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Abstract—In this paper, we introduce a method of using
quantized neural networks (QNN) to design finite alphabet
massage passing decoders (FAID) for Low-Density Parity Check
(LDPC) codes. Specifically, we construct a neural network with
low precision activations to optimize a FAID over Additive
White Gaussian Noise Channel (AWGNC). The low precision
activations cause a critical issue that their gradients vanish
almost everywhere, making it difficult to use classical backward
propagation. We introduce straight-through estimators (STE) [1]
to avoid this problem, by replacing zero derivatives of quantized
activations with surrogate gradients in the chain rules. We
present a systematic approach to train such networks while
minimizing the bit error rate, which is a widely used and
accurate metric to measure the performance of iterative decoders.
Examples and simulations show that by training a QNN, a FAID
with 3-bit of message and 4-bit of channel output can be obtained,
which performs better than the more complex floating-point min-
sum decoding algorithm. This methodology is promising in the
sense that it facilitates designing low-precision FAID for LDPC
codes while maintaining good error performance in a flexible and
efficient manner.

I. INTRODUCTION

Motivated by successes of Deep Neural Networks (DNN) in
various applications, there has been a renewed interest in using
neural networks (NN) for data detection and decoding, and in
the past two years a number of interesting results have been
reported. The NN approach has been shown to handle well the
scenarios of unknown, time variant, nonlinear, and channels
with memory and correlated noise (see [2], [3] and references
therein). In the known channel case, the efforts have mainly
focused on learning decoding algorithms for error-correction
codes (ECC). Recently, several research groups have shown
that DNNs can be used to efficiently learn various decoding
algorithms, including Belief Propagation (BP) decoding [4]–
[8].The reason for this effectiveness of DNNs, for instance, in
the case of BP decoding based on Tanner graphs, is that the
synaptic weight matrices over hidden layers are constrained
to preserve the message-passing update rule symmetry con-
ditions. This allows the training to be performed on a single
codeword and its noise realizations rather than on the entire
code space, and therefore opens up the possibility of using
DNN on long codes. In our preliminary work [9], we have
shown that DNNs can improve the decoding convergence
speed (number of iterations to achieve a desired frame error
rate) of conventional Min-Sum (MS) decoding algorithm. Un-
like well established theories on Density Evolution (DE) and

Trapping Set (TS), which are used to guide decoder design
for the waterfall and error-floor regions, respectively, there is
no existing theory for speeding up decoding convergence. The
multi-layer structure of DNNs can naturally learn time-varying
update rules that can provably outperform fixed update rules,
thereby, opening new decoding design possibilities.

A crucial drawback of the above approaches is that the
DNNs typically used for decoding use synaptic weights with
floating point precision which is prohibitively complex for
most potential applications. On the other hand, decoders in
which messages belong to a finite alphabet are not only of
great theoretical, but also practical importance. However, the
main challenge in training Quantized NN (QNN) is that low
precision weights or activations cause a critical issue that
their gradients vanish almost everywhere, making backward
propagation inapplicable.

In this paper, we propose to use QNNs to design FAIDs
for LDPC codes. To solve the challenge discussed above,
we rely on very recent results on training QNNs which is
of great interest on its own [10]–[13]. The main techniques
to quantize weights and activations include straight-through
estimators (STE), vector quantization and weight optimization,
among which we focus on STE, for the reason that it handles
the zero derivatives in the backward propagation. In brief,
we are interested in FAIDs over AWGNC. The QNN is an
“unwrapped” Tanner graph, with a set of activations defined
by “proto” message update functions such as MS decoding.
The quantized activations and channel messages are used in
both forward and backward propagation. As a consequence,
the neural network has full-precision weights, biases and
gradients, while it has low precision activations and channel
messages. This does not increase decoding complexity, as
training such QNN is offline. Based on the trained weights and
biases, we obtain a set of Look Up Tables (LUT) to describe
time-varying FAID message update rules in each iteration. We
use bit error rate as the objective function, since it is a more
common and accurate metric to measure the performance of
iterative decoders. More importantly, we choose two proper
STEs as the proxy derivatives in the back propagation for
the quantizers of activations and BER objective function. The
simulation results show that the trained FAIDs with only 3-bit
messages and 4-bit channel outputs outperform floating MS
decoder, which is desirable in hardware implementation. This
methodology provides a systematic design of good FAIDs for



LDPC codes, with any reasonable quantization scheme and
varying code lengths, thus it is very flexible and simple. To
the best of the knowledge, this is the first work to use QNNs
with STE to design FAIDs of LDPC codes.

