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ABSTRACT

Neutron stars provide a unique probe of the dense-matter equation of state (EOS),

which in turn governs many astrophysical transients of interest today, including

gamma-ray bursts, kilonovae, core-collapse supernovae, and gravitational waves from

neutron star mergers. While many theoretical predictions for the dense-matter EOS

have been calculated and constrained by laboratory experiments at low densities,

these methods do not constrain the EOS at the densities or compositions reached

in neutron star interiors. Recently, the EOS community has been driven by a push

to incorporate new observations of neutron star phenomena. In this dissertation,

I develop a multi-pronged framework for using astrophysical observations of neu-

tron stars to constrain the dense-matter EOS. To that end, I develop a Bayesian

statistical inference scheme to map from neutron star observables to an optimally

parametrized EOS. I also derive several new methods to directly compare diverse

types of observations, including a model-independent mapping between the moment

of inertia of a pulsar and the neutron star radius, as well as a one-to-one mapping be-

tween the radius and the tidal deformability measured from a neutron star merger.

These relationships allow us to directly compare radii inferred from gravitational

wave data (or from a future moment of inertia measurement) to X-ray observations

of the neutron star radius. With this mapping, I use the tidal deformability from

the first neutron star merger, GW170817, to place new constraints on the neutron

star radius of 10.2 < R < 11.7 km (68% confidence; for a flat prior in R), which are

already competitive, though consistent with previous results from the X-ray com-

munity. Additionally, I develop a method for connecting gravitational wave data to

the slope of the nuclear symmetry energy and I show that gravitational waves imply

smaller values than have been found in Earth-based experiments. In the final chap-

ters of my dissertation, I tie in dynamical phenomena to these constraints. Using
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results from state-of-the-art supernovae simulations, I show that such simulations

are starting to accurately recreate the observed compact object mass distribution

and I use these results to identify the origins of various features in the observed

mass distribution. Finally, I introduce a new microphysical framework for extend-

ing models of the cold EOS to arbitrary temperatures and compositions, which can

be used to simulate neutron star mergers or core-collapse supernovae with robust

physics.
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CHAPTER 1

Introduction

1.1 Overview

During the explosions that mark the deaths of massive stars, standard stellar evolu-

tion processes produce the densest matter found anywhere in the Universe. While

the outer layers of the star are cast off, the core collapses and is compressed by

gravity to form a neutron star, whose central densities are 1014 times denser than

found in matter on Earth. At these densities, the wave-functions of individual neu-

trons overlap and the final fate of the matter remains an open question. One of the

long-standing goals of both modern nuclear and astrophysics is to better understand

the equation of state (EOS) under these extreme conditions.

A wide variety of theoretical models for the dense-matter EOS have been pro-

posed. The earliest models were for a simple, cold Fermi gas of degenerate neutrons

(Oppenheimer and Volkoff, 1939), but these provide too little pressure to support

the masses of astrophysically-observed neutron stars. More modern EOS include

additional sources of pressure, generated by repulsive interactions between parti-

cles. However, the nature of these interactions, as well as the number of degrees

of freedom involved, remains highly uncertain. The resulting suite of EOS range

from models in which the matter is purely nucleonic at high densities (e.g., Baym

et al. 1971; Friedman and Pandharipande 1981; Akmal et al. 1998; Douchin and

Haensel 2001) to models predicting the emergence of more exotic phases of matter,

such as pion condensates (e.g., Pandharipande and Smith 1975), kaon condensates

(e.g., Kaplan and Nelson 1986), hyperons (e.g., Balberg and Gal 1997), or decon-

fined quark matter (e.g., Collins and Perry 1975). More recently, some studies have

started to incorporate quark degrees of freedom using state-of-the-art results from

perturbative QCD (e.g., Fraga et al. 2014).
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Nuclear experiments offer some constraints for these various theoretical models.

