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ABSTRACT

My dissertation is a combination of two separate projects:

Part I: Unifying Observations and Simulations to Measure Dark Matter

Accretion

Under the current paradigm for galaxy formation, galaxies grow in the centers of

halos composed of dark matter. As a dark matter halo accretes more material, the

halo’s gravitational potential well deepens, funneling gas into the central galaxy and

potentially leading to galaxy growth. However, models of these processes predict

very different correlations between dark matter accretion and galaxy star formation

due to feedback processes such as winds from supernovae and supermassive black

holes. By combining theoretical simulations with archival observational data, we

present observational constraints on dark matter accretion in isolated Milky Way-

mass galaxies. Our new techniques rely on the fact that the deepening of the halo’s

gravitational potential will also have a strong and predictable impact the orbits of

satellite galaxies, and so we can infer accretion rates from the observed distributions

of satellite galaxies. Our results show that dark matter accretion and star forma-

tion in Milky Way-mass galaxies in the recent Universe (z ∼ 0) are not positively

correlated, thus favoring models that predict strong feedback suppresses fresh gas

accretion, and so star formation in these galaxies is instead fueled by recycled gas.

Future observational surveys and improvements to theoretical models will enhance

our analysis by providing a larger sample of galaxies from which to measure these

correlations, as well as providing opportunities to constrain correlations between

dark matter accretion and other galaxy properties, such as metallicity and presence

of active galactic nuclei (AGN).
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Part II: Inclusivity-Driven Designs for General-Education Astronomy

Courses

General-education college astronomy courses offer instructors a unique audience and

a unique challenge. For many students, such a course may be their first time en-

countering a standalone astronomy class, yet it is also likely one of the last science

courses they will take. Thus, in a single semester, the primary goals of a general-

education course include both imparting knowledge about the Universe and giving

students some familiarity with science. In traditional course environments, students

can compartmentalize information into separate “life files” and “course files” rather

than integrating information into a coherent framework. Our project aims to tran-

scend the boundary between those categories. Our strategy is to create an inclusive

course that encourages and respects diverse points of view and empowers students

to build connections between the course content and their personal lives and iden-

tities. Based on results from implementing these techniques in a general-education

introductory cosmology course taught at the University of Arizona in Spring 2019,

we present a set of guiding principles that can inform future course designs.
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PART I

Unifying Observations and Simulations to Measure Dark Matter Accretion
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CHAPTER 1

Introduction: Dark Matter Accretion & Galaxy Formation

Just over 100 years ago, on April 26, 1920, the Smithsonian Museum of Natural

History hosted the ”Great Debate” of astronomy: is our Milky Way Galaxy the

entirety of the Universe, or is there more out there? Harlow Shapley argued for

the former - that “spiral nebulae” observed by astronomers were distant parts of

our own Galaxy. Herber Curtis, on the other hand, argued that these nebulae were

“island universes” separate from our own Galaxy. In the century since their debate,

astronomers have learned that Curtis was right. Our Milky Way Galaxy is only one

of perhaps two trillion galaxies within the Universe (Conselice et al., 2016).

We have also discovered that the stars, gas, dust, and other matter (collectively,

baryonic matter) we observe in the Universe makes up only a small fraction (∼ 1/6)

of all of the matter the Universe. The remaining ∼ 5/6 of the matter is what we

call “dark matter” (Planck Collaboration et al., 2018), a form of matter we have

yet to identify. We know that this dark matter does not interact with light (hence,

“dark”), but it has mass and gravitationally interacts with the baryonic matter such

that we can infer its presence in the Universe.

In fact, under the modern cosmological paradigm, galaxies form within dark

matter halos, which are overdensities of dark matter that are gravitationally bound.

Within these halos, gas can radiatively cool, coalescing at the centers of these halos.

For large enough halos, stars will form, leading to the growth of protogalaxies, which

in turn continue to grow through further star formation and processes such as galaxy

mergers (e.g., see Wechsler and Tinker, 2018, for a review). Our understanding of

galaxy formation has been advanced by both observational and theoretical studies.
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1.1 Advances in Observational Data

From the observational side, the development of large surveys, such as the Sloan

Digital Sky Survey (SDSS; York et al., 2000), revolutionized the field. The most

recent data release from the SDSS (DR16; Ahumada et al., 2019) identified tens

of millions of galaxies as well as provided high-resolution spectroscopic data on

hundreds of thousands of these galaxies, including precise measurements of physical

properties such as redshifts, stellar masses, and star formation rates. These rich

datasets allow for measuring spatial clustering of galaxies over a range of redshifts

as well as statistically relating galaxy populations to infer how the Universe evolved

over time. As will be discussed in this section’s conclusions (Chapter 4), future

surveys will add even more power to these analyses.

1.2 Advances in Simulation Data

From the theoretical side, ever-increasing computing power and resources have en-

abled the development of numerical simulations that can resolve dark matter struc-

tures and substructures over large volumes of ∼(few hundred Mpc)3 as the Universe

evolved over the past 13 Gyr. Our observations give us snapshots into the story

of galaxy formation through cosmic history, and simulations allow us to effectively

create “movies” to place these snapshots within a broader cosmological context,

revolutionizing our understanding of the history of the Universe.

Somerville and Davé (2015) and Wechsler and Tinker (2018) offer thorough re-

views of these techniques. Briefly, simulations such as hydrodynamical and semi-

analytical simulations rely on pre-defined prescriptions for the physical processes

of galaxy formation. Hydrodynamical simulations (e.g., White et al., 2001; Vogels-

berger et al., 2014; McAlpine et al., 2016) aim to solve equations of both gravity and

hydrodynamics in a cosmological context, while also incorporating processes such as

magnetic fields, gas cooling, stellar winds and feedback, black holes and supernovae,

and cosmic rays. However, some of these processes will occur below the resolution

scale of the simulation, requiring “sub-grid physics”, i.e., tuning parameters to ac-
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count for their effects. Semi-analytical models (SAMs; e.g., White and Frenk, 1991;

Lu et al., 2014; Henriques et al., 2015) share the same objectives as hyrdodynam-

ical simulations, but to reduce the computational requirements, they approximate

physical processes with analytical prescriptions. These prescriptions can be traced

through merger trees from N-body simulations and/or be constrained directly with

data using Monte Carlo Markov Chain (MCMC) statistical techniques. While both

hydrodynamical simulations and SAMs have made major advances and success in

recent decades, they still struggle to match their predictions to observational data

such as correlation functions, and they are strongly influenced by their parameter-

ization choices for sub-grid physics (e.g., Borgani and Kravtsov, 2011; Kereš et al.,

2012; Kuhlen et al., 2012; Parry et al., 2012; Hopkins et al., 2014; Wang et al., 2015).

Empirical models, on the other hand, do not attempt to make a priori as-

sumptions about physical processes. Instead, they define some complex and flexible

function that relates galaxy properties, such as stellar masses, to the host halo mass,

redshift, environment, and other parameters. This relation is fit using an MCMC

algorithm constrained with observational datasets, including stellar mass functions,

UV luminosity functions, and correlation functions. This approach, by definition,

gives us the closest match to observations of our Universe, allowing us a unique

opportunity to clarify underlying physical processes. By comparing the fitted func-

tions from empirical models to expectations from these physical processes, we can

learn about the gas physics in galaxies.

1.3 Combining Observations & Simulations

By combining the wealth of observational data from surveys to the powerful pre-

dictions from theoretical simulations, we can better understand the connections

between galaxies and their host dark matter halos. For example, we have observed

a strong relation between galactic stellar masses and halo masses (Fig. 1.1). The

shape of this distribution is indicative of the underlying physical processes that drive

this relation. The peak of the distribution tells us that star formation is an ineffi-
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Figure 1.1: Halo mass and galaxy mass are strongly related at redshift z ∼ 0, as deter-
mined by leveraging both simulations and observations (Fig. 34 in Behroozi et al., 2019,
and references in the figure). The x-axis indicates the halo mass, and the y-axis shows
the observed ratio between the stellar and halo mass.

cient process. As described above, at most ∼ 1/6 of the matter in a halo is baryonic,

and so the peak ratio of a few percent tells us that at most only ∼ 20−30% of these

baryons are turned into stars. The peak occurs at galaxies like the Milky Way with

halo masses ∼ 1012M�. At higher and lower halo masses, galactic star formation

is even less efficient. Active galactic nuclei (AGN) likely explain the decrease in

efficiency at higher halo masses; these feedback processes would heat halo gas and

prevent star formation (e.g., Croton et al., 2006). At lower masses, feedback from

stellar winds and supernovae could eject gas and/or prevent its accretion onto a

galaxy to fuel star formation (e.g., Dekel and Silk, 1986; Hopkins et al., 2012). At

even lower halo masses below . 1010M�, reionization at z ∼ 6 may have prevented

these haloes from maintaining sufficient gas to form stars (e.g., Bullock et al., 2000).
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1.4 Dissertation Outline (Part I)

In this part of my dissertation, I expand upon these efforts by investigating the

connection between halo growth and galaxy growth. As material is accreted onto

a halo, we expect the fraction of baryonic matter versus dark matter to match the

cosmic baryon fraction, i.e., about five times more dark matter than baryonic matter

(Wetzel and Nagai, 2015). If this continues to smaller scales within the halos, then

we would expect that star formation would be powered by this fresh accretion,

leading to a strong positive correlation between halo dark matter accretion rates

and galaxy star formation rates. However, winds from supernovae, active galactic

nuclei (AGN), and other processes might suppress the ability of new accretion to

reach the central galaxy. In this case, star formation would be powered by recycled

gas – gas that was expelled from the galaxy by supernovae, AGN, etc., but then

cooled and re-accreted onto the galaxy – leading to a weak or negative correlation

between halo dark matter accretion rates and galaxy star formation rates.

In the next two chapters (and their corresponding appendices), I explore this

question in more detail to constrain the relationship between dark matter accretion

and star formation. We developed a new technique based on existing methods

to compare observed and simulated properties of galaxy haloes (specifically, their

splashback radii). Our technique relies on the fact that the orbits of satellite galaxies

are correlated with halo accretion rates. Thus, we expect the shapes of the density

distributions of nearby neighbors (an observational proxy for the density distribution

of satellite galaxies) should correlate with dark matter accretion rates. By comparing

the neighbor density distributions around star-forming versus quiescent galaxies, we

can constrain the relation between dark matter accretion and star formation activity.

In Chapter 2, I present this technique and apply it to Milky Way-mass galaxies in

the SDSS at low redshifts (z < 0.123). In Chapter 3, I present additional tests

of our technique using different star formation indicators, different populations of

satellite galaxies, and a higher-mass sample of central galaxies. Finally, in Chapter

4, I summarize our results and discuss future directions for this research.



22

CHAPTER 2

Observing Correlations Between Dark Matter Accretion and Galaxy Growth: I.

Recent Star Formation Activity in Isolated Milky Way-Mass Galaxies†

Summary

The correlation between fresh gas accretion onto haloes and galaxy star forma-

tion is critical to understanding galaxy formation. Different theoretical models

have predicted different correlation strengths between halo accretion rates and

galaxy star formation rates, ranging from strong positive correlations to little

or no correlation. Here, we present a technique to observationally measure

this correlation strength for isolated Milky Way-mass galaxies with z < 0.123.

This technique is based on correlations between dark matter accretion rates

and the projected density profile of neighbouring galaxies; these correlations

also underlie past work with splashback radii. We apply our technique to both

observed galaxies in the Sloan Digital Sky Survey as well as simulated galaxies

in the UniverseMachine where we can test any desired correlation strength.

We find that positive correlations between dark matter accretion and recent

star formation activity are ruled out with & 85% confidence. Our results sug-

gest that star formation activity may not be correlated with fresh accretion

for isolated Milky Way-mass galaxies at z = 0 and that other processes, such

as gas recycling, dominate further galaxy growth.

2.1 Introduction

Under the Lambda Cold Dark Matter (ΛCDM) framework, galaxies form at the

centres of dark matter haloes (see Somerville and Davé, 2015; Wechsler and Tinker,

†This chapter was submitted in May 2020 to the Monthly Notices of the Royal Astronomical
Society as O’Donnell, Behroozi, and More (2020a).
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2018, for reviews). As the Universe evolved, gas was able to dissipate energy and

fall to the centres of these haloes. Stars formed if enough gas coalesced, leading to

the galaxies we observe today. Given these formation processes, we expect that halo

properties should be correlated with galaxy properties. For example, many studies

have found a strong correlation between halo mass and stellar mass (e.g., Leauthaud

et al., 2012; Tinker et al., 2017a; Behroozi et al., 2019).

At large distances, gravity dominates, and so the ratio of infalling gas to infalling

dark matter is expected to be the cosmic baryon fraction. If infalling gas also tracks

infalling dark matter at smaller scales, then we expect to see a strong positive

correlation between dark matter accretion rates and galaxy star formation rates.

Wetzel and Nagai (2015) found a tight relation between halo accretion and galaxy

growth. They found that as a halo accretes material, dark matter is deposited in a

shell-like manner at & R200m(z) , consistent with results from Diemer et al. (2013)

that found little to no halo growth within ∼ R200m from z = 1 to z = 0. However,

infalling gas decoupled from the dark matter at ∼ 2R200m and continued to accrete

to smaller radii. Thus, star formation rates tracked the dark matter accretion rates.

Other models have assumed a perfect positive correlation between star formation

rates and halo growth rates. For example, Becker (2015), Rodŕıguez-Puebla et al.

(2016b), and Cohn (2017) assumed models that directly couple halo growth and

galaxy star formation rates. Moster et al. (2018) presented an empirical model for

galaxy formation since z ∼ 10 and assumed perfect correlation between a central

galaxy’s star formation and its halo accretion.

However, other studies have found little to no correlation between halo accre-

tion rates and star formation rates. Tinker et al. (2017b) studied star formation

in the central galaxies of galaxy groups as a function of local density. They found

only a slight increase in the fraction of quenched galaxies for high halo masses

(M∗ & 1010M�/h
2) from low to high densities. Because halo assembly rates vary

strongly with local density (e.g., Lee et al., 2017), this implied a weak correlation

between halo growth and galaxy assembly. Similarly, Behroozi et al. (2015) did not

find a correlation between star formation rates and major halo mergers. Further,
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simulations of massive Milky Way-mass haloes at low redshifts (z . 1) suggest that

gas accretion onto haloes is primarily through “hot mode” accretion which is quasi-

spherical and less efficient (e.g., Kereš et al., 2005; Nelson et al., 2013; Dekel and

Birnboim, 2006), and Nelson et al. (2015) finds that feedback processes, including

radiative cooling, winds, and suppermassive black holes, strongly suppress the ac-

cretion of this gas onto galaxies. These results are consistent with models of galaxy

growth where gas recycling happens on short timescales and is responsible for the

majority of star formation (e.g. van de Voort, 2017). Additionally, Muratov et al.

(2015) and van de Voort (2017) (and references within) suggest that outflows from

processes such as supernovae and active galactic nuclei can prevent gas from accret-

ing onto a central galaxy and leading to star formation. Muratov et al. (2015) found

that these outflows are most significant at high redshifts, and at lower redshifts, the

ejected material forms a reservoir of enriched gas that may be recycled for further

star formation.

To constrain the correlation between halo accretion and star formation rates,

observational tests are needed. Our technique builds on past work (Diemer and

Kravtsov, 2014; More et al., 2015, 2016; Baxter et al., 2017) to measure the splash-

back radius, the location at which accreted material reaches its first orbital apocen-

tre. As a halo accretes more dark matter, its gravitational potential well deepens,

which tightens the orbits of satellite galaxies and steepens the halo density profile

(Fig 2.1). Diemer and Kravtsov (2014) found that steepening of the halo density

profile is stronger for more massive or rapidly accreting haloes. Similarly, More et al.

(2015) found that the splashback radius decreases for more rapidly-accreting haloes.

More et al. (2016) and Baxter et al. (2017) developed observational techniques using

SDSS photometric data to measure splashback radii. Their basic technique involved

measuring excess photometric galaxy counts (via background subtraction) around

target clusters and then using the slope of the radial profile of excess photometric

galaxies to identify the splashback radius. Both studies stacked the radial profiles

around thousands of clusters to average halo-to-halo scatter and increase signal-to-

noise.
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Figure 2.1: Schematic of the effect of halo accretion on satellite orbits. As a satellite
enters a larger host halo, its orbit is sensitive to changes in the host halo’s gravitational
potential well. For host haloes that do not grow very much, satellite orbits stay large
(middle panel). For host haloes that accrete more material, their gravitational potential
wells deepen, tightening the orbits of satellite galaxies (right panel).

On cluster scales (Mhalo & 1014M�), most central galaxies are quiescent (Yang

et al., 2009). Studying the correlation between dark matter accretion and galaxy

formation requires a technique that works for lower-mass haloes (Mhalo ∼ 1012 −
1013M�). Yet, lower-mass haloes often have larger neighbouring haloes, which con-

taminate the distributions of nearby galaxies and dark matter with their own orbit-

ing material (More et al., 2015) and smear out the splashback feature. Deason et al.

(2020) analysed cosmological simulations of Milky Way-mass haloes and found that

if these haloes are isolated, there are clear splashback features. By definition, iso-

lated haloes are the largest halo (and thus the dominant source of gravity) in their

nearby environment, and so exhibit much stronger splashback features and orbital

changes correlated with accretion even at the lower masses of interest.

Because lower-mass haloes host fainter galaxies, they are most easily detectable

at lower redshifts. As a result, the haloes’ angular sizes on the sky are larger, leading

to larger noise levels from background photometric galaxies. To work around this,

we develop a technique that uses the entire radial distribution of nearby photometric

galaxies and optimally weights the stacking process to minimise background source

contamination. We use simulated galaxies (from the UniverseMachine empirical

model; Behroozi et al. 2019) to validate that the technique can measure the correla-

tion strength between halo assembly and galaxy assembly. As a proof-of-concept, we
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also apply the technique to Milky-Way mass galaxies (10.5 < log10(M∗/M�) < 11)

in the Sloan Digital Sky Survey (SDSS) DR16 (Ahumada et al., 2019).

This chapter is organised as follows: In §2.2, we describe our analysis meth-

ods, including the background-subtraction technique to generate neighbour density

distributions (§2.2.1), the metric for quantifying the shapes of the neighbour den-

sity distributions (§2.2.2), and how we account for systematics and selection effects

(§2.2.3). In §2.3, we describe the data sets used in the analysis, including observed

spectroscopic data to identify isolated Milky Way-mass host galaxies (§2.3.1), ob-

served photometric data to measure neighbour density distributions (§2.3.2), and

simulation data to constrain correlations with halo accretion rates (§2.3.3). We

present results in §2.4 and conclude in §2.5. Throughout this chapter, we adopt a

flat ΛCDM model with h = 0.677, ΩM = 0.307, and ΩΛ = 0.693, consistent with

Planck 2018 results (Planck Collaboration et al., 2018).

2.2 Methods

Our analysis combines observational data from the Sloan Digital Sky Survey (SDSS;

Ahumada et al., 2019) and simulation data from the UniverseMachine (Behroozi

et al., 2019) to constrain the correlation between star formation activity and dark

matter accretion. §2.3 describes these datasets in full detail; here, we discuss the

methodology applied in our analysis. First, in §2.2.1, we discuss how we identify

isolated host galaxies and measure their neighbour density distributions. Next,

in §2.2.2, we describe how we measure the correlation between star formation and

accretion rates. Finally, in §2.2.3, we describe systematics addressed in our analysis.

2.2.1 Measuring Neighbour Density Distributions around Isolated Host

Galaxies

Our method measures the average density distribution of neighbouring galaxies

around galaxies with stellar masses 10.5 < log10(M∗/M�) < 11.0, corresponding

to haloes with masses ∼ 1012 − 1013M� (Behroozi et al., 2019). We specifically
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target isolated galaxies to eliminate contamination from satellites of larger nearby

haloes. We consider a galaxy “isolated” if no larger galaxy is found within 2 Mpc

projected (on-sky) physical distance and 1000 km/s velocity distance. In the Uni-

verseMachine, >96% of galaxies passing this cut are central galaxies (i.e., not

satellites of a larger halo). We term these galaxies our isolated host sample.

To subtract foreground/background sources, we select 100 random pointings for

each host galaxy following the same isolation criteria within the same sky footprint.

We then count the number of neighbouring galaxies in annuli around each host

galaxy and random pointing. As depicted in Fig. 2.2, by subtracting the neighbour

distribution around the random pointings from the distribution around host galax-

ies, we measure the average number density distribution of physically associated

neighbours. This same technique is used in More et al. (2016) and Baxter et al.

(2017). We test several mass thresholds for nearby neighbours to verify that the

mass threshold used does not impact the results.

The outermost annulus radius for counting neighbouring galaxies is 2 Mpc, con-

sistent with our isolation criteria. The innermost annulus radius is 50 kpc to avoid

possible influence of the host galaxy on source detection in the SDSS data. We

checked this limit by conducting our analysis with both SDSS DR16 (Ahumada

et al., 2019) and DR7 (Abazajian et al., 2009) photometric catalogues. Close to iso-

lated hosts, we could have systematic biases between the number density of galaxies

around hosts versus the number density around random pointings. Between DR7

and DR8 (Aihara et al., 2011), the background subtraction algorithm in SDSS was

improved (Blanton et al., 2011). Our results are consistent between DR16 and DR7,

and we would expect that the improvement in SDSS background subtraction should

be larger than any remaining systematics.