The rest of the paper is organized as follows. Section II
gives the necessary background. Section III presents the QNN
framework. Section IV introduces the training with QNN.
Section V demonstrates the examples and simulation results.
Section VI concludes the paper.

II. PRELIMINARIES

Let C be a LDPC code, H be its parity check matrix, and
G = (V,C,E) be its Tanner graph, where V (respectively,
C) is the set of variable (respectively, check) nodes, and E
is the set of edges. If the code length is n, the number of
parity check equations is m, and the number of edges is I ,
then |V | = n, |C| = m, and |E| = I . Denote the i-th variable
node as vi, j-th check node as cj , and the edge connecting
vi and cj as (vi, cj) which is indexed by some integer (e),
1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ e ≤ I .

Let x = (x1, x2, ...xn) ∈ C and y = (y1, y2, ...yn) be
the transmitted codeword and received channel output vec-
tor, respectively. Consider binary phase shift keying (BPSK)
modulation, i.e., yi = (−1)xi + zi for 1 ≤ i ≤ n where zi
is Gaussian noise with standard deviation σ. The likelihood
message is defined by the log likelihood ratios (LLR): Λ =
(λ1, λ2, ..., λn), where λi = log Pr(xi=0|yi)

Pr(xi=1|yi)
. Suppose that the

message update rules of variable nodes and check nodes which
the QNN aims to optimize are defined as νvi→cj = Φ(λi,pi)
and µcj→vi = Ψ(qj), respectively, where pi (qj) is the
incoming message to a variable node vi (check node cj).
λ̃i = Υ(λi,pi) denotes the likelihood message approximation
for variable node vi, which will be optimized by QNN as
well. Let Qmsg and Qc be the quantizers of messages and
channel outputs (or likelihood messages), with bmsg-bit and
bc-bit precision, respectively. The corresponding alphabet sets
are denoted by Amsg and Ac, and quantization threshold sets
are denoted by T msg , T c.

III. THE QNN FRAMEWORKS

A. Low precision QNN activations

The proposed QNN is constructed based on Tanner graph
G, with three types of activations defined by Φ, Ψ, and
Υ. In general, the message update rules Φ, Ψ, and Υ can
be provided by any conventional iterative decoder such as
sum-product decoder, bit-flipping decoder, etc. In this work,
we take Φ, Ψ, and Υ from MS decoder, and then use two
quantizers Qmsg and Qc to quantize the activations and the
likelihood messages (or the channel outputs), respectively.
More specifically, suppose that the QNN consists of K hidden
layers, with output values denoted by r(k), 1 ≤ k ≤ K.
r(0) (r(K+1)) represents the values of input (output) layer.
r(k) = (r

(k)
1 , r

(k)
2 , ...r

(k)
Jk

)T , where Jk is the number of neurons
in k-th layer, and r(k)

t is the the output value of the t-th neuron
in k-th layer, 0 ≤ k ≤ K + 1, 1 ≤ t ≤ Jk. Fig. 1 shows the

Fig. 1. Block diagram of a QNN.

block diagram of a QNN, where it is readily observed that
every three hidden layers correspond to one iteration. r(k)

represents the variable (respectively, check) nodes message
update if 3|k − 1 (respectively, 3|k − 2), and it represents
the estimate of likelihood messages if 3|k. Each neuron in
variable and check nodes message update layers stands for an
edge. Each neuron in likelihood message approximation layers
stands for a variable node. Therefore, we have Jk = n if 3|k,
otherwise Jk = I . The weight matrix and the bias vector in
the k-th layer are denoted by W(k) and b(k), respectively.