For example, the two-body potential can be constrained from nucleon-nucleon scat-

tering data at energies below 350 MeV while the three-body force can be constrained

using the properties of light nuclei (e.g., Akmal et al., 1998; Morales et al., 2002).

These few-body potentials can then be used to bound the EOS at densities near

the nuclear saturation density, ρsat = 2.7 × 1014 g/cm3 . Experimental constraints

can also be expressed in terms of the nuclear symmetry energy, which characterizes

the difference in energy between pure neutron matter and symmetric nuclear mat-

ter, which has equal numbers of protons and neutrons. The value of the nuclear

symmetry energy at the nuclear saturation density, S0, and its slope, L0, have been

constrained by fits to nuclear masses (e.g., Danielewicz, 2003); by measurements

of the neutron skin thickness (Centelles et al., 2009; Horowitz et al., 2014), the

giant dipole resonance (Trippa et al., 2008), and the electric dipole polarizability

of 208Pb (Tamii et al., 2011); and by observations of multifragmentation or isospin

diffusion in heavy ion collisions (e.g., Tsang et al., 2004). For a recent review of

these measurements, see Oertel et al. (2017).

However, these nuclear experiments typically probe densities at or below ρsat;

extrapolations to higher densities remain difficult (Lattimer, 2012). These exper-

iments also tend to probe matter that is hot, relative to the Fermi energy, and

fairly symmetric. This adds an additional two dimensions over which experimental

results must be extrapolated to match the conditions found in neutron star interi-

ors. Moreover, while the interactions between particles can be written in terms of

few-body potentials up to ∼ ρsat (Akmal et al., 1998; Morales et al., 2002; Gandolfi

et al., 2012), the expansion of interactions into few-body terms starts to break down

at higher densities, due in part to the overlap of the particle wave-functions (Özel

and Freire, 2016). Without a well-defined framework for parameterizing particle

interactions, even theoretical progress poses a challenge.

Thus, to constrain the neutron star EOS, the only practical way forward is to use

observations of neutron stars themselves. All macroscopic properties of a neutron

star – including its mass, radius, moment of inertia, and quadrupole moment, as
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measured through a tidal deformability – are determined by the EOS at densities

above ρsat. Observations of these properties, therefore, provide a unique probe

of the EOS in the ultra-dense limit, where terrestrial-based efforts break down.

Throughout the course of this dissertation, I will develop a multi-pronged theoretical

framework to connect such observations of neutron star phenomena to the dense-

matter EOS.

1.2 Predicting neutron star observables from theoretical EOS

To understand how neutron star properties connect to the EOS, I will start with the

forward-facing problem: for any star, the stellar propoerties can be calculated from

the EOS using the stellar structure equations. However, because neutron stars are

extremely compact objects, with typical compactness GM/Rc2 ' 0.2 for a canonical

1.4 M� neutron star with a radius of 10 km, the classical stellar structure equations

break down. A relativistic version of the stellar structure equations was first derived

in a pair of contemporaneous papers by Tolman (1939) and Oppenheimer and Volkoff

(1939), using a solution to Einstein’s equation for a perfect fluid in static, spherically-

symmetric equilibrium. The eponymous “TOV” equation relates the pressure, P ,

and energy density, ε, of a particular EOS to the stellar mass, M , enclosed by a

given radius, r, according to

∂P

∂r
= −G

c2

(ε+ P )
(
M + 4πr3 P

c2

)
r2(1− 2GM

rc2
)

, (1.1)

where the mass is given by
∂M

∂r
=

4πr2ε

c2
. (1.2)

Here and throughout this dissertation, G and c are the gravitational constant and

speed of light, respectively. By numerically integrating the TOV equations outward

from the center of the star, one can solve for the point at which the pressure becomes

negligible and, hence, for the total mass and radius of a star with a given central

density.

