging together; rather, the bound

multiple forms in one leaf, and the subsequent accretion of gas overdensities may

help trigger the formation of new stars. This result is similar to that seen in Padoan

et al. (2019), who see little correlation between core mass (or even extended mass

around a core) and stellar mass for high-mass stars. This observation supports

binary formation models such as turbulent fragmentation in a single core (e.g.,
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Offner et al., 2010) or disk fragmentation (e.g., Kratter et al., 2010) as opposed to

dynamical capture (e.g., Bate et al., 2003).

5.6.2 Other Ways to Identify Cores

There are a few ways one may attempt to overcome the limitations of core identifi-

cation and comparison using density dendrograms. We discuss the advantages and

limitations of these ideas.

One could try to overcome the impositions of the dendrogram algorithm itself.

Custom merging strategies are possible in astrodendro; a “pruning” strategy will

allow peaks near the density refinement criterion to remain more stable and thereby

overcome some of the relative structure variation shown in Section 5.5. However, this

solution is subject to human bias due to the addition of another tunable parameter.

It is unclear how to create a custom merger strategy in a way that is agnostic to

the human-desired structure without introducing more bias.

In principle, one could also create contours at absolute density levels instead

of relying on a relative measure. By using an absolute density contour, the leaf

structure should slowly vary from timestep to timestep and may therefore better

identify bound cores. One could then create a hierarchical structure tree that is

similar to a dendrogram, but the nature of hierarchy would be more difficult to

determine due to the fact that many density peaks would be broken into a single

nested hierarchy. Additionally, this type of hierarchy would destroy the physical

utility of dendrograms in studying the relation of physical structures in a region and

again relies on an arbitrary density threshold, which we advocate against.

Core identification in simulations might also be better done in 2-D synthetic

observation space instead of 3-D density grids because there will be fewer variations

in integrated intensity between timesteps. However, this method is best suited to

isolated cores and may suffer from false over-densities in emission created by chance

alignments (e.g., Beaumont et al., 2014).

Finally, density may not even be the best tracer of star-forming cores as cores are

highly dynamic and will not be defined by the same density contour across time. It



192

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Total Sink Mass at Final Time (M ⊙ )

0

2

4

6

8

M
as

s o
f F

irs
t L

ea
f i

n 
Pa

th
 (M

⊙
)

0

100

200

300

400

500

600

Le
ng

th
 o

f p
at

h 
(k

yr
)

Figure 5.17: Sink mass at the final time plotted against leaf mass. Squares show
leaves containing one star at the final time, while circles show leaves containing
multiple stars. Points are colored by the length of the path, and we have truncated
the paths to have an earliest age of 250 kyr after the gravity turned on. Systems that
consist of multiple paths are connected by a vertical line. The sum of the leaf masses
is indicated by the horizontal marker. The dashed line shows the 1:1 correlation,
while the dot-dashed line shows the trend if the sink mass is reduced by the factor
of ∼3 arising from the lack of protostellar feedback in the simulations. For instance,
the rightmost system (currently at 15M�) would likely have a mass of about 5M�if
feedback was included in these simulations. Additionally, the inherent variability in
leaf snapshots can cause a clearly unphysical mass budget for a protostellar system.
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is likely that a more physically motivated property such as virial parameter, velocity

dispersion, or gravitational potential could be a better quantity with which to build

hierarchical structures (see, for instance Mao et al., 2019). These properties should

be less variable across time and should therefore provide a more stable core identifi-

cation. However, these quantities are more difficult to measure observationally and

will make comparisons between simulations and observations harder.

In simulations, one can also include tracer particles that will trace the evolution

of gas in a core identification-independent way. However, interpreting that evolution

is non-trivial. Smith et al. (2009) and others find that a non-negligible fraction of

tracer particles in a bound gas clump will accrete onto a sink particle outside of

that bound clump. Indeed, they find that most of the mass in a sink particle can

be accreted from outside its nascent core. Thus, the meaning of a core in this

context becomes even less apparent, as the star may contain gas from all around

the molecular cloud.

