
Simplified Flip-Flop Gate Model for EEMI Injection
Luis Valbuena

University of New Mexico
Albuquerque NM, USA

lavalbuenar@unm.edu

Gregory L. Heileman
University of Arizona
Tucson AZ, USA

heileman@arizona.edu

Sameer Hemmady
University of New Mexico
Albuquerque NM, USA

shemmady@unm.edu

Edl Schamiloglu
University of New Mexico
Albuquerque NM, USA

edls@unm.edu

Abstract—We present a second order dynamical system to
represent the behavior of a D flip-flop. We employ windowing
functions and vector fields to replicate a characteristic found in
[1],which resorts to switching. The model also takes into account
metastable behavior, which can be exploited when studying
software execution faults due to an undefined logical state. We
conceived the noise injection to be additive noise targeting the
transition between the stable equilibrium points. However, the
model is flexible and many parameters can be changed to alter
its behavior.

Index Terms—Flip-Flop, modeling, EEMI.

I. INTRODUCTION

The academic curiosity question of how the interaction
of sensors/actuators with computing systems can render an
adversarial vulnerability has evolved into practical relevance.
There are various works where medical devices such as
insulin injectors or pacemakers have been compromised to
the point of reporting spurious levels of insulin, switching
on/off the flow of insulin or producing shock commands [2].
Usually, these adversarial intrusions take advantage of the
computing systems’ ports of entry. It has also been reported
that instructions in a cryptographic code can be skipped
or duplicated by injecting clock glitches and underpowering
the microcontroller [3]. However, there are no mathematical
models describing how EEMI injection propagates through
the electronic components or details about the specifics of
the injection signal to cause certain instruction to fail at a
particular point in time. Even though there are tractable models
for inverters accounting for noise injection and it is possible to
use them to build logic gates, like the NOR gate presented in
[4], these models do not scale well when they are incorporated
into hybrid modeling of a computing system. In this paper,
we present a system of second-order differential equations
that serves as our model of a flip-flop gate. This model is
developed based on the ideas presented in [1] and vector fields
from artificial potential fields. This is a normalized model
both in time and space, and apart from being low dimensional
and amenable for reachability analysis, employs windowing
functions to account for metastability. This model does not
require a hybrid approach for the transitioning of states as the
windowing functions perform a smooth transition from each
of the sinks present in the model.

This work supported by AFOSR Grant FA9550-15-1-0171.

II. MOTIVATION

We have a 4-bit processor inside a simulation environment
which can be tampered at any location inside the processor
as well at any point in time [5]. However, we are interested
in studying the propagation mechanism of EEMI injections
in the entry ports of a processor to the location where
it produces an exploitable fault; therefore, we are in need
of dynamical models that interact with EEMI to affect the
electronic components. From [6], we have derived dynamical
models for logic gates that accounts for EEMI injection but we
were lacking a model for components that store information,
i.e., D flip-flops. Our starting point is [1] where there is a
first-order flip-flop model gate, displayed in Fig. 1.

Fig. 1. First order flip-flop model. The SW component introduces a switching
nature to the otherwise continuous dynamics.

This model is reported to generate the phase portrait dis-
played in Fig. 4 in [1], which suggests that a vector field can be
proposed with the characteristics displayed on the mentioned
figure, without resorting to switching techniques to achieve
the same result. The remainder of this paper presents the
mathematical elements required to build the flip-flop model,
the properties that the model has, and simulation results.

III. MATHEMATICAL FORMULATION

The idea behind this formulation comes from locating the
vector fields of two sinks at different locations in some space,
similar to determining how the flow of a singularity is near a
wall [7]: instead of dealing with the original problem, a virtual
sink (source) of same intensity is located at the reflection of
the original singularity with respect to the wall. The resulting
vector field then has two sinks (sources) and also a streamline
that has no component perpendicular to the wall, i.e., in our

case there are two stable equilibrium points and a saddle
point, which resembles the features described in [1] where
there are two equilibrium points that represent the logic states
of the flip-flop gate as well as a saddle equilibrium point
that represents the metastable state. However, trajectories near
the equilibrium points do not behave like the ones observed
on sinks; therefore, we select particular regions by using
windowing functions and then conduct rotations on the vector
field to match the phase portrait presented in [1].