The TOV equations provide a one-to-one mapping of the microscopic properties

of matter to macroscopic observables. For a given EOS, this translates into a specific
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Figure 1.1 A large sample of proposed EOS (left) and their corresponding mass-
radius relations (right). Figure reproduced with permission from Özel and Freire
(2016).

prediction for the allowed combination of masses and radii that all neutron stars

must obey. Figure 1.1 shows a sample of mass-radius curves for a wide range of

proposed EOS. As shown in the right panel of this figure, modern EOS calculations

predict that the radius of a 1.4 M� star is between ∼10 and 15 km and that the

maximum mass of a neutron star is between 2 and nearly 2.8 M�. By measuring

these and other properties of neutron stars, it is thus possible test the predictions

of individual EOS and, potentially, constrain families of models.

1.3 Observations of neutron star properties

There are a variety of neutron star properties that are observationally accessible

for testing the predictions of the EOS, including not only neutron star masses and

radii, but also higher order moments of the interior mass distribution such as the

moment of inertia and the tidal deformability. In this section, I will describe how

these measurements are made and will review recent results.
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1.3.1 Masses

To date, more than 30 precision neutron star masses have been measured, by care-

fully tracking pulse arrival times from radio pulsars in binary systems. Fitting the

pulse arrival times to an elliptical orbit allows for the determination of the five

Keplerian parameters that characterize an orbit, from which we can determine the

binary mass function

f =
4π2

T�

x3
PSR

P 2
b

=
(Mc sin i)3

M2
T

, (1.3)

where T� ≡ GM�/c
3 is the mass of the sun in time units, Pb is the binary period,

xPSR is the projection of the pulsar’s semi-major axis onto the observer’s line of

sight, i is the inclination of the orbit, and Mc, MPSR and MT ≡Mc +MPSR are the

companion mass, pulsar mass, and total binary mass, respectively. In order to break

the degeneracy in the mass function and solve for MPSR, we need a separate measure

of the companion mass. This is typically accomplished in one of two ways for radio

pulsars. If the companion is also a compact object – either a white dwarf or a second

neutron star – and the orbit is sufficiently compact, then relativistic effects can be

measured using a post-Keplerian (PK) framework and treating both objects as point

masses. The measurement of a single PK parameter can be used to place bounds on

MPSR, while the measurement of two PK parameters can tightly constrain the pulsar

mass (e.g., Taylor and Weisberg, 1989; Damour and Taylor, 1992). Alternatively, if

the radio pulsar has a white dwarf companion that is optically bright, then phase-

resolved spectroscopy can be used to measure the projected orbital velocity of the

white dwarf which, when combined with the orbital velocity of the pulsar, can

be used to constrain the mass ratio. Doppler broadening in the spectrum of the

white dwarf atmosphere can further be used to determine the local gravitational

acceleration and, hence, the white dwarf mass. From the white dwarf mass and

the mass ratio, one can trivially determine the mass of the pulsar (Thorsett and

Chakrabarty, 1999, and references therein).

For a subset of neutron stars that are not radio pulsars, it is still possible to

infer mass constraints if the neutron star resides within an X-ray binary system.



20

For accretion-powered pulsars in an eclipsing binary with a high-mass companion,

X-ray observations of the neutron star, combined with optical observations of the

stellar companion, can be used to solve for the binary parameters of the system,

including the mass of the neutron star. For neutron stars in accreting low-mass

X-ray binaries, it is possible to simultaneously constrain the neutron star mass and

radius (see §1.3.2), though these mass measurements are less precise than those

obtained from radio pulsar timing. For a recent review on neutron star masses

measured with all of these methods, see Özel and Freire (2016).

Figure 1.2 Left: Observed mass distribution of pulsars and black holes, including the
apparent gap of compact objects with masses ∼ 2−5 M� (Özel et al., 2012). Right:
Updated pulsar mass distribution, showing new evidence of bimodality (Antoniadis
et al., 2016).