One could employ alternate core identification algorithms used in the field. All

of these other methods (clumpfind, FellWalker, GaussClumps, etc.), would suf-

fer similar issues because they all fundamentally rely on the relative positions and

heights of peaks to determine structure. Different algorithms might have different

sensitivity to the less dense material surrounding density peaks, but all algorithms

have some way to combine peaks that are thought to not be independent. In a

simple test in which we identified structures in two consecutive timesteps with den-

drograms, clumpfind, FellWalker, and Reinhold, all core identification algorithms

produced structures that broadly followed the 1:1 trend in volume, but all algo-

rithms had ∼order of magnitude deviations in volume for at least a few structures.

The dendrogram and FellWalker algorithms had the least dispersion along the 1:1

relation in this test, but the substantial redefinition of “core” boundaries was still

observed.

Each of the methods discussed above would likely identify the same dense gas

structures, but the variations in core identification would still likely lead to changes

in computed core properties between methodologies. Further work is needed to
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explore the full impact and limitations of these different structure identification

methods in the time domain. However, this work suggests that there is no unique

way to define a core in both simulations and observations using existing methods.

5.6.3 Implications of Core Identification

This work shows that there is no time-stable density contour with which to define

cores. Because of the dynamic nature of core evolution, a single set of dendrogram

parameters will not trace unique core parameters across the entire lifetime of core

formation. Additionally, we show that a substantial change in the cloud properties

(due to time evolution in this case) are required to see changes in the observed CMF:

over > 70% of our simulation snapshots show the same CMF, despite order unity

variations in individual cores. Changes in the distribution occur at early times. In

the context of our simulations, this is because gravity has had less time to overcome

the turbulence in the gas. In real systems, this would correspond to the time when

the cloud itself was only weakly bound. This trend suggests that variations in the

CMF only coarsely trace the time evolution of a star forming region. Thus variations

in the CMF from one star forming region to should not be attributed solely to

differences in age. Finally, computing a dendrogram in density or intensity on an

observed region introduces an inherent uncertainty in the physical importance of

structures identified. Dendrograms have many tunable parameters, so disentangling

physical structure from algorithmically imposed structure in an automated fashion

is a non-trivial endeavor.

The large variability in the computed core boundaries will likely be less dramatic

in observational space due to the integration of the signal along a line of sight. The

lower density material around the edges of our identified leaves will not contribute

as much signal, so structures will appear more compact around only the densest

part of the core. However, as Beaumont et al. (2013) and citations therein show,

simulation projections and observation are highly subject to projection effects, such

as non-physical cores being identified due to a large column of low-density material.

Thus, neither physical nor observational spaces have cores that can be robustly and
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uniquely defined across all time.

5.7 Conclusions

In this work, we have presented an algorithm that links dendrogram leaves through

time in order to study the evolution of dense cores in MHD simulations. We aim

to understand not only the evolution of the star-forming gas reservoir in our sim-

ulations, but also the manner in which the use of the dendrogram algorithm may

bias interpretation of core properties and evolution. Ideally, the parameters used for

identifying and linking cores are set by the underlying physics. As is shown in this

work, we ultimately conclude that there is no robust set of density-based parameters

that can trace coherent cores through time. Additionally, we find the following:

1. The distributions of core properties, such as mass, are relatively invariant

in time. The CMF matches well with observed CMF distributions such as

Alves et al. (2007) and shifted IMFs such as Chabrier (2003). Most property

distributions do not show significant trends over long timescales.

2. Individual core histories show large variability (> 40%) on short timescales

(<100 kyr) that arise from changes in the leaf boundaries. This non-monotonic

variability persists across environment (isolated or crowded) and stellar con-

tent. Additionally, a leaf history that shows low variability in one parameter

will not necessarily show low variability in all parameters. There are no ob-

vious regular trends in time with the exception of virial parameter (which

tends to decrease to α < 2 as the cores reach the end of the simulation).

There is some evidence for long-term evolution in of individual paths traced

in other properties that may correspond to physical evolution, but the shorter

stochastic variability makes these trends difficult to quantify.