We then stack the background-subtracted neighbour density distributions of the

isolated host galaxies in our sample. To account for completeness of the SDSS

sample, we weight each distribution by the inverse of the co-moving volume out to

which the host could be observed based on its stellar mass and SDSS spectroscopic

survey limits; §2.2.3.3 below provides more details on the weighting applied to the
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Figure 2.2: Schematic of the background subtraction technique used in this work. For
each host galaxy, 100 random pointings are selected following the same isolation criteria.
By subtracting the average neighbour density distribution around the randoms from the
average distribution around the host galaxies, we recover the average density distribution
of physically associated sources.

SDSS sample. To estimate the uncertainty in the density distributions, we perform

a jackknife statistical analysis on observational and theoretical samples. §2.3.1.1

and §2.3.3.2 below discuss sample statistics for the observation and simulation data,

respectively.

2.2.2 Constraining Accretion Rate Correlations Using Neighbour Dis-

tributions

As a halo accretes more material, its gravitational potential well deepens, and this

change will impact the orbits of satellite galaxies (Fig 2.1). As described in Diemer

et al. (2013) and Wetzel and Nagai (2015), because dark matter is dissipationless,

it will be deposited in a shell-like manner at ∼ R200m. As a result, Diemer et al.

(2013) found little (∼10%) growth in halo mass at smaller radii between z = 1 to z =

0. Similarly, when comparing the neighbour density distributions around isolated

haloes assuming different correlation strengths (Fig. 2.3), we find a steepening in

the profile at a few hundred kpc, which corresponds to R200m for our halo masses at

z = 0. At smaller distances, highly-accreting hosts pull satellites inwards and can

tidally disrupt these galaxies. At large distances (i.e., beyond the virial radius), the

distributions are more similar.



29

To assess the shape of the density distribution of neighbouring haloes, we define

a shape parameter which compares the number of neighbours close to the host versus

further from the host, specifically

R =
N ∈ (0.05 Mpc < r < rsplit)

N ∈ (rsplit < r < 2.0 Mpc)
. (2.1)

where the innermost radial distance (0.05 Mpc) is set to conservatively exclude

incompleteness from source blending in the SDSS data, and the outer limit (2.0

Mpc) is matched to our isolation criteria (§2.2.1). We find that rsplit ≡ 0.316 Mpc

maximises the differences between the neighbour density distributions around high-

accreting versus low-accreting hosts (Fig. 2.4). We quantify these differences with

a shape ratio RSF/RQ, which is the ratio of the shape parameters for the neighbour

density distributions around star-forming hosts (RSF) versus quiescent hosts (RQ).

The choice of neighbour mass limit does not affect the choice of rsplit. We use the

shape ratio as the metric throughout the rest of our analysis. As shown in Fig. 2.3,

RSF/RQ > 1 implies positive correlations (ρ > 0) between dark matter accretion

and star formation rates, whereas RSF/RQ < 1 implies negative correlations (ρ < 0).

2.2.3 Systematics and Selection Effects

Below, we describe systematics and selection effects that differ between the Uni-

verseMachine and SDSS data. We address overall offsets in stellar mass defini-

tions (§2.2.3.1), offsets in stellar masses between star-forming and quiescent galax-

ies (§2.2.3.2), and weighting for completeness as well as maximizing signal-to-noise

(§2.2.3.3).

2.2.3.1 Stellar Mass Functions

As Fig. 2.5 depicts, the UniverseMachine’s galaxy stellar mass function has more

high-mass objects compared to the SDSS MPA-JHU spectroscopic catalogue (§2.3.1;

Kauffmann et al., 2003; Brinchmann et al., 2004). The most significant contribu-

tion to this difference is from the treatment of galaxy light profiles as described in
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Figure 2.3: Stronger positive correlations between accretion rates and star formation
rates lead to steeper neighbour galaxy profiles around star-forming galaxies in the Uni-
verseMachine simulations. We measure the shapes of the neighbour density distribu-
tions using a shape parameter to compare the inner (0.05 < r < 0.316 Mpc) and outer
neighbour counts (0.316 < r < 2.0 Mpc; Eq. 2.1). The blue lines represent the analogues
to the star-forming galaxies from the SDSS, and the red lines represent the analogues to
the quiescent SDSS galaxies. The error bars represent the scatter across jackknife samples,
and the dashed vertical lines represent rsplit = 0.316 Mpc used in the shape parame-
ter calculations. In these plots, the neighbour number density includes neighbours with
log10(M∗/M�) > 9.0. The top three panels depict different correlation strengths between
dark matter accretion rates and SSFR (0%, 50%, and 100% from left to right), and the
bottom two panels depict negative correlation strengths (-50% and -100% from left to
right). The inset table indicates the shape ratio (§2.2.2) for each panel, which compares
the shape parameters (Eq. 2.1) for the distributions. In the ρ = 0.0 case (no correlation),
the offset in the neighbour density distributions between star-forming and quiescent hosts
is due to the quiescent sample having larger host halo masses.
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Figure 2.4: The shape ratio is most sensitive to accretion rate differences when the
inner versus outer regions for the shape parameters (Eq. 2.1) are split around 0.316 Mpc
(indicated by the dotted line), and this value does not depend on the choice of neighbour
mass selection. This plot assumes 100% correlation between accretion rates and star
formation rates; lower correlations give identical results for the optimal choice of rsplit.
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Figure 2.5: The differences between the UniverseMachine and SDSS MPA-JHU mass
functions are largely due to different ways of determining galaxy luminosities and masses
(i.e., Bernardi et al. 2013 vs. Kauffmann et al. 2003). To account for the differences, we
use mass cutoffs in the UniverseMachine catalogues such that the cumulative number
densities of more massive objects match that for the SDSS (Table 2.1).
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SDSS UniverseMachine Φ(> M∗)

log10(M∗/M�) log10(M∗/M�) (Mpc/h)−3 (dex)−1

H
os

ts 10.50 10.50 0.64016

11.00 11.08 0.09464

N
ei

gh
b

ou
rs 8.50 8.62 6.62222

9.00 8.93 4.85279

9.50 9.38 3.05361

10.00 9.93 1.62929

Table 2.1: As discussed in §2.2.3.1, stellar mass definitions differ between the SDSS MPA-
JHU and UniverseMachine. This table summarises analogous stellar masses between
the SDSS and the UniverseMachine (first two columns, respectively) based on matching
the cumulative number density of more massive galaxies (third column). The first two
rows are the limits used when selecting isolated hosts, and the bottom four rows are the
values for determining bins for nearby neighbours. Throughout the rest of the chapter,
stellar masses refer to the SDSS definitions (first column).
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Bernardi et al. (2013). Corrections for these effects are not included in the SDSS

stellar mass function (determined in Brinchmann et al. 2004), but are included in

the stellar mass function constraints used in the UniverseMachine (see appendix

C in Behroozi et al., 2019).

To account for differences in stellar mass definitions, analogous stellar mass cut-

offs in the UniverseMachine were chosen such that the cumulative number density

of galaxies with greater masses matched the cumulative number density expected

from the SDSS. Table 2.1 lists equivalent mass values from SDSS MPA-JHU and

UniverseMachine data; in this chapter, stellar masses in the text and in figures

are values matching SDSS data.

2.2.3.2 Density Distribution Normalisation

A second systematic is the normalisation between the UniverseMachine and

SDSS neighbour density distributions. The UniverseMachine assumes observed

stellar masses have the same biases for both star-forming and quiescent galaxies. In

the real Universe, this may not be the case because the differences in metallicity,

dust, and star formation histories between quiescent and star-forming galaxies will

induce different biases in the inferred stellar masses. Thus, the true stellar mass

distributions will be different for the star-forming and the quiescent galaxies, which

implies that the halo masses for the two populations will be systematically different

as well. Since a galaxy with a larger halo mass will have a deeper gravitational

potential well, it will also be surrounded by more satellite galaxies. The density dis-

tribution of nearby neighbours will track the halo mass, leading to a normalisation

offset, though the shape of the neighbour density distribution will not be significantly

impacted (see Appendix A.2). We correct for this systematic effect by multiplying

by a constant normalisation factor to the UniverseMachine neighbour density

distributions to match the SDSS neighbour density distributions from 1.25 - 2.0

Mpc because this region has the least correlation with accretion rates. Typical off-

set values are . 0.2 dex. For example, with no correlation between halo and galaxy

growth (ρ = 0.0), and using neighbours with stellar masses log10(M∗/M�) > 9.0,
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the star-forming galaxy analogues in the UniverseMachine require a normalisa-

tion factor of −0.20± 0.26 dex to match the star-forming galaxies in SDSS, and the

quiescent galaxy analogues require a normalisation factor of of 0.01 ± 0.11 dex to

match the quiescent galaxies in the SDSS.

2.2.3.3 Weighting for SDSS Data

Finally, background and foreground objects represent the main source of noise in

the neighbour density distributions for SDSS. The Poisson variance in unassociated

source counts is proportional to the expected number of unassociated sources, which

is proportional to the on-sky (angular) area of the annulus for counting nearby

neighbours. Hence, we weight the neighbour density distribution for each host by

the inverse of the on-sky annulus area A,

wz =
1

A
∝ D2

A
∝∼ z2 , (2.2)

where DA is the angular diameter distance, and the last proportionality is valid at

low redshifts. This corresponds to inverse-variance weighting, which maximises our

signal-to-noise ratio.

Our analyses account for both this unassociated source weight as well as stellar

mass completeness,

wtot = wz · w∗ , (2.3)

where

w∗ =
1

Vmax(M∗)
(2.4)

is the inverse of the co-moving volume Vmax(M∗) out to which galaxies at that stellar

mass can be observed given SDSS spectroscopic survey limits (§2.3.1).

We calculate the average stacked neighbour density distribution n̄ around iso-

lated hosts as

n̄ =

∑
iwtot,i (Hi − R̄i)∑

iwtot,i

, (2.5)

where Hi− R̄i is the background-subtracted neighbour density distribution for each
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host. Hi is the number density of nearby neighbours around each isolated host

and and R̄i is the average nearby neighbour density around the associated random

pointings. We also calculated n̄ using only the stellar mass completeness weights

(w∗) and confirmed that our results do not change.

2.3 Data

2.3.1 Spectroscopic Data (Observed Isolated Hosts)

To identify isolated hosts from SDSS, we use data from the DR16 spectroscopic

catalogues (Ahumada et al., 2019), which are > 90% complete for galaxies brighter

than r = 17.77. Following the procedure in Behroozi et al. (2015),we use median

stellar masses and specific star formation rates from the MPA-JHU value-added

catalogue (Kauffmann et al., 2003; Brinchmann et al., 2004). These values were

calculated assuming a Kroupa (2002) initial mass function (IMF), and we convert

them to a Chabrier (2003a) IMF. For galaxies with fiber collisions, we supplemented

the catalogue with data from the NYU Value-Added Galaxy Catalog (NYU-VAGC;

Blanton et al., 2005) for galaxies with log10(M∗/M�) > 9.5 to improve our isolated

hosts selection. However, our results do not change without the addition of the

galaxies from the NYU-VAGC.

Our spectroscopic catalogue covers an on-sky area of 8,427.7 deg2 and includes

697,477 galaxy targets with nonzero stellar masses. To apply our isolation criterion,

we exclude galaxies that are within 2 Mpc of a survey boundary or a region of

significant incompleteness. We also exclude galaxies with z < 0.01 to avoid Hubble

flow corrections (e.g., Baldry et al., 2012). Our resulting catalogue has 547,271

galaxies over 6401.1 deg2 of sky.

Since the SDSS is magnitude-limited, we perform cuts to convert our spectro-

scopic catalogue to a stellar mass-complete sample. Following Behroozi et al. (2015),

over 95% of galaxies with a given stellar mass M∗ at redshift z satisfy

r < −0.25− 1.9 log10

(
M∗
M�

)
+ 5 log10

(
DL(z)

10pc

)
(2.6)
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in the SDSS, where r is the galaxy’s r-band apparent magnitude and DL is the

luminosity distance given our cosmology. Given SDSS’s spectroscopic survey limits,

we exclude galaxies for which r > 17.77 according to Eq. 2.6, since it would be

otherwise impossible to apply our isolation criteria.

Finally, since a purely volume-limited catalogue would unacceptably reduce the

size of our isolated galaxy sample, we weight neighbour density distributions by the

inverse of the observable volumes for each isolated galaxy, obtained by inverting

Eq. 2.6 with r = 17.77; this weight is w∗ from Eq. 2.4 in §2.2.3.3.

2.3.1.1 Sample Statistics

We identify 25,625 isolated galaxies from SDSS within a redshift range of 0.01 < z <

0.123. To measure the uncertainty in neighbour density distributions, we used 112

jackknife samples. For each jackknife sample, a ∼ 10◦×10◦ (∼ 37.5×37.5 Mpc/h at

the median host redshift z = 0.079) region was removed from the sky footprint for

the analysis, resulting in an average of ∼25,400 isolated hosts per jackknife sample.

2.3.1.2 Star-forming & Quiescent Bins

To constrain the correlation between dark matter accretion rates and star forma-

tion rates, we split our sample of isolated hosts from the SDSS into star-forming

and quiescent bins based on their specific star formation rates (SSFRs). Following

Wetzel et al. (2012), we separated the bins at SSFR = 10−11 yr−1 (Fig. 2.6). Across

the entire isolated host mass range from 10.5 < log10(M∗/M�) < 11.0, the fraction

of isolated hosts that were star-forming ranged from 48% to 24% (Fig. 2.7), and we

apply these fractions to the simulation data as described in §2.3.3. The redshift dis-

tributions of the star-forming isolated hosts and quiescent isolated hosts are similar,

and both have an average redshift z = 0.074.
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Figure 2.6: We identified star-forming versus quiescent galaxies based on their specific
star formation rates (SSFRs); following Wetzel et al. (2012), star-forming hosts were those
with SSFR > 10−11 yr−1. The central plot shows the volume-weighted density distribution
of galaxies in the DR16 spectroscopic catalogue (§2.3.1). The histogram above shows the
distribution of stellar masses of star-forming versus quiescent hosts, and the histogram to
the right shows the overall distribution of specific star formation rates with the split at
10−11 yr−1 indicated.
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Figure 2.7: The fraction of star-forming isolated hosts (i.e., those with SSFR >
10−11 yr−1) ranges from 48% to 24% across the isolated host stellar mass range. Each
fraction indicates the fraction of star-forming hosts within a 0.1 dex bin (e.g., from
10.5 < log10(M∗/M�) < 10.6). The vertical blue error bars indicate the scatter in the
fraction across the jackknife samples, and the grey bars indicate the stellar mass bin width.
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2.3.2 Photometric Data (Observed Nearby Neighbours)

To count neighbours around each isolated galaxy, we use sky position and g − r

colours from the DR16 photometric catalogue (Ahumada et al., 2019). We only use

sources with r < 21.5 so that galaxies with g−r colours as red as 1.25 are still above

the SDSS g band sensitivity (90% sensitivity: g > 22.78). Additionally, we only use

sources with a type field of “GALAXY” to exclude likely stars. The full catalogue

contains 73,109,495 galaxies with r < 21.5 over an on-sky area of 18,509.0 deg2.

Previous studies have binned neighbours according to their luminosity (e.g., More

et al., 2016; Baxter et al., 2017). However, the satellites of star-forming host galaxies

are expected to be brighter and bluer because they are more often star-forming than

the satellites around quiescent hosts (e.g., Weinmann et al., 2006; Berti et al., 2017).

Fig. 2.9 confirms this bias in our sample: close to star-forming hosts, neighbours

tend to be bluer than neighbours close to quiescent hosts (∆〈g − r〉 = −0.072 =

−5.43σ via bootstrapping). This trend may continue further from the isolated hosts

(∆〈g − r〉 = −0.041), but the significance is lower (−2.28σ). Our analysis relies on

the shape of the neighbour density distribution (§2.2.2), but binning neighbours by

luminosity may affect the shape of these distributions. For example, a luminosity-

based binning scheme may be biased against the fainter satellites around quiescent

galaxies, resulting in a shallower neighbour density distribution.

For our analysis, we instead bin neighbours by their stellar masses, which are

expected to be more consistent throughout satellite galaxy orbits. We assume that

all nearby neighbours are at the same redshifts as their hosts for calculating their

stellar masses, using background subtraction to remove background and foreground

contamination (see e.g., Lan et al., 2016).

Following Bell et al. (2003), we fit mass-to-light ratios as a function of the g− r
colours using galaxies from the SDSS DR16 spectroscopic catalogue (Ahumada et al.,

2019). We selected spectroscopic galaxies that match the properties of our expected

nearby neighbours, i.e., 0.01 < z < 0.125 and 8.0 < log10(M∗/M�) < 11.0, and
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weighted by stellar mass completeness (Eq. 2.4). We find a best fit of

log10(M∗/Lr) = 1.341 (g − r)− 0.639 , (2.7)

with a scatter σ ∼ 0.07 dex (Fig. 2.8). We note that our fit differs from the fit found

in Bell et al. (2003), due to the different assumptions used. First, Bell et al. (2003)

used stellar masses derived from a ‘diet’ Salpeter (1955) IMF, whereas our stellar

masses come from Brinchmann et al. (2004) converted to a Chabrier (2003a) IMF.

Additionally, we restricted our fit to galaxies with stellar masses that correspond

to stellar mass bins used in our analysis. In Fig. 2.8 below, we convert the fit from

Bell et al. (2003) to a Chabrier IMF by including a normalisation factor of -0.2 dex

following Salim et al. (2007). Second, Bell et al. (2003) used galaxies from the SDSS

Early Data Release (Stoughton et al., 2002), which included galaxies in the redshift

range 0.0 < z < 0.5. For our fit, we only consider galaxies in a smaller redshift range

from 0 < z < 0.125. Finally, because of our restricted redshift range, we perform

our fit with dereddened colours from the SDSS photometric catalogues and did not

apply k-corrections, but Bell et al. (2003) used k-corrected colours. In Appendix

A.1, we consider neighbour density distributions resulting from binning neighbours

by luminosity (§A.1.1) and using the stellar mass fit from Bell et al. (2003) (§A.1.2),

and we find no differences in our conclusions.

When applying the fit in Eq. 2.7 to our photometric catalogue, we required

that galaxies have 0.0 < g − r < 1.0 to ensure reliable photometry and to exclude

galaxies at higher redshifts. We determined this cut from the colour distributions

of nearby neighbours around isolated hosts (Fig. 2.9), which shows that galaxies

with g − r > 1.0 are consistent with background noise. These redder galaxies are

expected to be at higher redshifts; we have tested that repeating our analysis with

a redder colour cut of g − r > 1.25 yields the same results. After these cuts, our

photometric sample contained 35,457,243 galaxies.
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Figure 2.8: We fit a relation between galaxies’ g − r colours and their M∗/Lr ratios
following Bell et al. (2003). This allows us to bin nearby photometric neighbours by
stellar mass instead of luminosity, as stellar mass should be more robust throughout a
satellite galaxy’s orbit. Our fit had a scatter of σ ∼ 0.07 dex. The Bell et al. (2003) line
includes a normalisation factor to convert its IMF to be consistent with our SDSS DR16
data (-0.2 dex following Salim et al. (2007)). The difference between the two fits are due
to different assumptions, including dereddened versus k-corrected colours and the redshift
ranges of included galaxies (§2.3.2). To reduce visual noise, the density plot shown above
is smoothed with a Gaussian kernel of width 0.07 dex in mass-to-light ratio and 0.04 mag
in colour.
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Figure 2.9: Because galaxies with redder colours tend to be at higher redshifts, we re-
duce noise by applying a colour cut of g − r < 1.0 to photometric galaxies; the upper
limit is indicated by the black dotted vertical line. These plots include neighbours with
log10(M∗/M�) > 9.36, which corresponds to the stellar mass limit at the maximum iso-
lated host redshift (z = 0.123) given SDSS photometric limits. The projected distance
ranges of the two panels are set to match those used in our analysis of the shape of the
neighbour density distribution (§2.2.2). Close to star-forming host galaxies, neighbours
have bluer g − r colours than neighbours around quiescent galaxies, but further from the
isolated hosts, the colour differences for neighbours around star-forming and quiescent
host galaxies are less significant.
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2.3.3 Simulation Data

2.3.3.1 Overview

Our analysis uses haloes from the Bolshoi-Planck dark matter simulation (Klypin

et al., 2016; Rodŕıguez-Puebla et al., 2016a) with galaxy stellar masses from the

UniverseMachine empirical model (Behroozi et al., 2019). The Bolshoi-Planck

simulation had a co-moving volume of (250 Mpc/h)3 with 20483 particles (∼ 8×109)

with high mass resolution (1.6×108h−1M�). They adopted a flat ΛCDM cosmology

(h = 0.678, Ωm = 0.307, σ8 = 0.823, ns = 0.96) that is compatible with Planck

2015 and 2018 results (Planck Collaboration et al., 2016, 2018); we use this same

cosmology in this chapter. Halo finding and merger tree construction were done

using Rockstar (Behroozi et al., 2013a) and Consistent Trees (Behroozi et al.,

2013b) codes, respectively. Halo masses (Mvir) were defined using the virial spherical

overdensity criterion (ρvir) of Bryan and Norman (1998).