The proposed bi-dimensional model for a flip-flop gate is
presented in (1)

ẋ =LeqA(x)

[
cα −sα
sα cα

]
(xeqA − x)+

LeqB(x)

[
cβ −sβ
sβ cβ

]
(xeqB − x)+[

K1

−K2

]
u(t) +

[
K3

K4

]
ω(t),

(1)

where x =
[
x1 x2

]T
corresponds to the flip-flop states,

xeqA and xeqB are the locations for the equilibrium points
that represent the logic states Q and Q̄, and K1, K2, K3 and
K4 are constants. A detailed explanation of the more complex
terms in (1) is provided in the following subsections.

A. Intensity of the stable equilibrium points

Usually, a sink can be written as:

v(x,x0) =
1

‖x0 − x‖n
(x0 − x), (2)

for some equilibrium point x0 and some constant n. However,
the scaling done by the norm is unbounded as x→ x0; then,
if (2) is part of a differential equation, the norm will turn into
a stiff differential equation. Therefore, with the purpose of
bounding the scaling of the vector pointing towards the equi-
librium point, we employ functions LeqI(x) and LeqI(x)(See
(3)).

LeqI(x) =
L0

1 + ek‖xeqI−x‖2−d
, for I = {A,B}, (3)

which is the logistic function. Note that the term ‖xeqI −
x‖2 makes LeqI(x) radially symmetric with respect to an axis
located at xeqI . The constant d provides some offset from
the equilibrium xeqI and L0 is some tunning constant. The
value of k modifies how fast the logistic function varies, which
allows us to set it big enough to make LeqI vanish to zero
when x is far away from the symmetry axis of the function,
like for example, the other equilibrium point. Consider Fig. 2,
where we have chosen a value for k big enough such that
the value of LeqA(x) does not sabotage the value of LeqB(x)
and vice versa. The addition of LeqA(x) and LeqB(x) tends
to zero for values of x sufficiently far from both xeqA and
xeqB . The intensity LeqA(x) only influences the vector field
of the sink created at xeqA and the same goes for LeqB(x)
and xeqB .

Fig. 2. Functions LeqA(x) and LeqB(x) added together where the value
of k is chosen so the intensity of a vector field from one sink does not
interfere with the other. The red translucent region represents the locus where
the component of the added vector field does not have a component in the
direction of the segment from xeqA to xeqB .

B. Rotation matrices

Rotation matrices are full rank and preserves the norm;
hence, the mapping they conduct keeps the properties of the
domain, i.e., the stability properties of an equilibrium point
are maintained on the range. The terms c(·) and s(·) in (1)
represent the trigonometric functions cos (·) and sin (·). We
define the constant rotation[

Rx1 − RxeqI,1
Rx2

]
=

1√
2

[
1 −1
1 1

]
(x− x0), (4)

for x0 a point colinear to xeqA and xeqB , where RxeqI,2 equals
zero for this rotation. The vector [Rx1−RxeqI,1,Rx2]T is the
argument of the functions defined below. The rotation angles
α and β are defined as:

α =
1

2
gA(Rx1 − RxeqA,1)(φA −](xeqA − x)),

β =
1

2
gB(Rx1 − RxeqB,1)(φB −](xeqB − x)),

(5)

with gA and gB defined as

gA =
1

2
(1 + tanhK6(Rx1 − RxeqA,1)),

gB =
1

2
(1− tanhK6(Rx1 − RxeqB,1)),

(6)

where](·) is the angle of the vector present in the argument
and K6 is another tuning constant. The purpose of (6) is to

select the region of space for which the rotation given by
(5) should take place, see Fig. 3. In the case of xeqA, the
region where the rotation angle α is enabled consists of all
the points from xeqA in the direction of xeqB . It is functions
gA and gB that are in charge of allowing the merging of the
two vector fields from the sinks without resorting to switching
or introducing singularities [8].