3. The variability exhibited in our analysis of individual core evolution is at least

partially attributable to the dendrogram algorithm itself. Small changes in the
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relative structure of the density between timesteps can propagate to incredi-

bly large changes in the computed boundaries of structures. In extreme cases,

volumes can change by an order of magnitude between timesteps, leading to

nearly 100% variability in computed core properties. The sensitivity of the

dendrogram to small changes in physical conditions raises concerns about hi-

erarchies identified in both simulations and observations. For instance, changes

in noise or resolution may lead to different hierarchies in the same region.

4. we find a population of short-lived overdensities in each timestep that may

serve as a substantial source of “noise” for core property distributions in obser-

vations. The overdensities tend to have lower density (< 10−18) and lifetimes

less than 200 kyr, and they account for 15 − 25% of identified leaves every

timestep. These overdensities have other properties, such as mass and size,

that are comparable to other cores in the simulation that go on to form stars.

5. Assessing the full history of cores (including events like mergers) may be impor-

tant for interpreting the IMF. We find that, especially for massive multiple star

systems, the sum of all initial leaves associated with the multiple is typically

required to agree with CMF-IMF scaling assumptions even when inefficiency

produced by feedback is taken into account.

6. There is no time-stable density contour that defines a star-forming core. The

dynamic nature of core formation and evolution means that dendrograms will

not trace the same structures across time in a reliable way. Thus, we urge cau-

tion when comparing dendrograms of different ages or environments because

differences in the dendrogram may come from the algorithm itself instead of

physical changes.

In summary, cores identified with dendrograms are subject to algorithmic limi-

tations that impact the physical interpretation of “observed” core boundaries. And

yet, understanding the full time evolution of star-forming cores is critical to un-

derstanding the end results of star formation, such as interpreting the relationship
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(or lack thereof) between the CMF and IMF. We have shown the need for caution

when extrapolating instantaneous observations of star-forming cores either forward

or backward in time, as cores can have substantial variability both intrinsically and

observationally.
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CHAPTER 6

Summary and Future Directions

6.1 Summary

In this dissertation, I have conducted an exploration of the formation and early

evolution of binaries and their environments at different scales using a wide variety

of numerical techniques and analyses. Here, I present a summary of the four chapters

and their main science conclusions.

Debris in the Pluto-Charon Binary

In Chapter 2, I use N-body simulations of a debris disk around the Pluto-Charon

binary to probe the observational consequences of debris resulting from the Charon-

forming impact. I first show that the current circumbinary moons of the Pluto-

Charon binary, Styx, Nix, Kerberos, and Hydra, are at locations that are dynam-

ically unstable during any model of Charon’s tidal evolution that requires eccen-

tricities above e & 0.05. This indicates that (a) Charon’s evolution to its current

location requires a tidal evolution model that has little to no eccentricity evolution,

(b) the circumbinary moons formed or were captured after the current orbit of the

Pluto-Charon binary was achieved, or (c) the moons experienced (gas) damping

after the tidal evolution. Next, I show that the predominant loss mechanisms for

debris around a newly-formed Pluto-Charon are collisions with Charon or ejections

from the Pluto-Charon system into the Solar System. Collisions with Charon are

more common than collisions with Pluto (despite Pluto being the much larger body)

because particles will interact with the secondary (less massive) component of a bi-

nary through the second Lagrange point before they can interact with the primary.

Collisions with Charon dominate the debris loss mechanisms in the inner part of the

debris disk, while ejections dominate loss in the outer part of the disk. I calculate
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that there could be hundreds of small craters on Charon’s surface due to impacting

debris; however, Singer et al. (2016) find a paucity of small craters on Charon, sug-

gesting that (a) violent tidal heating could have resurfaced Charon or eroded craters

such that they are not observable today, or (b) the debris disk extent or composition

led to a lack of impactors. I also follow the ejection of debris into the Solar System.