The output of the k-th hidden layer (k > 1) is computed as
follows:

r(k) =


Qmsg(Φ(b(k)Qc(Λ),W(k)r(k−2))), 3|(k − 1),

Ψ(r(k−1)), 3|(k − 2),

Υ(b(k)Qc(Λ),W(k)r(k−1)), 3|k,
(1)

where for any (e) = (vi, cj), if 3|(k − 1),

r(k)
e = Qmsg(b(k)

e Qc(λi) +
∑

(e′)=(vi,ct),t6=j

w
(k)
e,e′r

(k−2)
e′ ),

if 3|(k − 2),

r(k)
e =

∏
(e′)=(vt,cj),t6=i

sgn(r
(k−1)
e′ ) · min

(e′)=(vt,cj),t6=i

∣∣∣r(k−1)
e′

∣∣∣ ,
and if 3|k,

r
(k)
i = b

(k)
i Qc(λi) +

∑
(e′)=(vi,ct)

w
(k)
i,e′r

(k−1)
e′ .

In this work, we consider that Qc and Qmsg are predefined. At
each k-th layer where 3|k, for each training sample, we check
whether its estimated codeword satisfies all parity equations
or not. If so, this training sample will skip the rest layers and
its output at the current k-th layer will be directly used to
calculate the objective function, namely,

r(K+1) = r(k), if
1− sgn((r(k))T )

2
·HT = 0. (2)

The first hidden layer is the initialization of the QNN from
channel, and its output is calculated by

r(1) = Qmsg(W(1)r(0)), (3)

where r(0) = Λ, r(1)
e = Qmsg(w

(1)
e,i r

(0)
i ),∀(e) = (vi, cj).

Since Ψ is the min operation which is insensitive to the noise
variance, we replace all likelihood messages λi by channel
outputs yi in Eq. (1) and (3), and thus Qc is the quantizer
of y. As quantizers play roles of nonlinear functions, all the
layers have nonlinear activations.



B. Flexible quantizers of messages and channel outputs
The quantizers Qs in Eq. (1) of bs-bit precision is defined

by an alphabet set As and a threshold set T s as follows,
where the superscript “s” stands for either “msg” or “c”:
for given finite sets As = {0,±Ls

1,±Ls
2...,±Ls

2bs−1−1} and
T s = {T s

1 , T
s
2 ..., T

s
2bs−1−1, T

s
2bs−1 = ∞}, with Ls

i , T
s
i ∈

R+, 1 ≤ i ≤ 2bs−1 − 1 and Ls
i > Ls

j , T
s
i > T s

j for any
i > j,

Qs(x) =

{
sgn(x)Ls

i if T s
i ≤ x < T s

i+1

0 if |x| < T s
1

. (4)

From Eq. (4), it is readily observed that Qs is symmetric. Since
Φ, Ψ, and Υ satisfy symmetry conditions, Eq. (1) preserves
them as well. In addition, when passing messages and channel
values from one layer to another in the forward propagation,
As can be first mapped into integers to save memories, and
only integers with bmsg-bit (or bc-bit) precisions are passed
instead of values in As. When computing the quantized
activations, integers are mapped back into As.

In general, for AWGNC, the precision of channel outputs
is higher than that of messages, i.e., bmsg < bc. Different
methods are used in literatures to design a good Qc. For
example, a Qc can be derived by maximizing the mutual
information between channel input and the quantizer output
[14], or by Lloyd-Max scalar quantization method [15], [16] to
minimize the mean square error (MSE) between the quantized
and nonquantized densities. In this work, we maximize the
mutual information between channel input and the quantizer
output to design Qc. Since the mutual-information based
approach receives the noise deviation σ, code rate, and bc

as parameters, for given precision and LDPC code, there are
several plausible Qc’s that can be obtained, depending on the
choice of σ. The design of Qmsg is in itself an interesting
problem. One way we could use to construct a Qmsg is based
on Qc. In particular, we take a symmetric subset of Ac to form
Amsg and use a set of scalars Smsg = {α1, α2, ..., α2bs−1−1}
to obtain T msg:

Amsg ⊂ Ac, Tmsg
1 = α1L

msg
1 ,

Tmsg
i = αiL

msg
i−1 + (1− αi)L

msg
i ,

(5)

where 2 ≤ i ≤ 2bs−1−1. We remark that different techniques
such as Non-Surjective FAID [17] and Information bottleneck
[18] can be used to design Qmsg , but these alternative ap-
proaches are beyond the scope of this paper.