The purpose of angles φA and φB is to account for the
desired angle of the vector field while](xeqI − x) gives the
current angle of the vector field; then the difference between
them, as it can be seen on (5), is the required angle rotation
necessary to achieve the desired angle of the vector field.
Depiction of φA and φB is presented in Fig. 3.

Fig. 3. Windowing functions gA and gB . Their purpose is to enable the
rotations given by φA−](xeqA−x) and φB −](xeqB −x), respectively.
Also in this graph are the angles φA and φB . they are the measure of how
much the vector field of the sinks should rotate to attain the behavior shown
in Fig. 4.

Functions φA, φB ,](xeqA − x)) and](xeqB − x)) are
given by

φA = atan2(sγ, cγ),with γ = π +
π

2
tanh (GRx2),

φB = −π
2
tanh (GRx2),

](xeqA − x)) = atan2(RxeqA,2 − Rx2,RxeqA,1 − Rx1),

](xeqB − x)) = atan2(RxeqB,2 − Rx2,RxeqB,1 − Rx1).
(7)

It is important to point out that the ranges for](xeqA−x))
and](xeqB − x)) are the interval (−π, π); then, the range
of the differences φA −](xeqA − x) and φB −](xeqB −
x) are (−π/2, π/2), which leads α and β to have a range
(−π/4, π/4).

C. Control and perturbation inputs

Function u(t) in (1) is the input of the system and it dictates
the transition between the two poles that represents a logical
value. This function embeds the behavior or input channels Set
and Data present in a D flip-flop where once the Set channel
is “HIGH”, the D flip-flop stores whatever value is present
in Data. Then, a positive combination of unit-step functions
separated by some infinitesimal time is generated when the
rising edge of the Set signal occurs and the Data signal is
at logical “HIGH”. Similarly, a negative combination of unit-
step functions takes place when the Data signal is at logical
“LOW” and the rising edge of the Set signal arrives. The idea
behind this approach is to force a transition from one stable
equilibrium point to another by a trigger signal of sufficient
amplitude and duration that guarantees that the trajectory of
the state can abandon the region of influence of its current
sink [9], see Fig. 6(b). Function ω(t) is the input of some
perturbation signal considered to be additive noise. In this
paper we have adopted the noise injection from [4] as:

ω(t) =
VEMI

2

N∑
k=1

h(t, Tk)g(t, Tk),

h(t, Tk) = sin (2πf(t− Tk)),

g(t, Tk) = tanh (K(t− Tk)) + tanh (−K(t− Tk + wd)).
(8)

The constant N represents the number of noise injections over
the time horizon under analysis. Function h(t, Tk) is the noise
injection itself; however, we embed it with function g(t, Tk)
to avoid non-smoothness. The time offset Tk is a random
variable that tells the location in time of the injection but
for the purpose of this paper we use Tk to locate the EEMI
injection in time. The constant f is the frequency of the noise.

IV. FEATURES OF THE FLIP-FLOP MODEL

We demonstrate the properties of the system presented in
(1) such as the location of its equilibrium points, as well as
the stability properties. We are going to require the equilibrium
points xeqA and xeqB satisfy:

xeqA = r

[
0
1

]
, xeqB = r

[
1
0

]
, r ∈ R;

hence, xeqA − xeqB = r

[
−1
1

]
.

(9)

Lemma IV.1. Given the system (1) over the space R2 with
u(t) = 0 and ω(t) = 0, its equilibrium points are xeqA, xeqB ,
and xm = (1/2)[xeqA + xeqB].

Proof. We are left with the system

ẋ =LeqA(x)

[
cα −sα
sα cα

]
(xeqA − x)+

LeqB(x)

[
cβ −sβ
sβ cβ

]
(xeqB − x).

(10)

We verify that ẋ = 0 by replacing x with the candidate
equilibrium points and corroborating that the mathematical
expression on the right of (10) is identically zero. For ẋ = 0,
take x = xeqA and the first term at the left of (10) is identically
zero. The second term vanishes to zero as the constant k in
Section III-A is chosen big enough to force LeqI(x) to go to
zero. A very similar approach arises when taking x = xeqB .