In this chapter, we use halo accretion rates from Bolshoi-Planck over the past

dynamical time tdyn = 1/
√
Gρvir normalised by halo virial masses, i.e.,

Γ =
∆ log(Mvir)

∆ log(a)
(2.8)

following Diemer and Kravtsov (2014).These are specific halo mass accretion rates,

and their distribution depends only weakly on halo mass (Behroozi and Silk, 2015).

The UniverseMachine is an empirical model that uses a Markov Chain Monte

Carlo (MCMC) algorithm to model the relationships between galaxy properties and

dark matter halo properties (Behroozi et al., 2019). This model uses halo properties

and assembly histories from the Bolshoi-Planck simulation, and it self-consistently

constrains individual galaxies’ properties to match observed stellar mass functions

(z ∼ 0 − 4), cosmic star formation rates (z ∼ 0 − 10), specific star formtion rates

(z ∼ 0− 8), UV luminosity functions (z ∼ 4− 10), quenched fractions (z ∼ 0− 4),

auto- and cross-correlation functions (z ∼ 0 − 0.5), and median UV-stellar mass

relations (z ∼ 4− 10); full references are available in appendix C of Behroozi et al.



45

(2019). Of note, the UniverseMachine model allows for orphans, i.e., satellites

are allowed to persist after being destroyed in the dark matter simulation. Without

orphans, the predicted spatial correlation of galaxies is much lower than observed.

More details are in appendix C of Behroozi et al. (2019) and §2.2.2. of Allen et al.

(2019).

In the UniverseMachine, star formation rates are parameterised as a func-

tion of halo mass, halo accretion rates, and redshift. Stellar masses at z = 0 are

constrained to match Moustakas et al. (2013) with corrections for extended galaxy

profiles as described in Bernardi et al. (2013). We note that these masses differ

from stellar masses in SDSS due to the treatment of galaxy light profiles, and we

describe this systematic in more detail in §2.2.3.1. We adjust stellar masses from

the UniverseMachine to match the calibration used for SDSS stellar masses for

consistency (§2.2.3.1). Observed stellar masses from the UniverseMachine incor-

porate both (1) systematic offsets between true and observed stellar masses as well

as (2) random scatter in observed stellar masses. The resulting observables from

the UniverseMachine data used in this chapter include galaxy positions, veloc-

ities, and stellar masses. We do not use the star formation rates generated by the

UniverseMachine because we instead use halo mass accretion rates as described

below in §2.3.3.3.

2.3.3.2 Sample Statistics

We combined UniverseMachine simulation data from 14 snapshots with a =

0.904 to a = 1.002. For each snapshot, we created three separate “views,” with the

line-of-sight direction oriented along each of the spatial axes (x, y, and z). Each

snapshot had an average of 93,794 isolated hosts, or 31,265 per view. 97% of the

isolated haloes were not satellites of larger haloes.

For each snapshot view, we created 25 jackknife samples by leaving out a 50 ×
50 Mpc/h region, creating a total of 75 jackknife samples for each snapshot. For

each jackknife sample, we create a stacked neighbor density distribution from the

UniverseMachine data by averaging across the 14 snapshots. Each snapshot
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contained an average of ∼81,300 isolated hosts per sample. We note that the un-

certainties for the SDSS and UniverseMachine neighbour density distributions

are different because the background (noise) from the SDSS photometric data in-

cludes galaxies out to z ∼ 0.2 (over 570 Mpc/h) whereas the UniverseMachine

simulation box is only 250 Mpc/h per side.

2.3.3.3 Correlating Star Formation Activity with Halo Mass Accretion

Rates

The UniverseMachine generates star formation rates based on an assumption

about the correlation between star formation rates and host halo accretion rates.

However, in this chapter, we want to measure this correlation, and so we discard the

star formation rates from the UniverseMachine. Instead, we categorise galaxies

as being star-forming or quiescent based only on their host halo dark matter specific

accretion (Eq. 2.8).

To predict observable effects from correlations between accretion rates and star

formation, we constructed analogues of the star-forming and quiescent SDSS host

galaxies from the UniverseMachine data. As described in §2.3.1.2, the fraction

of star-forming isolated galaxies in the SDSS ranges from 48 to 24% across the

host stellar mass range. Within each equivalent isolated host stellar mass bin from

UniverseMachine data, we split the hosts into a high-accreting host subsample

and a low-accreting host subsample. For positive correlation strengths, the fraction

of UniverseMachine hosts in the high-accreting host subsample is set to match

the fraction of star-forming hosts in the corresponding SDSS host stellar mass bin,

whereas for negative correlation strengths, the fraction of UniverseMachine hosts

in the low-accreting host subsample is set to match the fraction of star-forming hosts

in the corresponding SDSS host stellar mass bin.

When predicting the neighbour density distributions for different correlations

(ρ), we select hosts such that a fraction ρ are chosen from the corresponding host

subsample (high-accreting or low-accreting) and the remaining fraction 1 − ρ are

chosen randomly from all isolated hosts. For example, each snapshot from the
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UniverseMachine has ∼80,000 isolated host galaxies (§2.3.3.2) of Milky Way-

mass. Of those hosts, ∼18,750 have 10.7 < log10(M∗/M�) < 10.8. For the isolated

hosts from the SDSS within that mass range, 35% were star-forming (Fig. 2.7).

Thus, for positive correlations, we first split the ∼18,750 hosts into (1) a high-

accreting subsample with the 35% of host haloes with the highest accretion rates

and (2) a low-accreting subsample with the remaining 65% of host haloes with lower

accretion rates. For an example correlation rate of ρ = 0.50, the star-forming hosts

in the UniverseMachine with 10.7 < log10(M∗/M�) < 10.8 consisted of ∼6,560

hosts (35% of the total number of hosts in the mass range) where half (ρ = 0.5)

were randomly selected with replacement from the high-accreting host subsample

and the other half (1− ρ = 0.5) were randomly selected with replacement from all

hosts in the mass range. Finally, the quiescent hosts from the UniverseMachine

with 10.7 < log10(M∗/M�) < 10.8 consisted of ∼12,190 hosts (65% of the total

number of hosts in the mass range), and for ρ = 0.50, half were randomly selected

with replacement from the low-accreting host subsample and the other half were

randomly selected with replacement from all the hosts in the mass range.

2.4 Results

Fig. 2.10 and Table 2.2 summarise our results. Isolated star-forming galaxies have

shallower neighbour distributions than isolated quiescent galaxies (RSF/RQ < 1).

This statement is independent of the neighbour mass threshold (Fig. 2.10), and

implies that positive correlations between dark matter halo accretion and galaxy

star formation activity are ruled out with & 85% confidence (i.e., ρ ≤ 0, Table

2.2). Indeed, for neighbours with log10(M∗/M�) > 9.0 around isolated hosts in the

SDSS, the observed results are most consistent with theoretical predictions for a dark

matter accretion correlation rate that is fully anticorrelated with recent galaxy star

formation activity (ρ = −1.0). However, given the uncertainties, weakly negative

and/or zero correlations are still plausibly consistent with observations.

We have tested many variations on the method presented in §2.2, and find in all
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Figure 2.10: Observed neighbour density distributions for neighbours around isolated
hosts in the SDSS are not consistent with positive correlations between halo dark matter
accretion rates and recent star formation activity. Star-forming isolated galaxies have
shallower neighbour profiles than quiescent isolated galaxies (RSF/RQ < 1). These results
are inconsistent with positive correlations between dark matter accretion rates and SSFRs
at typically & 85% confidence (Table 2.2). The panels compare the neighbour density
distributions from SDSS for the four different neighbour galaxy stellar mass thresholds
(as indicated by the inset text) versus the best-fitting dark matter accretion prediction,
which has a strong anti-correlation (ρ = −1.0). As described in §2.2.3.2, a normalisation
factor has been included in the plots from the UniverseMachine to match the observed
neighbour density profiles. The redshift distributions of the star-forming and quiescent
isolated hosts from the SDSS are similar, and both have an average redshift z = 0.074.
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Neighbour M∗ Selection
RSF/RQ

Confidence Level

log10(M∗/M�) ρ ≤ 0.0

8.50 0.899± 0.480 58.32%

9.00 0.689± 0.284 86.34%

9.50 0.638± 0.216 95.35%

10.00 0.761± 0.237 84.29%

Table 2.2: The shape ratios for neighbour density distributions around isolated hosts
in the SDSS are most consistent with an anti-correlation between dark matter accretion
and SSFRs (i.e., RSF/RQ < 1 and thus ρ < 0). In this table and Fig. 2.10, we include
values for all neighbour stellar mass selection limits as determined from their g−r colours
(§2.3.2).

cases a strong observational preference for ρ ≤ 0 (i.e., RSF/RQ < 1). Our results do

not change significantly if either: (1) we exclude fiber-collided galaxies with masses

from the NYU-VAGC, (2) we only weight by stellar mass completeness and exclude

the inverse variance weights (Eqs. 2.2-2.5), (3) we include redder photometric sources

up to g − r < 1.25 (§2.3.2), or (4) we select neighbours based on luminosities

(Appendix A.1.1) or the stellar mass proxy from Bell et al. (2003) (Appendix A.1.2).

We also find that for the most massive nearby neighbours (log(M∗/M�) & 9.5),

we observe a deficit close to the isolated hosts (projected distances R < 0.125 Mpc)

as compared to theoretical predictions for both star-forming and quiescent hosts.

This deficit could indicate either a reduced efficiency in detecting these neighbours

and/or short disruption timescales. To make sure that these potential effects do not

bias our conclusions, we repeated our analysis on the neighbour density distributions

excluding neighbours within 0.125 Mpc and found that this does not significantly

change our results.

2.5 Discussion & Conclusions

In this chapter, we present a method to observationally constrain the correlation be-

tween dark matter accretion and star formation, validate the method on simulated
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galaxies from the UniverseMachine, and apply the method to Milky Way-mass

galaxies in the SDSS. The method is based on the density distributions of neighbour-

ing galaxies, which we obtain by background subtraction. As a halo accretes more

dark matter, we expect that the neighbour density distribution will steepen near the

halo, and we confirm this trend in the predicted neighbour density distributions from

the UniverseMachine (Fig. 2.3). We quantify this effect using a shape ratio opti-

mised to be sensitive to differences in the distributions around high-accreting versus

low-accreting hosts. Using a sample of isolated star-forming and quiescent (as deter-

mined by SSFRs) host galaxies from the SDSS with 10.5 < log10(M∗/M�) < 11.0,

our results suggest that a positive correlation between dark matter accretion and

galaxy SSFRs is ruled out with & 85% confidence.

We note several factors that could affect the interpretation of our results. First,

weak correlations might be expected if changes in host galaxy SSFRs happen on

timescales much shorter than satellite galaxy periods (∼ 2 tdyn ∼ 4 Gyr). Sec-

ond, our analysis uses the distributions of neighbouring galaxies, but neighbouring

galaxies may be subject to effects that are not adequately modeled in dark matter

simulations. For example, dynamical friction and tidal disruption act to reduce the

number of satellites. If these effects occur at different rates between star-forming

and quiescent host galaxies and are not adequately captured in our simulations, then

our measured shape ratios could be affected. Both of these factors can be addressed

by further measurements. O’Donnell et al. (in prep.) will expand the analysis

to larger isolated host mass ranges as well as classify hosts by their 4000Å break

strength (Dn4000), which is a longer-term diagnostic of a galaxy’s star formation.

Additionally, weak lensing techniques can be used to more accurately measure the

dark matter mass profile rather than relying on the density profile of neighbouring

galaxies.

Our results are consistent with galaxy formation models that are not corre-

lated with fresh accretion at z = 0. These models instead invoke modest recycling

timescales for gas that is ejected from the galaxy, resulting in the gas cooling and

reaccreting onto the galaxy (e.g., Muratov et al., 2015; van de Voort, 2017; Kereš
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et al., 2005; Nelson et al., 2013, 2015; Dekel and Birnboim, 2006). This process can

generate subsequent galaxy growth even in the absence of new accretion onto the

host halo. Because only ∼ 20 − 30% of gas in the host haloes turns into stars for

our isolated galaxy sample (Behroozi et al., 2019), plenty of gas remains that could

support star formation after accretion stops.

Furthermore, our results are consistent with other studies that do not find strong

correlations between halo growth and star formation. Tinker et al. (2017b) studied

the fraction of quenched central galaxies (as determined by Dn4000) in galaxy groups

from SDSS data. They found no correlation for M∗ . 1010M�/h
2, and at higher

masses, they found a only ∼5% increase in the quenched fraction from low to high

densities for fixed stellar mass. Similarly, Behroozi et al. (2015) also did not find

a strong effect of major halo mergers (as probed by close galaxy pairs) on star-

formation rates.

Other theoretical studies have found or assumed strong positive correlations

between dark matter accretion and star formation, including Wetzel and Nagai

(2015), Becker (2015), Cohn (2017), Rodŕıguez-Puebla et al. (2016b), and Moster

et al. (2018). Behroozi et al. (2019) measured a strong correlation roughly equiv-

alent to ρ = 0.6. However, the Behroozi et al. (2019) constraints were primarily

driven by satellite galaxies, which have low or negative dark matter accretion rates.

The UniverseMachine did not independently constrain accretion correlations for

central/isolated haloes (see §5.11 of Behroozi et al. 2019). Despite the findings in

this chapter, we note that most results of these models (e.g., stellar vs. halo mass

relations) are likely still valid, as an equivalent model that assumed anti-correlation

between accretion rates for isolated central galaxies and their star formation rates

would have almost no observational differences except for the measurement in our

analysis.

Finally, we note that our shape ratio was maximised with rsplit ≡ 0.316 Mpc,

which is fairly close to the host galaxies’ halo virial radii (∼ 0.05◦ at the median

host redshift of z = 0.079). Future surveys, such as the Dark Energy Spectro-
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scopic Instrument (DESI) Survey1 (DESI Collaboration et al., 2016), will detect

larger numbers of such galaxies at higher redshifts and thus will provide stronger

constraints on the correlation strength between dark matter accretion and star for-

mation. Additionally, a larger number of isolated galaxies will enable analyses that

measure the correlation between dark matter accretion and other host properties,

including metallicity, velocity dispersion, and AGN activity.
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CHAPTER 3

Observing Correlations Between Dark Matter Accretion and Galaxy Growth: II.

Testing the Impact of Galaxy Mass, Star Formation Indicator, and Neighbour

Colours †

Summary

A crucial question in galaxy formation is the role of new accretion in star formation. Theo-

retical models have predicted a wide range of correlation strengths between halo accretion

and galaxy star formation. Previously, we presented a technique to observationally con-

strain this correlation strength for isolated Milky Way-mass galaxies at z ∼ 0.12, based

on the correlation between halo accretion and the density profile of neighbouring galaxies.

By applying this technique to both observational data from the Sloan Digital Sky Survey

and simulation data from the UniverseMachine, where we can test different correlation

strengths, we ruled out positive correlations between dark matter accretion and recent star

formation activity. In this work, we expand our analysis by (1) applying our technique

separately to red and blue neighbouring galaxies, which trace different infall populations,

(2) correlating dark matter accretion rates with Dn4000 measurements as a longer-term

quiescence indicator than instantaneous star-formation rates, and (3) analyzing higher-

mass isolated central galaxies with 1011.0 < M∗/M� < 1011.5 out to z ∼ 0.18. In all cases,

our results are consistent with non-positive correlation strengths with & 85% confidence,

suggesting that processes such as gas recycling dominate galaxy star formation at z = 0.

3.1 Introduction

According to the ΛCDM framework, galaxies form within dark matter haloes when

gas gravitationally coalesces at halo centres (for a review, see Somerville and Davé,

†This chapter is in preparation for submission to the Monthly Notices of the Royal Astronomical
Society as O’Donnell, Behroozi, and More (2020b). As of the time of this writing, we expect to
submit this chapter by Fall 2020.
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2015; Wechsler and Tinker, 2018). Thus, we expect that halo properties and galaxy

properties will be strongly correlated, e.g., halo mass and stellar mass are correlated

(Tinker et al., 2017a; Behroozi et al., 2019).

However, different models predict different correlation strengths between dark

matter accretion and galaxy star formation. As material falls onto a halo from

large distances, we expect the fraction of infalling gas versus infalling dark matter

to match the cosmic baryon fraction. If this also holds true at smaller scales, then

we would expect dark matter accretion and star formation to be correlated. For

example, Wetzel and Nagai (2015) found that dark matter accretes in a shell-like

manner at R200m around a halo. Gas, on the other hand, can radiatively cool, al-

lowing it to decouple from the dark matter and continue an infall onto the central

galaxy. As a result, star formation rates track dark matter accretion rates (Wetzel

and Nagai, 2015), and many theoretical models and simulations have found or as-

sumed a perfect positive correlation strength between the two (e.g., Becker, 2015;

Rodŕıguez-Puebla et al., 2016b; Cohn, 2017; Moster et al., 2018).

On the other hand, some models predict that feedback from winds, supernovae,

AGN, and other processes will suppress new accretion onto a central galaxy. Thus,

most star formation is generated by recycled or re-accreted gas, and we would expect

at most only a weak correlation with dark matter accretion (e.g., Kereš et al., 2005;

Dekel and Birnboim, 2006; Nelson et al., 2013, 2015; Muratov et al., 2015; van

de Voort, 2017). Furthermore, Muratov et al. (2015) found that outflows from a

galaxy (due to supernovae, AGN, etc.) are most significant at higher redshifts,

creating an enriched gas reservoir that powers star formation at lower redshifts.

These models are consistent with observational results that star formation rates do

not correlate with major mergers (Behroozi et al., 2015), which have enhanced dark

matter accretion rates. Further, Tinker et al. (2017b) studied SDSS galaxy groups

and found that the fraction of quenched central galaxies with M∗ & 1010M�/h
2

only slightly increases as the local environmental density increases. However, halo

assembly rates are strongly correlated with local density (e.g., Lee et al., 2017),

and so their results implied that halo growth and galaxy assembly are only weakly
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correlated.

In O’Donnell et al. (2020a), we observationally constrained the correlation be-

tween dark matter accretion and recent star formation activity in Milky-Way mass

galaxies (1010.5 < M∗/M� < 1011). Our technique built on work to characterize

the splashback radii of haloes (e.g., Diemer and Kravtsov, 2014; More et al., 2015,

2016; Baxter et al., 2017). Observational studies stacked the density profiles of

nearby neighbours around clusters to look for the splashback feature (More et al.,

2015, 2016; Baxter et al., 2017). In our analysis, we made two modifications to this

technique. First, we selected Milky Way-mass galaxies, as star formation is still hap-

pening at these smaller mass scales (versus the centrals of galaxy clusters, which are

often quenched). To reduce environmental contamination in neighbour density pro-

files, we specifically selected isolated Milky Way-mass galaxies. By selecting isolated

galaxies that are the dominant source of gravity in their local environments, they

will have stronger correlations between neighbouring galaxy orbits and dark matter

accretion rates (see also Deason et al., 2020), which allows us to probe lower-mass

halo scales than previous work. In addition, instead of identifying a single fea-

ture in the density profiles, we analyzed the shape of the entire neighbour density

distribution to increase our signal-to-noise ratio.

Our analysis compared observational SDSS DR16 data (Ahumada et al., 2019)

to simulated UniverseMachine data (Behroozi et al., 2019) to constrain the cor-

relation strength. We separated star-forming and quiescent isolated galaxies in the

SDSS based on their specific star formation rates (SSFRs). Our results ruled out

positive correlations between dark matter accretion rates and SSFRs with & 85%

confidence.

However, we would expect weak correlations if the timescales probed by SSFRs

are much shorter than the orbits of satellite galaxies (∼ 2tdyn ∼ 4 Gyr; see §5 in

O’Donnell et al. 2020a). In this chapter, we test two approaches that address this

concern:

1. Instead of only separating star-forming and quiescent galaxies based on their

SSFRs, we also bin galaxies based on their 4000Å break (Dn4000; Balogh
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et al., 1999), which is a longer-term quiescence indicator.

2. We compare the density distributions of neighbouring galaxies based on the

neighbours’ colours. As a satellite galaxy falls into a host halo, gas is stripped

from the satellite that would otherwise replenish star formation, leading to an

increase in the fraction of red galaxies within host halo virial radii (e.g., Moore

et al., 1996; Gunn and Gott, 1972; Kawata and Mulchaey, 2008; Dressler et al.,

1997; Weinmann et al., 2006; Baxter et al., 2017). Wetzel et al. (2013) found

that the typical timescale for this quenching is on the order of satellite orbital

periods (2-4 Gyr). Because red satellites have been within their host haloes

for a longer time, they may be more sensitive to changes in the gravitational

potential well than blue satellites that have only recently fallen in. By analyz-

ing the density distribution of red neighbours around isolated Milky Way-mass

galaxies, we would have a more robust test of the correlation strength between

dark matter accretion and star formation rates.

Furthermore, we expand our analysis to higher-mass isolated host galaxies. This

test allows us to identify isolated central galaxies out to higher redshifts, and it

adds an additional check of our results by using an independent host population.