C. From QNN to FAID
From the discussion above, the proposed QNN has full

precision of weights and biases, but low precision of ac-
tivations and channel messages. When the offline train-
ing is done, we obtain trained weight matrices and bi-
ases {W(3`),W(3`+1),b(3`),b(3`+1)} for each `-th iteration.
Based on these weights and biases, we derive a series of mes-
sage update rules. The rule of vi’s message update in the `-th
iteration is described as follows: f (`)

i : Ac ×{Amsg}dvi
−1 →

Amsg ,

f
(`)
i (yQ,p) = Qmsg(Φ(E[b(3`+1)]yQ,w

(3`+1)
i p)), (6)

where yQ ∈ Ac,p ∈ {Amsg}dvi
−1, w(3`+1)

i is the submatrix
of W(3`+1) associated with vi, and E[·] is the expectation
operator. The hard decision rule g(`)

i can be obtained similar
to f

(`)
i , except that the Qmsg in Eq. (6) is replaced by sign

function, w(3`+1)
i and b(3`+1) are replaced by w

(3`)
i and b(3`),

and p in g(`)
i belongs to {Amsg}dvi . Then, the final FAID of

a LDPC code is defined as DFAID = (G,Ψ, {f (`)
i }, {g

(`)
i }).

In principal, each variable node should have a message
update rule in each iteration. For simplicity, consider regular
LDPC codes, where all variable nodes have the same message
update rule in each iteration. We force all nonzero entries
in W(k) to share the same value, i.e., W(k)(i, j) = w(k) if
W(k)(i, j) is a nonzero entry in W(k). Then, Eq. (6) becomes

f (`)(yQ,p) = Qmsg(Φ(E[b(3`+1)]yQ, w
(3`+1)p)). (7)

We remark that in this case, less parameters result in a
faster learning, lower decoding complexity and lower mem-
ory requirements. When deploying DFAID in hardwares,
{f (`)}, {g(`)} (or {f (`)

i }, {g
(`)
i }) are implemented by integer-

valued LUTs. As it is shown in [19], [22], a decoder supporting
multiple decoding rules can be efficiently implemented in
hardware, thus an iteration-dependent decoding rule requires
only a small hardware overhead.

IV. TRAINING WITH QNN

Since the channel is output-symmetric, and the QNN’s acti-
vations preserve symmetry conditions, we can assume that the
all-zero codeword is transmitted, i.e., x = 0, thus y = 1 + z.
With the symmetry conditions on the weight matrices, it is
sufficient to use a database composed of the realizations of
the noisy vector y. Let r(0) = y and u = r(K+1) be the
perceptron values in the input and output layer, respectively.
Both r(0) and u have length J0 = JK+1 = n, with r(0)

receiving channel output vector y.

A. BER-based objective function

The output u consists of the estimate of likelihood messages
of a training sample. In most related works of using neural net-
works to optimize channel decoders, the binary cross entropy
(BCE) function is widely applied as objective function, since it
is a measurement of “soft” bit error rate, and it is differentiable
everywhere. However, the BCE function is an approximation
of BER. Training NNs to minimize BCE cannot guarantee
to minimize BER. To see this, consider the following BCE
function for each sample:

∆(u,x) = − 1

n

n∑
i=1

xi log(1− σ(ui)) + (1− xi) log(σ(ui)),

where the σ(·) is the sigmoid function defined as σ(x) =
(1 + e−x)−1. If the i-th bit is decoded correctly (equals to xi)
by the QNN, then there exists a positive value 0 < εi < 1/2
such that the i-th term in the summation of ∆(u,x) equals to
log( 1

2 + εi); otherwise there exists a positive value 0 < εi <
1/2 such that the i-th term in the summation of ∆(u,x) equals
to log( 1

2 − εi). Then ∆(u,x) can be expressed as: ∆(u,x) =



∆c + ∆e, with ∆c = 1
n

∑
j:xj=x̂j

log(1/2 + εj)
−1 and ∆e =

1
n

∑
j:xj 6=x̂j

log(1/2− εj)−1, where x̂j is the hard decision
of uj . Noted that ∆c and ∆e are the costs contributed by
the bits decoded by QNN correctly and wrongly, respectively.
Each term in the summation of ∆c is within [0, 1], and each
term in the summation of ∆e is larger than 1.