For the case of xm = (1/2)[xeqA + xeqB], the rotation
necessary for the arguments of (5) yields gA = gB = 1, and
φA = π, φB = 0,](xeqA−xm) = π, and](xeqB−xm) = 0.
Note also that xm is equidistant to xeqA and xeqb; hence,
LeqA = LeqB = c for some constant c. Then (10) reduces to

ẋ = c

[
1 0
0 1

]
(xeqA − xm) + c

[
1 0
0 1

]
(xeqB − xm),

= c

[
1 0
0 1

](
xeqA + xeqB − 2xm

)
= 0.

Theorem IV.2. The equilibrium points xeqA and xeqB for
system (10) are asymptotically stable.

Proof. We start by rewriting (10) as

ẋ =
∑

I={A,B}

LeqI(x)

[
cθ(I) −sθ(I)
sθ(I) cθ(I)

]
(xeqI − x), (11)

with θ(A) = α, and θ(B) = β. Note that the properties for
functions LeqI(x) presented in Section III-A are useful given
that LeqI(x) vanishes for x sufficiently far from xeqI like, for
instance, the proximity of the other equilibrium point; hence,
we focus our attention on to the argument of the summation.
Then, for the local system:

˙̃x = LeqI(x̃)

[
cθ(I) −sθ(I)
sθ(I) cθ(I)

]
(xeqI − x̃),

where x̃ belongs to the vicinity of xeqI . The change of
variables y = x̃− xeqI leads to

ẏ = LeqI(y + xeqI)

[
cθ(I) −sθ(I)
sθ(I) cθ(I)

]
(−y).

Our candidate Lyapunov function is V (y) = (y21 + y22)/2
and its time derivative is

V̇ (y) = ∇V · ẏ

= −LeqI(y + xeqI)
[
y1 y2

]
·
[
cθ(I) −sθ(I)
sθ(I) cθ(I)

] [
y1
y2

]
,

= −LeqI(y + xeqI)cθ(I)(y21 + y22),

≤ 0,

for |cθ(I)| ≥ 0, which implies |θ(I)| ≤ π/2. Taking into
account the ranges obtained for α, and β in Section III-B, we
conclude that xeqA and xeqB are asymptotically stable.

Theorem IV.3. The equilibrium point xm is a saddle point,
i.e., it is unstable.

Proof. We show that there are two invariant regions intersect-
ing at xm. A subset E is said to be invariant with respect
to some dynamics ẋ = f(x) if x0 ∈ E and the trajectory
x(t) ∈ E,∀t > 0, [9]. Then, for one of these regions we show
that the trajectory diverges from xm, while in the other region
the trajectory converges to xm instead.

Consider the region

E1 = {x ∈ R2|x = xm + s[−1 1]T , s ≥ 0, s ∈ R},

where φA = π, φB = 0,](xeqA−x)) = π,](xeqB−x)) = 0.
Then, system (10) becomes

ẋ =LeqA

(
xm + s

[
−1
1

])[
1 0
0 1

](
xeqA − xm − s

[
−1
1

])
+

LeqB

(
xm + s

[
−1
1

])[
1 0
0 1

](
xeqB − xm − s

[
−1
1

])
,

=c1

(
xeqA − xm − s

[
−1
1

])
+ c2

(
xeqB − xm − s

[
−1
1

])
,

=c1

(
1

2
(xeqA − xeqA)− s

[
−1
1

])
+

c2

(
1

2
(xeqB − xeqA)− s

[
−1
1

])
,

=

(
c1 + c2

2

)
xeqA −

(
c1 + c2

2

)
xeqB − 2

(
c1 + c2

2

)
s

[
−1
1

]
,

=

(
c1 + c2

2

)(
xeqA − xeqB − 2s

[
−1
1

])
,

=

(
c1 + c2

2

)
(r − 2s)

[
−1
1

]
,

which makes the trajectory x(t) belongs to E1. In a similar
approach we can also formulate

E2 = {x ∈ R2|x = xm + s[−1 1]T , s ≤ 0, s ∈ R},

for which we would obtain

ẋ =

(
c1 + c2

2

)
(r + 2s)

[
−1
1

]
.