This chapter is structured as follows: First, in §3.2, we summarise key details of

our observational (§3.2.1) and simulation data (§3.2.2), including differences with the

datasets used in O’Donnell et al. (2020a). In §3.3, we describe the methodology used

in our analysis. §3.4 presents the results for comparing the density distributions of

red neighbours around isolated hosts to the distributions of blue neighbours (§3.4.1),

separating star-forming and quiescent hosts based on SSFR versus Dn4000 (§3.4.2),

and analysing higher-mass isolated hosts (§3.4.3). Finally, we conclude in §3.5 and

note directions for future analyses. We adopt a flat ΛCDM cosmology with ΩM =

0.307, ΩΛ = 0.693, and h = 0.677, consistent with Planck 2018 results (Planck

Collaboration et al., 2018)
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3.2 Observations & Simulations

This chapter uses similar techniques and datasets as in O’Donnell et al. (2020a).

Below, we repeat key details and note differences where appropriate.

3.2.1 Observational Data

We identify isolated galaxies, which we refer to as our isolated host sample (§3.3),

from the SDSS DR16 spectroscopic catalogs (Ahumada et al., 2019). We define

isolated to mean that there is no larger galaxy within 2 Mpc in projected (on-sky)

physical distance or 1000 km/s in velocity separation. We use median stellar masses,

specific star formation rates, and Dn4000 values from the MPA-JHU value-added

catalog (Kauffmann et al., 2003; Brinchmann et al., 2004). Stellar masses and star

formation rates were converted to a Chabrier (2003b) IMF by dividing each by a fac-

tor of 1.07. To improve our isolated host selection, we supplemented these catalogs

with data from the NYU Value-Added Galaxy Catalog (NYU-VAGC; Blanton et al.,

2005) for galaxies with M∗ > 109.5M�. The NYU-VAGC filled in information for

galaxies affected by fibre collisions by assuming they have the same redshift as the

nearest non-fibre-collided neighbour. Further, we excluded galaxies that are within

2 Mpc of a survey boundary or region of significant incompleteness to ensure the

robustness of our isolation criteria. To avoid Hubble flow corrections (e.g., Baldry

et al., 2012), we exclude galaxies with z < 0.01. Our resulting catalog has 547,271

galaxies over 6401.1 deg2 of sky. Finally, we apply a stellar mass completeness cut

to our spectroscopic catalog. Behroozi et al. (2015) found that in the SDSS, > 95%

of galaxies have r-band apparent magnitudes (r) brighter than the following limit:

r < −0.25− 1.9 log10

(
M∗
M�

)
+ 5 log10

(
DL(z)

10pc

)
, (3.1)

where M∗ is the stellar mass and DL is the luminosity distance given our cosmology.

To be consistent with SDSS’s spectroscopic survey limits, we exclude galaxies for

which r > 17.77 according to Eq. 3.1.
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In this chapter, we identified isolated host galaxies in two different mass bins:

(1) galaxies with 10.5 < log10(M∗/M�) < 11.0 and (2) galaxies with 11.0 <

log10(M∗/M�) < 11.5; the former is the same bin we used in O’Donnell et al.

(2020a). To count neighbouring galaxies around our isolated hosts, we use SDSS

DR16 photometric catalogs (Ahumada et al., 2019). We use sources with a type

field of ‘GALAXY’ to exclude likely stars, and we restrict our catalog to galaxies

with r < 21.5 to ensure reliability of g − r colours. Following O’Donnell et al.

(2020a), we bin nearby neighbours by stellar mass to reliably compare the shape of

density distributions around star-forming and quiescent hosts. We used the same

fit between g − r colours and M∗/Lr ratios as found in O’Donnell et al. (2020a):

log10(M∗/Lr) = 1.341 (g − r)− 0.639 . (3.2)

To reduce noise when applying this fit, we cut our photometric catalog based on

g − r colours to exclude galaxies at higher redshifts. For isolated hosts with 10.5 <

log10(M∗/M�) < 11.0, we restrict our analysis to galaxies with 0.0 < g − r <

1.0, as redder galaxies are not present above background noise levels (Fig. 9 from

O’Donnell et al., 2020a). These cuts result in a photometric catalog that includes

35,457,243 galaxies over an on-sky area of 18,509.0 deg2. The higher-mass isolated

hosts (11.0 < log10(M∗/M�) < 11.5) can be detected at higher redshifts, so we use a

limit of g−r < 1.25 based on the colour distribution of nearby neighbours (Fig. 3.1),

resulting in a photometric catalog that includes 47,713,412 galaxies.

3.2.1.1 Sample Statistics

From O’Donnell et al. (2020a), we identified 25,625 isolated galaxies from SDSS

with stellar masses 10.5 < log10(M∗/M�) < 11.0 that correspond to a redshift range

of 0.01 < z < 0.123 (median z = 0.079). In this chapter, we also identify 25,432

isolated hosts with stellar masses 11.0 < log10(M∗/M�) < 11.5 (redshift range

0.01 < z < 0.183, with median z = 0.116). We also investigated using galaxies

from a lower mass range (10.0 < log10(M∗/M�) < 10.5), but their neighbour density
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Figure 3.1: We exclude photometric galaxies with redder colours as they tend to be at
higher redshifts; thus, applying a colour cut reduces noise in our neighbour density distri-
butions. In O’Donnell et al. (2020a), we excluded photometric galaxies with g−r > 1.0 for
isolated hosts with 10.5 < log10(M∗/M�) < 11.0 as these galaxies were not present above
background noise counts. Here, we plot the background-subtracted weighted distribution
of g − r colours for our higher-mass isolated hosts (11.0 < log10(M∗/M�) < 11.5) and
determine that the colour cut should be g − r > 1.25 (indicated by the dotted vertical
line). These plots include neighbours with log10(M∗/M�) > 10.4, which corresponds to
the stellar mass limit at the maximum isolated host redshift (z = 0.183) given SDSS pho-
tometric limits. We note that lower-mass neighbours are expected to have bluer colours.
The projected distance ranges of the two panels match the regions used in our analysis
of the shapes of the neighbour density distributions (Eq. 3.5 in §3.3). Neighbours around
star-forming hosts have bluer g − r colours than neighbours around quiescent hosts, and
the difference is more significant at closer distances from the hosts. We noted a similar
difference in the neighbours around isolated hosts with 10.5 < log10(M∗/M�) < 11.0 (Fig.
9 in O’Donnell et al., 2020a).
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distributions were dominated by noise because there were too few isolated hosts even

if we relaxed the isolation criteria (e.g., no larger galaxy within 1 Mpc projected

distance and 1000 km/s velocity distance).

To measure the uncertainties in neighbour density distributions, we used jack-

knife sampling. For each sample, a ∼ 10◦ × 10◦ region was removed from the sky

footprint (∼ 37.5 × 37.5 Mpc/h at z = 0.079), resulting in 112 samples with an

average of ∼25,000 isolated hosts in each mass bin per sample.

3.2.1.2 Star Formation & Quiescence Indicators

In O’Donnell et al. (2020a), we binned our isolated hosts into star-forming and

quiescent bins based on their specific star formation rates (SSFRs), which is an

indicator of recent star formation activity. We separated the two SSFR bins at

SSFR = 10−11yr−1 following Wetzel et al. (2012), and we keep the same definition

here.

However, as we note in O’Donnell et al. (2020a), the shape of the neighbour

density distribution changes on timescales of satellite galaxy orbits ∼ 2tdyn ∼ 4

Gyr. If SSFRs change on shorter timescales than satellite galaxy orbits, then we

would expect to see weaker correlations. To test this potential bias, we also split

the isolated hosts into two bins based on their 4000Å break (Dn4000, Balogh et al.,

1999), which is a longer-term indicator of quiescence. Kauffmann et al. (2003) found

that SDSS spectroscopic data shows a bimodal distribution in Dn4000. The first

peak at Dn4000 ∼ 1.3 corresponds to galaxies with mean stellar ages ∼ 1− 3 Gyr,

and a second peak at Dn4000 ∼ 1.85 corresponds to galaxies with mean stellar ages

∼ 10 Gyr. We see a similar distribution in our SDSS DR16 spectroscopic catalog

(Fig. 3.2), and we split the star-forming and quiescent host galaxies at Dn4000 = 1.6.

This split is consistent with Kauffmann et al. (2003) and has been used in other

analyses of SDSS galaxies (e.g., Blanton et al., 2011; Tinker et al., 2017b). When

binning isolated hosts by either SSFR or Dn4000, we do not find any significant

differences between the redshift distributions of the two bins.

As in O’Donnell et al. (2020a), when using the star-forming fraction from SDSS
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Figure 3.2: When using Dn4000 as a star formation indicator, we bin our isolated hosts
into star-forming and quiescent hosts split at Dn4000 = 1.6. The central plot shows the
volume-weighted density distribution of galaxies in the SDSS DR16 spectroscopic catalog.
The top histogram shows the distribution of stellar masses of star-forming versus quiescent
hosts based on their Dn4000 values, and the right histogram shows the overall distribution
of Dn4000. Fig. 6 in O’Donnell et al. (2020a) depicts analogous distributions when using
specific star formation rates (SSFRs) as the star formation indicator.
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to construct accretion rate correlation predictions in the simulation data from the

UniverseMachine (§3.3), we use the star-forming fraction among isolated hosts

within 0.1 dex bins (e.g., from 10.6 < log10(M∗/M�) < 10.7). Fig. 3.3 plots the

fraction of star-forming hosts for both star formation indicators across the isolated

host mass ranges. The two indicators yield similar star-forming fractions across the

isolated host mass range.

Finally, Fig. 3.4 compares the SSFR and Dn4000 values for isolated hosts in

both stellar mass bins. The two indicators track each other very well with . 10%

difference in isolated host classification. For isolated hosts with stellar masses

10.5 < log10(M∗/M�) < 11.0, 7.3% of isolated hosts that are star-forming based

on their SSFR values are quiescent based on the Dn4000 measurements, and 3.6%

of isolated hosts that are star-forming based on their Dn4000 measurements are qui-

escent based on their SSFR values. Similarly, for isolated hosts with stellar masses

11.0 < log10(M∗/M�) < 11.5, 4.6% of isolated hosts that are star-forming based

on their SSFR values are quiescent based on the Dn4000 measurements, and 2.0%

of isolated hosts that are star-forming based on their Dn4000 measurements are

quiescent based on their SSFR values.

3.2.1.3 Red vs. Blue Neighbours

As another validation of our approach, we bin neighbours by their g− r colours and

apply our analysis technique separately to each colour bin. As a satellite galaxy

passes through the halo of its host galaxy, we expect that its star formation will

quench. Galactic interactions can disturb the satellite galaxy and strip gas from the

satellite halo that could otherwise replenish star formation (e.g., Moore et al., 1996;

Gunn and Gott, 1972; Kawata and Mulchaey, 2008). Many studies have found an

increase in the fraction of red galaxies within halo virial radii (e.g., Dressler et al.,

1997; Weinmann et al., 2006; Baxter et al., 2017). Wetzel et al. (2013) finds that

the typical timescales for quenching are on the order of satellite orbital periods (2-

4 Gyr), which matches the timescales for changes in the shape of the neighbour

density distributions. Thus, we expect red and blue neighbours will correspond to
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Figure 3.3: The fraction of star-forming isolated hosts in the SDSS is similar for both
of the indicators used to bin star-forming versus quiescent hosts (specific star forma-
tion rates [SSFR] and Dn4000) across the entire isolated host mass range. Each marker
indicates the star-forming fraction for isolated hosts within a 0.1 dex bin (e.g., over
10.7 < log10(M∗/M�) < 10.8). The Poisson errors in the star-forming fractions are
smaller than the sizes of the plot markers, and the grey horizontal bars indicate the width
of the host stellar mass bins.
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Figure 3.4: For isolated hosts in the SDSS, SSFR and Dn4000 measurements yield consis-
tent bins for star-forming versus quiescent hosts. The dotted vertical and horizontal lines
indicate the values used to separate isolated host mass bins for each indicator (§3.2.1.2).
The left panel shows the distribution for isolated hosts with 10.5 < log10(M∗/M�) < 11.0,
and only 10.9% of hosts are classified differently between the two indicators (e.g., as star-
forming by SSFR but quiescent by Dn4000). The right panel shows the distribution for
isolated hosts with 11.0 < log10(M∗/M�) < 11.5, and 6.6% of hosts are classified differ-
ently between the two indicators.
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Figure 3.5: There are two peaks in the distribution of the g − r colours of neighbouring
galaxies between 0.05-2.0 Mpc from isolated hosts with 10.5 < log10(M∗/M�) < 11.0. The
dotted line indicates the g − r < 1.0 colour cut applied to exclude photometric galaxies
from higher redshifts. The dashed line at g− r = 0.75 indicates the value used to separate
red and blue neighbour galaxies.

long and short timescales since infall, respectively.

We perform our analyses on both red and blue neighbours around isolated hosts

with 10.5 < log10(M∗/M�) < 11.0. We define these two bins using the g − r colour

distribution of all neighbours within our analysis area, i.e., 0.05 - 2.0 Mpc from the

isolated hosts (Fig. 3.5). We define blue neighbours as those with 0.0 < g−r < 0.75

and red neighbours as those with 0.75 < g − r < 1.0.

3.2.2 Simulation Data

We use haloes from the Bolshoi-Planck dark matter simulation (Klypin et al., 2016;

Rodŕıguez-Puebla et al., 2016a), which follows a co-moving volume of (250 Mpc/h)3

with high mass resolution (1.6×108h−1M�) and 20483 particles (∼ 8×109). Bolshoi-

Planck adopted a flat ΛCDM cosmology (h = 0.678, Ωm = 0.307, σ8 = 0.823,
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ns = 0.96); we also use this cosmology in our analysis. Halo finding and merger tree

construction were done with Rockstar (Behroozi et al., 2013a) and Consistent

Trees (Behroozi et al., 2013b), respectively. Following O’Donnell et al. (2020a),

halo accretion rates are derived from Bolshoi-Planck over the past dynamical time

tdyn = 1/
√
Gρvir. We use specific halo mass accretion rates, which are normalised

by halo virial masses, i.e.,

Γ =
∆ log(Mvir)

∆ log(a)
≡

log
(

Mvir(tnow)
Mvir(tnow−tdyn)

)
log
(

a(tnow)
a(tnow−tdyn)

) , (3.3)

following Diemer and Kravtsov (2014). The distribution of these accretion rates

only weakly depends on halo mass (Behroozi and Silk, 2015).

For galaxy stellar masses, we use data from the UniverseMachine empiri-

cal model (Behroozi et al., 2019), which implemented a Markov Chain Monte Carlo

(MCMC) algorithm to model relationships between dark matter halo properties and

galaxy properties (Behroozi et al., 2019). The UniverseMachine self-consistently

constrained individual galaxies’ properties to match observed stellar mass functions

(z ∼ 0 − 4), specific star formation rates (z ∼ 0 − 8), cosmic star formation rates

(z ∼ 0 − 10), UV luminosity functions (z ∼ 4 − 10), median UV-stellar mass rela-

tions (z ∼ 4−10), auto- and cross-correlation functions (z ∼ 0−0.5), and quenched

fractions (z ∼ 0− 4). The UniverseMachine constrained stellar masses at z = 0

to match Moustakas et al. (2013) and used corrections from Bernardi et al. (2013)

for extended galaxy profiles. Additionally, the UniverseMachine allowed for or-

phans, i.e., it allowed satellites to persist after being destroyed in the dark matter

simulation. Without including orphans, the model would predict a lower galaxy spa-

tial correlation than is observed (see Appendix C of Behroozi et al. 2019 and §2.2.2.

of Allen et al. 2019). Following O’Donnell et al. (2020a), we use galaxy positions

and velocities from the UniverseMachine. We also use observed stellar masses

from the UniverseMachine, which incorporate both random scatter and system-

atic offsets. While the UniverseMachine also generates star formation rates, we
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discard this information to allow choosing SFRs that have different correlations with

halo accretion rates.

3.2.2.1 Sample Statistics

As in O’Donnell et al. (2020a), we combined catalogs from 14 simulation snapshots

with a = 0.904 to a = 1.002. We analyzed each snapshot along each of the spatial

axes (x, y, and z) increase our signal-to-noise. We identified isolated hosts following

the same criteria as the observational data (no halo with a higher observed stellar

mass within 2 Mpc projected distance and 1000 km/s velocity separation). Each

snapshot had an average of 93,794 isolated hosts with 10.5 < log10(M∗/M�) < 11.0

and 28,607 isolated hosts with 11.0 < log10(M∗/M�) < 11.5. We note that & 94%

of the isolated hosts were not satellites of larger haloes for both isolated host mass

bins.

To measure the uncertainties in the neighbour density distributions, we use jack-

knife sampling. We created 25 jackknife samples along each line-of-sight by aver-

aging across the 14 snapshots with the same 50×50 Mpc region removed from each

snapshot. We stacked neighbour density distributions across all 14 snapshots, re-

sulting in a total of 1,050 samples. Each jackknife sample has an average of ∼81,300

isolated hosts with 10.5 < log10(M∗/M�) < 11.0 and ∼28,200 isolated hosts with

11.0 < log10(M∗/M�) < 11.5. As noted in O’Donnell et al. (2020a),the uncertainties

for UniverseMachine results differ from those for SDSS results because the back-

ground (noise) from the SDSS photometric data includes galaxies out to z ∼ 0.2

(over 570 Mpc/h). However, the UniverseMachine simulation box is only 250

Mpc/h per side.

3.3 Methods

Our methodology follows the technique described in O’Donnell et al. (2020a).

Briefly, we identify isolated galaxies from SDSS spectroscopic data (Ahumada et al.,

2019) with no larger neighbouring galaxy within 2 Mpc projected (on-sky) physi-
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cal distance or 1000 km/s velocity distance. We term these galaxies our isolated

host sample. We calculate the density distribution of neighbouring galaxies using

SDSS photometric data (Ahumada et al., 2019). To eliminate background and fore-

ground contamination, for each isolated host, we create 100 random pointings that

also follow our isolation criteria within the same sky footprint, and we subtract the

neighbour density distribution around random pointings from the neighbour density

distribution around our isolated hosts. We replicate this procedure in our simula-

tion data from UniverseMachine snapshots (Behroozi et al., 2019) by identifying

isolated haloes, calculating the density of nearby neighbours, and subtracting back-

ground and foreground contamination by using 100 random pointings per isolated

host.

Additionally, our methodology accounts for systematic biases in our data (§2.3

in O’Donnell et al., 2020a). First, the stellar mass function from the UniverseMa-

chine differs from the stellar mass function in SDSS MPA-JHU spectroscopic data

due to different assumptions; specifically, the UniverseMachine has more high-

mass galaxies (M∗ > 1011M�). We account for these differences by choosing anal-

ogous stellar mass cutoffs in the UniverseMachine such that the cumulative

number density of galaxies with greater stellar masses matches that from SDSS

MPA-JHU (Table 3.1). Second, the UniverseMachine assumes that the observed

stellar masses of quiescent and star-forming galaxies have the same biases, but this

may not be true in the real Universe given differences in metallicity, dust, and star

formation histories between the two populations. These differences create a nor-

malisation offset in the neighbour density distributions, though it should not affect

the shapes of the distributions. We calculate this offset by matching the neighbour

density distributions from SDSS and UniverseMachine between 1.25-2.0 Mpc, as

this region has the least correlation with accretion rates (O’Donnell et al., 2020a).

Table 3.2 lists typical values for these normalisation factors. Finally, to account for

stellar mass completeness and background/foreground projection effects in SDSS,
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SDSS UniverseMachine Φ(> M∗)

log10(M∗/M�) log10(M∗/M�) (Mpc/h)−3 (dex)−1

H
os

ts

10.50 10.50 0.64016

11.00 11.08 0.09464

11.50 11.75 0.00207

N
ei

gh
b

ou
rs 8.50 8.62 6.62222

9.00 8.93 4.85279

9.50 9.38 3.05361

10.00 9.93 1.62929

Table 3.1: The SDSS MPA-JHU and UniverseMachine make different assumptions
that affect their stellar mass functions. In our analysis, we use analogous stellar mass
cutoffs in the UniverseMachine such that the cumulative number density of more mas-
sive objects matches that from SDSS MPA-JHU. The first two columns summarises these
stellar masses, and the third column indicates the cumulative number density of more
massive galaxies. The first three rows are the limits for selecting isolated hosts, and the
bottom four rows are the values for selecting nearby neighbours. Throughout this chapter,
we use stellar masses from the SDSS (first column).
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Isolated Host Mass Star-Formation Normalisation Factor

[log10(M∗/M�)] Indicator [dex]

(10.5, 11.0)

SSFR > 10−11 yr−1 −0.19± 0.12

SSFR < 10−11 yr−1 0.02± 0.05

Dn4000 < 1.6 −0.16± 0.12

Dn4000 > 1.6 0.00± 0.05

(11.0,11.5)

SSFR > 10−11 yr−1 −0.03± 0.08

SSFR < 10−11 yr−1 0.05± 0.03

Dn4000 < 1.6 0.10± 0.08

Dn4000 > 1.6 0.03± 0.03

Table 3.2: Following O’Donnell et al. (2020a), we apply a normalisation correction to
match the neighbour density distributions between the UniverseMachine and SDSS
between 1.25-2.0 Mpc. This factor is required because the UniverseMachine assumes
the same biases between true and observed stellar masses for both star-forming and quies-
cent hosts. This table summarises the average normalisation factors between the observed
SDSS neighbour density distributions and the UniverseMachine predictions for no cor-
relation (ρ = 0) between dark matter accretion rates and star formation rates. We include
both star formation and quiescence indicators used in this chapter. SSFR > 10−11 yr−1

or Dn4000 < 1.6 selects star-forming hosts, and SSFR < 10−11 yr−1 or Dn4000 > 1.6
selects quiescent hosts. For isolated hosts with 10.5 < log10(M∗/M�) < 11.0, we aver-
age the results for neighbour selection limits log10(M∗/M�) > 10.0, 9.5, and 9.0 as we
are only complete down to log10(M∗/M�) > 8.95 at the median host redshift z = 0.079.
For isolated hosts with 11.0 < log10(M∗/M�) < 11.5, we average the results for neigh-
bour selection limits log10(M∗/M�) > 10.0 and 9.5 as we are only complete down to
log10(M∗/M�) > 9.30 at the median host redshift z = 0.116.
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we weight the neighbour density distributions from SDSS data by

w = z2 × 1

Vmax(M∗)
. (3.4)

The factor of z2 maximises signal-to-noise given Poisson variance in unassociated

source counts (which scales as z−2), and the factor 1/Vmax(M∗) accounts for stellar

mass completeness as computed from Eq. 3.1. For a more detailed description of

these weights, see §2.3.3 of O’Donnell et al. (2020a).