The masses measured with these three methods range from ∼ 1.1 M� (Rawls

et al., 2011; Özel et al., 2012), to greater than 2 M� (Demorest et al., 2010; An-

toniadis et al., 2013; Fonseca et al., 2016; Cromartie et al., 2020). The observed

pulsar mass distribution is shown in the left panel Fig. 1.2, with the galactic black

hole mass distribution shown for comparison (Özel et al., 2012). The right panel of

Fig. 1.2 shows a more recent update for the pulsar mass distribution, which suggests

that the population may in fact be bimodal (Antoniadis et al., 2016). While the

lower end of this mass distribution offers interesting insight into how neutron stars

form (e.g., Suwa et al., 2018), it is the highest mass neutron stars that allow for the
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most direct constraints on the EOS. Unlike in Newtonian stars, in neutron stars,

the pressure does not simply oppose the gravity but also contributes to the overall

mass-energy of the system and, hence, to the total gravity. This can be seen directly

in the right-hand side of eq. (1.1) and leads to a unique prediction of general relativ-

ity: that there exists a maximum neutron star mass, Mmax, above which an object

will collapse to a black hole. Current observations imply Mmax & 2 M�, based on

the measurement of two roughly 2 M� neutron stars, PSR J1614-2230 (Demorest

et al., 2010; Fonseca et al., 2016) and PSR J0348+0432 (Antoniadis et al., 2013).

When these pulsars were first discovered, their existence was used to rule out EOS

families that did not provide enough pressure to support such a large Mmax, includ-

ing models that allowed for meson condensates or hyperonic matter, both of which

soften the overall EOS (Demorest et al., 2010). Several such EOS are shown as gray

lines in Fig. 1.1. However, some of these softer EOS models have since been modi-

fied, so that they now provide sufficient pressure to be consistent with the existence

of massive neutron stars (see, e.g., Bednarek et al. 2012 for an allowed hyperonic

model). Recently, Cromartie et al. (2020) reported the detection of a new possible

candidate for the most massive pulsar, whose mass is M = 2.14+0.10
−0.09 M�. While

the 1σ error bars for this measurement are still large, the system is a promising

candidate for further EOS constraints.

The compact object mass distribution shown in Fig. 1.2 can also be used to test

the predictions of state-of-the-art simulations of core-collapse supernovae. While

much progress has been made in modeling the late stages of stellar evolution and

the explosion mechanism of the core-collapse over the last decade, significant uncer-

tainties remain. Many of these uncertainties result from the inherent complexity of

the explosion mechanism. A core-collapse supernova successfully explodes only if the

outgoing shock wave, which stalls due to neutrino losses and photo-dissociation, is

revived. The long-favored, though still unproven, method for this revival is through

neutrino energy transport. Although great progress is being made on this problem,

the community has yet to reach a consensus on the details of the neutrino-driven

explosion mechanism (Janka et al., 2016, and references therein). Additionally, ob-
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servational evidence from Supernova 1987A (e.g., Arnett et al., 1989; Hillebrandt

and Hoflich, 1989), other well-observed supernovae (e.g., Maeda et al., 2008), su-

pernova remnants (e.g., Grefenstette et al., 2014; Milisavljevic and Fesen, 2015),

and from neutron star natal kicks (e.g., Lai et al., 2001; Hobbs et al., 2005) suggest

that successful explosions are significantly asymmetric and, therefore, require multi-

dimensional simulations to study. While 3D simulations are now possible (see e.g.,

Hammer et al., 2010, for one of the first sets of results), such simulations are ex-

tremely computationally expensive, which limits the possible parameter space that

can be explored.