Note that these two slopes are zero at the equilibrium points
xA and xB . These two points also belong to E1 and E2, as
xm belongs to both E1 and E2. We can combine the results
for ẋ for the sets E1 and E2 so it becomes

ẋ =

(
c1 + c2

2

)
s(r − 2|s|)

[
−1
1

]
. (12)

Because of Lemma IV.1, we need to incorporate xm; hence,
the vector field (12) also becomes zero for s = 0, i.e., for
xm. We have that s(r − 2|s|) ≥ 0 for all s ∈ U with
U = {(−∞,−r/2] ∪ [0, r/2]} while s(r − 2|s|) < 0 for
V = {(−r/2, 0) ∪ (r/2,∞)}. Therefore, for |s| < r/2, the
slope (12) diverges from xm, rendering this equilibrium point
unstable.

Another region of interest consists of

D = {x ∈ R2|x = xm + s[1 1]T , ρ ≥ 0, ρ ∈ R},

where the system (10) becomes

ẋ =LeqA

(
xm + ρ

[
1
1

])[
cα −sα
sα cα

](
xeqA − xm − ρ

[
1
1

])
+

LeqB

(
xm + ρ

[
1
1

])[
cβ −sβ
sβ cβ

](
xeqB − xm − ρ

[
1
1

])
.

Note that the subspace D is equidistant to xA and xB . As a
consequence, α+ β = 0 =⇒ cβ = cα, sβ = −sα, then

ẋ =c

[
cα −sα
sα cα

](
xeqA − xm − ρ

[
1
1

])
+

c

[
cα sα
−sα cα

](
xeqB − xm − ρ

[
1
1

])
,

=c

[
cα −sα
sα cα

](
r

[
0
1

]
−
(r

2
+ ρ
)[

1
1

])
+

c

[
cα sα
−sα cα

](
r

[
1
0

]
−
(r

2
+ ρ
)[1

1

])
,

=c

(
r(cα− sα)

[
1
1

]
− (r + 2ρ)

[
1
1

])
,

=− c(rsα+ 2ρcα)

[
1
1

]
.

At x = xm, ρ = 0 and sα = 0 which makes ẋ = 0.
Meanwhile, for |ρ| << 1, |sα| << 1, cα ≈ 1; hence, the
term 2ρcα determines the sign of ẋ. Finally, for ρ < 0, ẋ > 0
and ρ > 0, ẋ < 0, which points outs that trajectories on D
converge to xm.

V. SIMULATION RESULTS

The phase portrait of system (1) when u(t) = 0 and ω(t) =
0 is presented in Fig. 4. Note that there are two asymptotically
stable equilibrium points at [−1 1]T and [1 − 1]T . The
metastable state is represented by the point in between these
two equilibrium points and it displays both a stable and an
unstable trajectory. It is worth pointing out that the vector field
at the bottom right and the top left corners points to the stable
equilibrium point radially, while in the region in the middle the
vector field becomes parallel to the positive diagonal, and in
the vicinity of the negative diagonal the vector field points to
the stable equilibrium points. This is the result of (5) and (6),
which allows us to merge the properties of radial vector fields
such as sinks as well as the vector fields for stable nodes where
the rate of approach to the equilibrium is different according
to the direction.

As pointed out earlier, the model proposed in (1) is nor-
malized both in state and time; therefore, manipulation of
the constants presented in Section III is required to match
a realistic model. However, simulation result involving time
are presented in Fig. 6(a) and Fig. 6(b). The star marker
present in Fig. 6(a) indicates the initial condition chosen
for this particular simulation. We can see that the trajectory
automatically falls on the stable equilibrium point [−1 1]T ,
and it stays there until the signal u(t) triggers the system to
the other stable domain of attraction, i.e., [1 − 1]T . The
trajectory in Fig. 6(a) moves counterclockwise, which makes

Fig. 4. Phase portrait of the systems (1) for u(t) = 0 and ω(t) = 0.

it evident that the trigger signal u(t) need only be sufficient to
change the state of the system to the other domain of attraction,
so once u(t) is silent, the system drifts to the closest stable
equilibrium point.