As we demonstrated in O’Donnell et al. (2020a), the shapes of the neighbour

density distributions encode information about the correlation between dark mat-

ter accretion and star formation. Specifically, the neighbour density distributions

around highly-accreting hosts steepen at a few hundred kpc, consistent with expec-

tations that newly accreted dark matter is deposited at ∼ R200m (Wetzel and Nagai,

2015; Diemer et al., 2013). To quantify this shape and compare neighbour density

distributions, we defined a shape parameter metric (§ 2.2 of O’Donnell et al., 2020a):

R =
N ∈ (0.05 Mpc− rsplit)

N ∈ (rsplit − 2.0 Mpc)
, (3.5)

which compares the number of neighbours close to isolated host galaxies versus the

number of neighbours further away. The inner radius (0.05 Mpc) conservatively

excludes incompleteness from source blending in SDSS data, and the outer radius

(2.0 Mpc) is consistent with our isolation criterion. We determined that rsplit ≡
0.316 Mpc maximises our sensitivity to differences between the shape parameters

for star-forming and quiescent galaxies (O’Donnell et al., 2020a). We quantify these

differences using a shape ratio RSF/RQ to compare the shape parameters of star-

forming galaxies (RSF) versus quiescent galaxies (RQ).

To construct our dark matter accretion predictions, we bin isolated hosts from

the UniverseMachine simulation data (§ 3.2.2) by their specific halo accretion

rates (Eq. 3.3) to match the fraction of star-forming versus quiescent hosts in SDSS.

This procedure is described in detail in §3.3.3 of O’Donnell et al. (2020a) and is
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Figure 3.6: Schematic for generating analogues to the star-forming SDSS isolated
hosts from UniverseMachine data to test different correlation strengths ρ between
dark matter accretion and star formation. The coloured bars indicate all of the iso-
lated hosts identified in the UniverseMachine within a 0.1 dex stellar mass bin (e.g.,
10.7 < log10(M∗/M�) < 10.8) sorted by increasing specific halo accretion rate (Eq. 3.3)
from the bottom (purple) to the top (yellow) of the bars. The star icons in each example
depict an isolated halo that is tagged as ‘star-forming.’ The dashed horizontal line indi-
cates the corresponding star-formation fraction from the SDSS within the isolated host
mass bin. For positive correlations (ρ > 0), this fraction is applied to identify the highest-
accreting hosts; for negative correlations (ρ < 0), this fraction is applied to identify the
lowest-accreting hosts. A similar strategy is used to create analogues to the quiescent
isolated hosts from the SDSS.



74

summarised in Fig. 3.6. Briefly, we split the isolated host sample into 0.1 dex-wide

bins of stellar mass to calculate the star-forming fraction, e.g., in the SDSS, for

isolated hosts with 10.7 < log10(M∗/M�) < 10.8, 31% are star-forming based on

having Dn4000 < 1.6. We split the isolated hosts from the UniverseMachine

data into high- and low-accreting subsamples (based on their specific halo accretion

rates) such that they match the star-forming fraction from SDSS for the relevant 0.1-

dex bin of isolated host stellar mass. We then create ‘star-forming’ and ‘quiescent’

analogues using the correlation strength ρ between halo accretion rates and star for-

mation rates. For positive correlations, the star-forming analogues have a fraction ρ

of hosts randomly selected with replacement from the high-accreting subsample, and

quiescent analogues have a fraction ρ randomly selected with replacement from the

low-accreting subsample. For negative correlations, the star-forming analogues have

a fraction |ρ| randomly selected with replacement from the low-accreting subsample,

and the quiescent analogues have a fraction |ρ| randomly selected with replacement

from the high-accreting subsample. The remaining fraction of hosts in the analogues

(1 − |ρ|) are randomly selected with replacement from all isolated hosts identified

in the UniverseMachine.

3.4 Results

Below, we present results from splitting neighboring galaxies into red and blue sub-

samples (§3.4.1). We also present results to test our choice of star formation in-

dicator and isolated host mass ranges; in these sections (§3.4.2 and 3.4.3), figures

include the density distributions of neighbours with M∗ > 109M� around isolated

hosts. In Appendix B.1, we include plots for other neighbour selection limits.

3.4.1 Neighbour Colours

Table 3.3 reports the fraction of red neighbours (i.e., 0.75 < g − r < 1.0) around

isolated hosts with 10.5 < log10(M∗/M�) < 11.0. There is a small, though statisti-

cally insignificant, decrease in the fraction of red neighbours with M∗ > 1010M� as
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the distance from the isolated host increases. The difference in the fraction of red

neighbours around star-forming versus quiescent isolated hosts is not statistically

different due to large uncertainties (§3.2.1.1).

Fig 3.8 shows that the neighbour density distributions of red and blue neigh-

bours (0.75 < g− r < 1.0 and 0.0 < g− r < 0.75, respectively) have similar shapes.

These plots separate the isolated hosts into star-forming and quiescent bins based on

their SSFRs. Since SSFRs and Dn4000 measurements track each other very closely

(Fig. 3.4), the choice of star formation indicator does not yield significantly different

results. Because of the minimum colour cutoff for red neighbours (g− r > 0.75), we

limit our analysis to neighbours with M∗ > 109.5M� and M∗ > 1010M� to have suffi-

cient signal-to-noise. The shape ratios (Fig. 3.7) are also similar (∆RSF/RQ ∼ 0.2σ)

and are consistent with non-positive correlations (ρ ≤ 0) between dark matter accre-

tion and star formation at & 90% confidence. Since we expect that red neighbours

correspond to an older infall population (Wetzel et al., 2013), these results would

imply that the shape of the neighbour density distribution is not correlated with

the time since a satellite galaxy’s infall.

Furthermore, in O’Donnell et al. (2020a), we noted that the neighbour density

distributions with higher-mass neighbour selection limits had a deficit of neighbours

close to the isolated hosts (. 1.25 kpc). In Fig. 3.8, the blue neighbour density dis-

tribution for the M∗ > 1010M� selection shows this same deficit, as do the red neigh-

bour density distributions around star-forming hosts for both the M∗ > 109.5M� and

M∗ > 1010M� selections.

3.4.2 Star Formation & Quiescence Indicators

Fig. 3.9 compares the neighbour density distributions around isolated hosts with

10.5 < log10(M∗/M�) < 11.0 when binned by SSFRs versus Dn4000 for the differ-

ent neighbour mass selection limits. Since & 90% of isolated hosts were binned in

the same way by the two indicators (Fig. 3.4), the resulting neighbour density dis-

tributions are also very similar. For both indicators, we see a dip in the neighbour

density distribution for neighbours with higher masses (M∗ & 109.5M�) at < 0.1
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neighbor selection [log10(M∗/M�)]
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hosts: 10.5 < log10(M∗/M�) < 11.0

all neighbors
red neighbors (0.75 < g − r < 1.0)
blue neighbors (0.0 < g − r < 0.75)

Figure 3.7: The shape ratio is not consistent with positive correlations (ρ ≤ 0) between
halo accretion rates and star formation regardless of nearby neighbour colours. Since we
expect red neighbours may probe longer timescales than blue neighbours, these results
likely mean that different infall populations are not affected in a significantly different
manner by recent accretion within SDSS’s observational limits. We only plot shape ratios
for red neighbours (0.75 < g − r < 1.0) for neighbours with M∗ > 109.5M� because
the measurements for lower-mass neighbours are noise-dominated. The plot markers for
the neighbour selection M∗ > 108.5M� are faded because neighbours of this stellar mass
are not observable for all isolated hosts; for isolated hosts with 10.5 < log10(M∗/M�) <
11.0, at the median redshift z = 0.079, the SDSS observation limit for neighbours is
M∗ > 108.95M�, and at the maximum redshift z = 0.123, the SDSS observation limit for
neighbours is M∗ > 109.36M�.
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Figure 3.8: The neighbour density distributions around red and blue isolated hosts
are very similar, suggesting that our finding of correlation strengths ρ ≤ 0 between
dark matter accretion and star formation applies to both recent and older infall popu-
lations as traced by blue and red neighbours, respectively. The top panels compare the
neighbour density distributions of red and blue neighbours around isolated hosts with
10.5 < log10(M∗/M�) < 11.0, and the bottom row indicates the ratio of the blue neigh-
bour density distribution to the red neighbour density distribution. In the bottom row, a
horizontal dashed line at nblue/nred = 1.0 is included as a visual guide.
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Radial Range Fraction of Red Neighbours fred(Q)
fred(SF)[Mpc] Star-Forming Hosts Quiescent Hosts

Neighbours M∗ > 1010M�

0.05 - 0.316 0.62 ± 0.08 0.70 ± 0.02 1.12 ± 0.15

0.316 - 1.00 0.515 ± 0.10 0.66 ± 0.03 1.29 ± 0.25

0.316 - 2.00 0.50 ± 0.10 0.67 ± 0.03 1.33 ± 0.28

Neighbours M∗ > 109.5M�

0.05 - 0.316 0.32 ± 0.11 0.52 ± 0.02 1.63 ± 0.58

0.316 - 1.00 0.26 ± 0.16 0.50 ± 0.04 1.93 ± 1.23

0.316 - 2.00 0.32 ± 0.17 0.50 ± 0.04 1.57 ± 0.85

Table 3.3: Our analysis does not have enough power to constrain differences in fraction
of red neighbours (i.e., 0.75 < g − r < 1.0) around isolated hosts with stellar masses
10.5 < log10(M∗/M�) < 11.0 around star-forming versus quiescent hosts. The uncertain-
ties are from our jackknife sampling of the SDSS data (§3.2.1.1). We include data for
neighbour mass selection limits M∗ > 9.5 and 10.0; the lower-mass neighbour bins are
noise-dominated due to few red neighbours passing these selection limits.
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Mpc from the isolated hosts. Fig. 3.10 summarises the shape ratios for these neigh-

bour density distributions. We find consistent neighbour density distributions and

shape ratios (∆RSF/RQ ∼ 0.2σ) when binning the isolated hosts based on either

SSFR or Dn4000. Both indicators yield results that are consistent with non-positive

correlations (ρ ≤ 0) between dark matter accretion and star formation at & 75%

confidence.

3.4.3 Host Stellar Masses

Finally, we compare results with higher-mass isolated hosts (11.0 < log10(M∗/M�) <

11.5) using both star formation indicators. The rows of Fig.3.11 (as well as Fig. B.1,

B.2, and B.3 in Appendix B.1) compare across the isolated host mass bins, and

Fig. 3.10 summarises the results for both star formation indicators in the higher-mass

isolated host bin. With both of our star formation indicators (SSFR and Dn4000),

results are similar (changes in RSF/RQ of ∼ 0.2− 0.3σ) and remain consistent with

correlations ρ ≤ 0.0 between star formation and dark matter accretion at & 85%

confidence.

3.5 Discussion & Conclusion

We build on our work from O’Donnell et al. (2020a), which presented a method to

constrain the correlation strength between dark matter accretion and recent star

formation (as determined by SSFRs) for Milky Way-mass galaxies at z < 0.123

using the distribution of nearby neighbours. We found that our results favored non-

positive correlations (& 85% confidence). In this chapter, we extend this analysis

by

1. comparing the density distributions of red versus blue neighbors, which trace

older and more recent infall populations,

2. comparing the correlation between dark matter accretion and star formation

when binning isolated hosts by Dn4000 measurements, a longer-term quies-
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Figure 3.9: The neighbour density distributions around isolated hosts with 10.5 <
log10(M∗/M�) < 11.0 are very similar when binning hosts by SSFRs or Dn4000, due
to the fact that the two indicators are highly correlated among our isolated host sample
(Fig. 3.4). The four panels represent different neighbour mass selection limits. In each
panel, the top plots compares the neighbour density distributions when binning isolated
hosts by SSFR versus Dn4000. The bottom plots shows the ratio of those distributions
with a dashed horizontal line at nSSFR/nDn4000 = 1 as a visual guide.
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Figure 3.10: The shape ratios for our observed neighbour density distributions are all
consistent with ρ ≤ 0 regardless of choice of isolated host mass bin, indicator to separate
star-forming versus quiescent hosts, and neighbour M∗ selection. As in Fig. 3.7, because
we cannot observe neighbours with M∗ ∼ 108.5M� at all isolated host redshifts, those plot
markers are shown with faded colours.
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Figure 3.11: Our results are consistent with correlation strengths ρ ≤ 0 between dark
matter accretion and star formation regardless of isolated host mass bin (figure columns) or
indicator to separate star-forming versus quiescent hosts (figure rows). This plot shows re-
sults with a neighbour mass selectionM∗ > 109.0M�; Appendix B.1 includes plots for other
neighbour M∗ selection limits. In each panel, the top plots compare the neighbour density
distributions from the SDSS to the UniverseMachine predictions for anti-correlation
(ρ = −1) which is the closest match to the observed shape ratios. The bottom plots show
the ratio of the observed neighbour density distributions for star-forming versus quiescent
isolated hosts. A dashed horizontal line at nSF/nQ = 1 is included as a visual guide to
emphasise that the neighbour density distributions observed around star-forming hosts are
flatter than the neighbour density distributions around quiescent hosts, which is consistent
with non-positive correlations between dark matter accretion and star formation.
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cence indicator, versus binning isolated hosts by their specific star formation

rates, and

3. analyzing higher-mass isolated hosts (11.0 < log10(M∗/M�) < 11.5) as an

independent check of our results.

In all three cases, our results are consistent with non-positive correlations between

dark matter accretion and star formation rates.

First, in O’Donnell et al. (2020a), we noted that we would expect to find weak

correlations if SSFRs change on timescales much shorter than satellite orbits (∼
2tdyn ∼ 4 Gyr). In this chapter, we address this possible interpretation by (1)

correlating dark matter accretion with Dn4000, a long-term quiescence indicator;

and (2) comparing red and blue populations of nearby neighbours, which trace

satellite galaxy populations with different infall timescales. All of our results are

consistent with our findings in O’Donnell et al. (2020a) that generally rule out

positive correlations between dark matter accretion and star formation within SDSS

observational limits.

A second consideration is that neighbouring galaxies may be a biased tracer

of the host galaxies’ dark matter haloes. This concern remains in this chapter’s

analysis; for example, this bias would affect all neighbours regardless of their g − r
colours. Additional measurements, such as weak lensing data, are needed to provide

a different tracer of dark matter haloes to test the effect of systematic biases for

using neighbouring galaxies to trace the density profile.

Our results are consistent with models that invoke modest recycling timescales

for ejected gas, allowing for gas to quickly cool and re-accrete onto galaxies, (e.g.,

Kereš et al., 2005; Dekel and Birnboim, 2006; Muratov et al., 2015; van de Voort,

2017; Nelson et al., 2013, 2015). These models allow for new star formation even in

the absence of new accretion. For haloes in our isolated host sample, only∼ 20−30%

of gas is converted into stars (Behroozi et al., 2019), which suggests there should be

a large gas reservoir that could support further star formation.

Additionally, our results remain consistent with observational studies that do not



84

find strong positive correlations between halo growth and galaxy star formation. For

example, Tinker et al. (2017b) found only a small correlation between the fraction

of quenched central galaxies in galaxy groups and their local environmental density.

As well, Behroozi et al. (2015) did not find a strong correlation between close galaxy

pairs (a probe of major halo mergers) and star formation rates.

Our analysis of the neighbour populations did not have enough power to con-

strain the difference in the fraction of red versus blue neighbours around star-forming

versus quiescent hosts (Table 3.3). Previous studies have found correlations between

galaxy star formation rates, colours, and morphologies between satellites and host

galaxies (‘one-halo’ conformity, e.g., Weinmann et al. 2006) as well as between galax-

ies separated at distances well beyond their virial radius (‘two-halo’ conformity, e.g.,

Kauffmann et al. 2013). However, Tinker et al. (2018) found that measurements of

two-halo conformity may be due to satellite contamination.

Future surveys with deeper photometric or spectroscopic limits may provide a

better dataset for comparing density distributions of different neighbour populations

to assess two-halo conformity among isolated central galaxies at z = 0. If evidence

for two-halo conformity existed at large distances (i.e., at distances well beyond

Rvir), our finding of non-positive correlations between dark matter halo accretion

rates and star formation rates would have implications for the physical origin of

galactic conformity. Hearin et al. (2016) found that galactic conformity could be

driven by similar dark matter halo accretion rates between galaxies in the same

large-scale tidal environment, but this result relied on an assumption of a strong

correlation between halo accretion rates and galactic star formation. If two-halo

conformity is present among isolated central galaxies, that could suggest that a

different process generates these correlations between galaxy colours, star formation

rates, and other properties (e.g., Kauffmann, 2015).

Finally, as noted in O’Donnell et al. (2020a), future observational surveys, such

as the Dark Energy Spectroscopic Instrument (DESI) Survey1 (DESI Collaboration

1https://www.desi.lbl.gov/

https://www.desi.lbl.gov/
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et al., 2016), will allow for stronger constraints on the correlation between dark

matter accretion and star formation. These surveys will detect a larger sample of

isolated Milky Way-mass galaxies at higher redshifts, and thus generate a larger

sample for this analysis. These data will also allow for measuring correlations be-

tween dark matter accretion and other host galaxy properties, such as metallicity,

AGN activity, and velocity dispersion.

Furthermore, these surveys will have deeper photometric and spectroscopic lim-

its, which will improve the analyses presented in this chapter. For example, we will

be able to perform this analysis on lower-mass isolated hosts. With the SDSS, we

could only identify a small sample of isolated hosts with 10.0 < log10(M∗/M�) <

10.5, which were noise-dominated in their neighbour density distributions (§3.4.3).

DESI will allow us to identify a larger sample of these hosts and therefore have a

stronger signal to measure the shapes of their neighbour density distributions. In

addition, deeper photometric limits will also allow us to detect more nearby neigh-

bours. A larger sample of these galaxies will improve the signal-to-noise level when

binning nearby neighbours by colour (§3.4.1) or other properties from SED fitting.

These future results will provide stronger constraints on the relation between halo

accretion and star formation within isolated host galaxies.
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CHAPTER 4

Conclusion: Dark Matter Accretion & Galaxy Formation

In Chapters 2 and 3, we developed a technique to constrain the correlation between

dark matter accretion and star formation activity in Milky Way-mass galaxies at

z ∼ 0. Using the UniverseMachine empirical simulations, we showed that the

correlation between dark matter accretion and satellite galaxy orbits leads to dif-

ferences in the shapes of the density distributions of nearby neighbors. Thus, these

differences in shapes can be measured observationally to constrain the correlation

between dark matter accretion and other galaxy properties. Using SDSS data on

isolated Milky Way-mass galaxies with z < 0.123, we found no positive correlation

between dark matter accretion rates and star formation rates with & 85% confi-

dence. These results will be refined with improvements from both observational and

theoretical data, and they will be expanded upon to extend the analysis to different

galaxy properties and to new host galaxy samples.

4.1 Future Observational Data

As noted in both chapters, the distributions of nearby neighbors may be biased

tracers of the dark matter halo. Processes such as tidal disruption or dynamical

friction could affect the satellites of star-forming galaxies differently from the satel-

lites of quiescent galaxies. If these differences exist, it would affect the shapes of

the neighbor density distributions. Using an independent set of measurements, such

as weak lensing data, would provide a way to test whether this bias exists in our

observational data.

Additionally, future observational surveys, including the Dark Energy Spectro-
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scopic Instrument (DESI) Survey1 (DESI Collaboration et al., 2016), will increase

the power of this analysis due to their deeper photometric and spectroscopic limits.