An alternate way forward, then, is to use simplified, one-dimensional simulations

that facilitate large parameter studies. For example, Sukhbold et al. (2016) surveyed

the explosion outcomes for a large and fine grid of stellar models (from Woosley and

Heger, 2007; Sukhbold and Woosley, 2014; Woosley and Heger, 2015), combined

with a novel one-dimensional neutrino-driven explosion mechanism (Ugliano et al.,

2012; Ertl et al., 2016). While simplified, this approach produces successful explo-

sions across a wide range of progenitor masses and recreates many of the features of

fully 3D models. Moreover, the simplifications of these 1D simulations have allowed

for an unprecedented, large-scale study of supernova outcomes (Sukhbold et al.,

2016), which makes it possible, for the first time, to directly confront state-of-the-

art theoretical models with the growing sample of neutron star mass measurements.

Additionally, the origin of various features shown in Fig. 1.2 – such as the bimodal-

ity of the neutron star mass distribution and the observed gap between the most

massive neutron stars and the lightest black holes – can start to be understood by

systematically comparing with the results from such simulations (see Chapter 8).

1.3.2 Radii

We can also test the predictions of individual EOS using measurements of the neu-

tron star radius. Currently, the most stringent radius constraints come from the

detection of thermal emission from the neutron star surface, either through spectro-

scopic or pulse timing measurements.
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A spectroscopic radius measurement combines two key pieces of information:

an effective temperature, Teff , which can be modeled from the thermal spectrum

of the stellar surface, and the thermal bolometric flux, Fbol. Combined with an

independent measurement of the distance to the source, D, which can be found if

the source is selected carefully, e.g. to be in a globular cluster with a known distance,

then the observed radius is simply given by

Robs =

(
Fbol

σBT 4
eff

)1/2

D. (1.4)

For a classical star, this would be the end of the story; but, for a neutron star, the

surface emission is gravitationally lensed by its own self-gravity (Pechenick et al.,

1983; Psaltis et al., 2000) and so the radius that is observed is larger than the true

radius. Correlated constraints on the true radius, R, and the stellar mass, M , can

be extracted by correcting for this self-lensing, according to

Robs =

(
1− 2GM

Rc2

)−1/2

R. (1.5)

Spectroscopic radius measurements have been made primarily for two types of

systems. In the first, a neutron star in an accreting low-mass X-ray binary (LMXB)

is observed during quiescence, when the accretion temporarily slows or halts alto-

gether. This allows for the stellar surface to be observed as the star re-radiates the

heat it stored during the accretion phase, and hence for Teff and Fbol to be directly

measured (e.g., Guillot et al., 2013; Guillot and Rutledge, 2014; Heinke et al., 2014;

Bogdanov et al., 2016). Alternatively, for some neutron stars in accreting LMXBs,

enough material can accumulate that it undergoes a thermonuclear burst, which can

spread across the surface of the star. van Paradijs (1978) first showed that the spec-

tral properties of the cooling tails from such a burst could be used to measure Robs

using eq. (1.4), and thus correlated M −R constraints using eq. (1.5) (van Paradijs,

1979). More stringent radius constraints can be measured for the subset of cases

in which the thermonuclear burst is powerful enough to lift the photosphere away

from the surface of the star. For these photospheric radius expansion (PRE) events,

some of the degeneracy between the mass and radius can be broken by additionally
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measuring the Eddington flux, which corresponds to the flux at the moment the

photosphere touches back down onto the surface of star, defined as

FEdd =
GMc

κesD2

(
1− 2GM

Rc2

)1/2

, (1.6)

where κes is the opacity to electron scattering. Combined observations of the cooling

tail and the Eddington flux provide some of the most stringent radius constraints

to date (e.g., Özel et al. 2009; Güver et al. 2010; Güver and Özel 2013).

The current sample of quiescent LMXB and PRE radius measurements are sum-

marized in Fig. 1.3, reproduced with permission from Özel and Freire (2016). Un-

der the assumption that all neutron stars have a common radius (as is predicted

by the vertical mass-radius relations in Fig. 1.1) and that the observed scatter of

measurements is simply experimental error, these data combine to yield a narrowly-

constrained radius of R = 10.3 ± 0.5 km (Özel et al., 2016). This common-radius

assumption is reasonable for EOS that remain nucleonic to high densities. With

a more general inference in which exotic EOS are also allowed, Özel and Freire

(2016) find that the neutron star radius of a 1.5 M� star is constrained to the range

9.9 − 11.2 km. (See also a similar analysis of LMXB data by Steiner et al. (2013),

in which the radius of a 1.4M� star is constrained to the range 10.4− 12.9 km.)