Another simulation with noise injection as additive noise
is presented in Fig. 6(a) and Fig. 6(b). This time, the noise
injection signal ω(t) is presented as the signal at the very top
of Fig. 6(b), and it takes place at two points in time. First, the
noise signal is present at a state where the trajectory of system
(1) in on the stable equilibrium point [−1 1]T . The noise is
present on the state of system but the trajectory remains on
the domain of attraction of the equilibrium point. At a later
time, the noise signal is injected when the input signal u(t)
attempts to trigger a transition to the other equilibrium point,
causing u(t) not to be strong enough to provoke the transition.
It is also visible in Fig. 6(a) where there is an internal loop
on the original trajectory.

VI. CONCLUSIONS

We have presented a bi-dimensional model that replicates
the phase diagram of a first order flip-flop. Our model is
smooth and does not resort to switching strategies, which
comes in handy on hybrid modelings where the amount of
discrete states is already big. The model also takes into
account the metastability behavior, which can be exploited
when studying software execution faults due to an undefined
logical state. We conceived the noise injection to be additive
noise targeting the transition between the stable equilibrium
points. However, the model is flexible and many parameters
can be changed to alter its behavior.

REFERENCES

[1] J. U. Horstmann, H. W. Eichel, and R. L. Coates, “Metastability behavior
of cmos asic flip-flops in theory and test,” IEEE J. Solid-State Circuits,
vol. 24, no. 1, pp. 146–157, Feb 1989.

(a)

(b)

Fig. 5. Simulation results, (a) Trajectories of (1) in the state plane. The star
marker is an arbitrary point chosen as the initial condition and , (b) Output
signal x1 = Q, input signal u(t) and output signal x2 = Q̄ in ascending
order vs. time.

[2] I. Giechaskiel and K. B. Rasmussen, “Sok: Taxonomy
and challenges of out-of-band signal injection attacks and
defenses,” CoRR, vol. abs/1901.06935, 2019. [Online]. Available:
http://arxiv.org/abs/1901.06935

[3] T. Korak and M. Hoefler, “On the effects of clock and power supply
tampering on two microcontroller platforms,” in Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), Sept 2014, pp. 8–
17.

[4] L. Valbuena, G. L. Heileman, S. Hemmady, and E. Schamiloglu, “Pre-
dicting deviations in software execution paths due to emi injection via
reachable sets and random delays,” in 2018 International Conference on
Electromagnetics in Advanced Applications (ICEAA), Sep. 2018, pp. 578–

(a)

(b)

Fig. 6. Simulation results with noise injection as additive noise, (a) The
trajectories of (1) in the state plane now has an internal loop that correspond
to the noise injection signal ω(t) . The disruption is more evident on (b),
where the transition from Q̄ to Q is frustrated.

581.
[5] L. Valbuena, G. Heileman, S. Hemmady, and E. Schamiloglu, “A testbed

for simulating electromagnetic effects on software execution,” in 2017
IEEE International Conference on Circuits and Systems (ICCS), Dec
2017, pp. 26–31.

[6] C. Pouant, F. Torrs, A. Reineix, P. Hoffmann, J. Raoult, and L. Chusseau,
“Modeling and analysis of large-signal rfi effects in mos transistors,”
IEEE Trans. Electromagn. Compat., pp. 1–10, 2018.

[7] P. K. Kundu and I. M. Cohen, Fluid Mechanics. Elsevier, 2008.
[8] L. A. Valbuena Reyes and H. G. Tanner, “Flocking, formation control,

and path following for a group of mobile robots,” IEEE Trans. Control
Syst. Technol., vol. 23, no. 4, pp. 1268–1282, July 2015.

[9] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.