Consider two samples x(1) and x(2), whose output values
of QNN, denoted by u(1) and u(2), satisfy the following
conditions:

1) ∆(u(1),x(1)) = ∆
(1)
c + ∆

(1)
e ,∆(u(2),x(2)) = ∆

(2)
c +

∆
(2)
e ;

2) There are d terms in ∆
(1)
e and d− 1 terms in ∆

(2)
e ;

3) |∆(1)
c −∆

(2)
c | < 1

n ; and
4) d max

j:x
(1)
j 6=x̂

(1)
j

log (1/2− ε(1)
j )−1 + 1 ≤ (d −

1) min
j:x

(2)
j 6=x̂

(2)
j

log (1/2− ε(2)
j )−1.

Condition (2) implies that the first and second samples have
d and d − 1 bits in error after QNN decoding, respectively,
and ∆

(1)
c < 1 − d

n ,∆
(2)
c < 1 − d−1

n . Condition (3) and
(4) together indicate that the first sample has smaller BCE
objective function, i.e., ∆(u(1),x(1)) < ∆(u(2),x(2)). In fact,

∆(u(1),x(1)) = ∆(1)
c + ∆(1)

e < ∆(2)
c +

1

n
+ ∆(1)

e

≤ ∆(2)
c +

1

n
+
d

n
max

j:xj 6=x̂
(1)
j

log (1/2− ε(1)
j )−1

≤ ∆(2)
c +

d− 1

n
min

j:xj 6=x̂
(2)
j

log (1/2− ε(2)
j )−1

≤ ∆(2)
c + ∆(2)

e = ∆(u(2),x(2)),

hence a smaller BCE loss cannot guarantee a smaller BER.
In this work, instead of using BCE function, we consider

the following mean square error objective function for each
sample, which measures the hamming distance between trans-
mitted codeword x and the decoded codeword x̂, i.e.,

Γ(u,x) =
1

n

n∑
i=1

(xi − x̂i)2
, where x̂ =

1− sgn(u)

2
. (8)

Γ(u,x) is an actual and practical metric to measure the
performance of iterative decoders. In particular, according to
Eq. (8), the bits which are decoded correctly neither make
contributions to the objective function Γ(u,x) nor the weight
changes. On the other hand, the bits decoded wrongly are
supposed to contribute to both Γ(u,x) and gradients of
weights and biases. However, Γ(u,x) has derivatives of zero
almost everywhere because of the sign function. To solve the
zero gradients problem of Eq. (1) and (8), we apply straight-
through estimators in the chain rule to calculate the gradients,
which are introduced below.

B. Straight-through estimators

The straight-through estimator (STE) is a proxy derivative
used in the QNN training to replace the zero derivative of
quantization function in the chain rule [1]. Intuitively, STE is

an estimate of the true partial gradient. In [1], it was found that
the most efficient training of QNNs was using STEs, which
was a good way to provide a non-trivial search direction.

To see how STE works for proposed QNN, consider the
quantizers Qmsg in Eq. (1). In the backward propagation, by
chain rule, the partial derivative of objective function Γ(u,x)
with respect to W(k) is calculated as

∂Γ(u,x)

∂W(k)
=
∂Γ(u,x)

∂r(k)
· ∂Q

msg

∂W(k)

=
∂Γ(u,x)

∂r(k)
· ∂Q

msg

∂Φ
· ∂Φ

∂W(k)
.