Pulse profile modeling offers a complementary approach to these spectroscopic

methods for constraining the neutron star radius. A subset of isolated pulsars show

thermal emission in the soft X-rays, which is powered by return-current heating of

the magnetic-field polar caps. This surface emission is gravitationally lensed by the

neutron star spacetime, so that even when the hot-spot rotates out of our direct

line of sight, part of the emission is still beamed towards us. By carefully modeling

the observed pulse profiles – taking into account the effects of the temperature

distribution, size, and location of the hot-spot, as well as the beaming pattern

of the emitted radiation and the lensing effect of the neutron star’s self-gravity –

correlated constraints on the mass and radius can be inferred.

The Neutron Star Interior Composition ExploreR (NICER) is a NASA Mission

of Opportunity that is currently timing a small number of rotation-powered X-ray
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Figure 1.3 Summary of radius constraints measured from neutron stars in LMXBs
during quiescence (left) or from PRE sources (right). All contours are shown at
the 68% confidence-level. Figure reproduced with permission from Özel and Freire
(2016).

pulsars, with the goal of measuring the neutron star radius from their pulse profiles

(Gendreau et al., 2012). Recently, the NICER collaboration published the first

radius measurement from one of their sources, PSR J0030+0451, which they find to

be R = 12.71+1.14
−1.19 km for a multi-component, phenomenological set of pulse-profile

models (Bogdanov et al. 2019; Riley et al. 2019; see also Miller et al. 2019). While

these constraints are still broad, they seem to favor larger radii than have previously

been found. As more physical pulse-profile models are developed for interpreting

these data, it will be interesting to see whether this discrepancy with the LMXB

sources persists.

1.3.3 Moment of inertia

Higher-order moments of the neutron star mass distribution provide further con-

straints on the dense-matter EOS. While §1.2 focused on calculating masses and

radii from an EOS, the TOV equations can be augmented to solve for the corre-

sponding moments of inertia as well (see Chapter 4). Just as a particular EOS

predicts a unique radius for a star of a given mass, so too does it predict a unique

moment of inertia.
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The first measurement of the neutron star moment of inertia is expected to be

announced imminently, following the discovery and continued observations of the

double pulsar system, PSR J0737−3039 (Lyne et al., 2004). This system makes

such a measurement possible for two key reasons. First, PSR J0737−3039 is the

only known double neutron star system in which both stars are visible as active

radio pulsars. By carefully measuring the pulse arrival times from each pulsar, their

orbits can be accurately and independently tracked, which provides unparalleled

constraints on the mass ratio of the system. Additionally, the system is among the

most relativistic binaries known, with an orbital period of 147 min and a small but

non-zero eccentricity, which allows for the measurement of multiple PK parameters.

The most relevant PK parameter for this measurement is the advance of the

periastron, ω̇, which depends on two competing effects: (1.) the post-Newtonian or-

bital dynamics, which are determined by the masses of the two pulsars and (2.) the

coupling between the spin vector of the more rapidly-spinning star, Pulsar A, and

the total orbital angular momentum of the system. The amount of the spin-orbit

coupling, in turn, depends on the moment of inertia of Pulsar A. Thus, by modeling

the post-Newtonian contribution and subtracting it from the total observed ω̇, one

can, in principle, measure the moment of inertia of Pulsar A. This process requires

accurate knowledge of the masses of each pulsar, which can be obtained with the

measurement of at least two additional post-Keplerian parameters. Current tim-

ing simulations suggest that the masses can be best determined by combining the

Shapiro delay “shape” parameter, s, and the decay of the binary orbital period, Ṗb.