While most debris was ejected from the Solar System altogether, a substantial frac-

tion of the debris that remained stayed in the 3:2 resonance with Pluto-Charon and

may be observable as a Pluto-Charon disk collisional family. This population could

contain up to a few 10s of bodies that would be identifiable through their similar

composition and low relative velocity dispersion. This work predicts signatures of

the Charon-forming collision that will be important to understanding the collisional

histories in the Solar System and the formation of large planetesimal binaries.

Classification of Kuiper Belt Populations

Chapter 3 further explores the dynamical characteristics of Kuiper Belt popula-

tions by creating a machine learning classifier to sort observed KBOs into the four

Gladman et al. (2008) dynamical populations based on short (100 kyr) numerical

integrations of their orbits. This work is a critical first step in preparing for the

near future in astronomical survey science (such as the VRO’s LSST). The number

of observed KBOs is expected to increase by at least an order of magnitude, and

therefore, traditional classification methodologies that require substantial human

intervention will be quickly buried under too much data. Machine learning provides

an avenue for fast, automated, and high accuracy classification. The machine learn-

ing classifier best suited to the currently observed KBO catalog is a regression tree

classifier; I achieve a ∼98% classification accuracy, and > 80% of objects have a

> 3σ probability of class membership. This method is robust to errors in measure-

ment (97% accuracy in classification for samples drawn from the observed errors of

a KBO) and new data (92% accuracy in classification for the Wasserman et al. 2020

DECam KBOs not included in our fiducial catalog). Misclassified objects typically

fall into three categories: objects lacking statistical representation in the data (such
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as mixed-argument resonant KBOs), objects with intermittent dynamical behav-

ior (for instance, switching between resonant and classical characteristics on ∼Myr

timescales), and objects that undergo late-time dynamical scattering. The last two

reasons for misclassification illuminate a fundamental ambiguity of the KBO clas-

sification methodology: timescale is just as critical a factor in the classification as

other, more obvious characteristics, such as libration in resonance. This work cre-

ates a foundation for revising the entire methodology of Kuiper Belt classification

used today.

Circumbinary Planet Dynamics

Chapter 4 studies the influence of a tight central binary on the post-disk evolution

of planetary systems. Using a large suite of 10Myr N-body simulations for four

different planetary populations around both single and binary stars, I found that the

resultant multiplicity of planetary systems after dynamical evolution doesn’t change

with the presence of a binary. Indeed, the final system architectures around single

and binary stars are typically similar with only a small preference for slightly more

inclined and eccentric systems around single stars. The presence of a binary mainly

influences the speed and mechanism of planetary loss. Planet-star collisions are

reduced by over an order of magnitude around binaries, and planet-planet collisions

are reduced by a factor of ∼2, with the difference in the binary population ending

as ejections. This effect can be intuitively explained by the CR3BP: planets have

large enough CJ that they cannot cross the zero velocity surface to interact directly

with the stars without first experiencing strong scattering from the Holman and

Wiegert (1999) binary instability boundary. Thus, most planets that scatter close

into the stars are rapidly ejected unless they have an interaction with another planet

that changes the value of CJ shortly before they reach the inner system. Contrarily,

around a single star, scattering is a more extended process that requires multiple

close encounters to lead to collisions or ejections. I find that the main driver behind

the dynamical architecture of the final systems is the presence of a massive planet. In

my simulations, final multiplicity is a strong function of the highest planet mass, and
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the orbital properties, such as semi-major axis, eccentricity, and dynamical spacing,

are statistically different in systems hosting a giant planet. This work shows that

there is little influence from a central binary on the final architectures of planetary

systems, but rather that a central binary has a strong impact on loss mechanism.