This improved data set will allow for the detection of a larger sample of isolated

Milky Way-mass galaxies up to higher redshifts, as well as creating a large sample

of lower-mass isolated central galaxies. We will also be able to correlate dark matter

accretion with other host galaxy properties, including metallicty, AGN activity, and

velocity dispersion. Furthermore, deeper photometric limits will enhance the detec-

tion of nearby neighbors, allowing the use of lower stellar mass selection limits and

binning neighbors by colors or by other properties determined from SED fitting.

Finally, future surveys will allow for better characterization of systematic biases

in observed data as well as covariance matrices between observables. Different soft-

ware pipelines make different implicit assumptions when applying processes such

as flatfielding, PSF fitting, photometric and spectroscopic redshift estimates, and

stellar mass models. Having multiple surveys with overlapping sky coverage and

multiple reduction pipelines can help to characterize the effects of these system-

atics. Since empirical models rely on combining many observational datasets to

increase their constraining power, these improvements will provide more power to

the analysis techniques presented here.

4.2 Future Theoretical Data

Beyond improved data to enhance the constraining power of empirical models, our

analysis techniques will be improved by further developments in empirical models,

including realistic modeling of galaxy colors in the UniverseMachine (Scott et

al., in prep.). Systematic uncertainties in galactic stellar masses dominates the er-

ror budget of the UniverseMachine. These masses are constrained by comparing

with observers’ derivations of stellar masses, which makes it difficult to evaluate

many of the assumptions applied to stellar masses in the UniverseMachine. Our

1https://www.desi.lbl.gov/

https://www.desi.lbl.gov/
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analysis included systematics due to this difficulty: as described in Chapters 2 and 3,

we introduced a normalization factor to the neighbor density distributions from the

UniverseMachine. This factor was required because the UniverseMachine

assumes the same biases between true and observed stellar masses for both star-

forming and quiescent galaxies. However, this may not be true in the real Universe.

Since the density distributions of nearby neighbors track halo masses, differences in

the halo masses of star-forming and quiescent galaxies will result in normalization

differences in the neighbor density distributions. We found very small (. 0.1 dex)

offsets between UniverseMachine predictions and observed neighbor density dis-

tributions around quiescent galaxies, and larger (∼ −0.2 dex) offsets for star-forming

galaxies’ neighbor density distributions. By including information on galaxy colors,

the UniverseMachine model could break the age-dust degeneracy for galaxies

and thus provide tighter constraints on stellar mass buildup over time, potentially

eliminating the need for this normalization factor in our analysis.

Additionally, our analysis techniques presented in Chapters 2 and 3 rely on using

consistent neighbor selection thresholds when constructing shape ratios. Observa-

tionally, colors would be a natural choice for making these selections, but since the

UniverseMachine does not constrain colors well, we instead fitted a proxy be-

tween observed g−r colors and stellar masses in the SDSS. While we did several tests

to ensure the reliability of these results (Chapter 2 and Appendix A), eliminating

this step from the analysis would potentially reduce uncertainties in our results.

4.3 Developing New Techniques

Our analysis relies on selecting isolated galaxies to reduce noise in the neighbor

density distributions. If our sample of “host” galaxies has significant contamination

by satellites of nearby larger haloes, it would affect the shapes of the neighbor den-

sity distributions, lowering the measured shape ratios RSF/RQ and thus reducing

the power of the analysis to determine whether we observe positive correlations be-

tween dark matter accretion and star formation activity. For example, in Chapter
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3, we noted that we could not extend our analysis to a lower-mass host sample (e.g.,

10.0 < log10(M∗/M�) < 10.5) because we could not identify a large enough sample

of isolated host galaxies to have enough signal-to-noise in the neighbor density distri-

butions. If we relaxed the isolation criterion to have a larger sample, we would have

also unacceptably increased the satellite contamination fraction. In lieu of future

observational surveys, significant modifications to the neighbor density profile tech-

nique and/or supplemental measurements, such as weak lensing data, are needed

to constrain the correlation between dark matter accretion and star formation for

these galaxies.

Finally, this analysis technique can be extended to galaxy properties beyond star

formation activity. If the host galaxies were binned along a different galaxy property,

the same analysis technique could be used to constrain the correlation between that

property with dark matter accretion. For example, we could bin our host sample

based on the presence of active galactic nuclei (AGN) activity as determined by

BPT classifications (Baldwin et al., 1981), which could uncover whether AGN are

fed by fresh accretion or recycled gas (e.g., Kormendy and Ho, 2013). However, to

complete this analysis, a larger sample of isolated hosts is needed to correctly apply

a BPT classification scheme to bin isolated hosts. Similarly, we could also bin host

galaxies by their metallicities or velocity dispersion measurements to understand

the relations between those properties and halo growth.

4.4 Summary

My research provides new constraints on the relation between dark matter accretion

and star formation activity in Milky Way-mass galaxies. We find no evidence for

positive correlations, suggesting that feedback from stellar winds, supernovae, AGN,

etc. likely prevent fresh accretion from reaching central galaxies. Thus, we find that

star formation in these isolated central galaxies at z ∼ 0 is powered by recycled gas.

Our results will be enhanced by future surveys, which will provide a richer dataset

with larger photometric and spectroscopic samples out to higher redshifts, as well
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as improvements to the empirical models used in our simulations. We will also be

able to apply our techniques to additional galaxy properties, such as AGN activity,

metallicity, and velocity dispersion. Finally, the development of new approaches to

observationally assess dark matter accretion rates will extend this analysis to new

environments, including high-density environments.
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PART II

Inclusivity-Driven Designs for General-Education Astronomy Courses
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CHAPTER 5

Introduction: Inclusive STEM Education

We all should know that diversity makes for a rich tapestry, and we

must understand that all the threads of the tapestry are equal in value no

matter what their color. – Maya Angelou

Not everything that is faced can be changed, but nothing can be changed

until it is faced. – James Baldwin

As of July 2020, current events in the United States have laid bare a truth that

has been ignored for far too long: our country is built on a legacy of systemic

and institutional discrimination and oppression. The disproportionate effects of the

COVID-19 pandemic in minority communities (e.g., Dyer, 2020; CDC, 2020) and

the cruel deaths of Ahmaud Arbery, Breonna Taylor, George Floyd, and countless

others are perhaps the most recent and prominent manifestations of systemic biases

that pervade our country’s history, laws, and all aspects of life.

Higher education is not immune from the effects of systemic discrimination.

Numerous reports in recent years have decried the lack of diversity in science, tech-

nology, engineering, and mathematics (STEM). At the higher education level in the

US, women earn one-third of astronomy bachelor’s degrees, and African Americans

earn only a few percent (Fig. 5.1; Merner and Tyler, 2019; Porter and Ivie, 2019).

While some progress has been made through recruitment and student retention pro-

grams, these can only be the first steps. As evidenced by the data presented in

Fig. 5.1, these efforts in physics departments have only generated a modest increase

in the fraction of degrees obtained by individuals from underrepresented groups.

Simply addressing the numbers of students is not enough: we must also ensure that

higher education is an inclusive and equitable environment that is welcoming of

diverse students. Rankin and Reason (2005); Turner (1994); Milem et al. (2005);
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Seymour and Hewitt (1997a); Bumpus (2015); Puritty et al. (2017); Carlone and

Johnson (2007); Hodapp and Brown (2018); Slay et al. (2019) and others show that

academic STEM environments remain an institution that was created for and is

centered on privileged groups, which cause non-White and/or non-male students to

choose to leave STEM. While students from underrepresented groups enter college

intending to major in STEM at the same rate as White students (e.g., Hurtado

et al., 2010), they disproportionately leave STEM (Chang et al., 2014).

Addressing diversity, equity, and inclusion (DEI) in higher education (and so-

ciety at large) is a moral imperative to instill fairness and social justice in our

institutions. This section of my dissertation follows these definitions adapted from

the Ford Foundation1:

Diversity is the representation of all our varied identities and differences (race,

ethnicity, gender, disability, sexual orientation, gender identity, national origin,

tribe, caste, socio-economic status, thinking and communication styles, etc.),

collectively and as individuals.

Equity seeks to ensure fair treatment, equality of opportunity, and fairness in access

to information and resources for all.

Inclusion builds a culture of belonging by actively inviting the contribution and

participation of all people.

Additionally, many research studies demonstrate that DEI is important to the future

success of academia. Hong and Page (2004); Page (2008); Sommers et al. (2008);

Phillips et al. (2004, 2014); Freeman and Huang (2014) show that diverse teams are

more effective. By having members with many different lived experiences, diverse

groups are more effective at parsing information, with group members doing more

preparation and being more explicit about assumptions used, leading to more in-

novative results. However, Hofstra et al. (2020) shows that while diverse students

1https://www.fordfoundation.org/about/people/diversity-equity-and-inclusion/

https://www.fordfoundation.org/about/people/diversity-equity-and-inclusion/
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Figure 5.1: Graphs from the American Physical Society (APS) and the Integrated Post-
secondary Education Data System (IPEDS) at the National Center for Education Statis-
tics (NCES) showing the lack of diversity in college physics programs in the US. Top left:
Proportion of physics degrees obtained by individuals from various demographic groups;
left blue bars represent undergraduate Bachelor’s degrees and right red bars represent
doctoral degrees. Note that the bars for White students (rightmost set) are based on the
purple right y-axis. The horizontal black lines show the percentage of the US population
that identifies with these groups per US Census data. Top right: Comparison of the
fraction of underrepresented minorities within the college-age population and among all
undergraduate degrees (left set) with the fraction of underrepresented minorities among
physics bachelor’s degree recipients, doctoral degree recipients, and department faculty
(right set), averaged from 2013-2017. Bottom left: Fraction of STEM bachelor’s degrees
(top blue line) versus the fraction of physics degrees (bottom red line) obtained by women
from 1967 to 2017. While both fractions show significant improvement over the 50 year
period, the fraction of physics degrees obtained by women remains far below the overall
STEM figures, and the fraction in physics has slightly decreased in the last ∼ 15 years.
Bottom right: While the fraction of underrepresented minorities among the college-
age US population has increased from 1997 to 2017 (black dashed line), the fraction of
physics bachelor’s degrees (blue line) and doctoral degrees obtained by underrepresented
minorities (red line) have not changed at the same rate over the 20-year period.
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tend to develop more novel approaches and solutions, these contributions receive less

attention and lead to fewer academic positions. Furthermore, Antonio (2004b,a);

Kubal et al. (2003); Hurtado et al. (2012) show that students have stronger learning

outcomes in diverse learning environments, including students from majority groups.

Relatedly, many universities require that students complete general-education or

area course requirements. These requirements serve multiple purposes (as will be

described in more detail in Chapter 6), and one common goal is to help students

develop an understanding of diverse perspectives and backgrounds. Having a diverse

population in an inclusive environment is fundamental to achieving this goal.

One aspect of creating an inclusive environment is by implementing inclusive

teaching practices, which are “pedagogy, curricula, and assessments [that] are de-

signed and delivered to engage students in learning that is meaningful, relevant, and

accessible to all” (Hockings, 2010). In the (astronomy) classroom, inclusive teach-

ing can improve the teaching and learning of course content. Fink (2013) models

students’ processing of information into separate “course files” and “life files”. The

former file consists of information students learn in a course and use for their home-

work, tests, etc., and the latter file consists of the information they use in their

daily lives and decision-making. Fink argues that in order for students to engage

with course content in a way that creates long-lasting learning, instructors need to

bridge the gap between these files. Otherwise, information from the course will only

be in students’ “course files” and will be discarded at the end of the course. Thus,

a significant learning experience is one that empowers students to connect or add

something to their “life files”, which will allow them to retain information beyond

the course alone. Inclusive teaching is key to achieving this type of learning. In

addition, DEI mandates that we have to confront the many cultural biases inherent

in science. Science is often taught as if the subject is neutral or “acultural” instead

of acknowledging biases are reflected in all aspects of science (e.g., Council, 2000,

2007, 2009; Seymour and Hewitt, 1997b; Brickhouse and Potter, 2001; Brown, 2005;

Reveles and Brown, 2008; Carlone and Johnson, 2007), including

• the terminology used (e.g., European names for planets),
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• the scientists whose names are recognized (e.g., through the names of STEM

concepts and/or in popular culture), and

• implied values in stories of how we do science (e.g., Galileo’s conflict with the

Catholic Church, which is often told in a way that implies science is superior

to religion, and the prominent focus on individual scientists’ contributions

rather than the often collaborative nature of scientific discoveries, such as the

detection of gravitational waves).

Moreover, the prioritization of “objectivity” in science can create additional chal-

lenges to confronting cultural biases in science (O’Brien, 2004). For example, stu-

dents may feel discomfort when the values implied from our description of science

(e.g., the story of Galileo) do not match their own personal values. If students do

not feel like they belong in a class, it will affect their motivation and confidence on

the topic. Unfortunately, feelings are not typically considered sources of “objective

facts” in STEM, preventing students’ experiences from receiving the attention they

deserve (O’Brien, 2004). Even if these sorts of cultural biases are not explicitly

stated by the instructor or by other students in the class, the implied choices can

affect students’ sense of belonging and self-confidence in STEM.

Education researchers have investigated various strategies for addressing the

broader context of science. For example, Cobern (1996) wrote about incorporat-

ing a sociocultural framing into science courses. While science is an important

part of technology, policy, and everyday life, the “public alienation” from science

instead makes it into a disconnected subject. Cobern attributes this to teaching

science as an isolated, siloed domain of knowledge rather than incorporating per-

sonal viewpoints as they pertain to science. He argues that students need to see

scientific concepts as “superior” (either in terms of usefulness or power) to their

pre-instruction conceptions in order to build science into their worldview. Cobern

argues that scientific concepts need to be taught joined with other disciplines to

create a “coherence view of knowledge” so that science is consistent with students’

worldviews. Additionally, if students are to integrate science into their worldviews,
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an instructor needs to teach science from an empathetic place so that the themes can

hold scope (i.e., relevance) and force (i.e., central rather than marginal importance),

which is consistent with the goals of inclusive teaching. However, this approach has

two major limitations. First, by implying that certain concepts are “superior”, it

can reinforce systems against students from historically marginalized backgrounds

rather than connecting with and validating students’ diverse experiences. Second,

the worldviews approach focuses solely on sociocultural identities rather than also

including students’ personal identities.

A second strategy is through the use of active learning techniques, such as think-

pair-share prompts, group activities, and other methods to engage students in crit-

ical thinking on course concepts. For example, Prather et al. (2009a) studied the

use of active learning in introductory Astro 101 courses across the US in 31 different

institutions. They found that these strategies lead to improved learning gains for

students from all demographic groups. However, much of the research on active

learning focuses on student grades or learning gains on concept inventories, which

can be problematic and incomplete measures of inclusiveness. Focusing on these

metrics alone undervalues the importance of student experiences in the classroom,

and the analysis often imposes a binary on student demographic characteristics

(e.g., male and female, minority and non-minority) that implies a standard created

by members of the privileged group (e.g., Traxler et al., 2016). Studies that do

focus on student experiences in active learning settings find nuanced results about

whether or not active learning is inclusive: depending on the context and group

dynamics, students may feel empowered by peer interactions, or they may feel addi-

tional anxiety about their identities (e.g., Eddy et al., 2015; Cooper and Brownell,

2016). These studies suggest clear discussion of equity in the classroom and/or

structuring active learning to explicitly promote inclusivity.

Finally, beyond STEM, various research-based models have been proposed to

promote inclusive teaching, such as Universal Design for Learning (UDL; Meyer

et al., 2016). UDL is a framework that is built from research into how people

learn with guidelines on promoting engagement from students, presenting material
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in multiple ways, and providing students with a variety of actions and expressions to

demonstrate what they have learned. All of these guidelines are consistent with the

goal of inclusive teaching to be “meaningful, relevant, and accessible to all” students

(Hockings, 2010), and developing research-based strategies to implement UDL into

STEM courses can be a pathway towards developing a complete model for inclusive

STEM education.

In the next chapter, I present my work to develop and evaluate an inclusive

framework for a general-education astronomy course at the University of Arizona.

Our framework aims to provide guiding principles and clear implementation strate-

gies for other instructors to develop courses with similar goals in mind. Based on

student feedback, we created an inclusive learning environment that was respectful

of and welcoming to students’ diverse experiences. We empowered students to make

their own value judgements and engage with course content in a meaningful and

significant way that connects their “course files” with their “life files”.



100

CHAPTER 6

Making Science Personal: Inclusivity-Driven Design for General-Education

Courses†

Summary

General-education college astronomy courses offer instructors both a unique

audience and a unique challenge. For many students, such a course may be

their first time encountering a standalone astronomy class, and it is also likely

one of the last science courses they will take. Thus, in a single semester, pri-

mary course goals often include both imparting knowledge about the Universe

and giving students some familiarity with the processes of science. In tra-

ditional course environments, students often compartmentalize information

into separate “life files” and “course files” rather than integrating informa-

tion into a coherent framework. The astronomy course created through this

project, taught at the University of Arizona in Spring 2019, was designed

around inclusivity-driven guiding principles that help students engage with

course content in ways that are meaningful, relevant, and accessible. Our

course bridges the gap between students’ “life” and “course files”, encourages

and respects diverse points of view, and empowers students to connect course

content with their personal lives and identities. In this chapter, we provide

insight into the guiding principles that informed our course design and share

research results on the effectiveness of the instructional strategies and assess-

ment techniques implemented in the course.

†This chapter has been accepted for publication in the Journal of College Science Teaching as
O’Donnell, Prather, and Behroozi (2020c).
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6.1 Introduction: General-Education College Curricula

Many universities require students to take general-education courses spanning sci-

ence, history, writing, etc. At the University of Arizona, the curriculum’s goals1

include ensuring that all students have foundational knowledge from subjects be-

yond their major so that they can appreciate how their discipline fits into and

supports a broader societal context. Additionally, the curriculum aims to encour-

age acceptance of people with different backgrounds and give students a “deepened

sense of self”. In the sciences, general-education courses often aim to impart both

discipline-specific knowledge and science practices/skills such as critical thinking.

However, as Fink (2013) argues, students often compartmentalize course content

into a “course file” for homework/tests or a “life file” for use in their everyday lives.

We believe general-education courses need to bridge the gap between these files.

Thus, a “significant learning experience” that empowers students to connect or add

something to their “life file” will create lasting learning. These experiences can

feature

1. Integrating course content with other disciplines or aspects of life, which di-

rectly addresses the general-education goal to enable students to grapple with

society’s complex interdisciplinary issues; building these connections can guide

students to understand the relevance that science already has in their lives.

2. Focusing on the human dimension to encourage students to learn more about

themselves and others, which addresses the human story and affective domain

of learning (Krathwohl et al., 1964) so that students can gain a greater appre-

ciation of people from diverse backgrounds and build stronger self-identities.

One approach for science courses to address identity is a “worldviews” approach

(Cobern, 1996). While science is an integral component of technology, policy, and

1https://catalog.arizona.edu/policy/general-education-curriculum. We note that
the University of Arizona’s goals are not dissimilar to other institutions’ general-education goals.

https://catalog.arizona.edu/policy/general-education-curriculum
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everyday life, the “public alienation” from science instead makes it into a discon-

nected subject. Cobern argues that science needs to be taught jointly with other

disciplines to create a “coherence view of knowledge” so that students will view

scientific concepts as “superior” (either in terms of usefulness or power) to their

pre-instruction conceptions. However, the worldviews approach has a limited abil-

ity to create significant learning experiences. For example, by implying that certain

concepts are “superior”, it can reinforce systems against students from marginal-

ized backgrounds rather than valuing students’ diverse experiences. Additionally,

the worldviews approach focuses solely on sociocultural identities and ignores per-

sonal identities.

A course that addresses both sociocultural and personal contexts will access more

learning dimensions and can create a more welcoming environment. Science has

traditionally been taught as being a “neutral” or “acultural” topic. However, science

represents a culture unto itself that has been shaped by and for dominant groups,

and this culture can drive away those from non-dominant backgrounds (e.g., Council,

2000, 2009; Seymour and Hewitt, 1997a; Brickhouse and Potter, 2001; Brown, 2005).

By addressing the interplay between students’ existing (and developing) identities,

larger sociocultural framings, and science’s culture, we can create a more inclusive

environment that is welcoming of diversity (Reveles and Brown, 2008; Carlone and

Johnson, 2007). Rather than reinforcing the idea that students have to assimilate

into science’s culture, we can encourage participation by guiding students to see

science as part of and valuable to their own identities (Council, 2007).

In this chapter, we present new inclusivity-driven classroom instructional strate-

gies that attend to students’ identities, and our research assesses whether this cur-

riculum leads students to integrate their “course files” with their “life files”. Some

education research has explored equity in the college classroom, e.g., related to

gender (Weinburgh, 1995; Roychoudhury et al., 1995) or students with disabilities

(Norman et al., 1998; Bell, 2002). However, many of these studies focus on student

grades (“achievement gaps”), whereas we focus on assessing students’ experiences

and connections to their identities. Below, we first discuss the unique nature of
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general-education astronomy courses, followed by a description of our specific course.

We present guiding principles of our course design, examples of course content, and

assessment results. Our work offers a framework from which instructors can build

an inclusive mindset into their own courses that “engage[s] students in learning that

is meaningful, relevant, and accessible to all” (Hockings, 2010).