With continued tracking of the system, Ṗb will be be sufficiently accurate to allow a

10% measurement of the moment of inertia within the next few years (Kramer and

Wex, 2009).

1.3.4 Tidal deformability

Another probe of the neutron star interior mass distribution has recently emerged:

through the observation of gravitational waves emitted during a binary neutron star

merger. When two neutron stars orbit one another, the stars emit gravitational ra-
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diation, which causes the system to spiral inward and ultimately coalesce. Weisberg

and Taylor (1981) provided the first indirect evidence for gravitational waves, by

measuring the orbital decay of the double neutron star system, B1913+16, with ra-

dio pulsar timing (Weisberg and Taylor, 1981; Taylor and Weisberg, 1982; Weisberg

and Huang, 2016). The direct detection of gravitational waves was the founding goal

of the Laser Interferometer Gravitational wave Observatory (LIGO), which consists

of two interferometers located in Hanford, Washington and Livingston, Louisiana.

Following a first observing run from 2002 - 2010, the two observatories were upgraded

to higher sensitivity and to probe lower gravitational wave frequencies. With these

improvements, Advanced LIGO commenced O1 operations in 2015 and soon made

the first direct detection of gravitational waves, from a binary black hole merger

(Abbott et al., 2016d). In the subsequent O2 observing run, which started in 2017,

the Italian gravitational wave observatory, Virgo, came online and joined the LIGO

network.

Soon thereafter, on August 17, 2017, the LIGO-Virgo collaboration recorded

the first detection of gravitational waves from a binary neutron star merger, with

event GW170817. Following the binary coalescence by 1.7 seconds, a gamma-ray

burst was observed independently by the Fermi Gamma-ray Burst Monitor and

the International Gamma-Ray Astrophysics Laboratory, in the same direction as

GW170817 (Abbott et al., 2017a). Roughly 11 hours later, a fading optical transient

was discovered by the Swope Supernova Survey (SSS17a/AT2017gfo; Coulter et al.,

2017), which was extensively followed up (Abbott et al., 2017d). Early observations

of this source indicated a blue transient that faded over the initial 48 hours and

reddened over the next ∼ 10 days. Altogether, these observations have confirmed

neutron star mergers as the central engines powering at least some short-duration

gamma-ray bursts, as has long been theorized (Eichler et al., 1989; Narayan et al.,

1992; Berger, 2014). These observations have also confirmed that neutron star

mergers can indeed produce a kilonova, powered by the radioactive decay of merger

ejecta (Li and Paczyński, 1998; Metzger et al., 2010; Abbott et al., 2017d). With

the coincident detection of gravitational and electromagnetic signals, GW170817



28

has ushered in a new era of multi-messenger astrophysics.

With current detector sensitivity, the main EOS information from a neutron star

merger is encoded in the tidal deformability, which characterizes the quadrupolar

response of an object to an external tidal field. The tidal deformability is another

unique prediction of the EOS and, like the moment of inertia, it can be calculated

using an augmented set of TOV equations (see Chapter 6). During an inspiral,

as the two neutron stars become increasingly tidally deformed, the resulting asym-

metry causes a phase shift in the emitted gravitational waves. Thus, by fitting

the time-dependent phase of the observed gravitational signal, one can measure the

tidal deformability and use it to constrain the EOS (Flanagan and Hinderer, 2008;

Hinderer, 2008; Read et al., 2009b; Hinderer et al., 2010; Read et al., 2013; Lackey

and Wade, 2015). Already, many studies have started to use the tidal deformabil-

ity information from GW170817, and, in some cases, from the second likely binary

neutron star merger (GW190425; The LIGO Scientific Collaboration et al., 2020),

to place constraints on the predictions of theoretical EOS (e.g., Abbott et al. 2018;

Landry and Essick 2019; Capano et al. 2020; The LIGO Scientific Collaboration

et al. 2020; for a recent review, see Raithel 2019 and references therein).