Variability in Star-forming Cores

Finally, in Chapter 5, I explore the time evolution of star-forming cores identified

with the dendrogram hierarchical structure identification methodology in a large

magnetohydrodynamical simulation. All structure identification algorithms common

in the literature use local maxima in a quantity such as intensity or density to identify

similar regions based on the local structure around the peak. The dendrogram is

unique in that it traces multiple levels of structure in a region, from dense cores

(called leaves) to the more filamentary structure that connects cores (called branches

and trunks). In this work, I create an algorithm to connect dendrogram leaves

between time outputs to investigate the interplay between physical evolution in the

star-forming region and variation in physical quantities induced by the structure

identification. I find that, while the distributions of core properties are statistically

invariant over the course of our simulation (∼750 kyr≈ 0.55tff for the global region),

individual cores can show variability upwards of 40%. The variability I observe is

mostly attributable to the structure identification algorithm. Because of the relative

nature of structure identification, small changes in the local density environment

around a peak can cause large variations in the contours of identified cores. In

one case, a less than 5% change in peak density led to a 400% change in volume.

Because of this, I argue that there is no time-invariant density contour in the star

formation process, and therefore, one must be cautious to not over-interpret physical

evolution from observed cores. This work raises a significant concern in observations

of star-forming regions: how much does the structure identification algorithm impact

the core properties derived from observations? Observations already have biases in

understanding intrinsic structure due to effects like line-of-sight integration, and my

work shows that significant additional bias could be introduced by core identification
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algorithms.

6.2 Future Directions

As in any research program, the work presented herein has raised more questions

than it answered. In this section, I elaborate on two research avenues that will

be valuable in the near future to adapt to upcoming observational upgrades in the

astronomical community.

Kuiper Belt Classification

As noted in Chapter 3, there are improvements that should be made to the machine

learning classifier before this type of method is ready for use in something like a

LSST pipeline. The major improvement to this work is to create a synthetic catalog

of KBOs to use as the input training set for the machine learning classifier. This

has several benefits:

1. A synthetic catalog can compensate for the low number statistics of rare KBOs,

such as the mixed eccentricity-inclination resonances of which order 10 are

known today.

2. Time dependent objects, such as intermittent librators, will be better charac-

terized such that the features passed to the classifier may be able to predict

future behavior not observed in the short integration.

3. As yet unobserved KBOs, such as exotic resonant objects or distant classi-

cals, can be included to ensure accurate classification if these objects ever are

observed.

4. A very large number (∼millions) of synthetic KBOs can be run to uniformly

cover the desired parameter space without observational bias, and the classifier

only needs to be trained once instead of being regularly updated with new

observations.
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In addition, because of the increased statistical power of a larger catalog, more

classes could be introduced. This would allow, for instance, resonant objects to be

classified directly as 3:2 or 2:1, or for classical objects to be split into cold and hot

classical KBOs. Finally, with a more thorough and accurate classifier, human inter-

vention in classification could be even more substantially reduced, thereby allowing

more time for science pursuits.

Star-Forming Core Identification

Chapter 5 leaves open many questions that are critical for proper interpretation of

star formation simulations and observations. In the near future, both computational

and observational investigations of star formation will grow in size and detail. Thus,

it is imperative to understand both the physical and observational consequences of

star formation so that correct conclusions are drawn.

Structure Identification Across Different Simulations

There are a wide variety of simulation types and initial conditions that are

publicly available. Thus, it is advisable to apply the same structure identification

methodology to the broad ensemble of available data to understand the influence

of a core-finding algorithm on the broad collection of physics represented in the

simulations. Are there systematic differences that are attributable to physics? Do

the conclusions of Chapter 5 hold across different regions?

Structure-independent Core Identification

Chapter 5 calls into question the use of modern structure identification algo-

rithms: the algorithmic structure is difficult to disentangle from physical structure.

However, there are methods that make no assumption about the physical structure

of a region: machine learning provides an ideal direction to investigate to get a

differently biased understanding of core evolution. Using a deep learning technique

called a convolutional neural network that can take an image (or three dimensional

array), one should be able to find core-like structures without relying upon den-

sity contours or intensity gradients. Additional machine learning techniques like
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the tracking-detection method allow for core trajectory tracing while allowing for

variable speed, changing boundaries, and intermittent phenomena like obscuration.

These types of machine learning techniques will be widely applicable across as-

tronomy: for instance, they could be used to track dense knots in galactic outflows

(Schneider et al., 2018) or understand the evolving morphologies of supernovae ejecta

(Wongwathanarat et al., 2015).
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