(9)

Apparently, ∂Qmsg

∂Φ is zero almost everywhere, making the
weight updates still. To solve this, we use a proper surrogate
derivative ∂h

∂Φ , called STE, to replace ∂Qmsg

∂Φ in Eq. (9).
Therefore, the partial derivative with respect to W(k) can be
approximated by

γ(W(k)) =
∂Γ(u,x)

∂r(k)
· ∂h
∂Φ
· ∂Φ

∂W(k)
. (10)

As stated in [13], a STE should be designed carefully
to guarantee that the negative expected proxy gradients are
descent directions for minimizing the loss function. Namely,
the inner product between the expected proxy gradients and
true gradients is nonnegative:〈

Ey[γ(W(k))],
∂Ey [Γ(u,x)]

∂W(k)

〉
≥ 0. (11)

Eq. (11) is called the descent direction property. How to design
good STEs has been studied extensively in [10]–[13].

We introduce two STEs for Qmsg and the sign function used
in Eq. (8). In particular, consider the following two functions:

hmsg(x) =

{
x if |x| < Tmsg

2bs−1−1

sgn(x)Lmsg
2bs−1−1

otherwise
, (12)

hsgn(x) = 2(1 + e−x)−1 − 1, (13)

whose gradients with respect to x are given below:

∂hmsg(x)

∂x
=

{
1 if |x| < Tmsg

2bs−1−1

0 otherwise
, (14)

∂hsgn(x)

∂x
=

2e−x

(1 + e−x)
2 . (15)

∂hmsg(x)
∂x is used as the STE of Qmsg , and ∂hsgn(x)

∂x is used
as the STE of sign function in Eq. (8). It is easy to see that
hmsg(x) and hsgn(x) are approximations of Qmsg and sign
function, respectively. Intuitively, their gradients are estimates
of the true gradients of Qmsg and sign function. In particular,
∂hmsg(x)

∂x is called the clipped-ReLU STE, which has been
shown to satisfy the above descent direction property [13]
for minimizing the square sample loss of a two-linear-layer
network, whose output is binary.

In principle, we can use clipped-ReLU STE for the sign
function in Eq. (8) as well, which would provide a faster
and simpler training. We postulate that the choice of STE is
critically dependent on the optimality of Qmsg: if Qmsg is



well chosen, then a simple enough STE is good enough for
training, whereas a complex STE may be necessary otherwise.

We use ADAM [20] with mini-batches for training, with
gradients accumulated in full precision. The quantized acti-
vations and channel messages are used in both forward and
backward propagation.

V. NUMERICAL RESULTS

We built the QNN framework in Python3.6 and used Pytorch
library for training. The training set consists of realizations of
Gaussian noisy vectors. We constructed two QNNs to show
the flexibility in terms of code length, one for a short code,
Tanner code (155, 64), and the other for a medium length
code, QC-LDPC code (1296, 972). For each code, the same
Qmsg and Qc are used in both training and testing phases.

The simulation of DFAID is carried out with the integer-
valued LUTs of {f (`)}, {g(`)}, which are determined by
the trained {w(3`), w(3`+1),b(3`),b(3`+1)}, together with the
quantizers Qmsg and Qc. For comparisons with other con-
ventional iterative decoders, we conduct simulations of MS
decoding which are implemented with floating point and
finite precisions. The measure of performance is bit-error-
rate (BER) or frame-error-rate (FER). We compare the per-
formance of DFAID and MS decoding with same number of
iterations.

A. Tanner code

The training set consists of 5000 samples at Eb/N0 = 4dB.
The number of epochs is 120, and the learning rate of ADAM
is 0.01, with mini-batch size of 10. We maximize mutual
information between channel input and the quantizer output
to design a 4-bit quantizer Qc for Eb/N0 = 6.5dB. Hence
|Ac| = 15 and |T c| = 7. We take a symmetric subset of Ac

of size 7 to form Amsg , and select a set of scalars to decide
T msg . To be specific, Lmsg

1 = Lc
1, L

msg
2 = Lc

4, L
msg
3 = Lc

7,
and α1 = α2 = α3 = 0.5. As a result, Qmsg is of 3-bit and
|Amsg| = 7 and |T msg| = 3. We use ∂hmsg(x)

∂x and ∂hsgn(x)
∂x

in Eq. (14) and (15) as STEs of Qmsg and sign function,
respectively. The maximum number of iterations is set to be
5. The MS with finite precision is quantized uniformly with
4-bit for both channel and message values, whose step is set
to be 0.125.