6.1.1 Astronomy General-Education Courses

Non-science majors often take astronomy to fulfill general-education science require-

ments. Annually, over 250,000 students enroll in an astronomy general-education

course in the US, and they represent all demographic backgrounds (Rudolph et al.,

2010). For many of these students, it may be both the first time they will encounter

astronomy as a standalone course and simultaneously the last time they will for-

mally engage with any science. This presents a unique challenge for instructors:

they have to (1) introduce students to astronomy content and (2) address that this

may be the last time our future voters, educators, etc. experience science. Previous

research has investigated the teaching and learning of astronomy content through

active learning strategies (e.g. Prather et al., 2009a,b) and implementing a world-

views approach (Wallace et al., 2013), but they do not address students’ personal

identities and lived experiences.

6.2 Course Background

In Spring 2019 at the University of Arizona, a team of

1. a general-education astronomy course instructor (an assistant professor in the

Astronomy Department),

2. a graduate teaching assistant (an Astronomy & Astrophysics Ph.D. candidate),

and

3. an astronomy education researcher (a professor in the Astronomy Depart-

ment),
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reformed a general-education introductory astronomy course (ASTR 201: Cosmol-

ogy). The course has no prerequisites, and this was the instructor’s first time teach-

ing it, though the course itself has been offered for over a decade.

Forty-one students enrolled. Only six students (14.6%) intended a STEM-related

major (e.g., biology or engineering), and the most commonly intended majors were

business-related (11 students; 26.8%). Nine students (22.0%) were first-year stu-

dents, twenty-one (51.2%) were second-years, six (14.6%) were third-years, and five

(12.2%) were fourth-years2. Thirty-four students gave us informed consent to col-

lect their course data for our research. 20 students responded to a short-answer

self-identification prompt. Half of these students identified as female, and half iden-

tified as male; fifteen (75%) identified as White and/or Caucasian, two (10%) as

Latino3, and two (10%) as Native American.

Our novel inclusivity-driven course design aims “to engage students in learning

that is meaningful, relevant, and accessible to all” (Hockings 2010). We built our

course around these guiding principles (Fig. 6.1):

• Both science content and the human story of understanding the Universe must

be addressed throughout the course.

• All students feel that they are treated with respect and that their different

perspectives are all relevant and valuable to the course.

• Students are provided many opportunities to make value judgements and/or

connect content with their personal experiences and “life files”.

Our course represents a pilot test of these principles.

2Compared with Rudolph et al. (2010), our year distribution has fewer first-year students
than is often seen in a general-education astronomy course, but our course was a “Tier
II” general-education course which attracts a greater percentage of non-first year students.
For more information on the Tier II designation, see https://catalog.arizona.edu/policy/

general-education-tier-one-and-tier-two.
3This was the identification terminology provided by the students.

https://catalog.arizona.edu/policy/general-education-tier-one-and-tier-two
https://catalog.arizona.edu/policy/general-education-tier-one-and-tier-two
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6.3 Classroom Norms

An important aspect of our design was our classroom norms. In many classes,

“norms” are limited to established policies around grading, late assignments, atten-

dance, etc. However, as Tanner (2013) describes, “norms” can refer more broadly

to behaviors and attitudes, such as “Everyone here has something to learn.” To

successfully establish a norm, an instructor has to not only state it but also enforce

it throughout the semester.

We established a norm to acknowledge and value diverse perspectives in a way

that affirmed the importance of students’ lived experiences. Courses typically do not

include readings or discussions on topics relevant to members of underrepresented

groups (e.g., Harper and Quaye, 2009, and references within). Without making

intentional choices to incorporate diverse voices into the classroom, curricula that

focus on dominant Western perspectives represent a form of power that implies that

beliefs from different cultures are not valued (Delpit, 1988; Banks and Banks, 2010),

which is contrary to our guiding principles.

To achieve this norm, our course explicitly acknowledged additional voices. On

the very first day of the course, after a ten-minute course content overview, a member

of the local Tohono O’odham Native American Nation gave a 1-hour lecture on their

cultural beliefs of the Solar System, Milky Way, and other celestial objects. He also

described the importance of certain days of the year, such as the solstices. This

lecture tied into the course’s first unit about human and cultural connections to the

sky (e.g., for navigation, agricultural practices, etc.) for many different cultures (e.g.,

European, Egyptian, and Asian). The norm was reinforced throughout the semester

through stories describing the human endeavor of science. We shared life stories of

scientists, such as Cecilia Payne-Gaposchkin, an astronomer who first proposed that

the Sun is composed of hydrogen and helium, contradicting the dominant theory of

the time, and she faced many systemic and institutional barriers.
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6.4 Active Learning

Active learning is not new to introductory astronomy general-education research.

Prather et al. (2009a) showed that active learning can significantly increase students’

astronomy content learning gains. Think-pair-share activities were used to cultivate

students’ critical thinking (e.g., Tanner, 2013; Supiano, 2018). Furthermore, we

adapted think-pair-share questions to incorporate inclusivity and empower students

to connect with their “life files”.

For example, after grading homework assignments, the graduate teaching as-

sistant reported common student struggles to the instructor, and the instructor

debriefed those struggles in class. After a particularly difficult assignment, which

dealt with complex math and equations as well as visualization of light bending

around a black hole, the instructor led a debrief to help students connect with the

enterprise of science. These think-pair-share prompts framed the debrief:

1. The instructor asked students to consider all the skills they feel are helpful to

do science.

2. He then had them pair up and share/compare their sets of skills.

3. He had the student in each pair whose name came first alphabetically share

the pair’s discussion. This sharing method was chosen to promote inclusion:

by assigning a “reporter/sharer” based on a random characteristic, we pro-

vided opportunities for verbal participation by students who may not other-

wise volunteer. Additionally, by choosing a random personal characteristic, we

encouraged a collaborative community among our students (Tanner, 2013).

4. The instructor typed responses into a lecture slide, making students’ ideas

visible to the whole class and acknowledging each response. Student responses

included open-mindedness, communication, critical thinking, creativity, and

leadership.

The instructor explicitly noted that these responses are all “skills”, meaning that

one can change them over time. Additionally, he noted that science is often done
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in collaborations, such as the large team that detected gravitational waves, a topic

from the prior week. He stated that science is inclusive of people who can lead

well but are not especially curious, people who are creative but are weaker with

leadership skills, and people who can communicate and connect people. No single

person has all of the skills that the students reported, and he stated that “there’s

places in science for all different kinds of people with all of these different kinds of

skills.” In the authors’ experiences, other science courses may emphasize a specific

set of skills as being “keys to success”. Instead, in our course, the instructor had

the students create a list of skills and left it up to each student to reflect on how

their own existing skills fit within science and beyond.

6.5 Opportunities to Self-Identify

We also provided regular opportunities for students to express their personal opin-

ions as part of assignments and quizzes. Many studies emphasize the importance

of connecting content with students’ lives (e.g., Council, 2000, 2009), and they also

demonstrate the positive effects of these experiences. For example, Hulleman and

Harackiewicz (2009) studied writing prompts in a ninth-grade science course that

asked students to summarize course content and encouraged students to make con-

nections with their lives. They found increases in both interest and course grades

among students with low success expectations.

In our course, almost all class sessions included a 5-minute writing prompt that

reflected on concepts from that day’s lecture; students wrote responses on index

cards, and a thoughtful response received full credit. For example, one topic was

dark matter, which does not interact with light and therefore cannot be directly

observed, but its presence can be inferred from gravitational interactions with visible

matter. The corresponding writing prompt intentionally asked what students believe

in but cannot see. Some responses were scientific, such as gravity or oxygen, but

over 40% of responses connected to “life files”, such as God, souls, or love.

Some writing prompts were expanded into homework and/or quiz questions. A
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unique course theme was “reference frames”: depending on how you define your

perspective, the same physical system can appear very different. For example, in

our reference frame on Earth, planet orbits show unusual behavior including tem-

porary reversals of their apparent direction (i.e., retrograde motion). However, in a

reference frame in which the Sun is at rest, the planets always travel in the same

direction. The choice of reference frame (i.e., the choice of coordinate system) by

definition does not affect accuracy for predicting planetary motion due to gravity,

which we demonstrated with orbital simulations. Nonetheless, as above, it has a

profound effect on apparent motion. We made an analogy between these reference

frames and having a disagreement with another person due to differing perspectives.

Students had a 5-minute in-class prompt to describe a time in their lives when two

opposing views were valid. The next homework asked students to write about a

memorable disagreement they had with another person, what arguments supported

their own view, what arguments supported the other person’s view, and how the

other person could rationally come to that viewpoint. Student responses on both

assignments included politics (e.g., gun control, death penalty, immigration), reli-

gion (e.g., the existence of God), conflicts with family and friends, and personal

topics (e.g., musical preferences). These assignments empowered students to create

connections between course content and their personal lives. During debriefs, the

instructor affirmed that feelings of discomfort when dealing with such questions are

natural.

6.6 Student Reflections & Assessment

We report student reflections, course scores, and survey results.

6.6.1 Student Reflections

The final exam included a question that asked students about whether this class

changed the way they think about their own lives or their place in the Universe. Ad-

ditionally, some students provided comments in the University of Arizona’s Teacher-



109

Course Evaluations (TCE). Table 6.1 reports relevant responses; all student com-

ments on course design elements described in this chapter were positive.

6.6.2 Course Scores

While our course design was motivated by a desire to be inclusive of our students’

personal identities, we also are sensitive to the fact that grades are an important

aspect of students’ motivations and course experiences. Many STEM education

studies have identified grade differences across demographic identities. Table 6.2

summarizes the average cumulative course scores for the students that responded

to our demographics survey (Sec. 6.2). We observe no differences in average scores

across gender (p = 0.877 from a Welch’s t-test) and culture/ethnicity (p = 0.915).

6.6.3 Pre- and Post-Course Survey

Finally, we conducted a pre- and post-course survey on students’ views of science.

We selected 25 items4 from the Thinking About Science Survey instrument (TSSI;

Cobern, 2000), which is aligned with our goal of connecting science to students’ lives.

However, we adjusted the coding for four survey items. Cobern scored the survey to

assess how strongly students agree with the public perception of science portrayed

by scientists, educators, and journalists that associates science with properties such

as superiority and exclusivity. For example, Cobern lists the item “A person can be

both religious and scientific” as having reverse polarity, i.e., a student that believes

in this public portrayal of science will respond with “strongly disagree”. Our course

affirms that there are many different yet equally valued sources of understanding,

so we do not reverse the scoring of this item. An additional limitation is that the

TSSI focuses on students’ views of science’s sociocultural context, but our course

design also acknowledges personal contexts.

Table 6.3 details our survey items and results. 13 students responded to both

4The full TSSI sample includes 60 prompts; our subset was chosen based on alignment with
our courses’ goals.
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the pre- and post-course survey. For each of the items, over 50% of participants gave

the same response across the two surveys, meaning for almost all items, differences

are due to only 1 or 2 students’ responses. We also note that the pre-survey averages

tend to be favorable to our goals; this has been observed in other studies and makes

it difficult to clearly attribute changes to an instructor’s efforts and/or course design

(e.g., Adams, 2013; Perkins et al., 2005; Wallace et al., 2013). Comparing students’

average pre-course full survey score and average post-course survey score, we see

a small positive change (∆ = 0.07) with p = 0.170 from a Wilcoxon Signed-Rank

Test.

6.7 Discussion & Conclusion

Fig. 6.1 summarizes our inclusivity-driven course design. Our course was built on

guiding principles that (1) emphasized both science content and the human story

of understanding the Universe, (2) respected diverse perspectives, and (3) provided

students with many opportunities to make connections between course content and

their “life files”. We wove these principles through all aspects of the course, including

explicit classroom norms, lecture content, in-class writing prompts, and homework

assignments and quizzes. We created unique opportunities for students to share their

personal thoughts, beliefs, and experiences to directly connect their own lives with

astronomy content and science practices. Furthermore, we enhanced evidence-based

active learning methods to improve inclusivity. For example, we introduced think-

pair-share prompts that asked students to critically reflect on skills that are useful

in science. In class, we explicitly emphasized that science is done by different people

who each contribute different and unique perspectives and skill sets. Finally, we

enhanced our think-pair-share exercises by using sharing methods that encouraged

participation from all students, such as assigning a random member of each pair to

report their discussions.

The feedback from all aspects of the class, including powerful student reflections,

equal course scores from different demographic groups, and overall positive responses
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to survey items, demonstrate that our design provided a positive experience to help

students meaningfully connect science to their personal identities and “life files”.

We believe that our results are from the manifestation of our guiding principles

throughout all aspects of the course, creating truly significant learning experiences

that are “meaningful, relevant, and accessible to all” students (Hockings, 2010).

We intentionally included material that represents diverse voices, such as having

a member of the local Tohono O’odham Native American Nation give the first

lecture, and we discussed the nature and practices of science. These course aspects

acknowledged the culture of science as well as provided students with opportunities

to reflect on how their own personal lived experiences can be welcome and valued

in science.

Our guiding principles provide a framework for future course iterations as well as

for other instructors who wish to incorporate an inclusivity-driven mindset into their

courses. Our course instructor found that implementing these principles required

minimal extra work beyond what is normally required for designing a class. In

fact, he found that thinking about which aspects of a topic are most relevant to

students’ personal lives helped a great deal to decide which material was crucial for

students to take away from the course versus which material was less important.

Furthermore, it was an eye-opening experience for the instructor to learn about how

other cultures view astronomy. For example, the speaker from the local Tohono

O’odham Native American Nation seamlessly glided between stories of creation and

stories about peoples’ lives on Earth, in part because the Earth and sky are literally

sewn together in their view. Their culture has less “distance” between astronomy

content and people’s lives, i.e., the two realms have a high degree of overlap and

relatedness. By intentionally bridging “course files” and “life files”, we developed a

class that was both sensitive to the dimensions of significant learning as well as our

students’ different cultural perspectives.

Finally, we consider several possible directions for future research.

• We could improve the assessment and evaluation of the course, such as (1)

a structured qualitative analysis to assess student responses throughout the
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semester, (2) an improved quantitative analysis by deploying a survey instru-

ment more closely aligned with our goals, and/or (3) an in-class observational

analysis to assess classroom equity (e.g., which voices are represented).

• We can incorporate additional course elements, such as group projects to en-

courage community building. These elements would access more dimensions

of significant learning and provide more opportunities (1) for students to learn

from one another and (2) for creating connections between content and per-

sonal experiences.

• Finally, we could reform an undergraduate majors course using our design

model to investigate inclusivity in these STEM-specific learning environments;

this research could also examine the retention of underrepresented populations.

Given our students’ feedback, our model empowers students by letting them make

science a part of their identities, values their ideas and experiences, and creates a

more inclusive classroom environment that can reach a broader student audience.
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Figure 6.1: Schematic diagram of our inclusivity-driven course design, including our
guiding principles, examples of research-based implementation strategies, and connections
with learning dimensions. The arrows are intended to be suggestions for implementation
and are not exclusive, e.g., our guiding principle for covering both science content and
the human story should not be thought of as completely absent from opportunities to
self-identify.
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Table 6.1: Verbatim student responses from a final exam question that asked students
how the course changed the way they think about their own lives or their place in the
Universe, as well as comments from the anonymous University of Arizona Teacher-Course
Evaluations (TCE).
[Note: This table is split over 4 pages.]

Topic Final Exam Responses TCE Responses

Classroom Norms It was engaging and interest-

ing and the professor cares

about everyone’s thoughts

and opinions on subjects.

The questions you guys

asked allowed for honest

responses, and the way they

were worded made me feel

comfortable expressing my

actual opinion on the topics

discussed! The teaching style

for this class was definitely in

my top three, and this is my

second degree and sixth year

in college so there’s a biiiiig

pool.

Active Learning Really included people in

discussions and invited

questions. Very respectful

professor who truly cares

about his students’ learning.

[...] his methods of question-

ing and getting us to think

about our answers and why

we chose them helped me

understand not just the facts

but how we got them

Continued on next page
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Table 6.1 – continued from previous page

Topic Final Exam Responses TCE Responses

Opportunities to

Self-Identify (e.g.,

writing prompts)

This course change my think-

ing. I learned how to use

critical and scientific thinking

to solve the problem. [...]

So when we have argument,

I will try to think as other

people which will help me

consider two or more critical

thinking.

[...] this class has al-

lowed me to think more

critically and have an open

mind. Doing the homework,

and comparing astronomical

concepts to things on earth

helped me to think about

things in a different way. I

feel that when approaching

problems now, I can think of

many different ways to solve

it.

I did like the writing activ-

ities we had for each class

where a question was posed

that we would write the an-

swer to such as “Think of a

time when... happened to

you” or the like

Continued on next page
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Table 6.1 – continued from previous page

Topic Final Exam Responses TCE Responses

Opportunities to

Self-Identify (e.g.,

writing prompts)

When we were learning about

parallax and perspective, I

was dealing with some fam-

ily problems that have a lot

to do with viewpoints. I

had sat around that week on

the phone, trying and trying

to handle everything and get

my family to understand why

they are so incredibly mis-

taken about an issue they re-

main misinformed about, to

the detriment of a cousin go-

ing through a rough time. We

had been arguing unproduc-

tively for almost a month,

and then we learned about

how perspective changes how

we receive information. Tak-

ing that and applying it to

the conversation, my cousin

and I managed to make them

understand why she chose

what she did and while un-

happy, they accepted it. I ap-

ply this to most discussions

now, and I’ve become a better

advocate because of it.

Continued on next page
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Table 6.1 – continued from previous page

Topic Final Exam Responses TCE Responses

Other Comments

Related to Stu-

dents’ Attitudes

I used to think about the

universe in a fearful way, and

I think I’ve managed to get

over that quite well, because

I know more about it now.

I feel more solid about

my view of the universe as

the “divine” (for lack of a

better word) after this class.

The reason I see it that

way is because divinity is

supposed to be beautiful,

omnipresent, omniscient,

mysterious. Earth is like a

mini universe, and so is the

Solar System, the Galaxy,

the Quadrant, etc. Even our

cells are tiny collections of

cosmic dust. Just because I

don’t believe in a conscious

deity doesn’t mean I don’t

find the concept in the uni-

verse. Learning about the

different celestial bodies and

forces and how gravity is not

really a force (which, that

blanket analogy is told to

everyone now), seeing it all

come together is as close to

divinity as I think we’ll ever

get.

I have learned a lot of scien-

tific common sense and scien-

tific thinking
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Table 6.2: Average course scores by demographic groups. While our course design did
not explicitly target students’ grades or performance, we observe no differences in average
scores across demographic groups for gender (male and female) and culture/ethnicity
(non-underrepresented minorities [non-URM] and underrepresented minorities [URM]).

Student Identity Average Cumulative Welch’s t-Test

(Self-Reported) Course Score p value

Male (N = 10) 84.3%
0.877

Female (N = 10) 85.7%

Non-URM (N = 16) 84.8%
0.915

URM (N = 4) 85.8%
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Table 6.3: Survey items from the TSSI (Cobern, 2000) used in our pre- and post-course
survey; see Sec. 6.6.3 for a more detailed description. The second column indicates whether
an item has “reverse polarity”, i.e., if a student agrees with our course goals, they would
respond with “strongly disagree”. Here we report data from 13 students who took both
of the surveys. The survey’s Likert scale is coded such that “strongly disagree” = -2,
“disagree” = -1, “neutral” = 0, “agree” = 1, and “strongly agree” = 2. The final column
is the difference in the average between the post- and pre-course survey results. The last
row compares students’ average pre- and post-course full survey responses; a Wilcoxon
Signed-Rank Test was used to calculate the corresponding significance.
[Note: This table is split over 2 pages.]

TSSI Prompt
Reverse Pre-Course Post-Course

∆
Polarity Average Average

No form of knowledge can be com-

pletely certain - not even scientific

knowledge.

0.15 0.15 0.00

Science should be taught at all school

grade levels.
1.46 1.38 -0.08

All students should study science dur-

ing the secondary school grade levels.
1.23 0.92 -0.31

Developing new scientific knowledge is

very important for keeping our coun-

try economically competitive in today’s

world.

1.31 1.31 0.00

A person can be both religious and sci-

entific.
1.23 1.23 0.00

It is equally important for a person to

have scientific knowledge and an appre-

ciation for the arts.

1.38 1.46 0.08

Scientific knowledge is useful for only a

few people.
R 1.38 0.54 -0.85

Scientific knowledge is useful in keep-

ing our national economy competitive

in today’s world.

1.31 1.38 0.08

Scientific research is generally very im-

portant.
1.38 1.46 0.08

Women are welcome in science just as

much as men are.
1.08 0.85 -0.23

Continued on next page
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Table 6.3 – continued from previous page

TSSI Prompt
Reverse Pre-Course Post-Course

∆
Polarity Average Average

African Americans and other minority

people are just as welcome in the scien-

tific community as are white men.

1.00 1.00 0.00

Science can contribute to our apprecia-

tion and experience of beauty.
1.46 1.31 -0.15

Even at the university level all students

should study at least some science.
0.62 0.92 0.31

Science is our best source of useful

knowledge.
0.54 1.00 0.46

Human emotion plays no part in the

creation of scientific knowledge.
-0.08 -0.08 0.00

Scientific explanations tend to spoil the

beauty of nature.
R 1.31 1.15 -0.15

There are many good things we can do

today because of scientific knowledge.
1.54 1.31 -0.23

Most people really do not need to know

very much science.
R 0.92 0.69 -0.23

The scientific community is mostly

dominated by white men and is often

unfriendly to minority people.

R 0.23 -0.23 -0.46

Scientific knowledge is useful. 1.69 1.15 -0.54

The methods of science are objective. 0.31 0.69 0.38

Science can help us preserve our natural

environment and natural resources.
1.62 1.46 -0.15

Only a very few people really under-

stand science.
R 0.69 0.31 -0.38

Scientific knowledge tends to erode

spiritual values.
R 0.46 0.23 -0.23

Understanding science is a good thing

for everyone.
1.54 1.38 -0.15

Overall average 0.63 0.70
0.07

(p = 0.170)
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CHAPTER 7

Conclusion: Inclusive STEM Education

Continuing to develop and implement inclusive teaching practices is crucial not

only to the teaching and learning of STEM but also to enacting social justice in

educational environments. Our research contributes to this ongoing conversation.

By working with a general-education college astronomy course, we demonstrated

that our model successfully empowered students and allowed them to make science

a part of their existing identities. We valued students’ ideas and experiences, which

created a more inclusive classroom environment. We hope this work can serve as a

foundation for implementing inclusive frameworks in other classes.

However, there is still much work to be done to further improve and refine this

model and to apply it in new learning environments. At the college level, there

has been a boom in online courses and degree programs. Ortagus (2017) found an

increase in the fraction of post-secondary students enrolled in online courses from

5.9% in 2000 to 32.1% in 2012 (though minority students were less likely to enroll

in online courses), and this trend has continued in recent years (e.g., Dumford and

Miller, 2018; Alexander et al., 2019). With the rapid transition to online courses

as a result of COVID-19 in March 2020, it seems likely that the growth of online

courses will at least continue if not accelerate. While some of the implementation

strategies for our inclusive teaching model can still work in an online course, other

strategies, including many active learning techniques, present challenges. For ex-

ample, getting students to effectively collaborate and/or engage in discussions may

be impossible if a course is asynchronous. Even if a course is synchronous, breaking

a large class into many smaller groups and facilitating all the discussions can be a

technological challenge. On the other hand, online courses open up new modalities

for participation, including written forum posts, and they may make it easier for

students to participate by providing more flexibility in scheduling. As a community,



122

we need more research to understand student experiences in online courses. Similar

to the assessments in Chapter 6, we can analyze student responses to see whether

they engage with our inclusivity-driven course design and to design new strategies

to facilitate (or replace) student interactions. Using student surveys, focus groups,

and/or interviews, we can also assess whether online learning can alleviate barriers

to participation and/or create new barriers.

Beyond studying different course environments, more research is needed to learn

about inclusive teaching with different student populations, such as undergraduate

majors and K-12 students. While undergraduate major courses share many of the

goals of general-education courses, they prioritize and emphasize the goals in dif-

ferent ways. For example, in a majors course, encouraging students to develop a

“STEM identity” is often a stronger focus, especially since this identity is linked

to persistence within STEM degree programs (e.g., Perez et al., 2014). However, if

students are made to feel that their STEM identities have to usurp parts of their

existing identities, it can reinforce systems against marginalized groups. Approach-

ing STEM identity development in an inclusive way – where the potentially new

STEM identity is consistent with students’ existing identities – may lead to improv-

ing students’ persistence in STEM across all demographic identities. Furthermore,

by encouraging students to understand the broader context of DEI within society at

large, we may better prepare our students for their future careers within a diverse

world. Our guiding principles for inclusive teaching can also apply in the K-12 ed-

ucation context (e.g., Kim et al., 2018), though as students will be in potentially

much earlier stages of identity development, additional scaffolding may be required

for implementing inclusive teaching (e.g., scaffolding to help students engage with

self-identification writing prompts). Additionally, implementation strategies at the

K-12 level will need to be sensitive to requirements from state standards, such as

the Next Generation Science Standards (NGSS) and Common Core standards.

In all of these settings, incorporating and testing additional implementation

strategies will be key to creating a more complete framework for inclusive STEM

education. The general-education course described in Chapter 6 had few group
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discussions or activities (beyond think-pair-share prompts). Designing and testing

a greater variety of instructional strategies that explicitly provide students with

opportunities to learn from one another may help them form more connections

between the course and their own personal experiences. However, research into how

to structure these discussions and facilitate student interactions will be important

to ensure they do not add additional stress onto students from underrepresented

groups (e.g., Eddy et al., 2015; Cooper and Brownell, 2016). Additional student

engagement strategies that explicitly focus on social justice can be used to address

DEI in the classroom. As with content-based student interactions, these discussions

would also have to be done carefully, e.g., having specific discussion guidelines/norms

and not requiring additional emotional labor from students who may identify with

underrepresented groups (e.g., Schueths et al., 2013).

Moreover, we need better assessment tools for inclusive teaching, which will both

(1) provide data that can be used to improve upon existing inclusive teaching mod-

els and (2) help characterize classrooms and instructors that successfully implement

inclusive teaching strategies. These tools may also be used to recognize instruc-

tors who invest time and effort into inclusive teaching. In Chapter 6, I detailed

our assessment program that encompassed a pre- and post-course survey, student

grades, and student responses and feedback. The pre- and post-course survey was

adapted from the Thinking about Science Survey Instrument (Cobern, 2000), and

while it was relevant to our course goals, it was not directly aligned with the goals

of inclusive teaching. Furthermore, an in-depth qualitative review of themes in stu-

dent responses could be deployed to assess changes in students’ level of engagement,

development of beliefs about science and identity, and whether they create more

connections between science content and “life files” over the course of the semester.

Additionally, implementing a strategy to assess the inclusivity of the course itself

is needed. An in-class observation protocol could be created to assess which voices

are represented through the examples used by the instructor, student participation

(factoring in multiple modalities for participation, including volunteering answers

in class, online forums, etc.), and in-class student interactions. Such a tool could be
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based on the Classroom Observation Protocol for Undergraduate STEM (COPUS;

Smith et al., 2013), which has observers record what type of instruction strategy

is being used (lecture, group activities, etc.) every two minutes. This observa-

tion protocol could be supplemented with student survey feedback throughout the

course and/or student focus groups and interviews. To create an inclusivity-based

evaluation strategy, we can also incorporate elements from the Association of Amer-

ican Colleges and Universities (AAC&U) Intercultural Knowledge and Competence

VALUE rubric, such as self-awareness of cultural roles, empathy, and openness to

interacting with people from different backgrounds (Rhodes, 2010; Association of

American Colleges and Universities (AAC&U), 2009).

Finally, developing workshops and resources for instructors to implement inclu-

sive teaching practices will be critical to address DEI throughout STEM educa-

tion. While conducting research and writing articles is important for conversations

within the education research community, we need to reach a much wider audience

of instructors and educators. For example, the American Association of Physics

Teachers, the American Astronomical Society, and the American Physical Society

has hosted New Faculty Workshops since 1996 to introduce new physics and astron-

omy faculty to active learning strategies. These workshops provide instructors with

specific examples of activities, strategies, and prompts that can be used in their

introductory physics and astronomy classes (Henderson, 2008). Creating similar

targeted workshops for inclusive teaching can be an effective pathway to promot-

ing the widespread use of inclusive teaching. These workshops should discuss why

inclusive teaching is important both to the teaching and learning of course con-

tent as well as dismantling systemic and institutional discrimination. Workshop

sessions should share resources and specific examples with instructors for imple-

menting inclusive teaching in their classrooms, and these workshops should enable

participation beyond the sessions, e.g., through continued professional development

such as online faculty learning communities. These efforts are key to continuing

the vital conversation about DEI in educational contexts and to contributing to the

broader conversations throughout STEM and across the country.



APPENDIX

125



126

APPENDIX A

Appendix to Chatper 2†

A.1 Neighbour Density Distributions Using Different Neighbour Selec-

tions

In our analysis, we binned neighbouring galaxies based on their stellar masses as

determined by their g − r colours because stellar masses are expected to be more

robust throughout a satellite galaxy’s orbit. However, previous studies have binned

neighbours by their luminosities (e.g., More et al., 2016; Baxter et al., 2017), and

our relation between g−r colours and mass-to-light ratios differed from the relation

found in Bell et al. (2003) because of differences in assumptions used. Here, we

explore implications of our analysis choices.

A.1.1 Luminosity versus Stellar Mass Binning

The left panel of Fig. A.1 compares the neighbour density distributions around

isolated hosts with a neighbour selection of M∗/M� > 109.0 versus a neighbour

selection of Mr < −18.0. Based on the SDSS DR16 spectroscopic galaxies used

to develop our stellar mass proxy (§2.3.2), we found that & 90% of galaxies with

log10(M∗/M�) > 9.0 were brighter than Mr < −18.0. The two sets of neighbour den-

sity distributions are very similar, though the luminosity-based threshold identifies

more neighbours around star-forming hosts (especially at smaller distances) whereas

the distributions around quiescent hosts are similar. This results in a slightly higher

shape ratio RSF/RQ, though they are not statistically different (0.69 ± 0.28 and

0.78± 0.22 for stellar mass and luminosity selections, respectively). This difference

†This chapter appears as the appendix of O’Donnell, Behroozi, and More (2020a), which was
submitted in May 2020 to the Monthly Notices of the Royal Astronomical Society.
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is consistent with our findings that close to isolated hosts, neighbour galaxies tend to

be bluer, but at larger distances, the colours of neighbour galaxies are more similar

(Fig. 2.9).

We also present neighbour density distributions for neighbour selection limits

of Mr < −17.0 to Mr < −20.0 (Fig. A.2). These results are also consistent with

correlation strengths ρ ≤ 0 at & 85% confidence.

A.1.2 Relation between M∗ and g − r

As described in §2.3.2, we fit a relation between mass-to-light ratios for galaxies

for the SDSS DR16 spectroscopic catalogues following the approach in Bell et al.

(2003). However, our fit differed from the results in Bell et al. (2003) even after

converting the Bell et al. (2003) fit to account for the choice of IMF. This difference

is due to the colours used (dereddened versus k-corrected) and redshift range of

galaxies included in the fit. The right panel of Fig. A.1 compares the neighbour

density distribution according to the two fits. We find that the different fits create

similar neighbour density distributions with nearly identical shape ratios.

A.2 Robustness of the Shape Ratio Metric

Our analysis method uses a shape ratio parameter RSF/RQ which compares the

shapes of the neighbour density distributions around star-forming and quiescent

isolated hosts (Eq. 2.1 in §2.2.2). However, as described in §2.2.3.2, we have a

systematic offset between observed and simulated neighbour density distributions

because of assumed observational biases in stellar masses from the UniverseMa-

chine catalogues. This offset should only affect the normalisation, but not the

shape, of these neighbour density distributions. We test this in both the obser-

vational and simulation data by introducing stellar mass offsets (A.2.1 and A.2.2,

respectively).
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Figure A.1: Left Panel: Using a luminosity selection for nearby neighbours versus
a stellar mass selection slightly increases the shape parameter, but the difference is not
statistically significant. In our analysis, we use stellar mass bins because we expect that
the stellar masses of satellite galaxies are more robust throughout their orbits. Right
Panel: The differences between our stellar mass proxy and the fit from Bell et al. (2003)
does not lead to any significant differences in the neighbour density distributions. In our
analysis, we use the fit derived from galaxies in the SDSS spectroscopic catalogue with
redshifts and stellar masses that match the values used in our nearby neighbour selection.
The Bell et al. (2003) results above account for the differences in choice of IMF following
Salim et al. (2007). Their fit used galaxies over a larger redshift range and k-corrected
colours, whereas we include galaxies over a smaller redshift range and use dereddened g−r
colours. However, these differences do not create appreciable changes in the neighbour
density distributions.
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Figure A.2: Neighbour density distributions around isolated hosts are still consistent
with anti-correlation between dark matter accretion and star formation when selecting
neighbours by luminosity. These panels compare the neighbour density distributions
around star-forming versus quiescent isolated hosts from the SDSS for four different lumi-
nosity selections. Positive correlations are ruled out with typically & 85% confidence as
indicated in the inset text.
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A.2.1 Observational Stellar Mass Offset

Based on Fig. 2.10, the star-forming isolated hosts from the SDSS have a lower

normalisation than quiescent isolated hosts. We adjusted the stellar masses of star-

forming galaxies in the SDSS (SSFR > 10−11yr−1) by -0.25 dex and the quiescent

galaxies by +0.25 dex. We then identified isolated hosts based on these adjusted

stellar masses (i.e., no galaxy with a larger adjusted stellar mass within 2 Mpc pro-

jected distance and 1000 km/s velocity distance) and repeated our analysis. How-

ever, because the sample size of star-forming hosts dropped significantly, we selected

isolated hosts with 10.75 < log10(M∗,offset/M�) < 11.25 to increase signal-to-noise.

As shown in Fig. A.3, the resulting neighbour density distributions more closely

match the simulated neighbour density distributions from the UniverseMachine,

and the shape ratios are still consistent with ρ ≤ 0 with & 75% confidence for all

selection limits with neighbours with M∗ > 109.0M�.

A.2.2 Simulated Stellar Mass Offset

We also tested the robustness of the shape ratio by adjusting stellar masses from

the UniverseMachine. To match the normalisations in Fig. 2.10, we com-

pared the neighbour density distributions around all isolated hosts from the Uni-

verseMachine with stellar masses 10.5 < log10(M∗/M�) < 11.0 versus 10.25 <

log10(M∗/M�) < 10.75 (referred to as the high M∗ host sample and low M∗ host

sample, respectively). Fig. A.4 compares the neighbour density distributions around

these two samples to the observed neighbour density distributions. The distribu-

tions have similar normalisations, but the neighbour density distributions around

observed star-forming hosts are still flatter than the distribution around low M∗

isolated hosts in the UniverseMachine. Furthermore, we compared the shape

ratio for the low versus high M∗ samples to check the effect of the stellar mass offset

on our analysis metric. We find that using the shape ratio as defined in §2.2.2,

RlowM∗/RhighM∗ is slightly less than 1.0 (top right panel of Fig. A.5), but this cor-

rection would not be enough to make the observed shape ratios positive. We also
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Figure A.3: By introducing an offset to stellar masses in the SDSS DR16 catalogues
(-0.25 dex for star-forming galaxies, +0.25 dex for quiescent galaxies), neighbour density
distributions more closely match predictions from simulated UniverseMachine data,
and the resulting shape ratios are still consistent with correlation strengths ρ ≤ 0 with
& 75% confidence. The dark matter accretion predictions are the same neighbour density
distributions from the UniverseMachine plotted in Fig. 2.10.
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investigated modifying our shape ratios by adjusting rsplit and/or the maximum dis-

tance for neighbours far from the host (rmax, which is set to 2.0 Mpc in Eq. 2.1).

For example, the bottom right panel of Fig. A.5 suggests that rmax = 1.0 Mpc and

rsplit = 0.316 Mpc result in RlowM∗/RhighM∗ being closer to 1.0. When applying

these values to the observed data, we still rule out positive correlations with & 80%

confidence (Table A.1). However, for our analysis in the chapter, we choose to keep

our original definition of the shape ratio as the method was decided before determin-

ing confidence levels, and changing the method post hoc would impact the statistical

validity of the interpretation of our results.

A final consideration from a stellar mass offset is that it might affect the ef-

fectiveness of our isolation criteria. As reported in §2.3.3.2, ∼ 97% of isolated

hosts with 10.5 < log10(M∗/M�) < 11.0 were not satellites of larger haloes in the

UniverseMachine. However, if star-forming hosts are reported as having higher

stellar masses in the UniverseMachine than in the real Universe, a galaxy might

be misidentified as “isolated” because our isolation criterion relies on the stellar

masses of nearby neighbours. To test this concern, we applied a criterion such that

a halo with stellar mass M∗ would pass if there were no halo with a stellar mass

greater than M∗+ 0.25dex within 2 Mpc projected physical distance and 1000 km/s

velocity distance. Of the haloes that passed this test, ∼ 91% were not satellites.

We note that a significant increase in the satellite fraction in our “isolated host”

sample could affect the shape of neighbour density distributions, resulting in a lower

RSF/RQ. However, because our shape ratios were not significantly different when

we adjusted the stellar masses in the SDSS (Fig. A.3 in Appendix A.2.1), we do not

expect that our analysis would be impacted by an increased satellite fraction.
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Figure A.4: If we plot neighbour density distributions around all isolated hosts in the
UniverseMachine with stellar masses of 10.25 < log10(M∗/M�) < 10.75 (simulated low
M∗) and 10.5 < log10(M∗/M�) < 11.0 (simulated high M∗), then the normalisation of the
neighbour density distributions is more similar to the SDSS results (Fig. 2.10). However,
the neighbour density distributions around isolated star-forming hosts in the SDSS are
still flatter than predicted for this test (effectively, ρ = 0) in the UniverseMachine.
This difference in shape reinforces our finding of correlation strengths ρ ≤ 0.
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Figure A.5: Our shape ratio parameter is not significantly affected by stellar mass
offsets, and as shown in Table A.1, even if we adjust the radial limits to improve the
independence of our shape ratio, our results are still consistent with ρ ≤ 0. The two rows
show results for different choices of rmax, the outer limit for neighbours included in the
shape ratio calculation. The left column replicates Fig. 2.4, which plots the shape ratio
RSF/RQ predicted for a correlation strength ρ = 1.0 for different values of rsplit between
the inner and outer regions around isolated hosts with 10.5 < log10(M∗/M�) < 11.0
(Eq. 2.1). The right column shows the ratio between the shape parameter for the low
M∗ sample (i.e., isolated hosts in the UniverseMachine with 10.25 < log10(M∗/M�) <
10.75) versus the high M∗ sample (i.e., isolated hosts in the UniverseMachine with
10.5 < log10(M∗/M�) < 11.0). The dotted vertical line at 0.316 Mpc represents the value
of rsplit used in our analysis. In the right column, the dashed horizontal line and grey
band represent ±10% in the value of RlowM∗/RhighM∗ .
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Neighbour M∗ Selection Modified Confidence Level

log10(M∗/M�) RSF/RQ ρ ≤ 0.0

8.50 0.782± 0.238 81.99%

9.00 0.708± 0.220 90.81%

9.50 0.621± 0.169 98.77%

10.00 0.697± 0.170 96.21%

Table A.1: Shape ratios for SDSS neighbour density distributions using rmax = 1.0 Mpc
and rsplit = 0.316 Mpc as a test of the robustness of our analysis technique (Fig. A.5). The
modified shape ratios are still consistent with correlation strengths ρ ≤ 0. The increased
confidence levels are due to the fact that the observed neighbour density distributions
have more noise at larger distances from the isolated hosts, and the smaller rmax cutoff
does not include these annuli. Nonetheless, as explained in Appendix A.2.2, we do not
adopt this different cutoff for the rest of the chapter.
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APPENDIX B

Appendix to Chapter 3†

B.1 Density Distributions for Additional Neighbour Selection Limits

Below, we present the neighbour density distributions around isolated hosts from

both mass bins (10.5 < log10(M∗/M�) < 11.0 and 11.0 < log10(M∗/M�) < 11.5)

and both indicators used to separate star-forming and quiescent hosts (SSFR and

Dn4000) for the neighbour mass selections not included in Fig.3.11 (M∗ > 108.5M�,

> 109.5M�, and > 1010.0M�). These plots follow the same plot styles as Fig. 3.11,

and all are consistent with correlation strengths ρ ≤ 0 between dark matter accretion

and star formation (Fig. 3.10).

†This chapter appears as the appendix of O’Donnell, Behroozi, and More (2020b), which is in
preparation for submission to the Monthly Notices of the Royal Astronomical Society.
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Figure B.1: Same as Fig. 3.11, but with neighbours with M∗ > 108.5M�. We note that
neighbours at these lower masses are not observable in SDSS throughout the isolated host
redshift range. For isolated hosts with 10.5 < log10(M∗/M�) < 11.0, the SDSS observation
limits for are M∗ > 108.95M� at the median redshift z = 0.079 and M∗ > 109.36M� at the
maximum redshift z = 0.123. Similarly, for isolated hosts with 11.0 < log10(M∗/M�) <
11.5, the SDSS observation limits are M∗ > 109.30M� at the median redshift z = 0.116
and M∗ > 1010.4M� at the maximum redshift z = 0.183.
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Figure B.2: Same as Fig. 3.11, but with neighbours with M∗ > 109.5M�. These neigh-
bour density distributions are also consistent with ρ ≤ 0.0 with & 85% confidence.
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Figure B.3: Same as Fig. 3.11, but with neighbours with M∗ > 1010.0M�. These
neighbour density distributions are also consistent with ρ ≤ 0.0 with & 85% confidence.
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gas? MNRAS, 363(1), pp. 2–28. doi:10.1111/j.1365-2966.2005.09451.x.



151
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Rodŕıguez-Puebla, A., P. Behroozi, J. Primack, A. Klypin, C. Lee, and D. Hellinger
(2016a). Halo and subhalo demographics with Planck cosmological parameters:
Bolshoi-Planck and MultiDark-Planck simulations. MNRAS, 462(1), pp. 893–916.
doi:10.1093/mnras/stw1705.
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