In Fig. 2, we compare the BER and FER performance of
DFAID, MS decoding with floating point, and MS decoding
with 4-bit precision within 5 iterations. We also show the
performance of floating-point offset MS (OMS) decoding as a
reference (The offset is set to be 0.11). On average, with only
3-bit for message and 4-bit for channel output, DFAID can
achieve 0.2dB coding gain over MS decodings (both floating
point and 4-bit precision) within 5 iterations.

B. Column-weight 4, medium-length code

For this QC-LDPC code (1296, 972), the training set
consists of 5000 samples at Eb/N0 = 4dB. The number
of epochs is 110, and the learning rate of ADAM is 0.01,
with mini-batch size of 10. We maximize mutual information

Fig. 2. BER and FER Performance of DFAID , MS and OMS decoding of
Tanner code (155,64) within five iterations.

Fig. 3. BER and FER Performance of DFAID , MS and OMS decoding of
QC-LDPC code (1296,972) within five iterations.

between channel input and the quantizer output to design a
4-bit quantizer Qc for Eb/N0 = 4dB. Hence |Ac| = 15
and |T c| = 7. We consider Amsg = {0,±0.2,±0.5,±1},
and Smsg = {0.5, 0.5, 0.5}. Therefore, Qmsg is of 3-bit and
|Amsg| = 7 and |T msg| = 3. We use ∂hmsg(x)

∂x and ∂hsgn(x)
∂x

in Eq. (14) and (15) as STEs of Qmsg and sign function,
respectively. The maximum number of iterations is set to be
5. The MS with finite precision is quantized uniformly with
4-bit for both channel and message values, whose step is set
to be 0.1.



Fig. 3 gives the BER and FER performance of DFAID,
MS decoding with floating point, and MS decoding with 4-bit
precision within 5 iterations. The BER/FER performance of
OMS decoding with floating point is also provided in Fig. 3
as reference (The offset is set to be 0.09). On average, with
only 3-bit for message and 4-bit for channel output, DFAID

can achieve 0.2dB coding gain over both floating point MS
decoding and 4-bit precision MS decoding within 5 iterations.

C. Related works on quantized message passing iterative
decoders for LDPC codes

There have been a significant effort on designing FAIDs
of LDPC codes for different channel models. For example,
Planjery at al. design FAID message update rules to correct
trapping sets and show that a FAID with only 3-bit precision
outperforms the BP and all other message passing decoders
over Binary Symmetric Channel (BSC) [21]. For AWGNC,
Nguyen-Ly at al. [17] use density evolution to optimize the
FAID. Meidlinger at al. [22] maximize the mutual information
between decoding messages to build FAIDs, and demonstrate
that a FAID with 3-bit of message and 4-bit of channel
output can match MS decoding for regular LDPC codes.
Lewandowsky at al. [18] apply Information bottleneck method
to build FAIDs and demonstrate that a FAID with only 4-bit
precision can approach to BP for finite length LDPC codes
over AWGNC. In this work, we show the capability of a neural
network on designing a FAID over AWGNC with competitive
decoding performance. Compared with previous works, the
QNN framework has more flexibility as there are plenty of
choices on predefined quantizers, and it can be regarded as
“end-to-end” design for a specific LDPC code.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we explored the potential of QNNs to facil-
itate the design of finite-alphabet iterative decoding rules of
LDPC codes. Predefined low precision quantizers were applied
over activations and channel messages, with the quantizer of
channel messages optimized by maximizing the mutual infor-
mation. The low precision activations and channel messages
were passed in both forward and backward propagation. In
the training, we used the BER-based objective function, and
introduced two STEs to around zero derivatives of Qmsg and
the sign function used in hard decision. A FAID was derived
based on the trained weights and biases, together with the
predefined quantizers. Simulation results showed that within
5 iterations, the FAID with only 3-bit of message and 4-
bit of channel output can achieve on average 0.2 dB over
conventional floating point MS decoding and 4-bit precision
MS decoding.

We remark that in this work, the σ for Qc can be chosen
to trade off the error floor and waterfall region. Open ques-
tions are left for future research, such as the joint quantizer
optimization, and using QNNs for FAIDs over the BSC.
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