1.4 Constraining the EOS from neutron star observables

Each of the measurements described in § 1.3 – on the maximum neutron star mass,

stellar radius, moment of inertia, or tidal deformability – provides a test for the

predictions of a particular EOS. However, this method of testing already-formulated

EOS is inherently limited in scope: it remains possible, even likely, that the current

sample of proposed EOS does not probe the full range of physical possibilities.

One alternate approach is to instead infer the functional form of the EOS directly

from the observations. Formally, it is possible to invert the TOV equations to

recover the EOS, given high-quality mass and radius observations that completely

populate the mass-radius curve (Lindblom, 1992). However, even with roughly a

dozen radius measurements, the current sample of data is sparse. Moreover, there is
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no known mechanism for producing neutron stars below ∼ 1M� and none have ever

been observed (see Fig. 1.2). As a result, performing an exact inversion remains

observationally unrealistic.

A second approach is to infer a simplified functional form for the EOS, using

a parametrization. This requires fewer observations and allows for the EOS to be

recovered from a more limited range of data. Many parametrizations have been

proposed, ranging from a spectral expansion of the enthalpy (Lindblom and Indik,

2012, 2014) to discrete segments that are piecewise polytropic or linear (Read et al.,

2009a; Özel and Psaltis, 2009; Hebeler et al., 2010; Steiner et al., 2016). However,

despite these various proposals, only limited systematic optimizations have been

undertaken to determine the ideal number of segments and functional forms for a

parametric EOS. Moreover, these early parametrization studies relied on a sample of

existing theoretical EOS as benchmarks, which limits the diversity of EOS that can

subsequently be inferred. They also only sought to reproduce the predicted radii to

uncertainties that are rather large by today’s standards, reflecting the data that were

available at the time. Given the growing sample of mass and radius measurements,

as well as the anticipated moment of inertia measurement from PSR J0737−3039,

any useful parametrization must be able to recreate masses and radii to higher

precision than ever before, while still maintaining a minimum set of parameters (see

Chapter 2).

Once such a parametrization is found, the parameters can be determined using

a Bayesian statistical inference scheme. Such methods have been previously devel-

oped in Steiner et al. (2010, 2016) and Özel et al. (2016) for a variety of mass and

radius data from LMXB sources. However, amongst the existing inference schemes,

important statistical considerations have yet to be explored. For example, it is not

obvious what types of prior distributions should be used – or on which parameters

the priors should be defined – and biases in currently-used methods of marginaliza-

tion persist. These statistical issues can significantly influence the resulting EOS

constraints, particularly when the data are sparse (as will be addressed in Chapter 3)

or come from different types of experiments (as will be addressed in Chapter 7).



30

1.5 Dynamical phenomena and the finite-temperature EOS

All of the measurements discussed so far constrain the dense-matter EOS at zero-

temperature and in β-equilibrium. These conditions are appropriate for old, static

neutron stars that have had sufficient time to cool and equilibrate, following their

formation during a core-collapse supernovae. However, during and soon after the

core-collapse, the matter in a proto-neutron star can be quite hot – meaning that

the average energy of the particles exceeds the local Fermi energy – and nearly

symmetric. Similarly, although the neutron stars remain cold and in β-equilibrium

during the early inspiral phase of a merger, at late times in the merger, shock

heating can significantly raise the temperature of the system and the composition of

the matter can evolve away from β-equilibrium, as the dynamical timescale becomes

shorter than the neutrino-interaction timescale. Thus, when it comes to modeling

the matter in a core-collapse supernova, in a cooling proto-neutron star, or in the

late stages of a neutron star merger, the cold, β-equilibrium EOS no longer applies.

Rather, these phenomena are governed by the finite-temperature EOS with non-

equilibrium compositions.

This distinction is particularly important as we look to incorporate new observa-

tions of dynamical phenomena into our framework for constraining the EOS over the

next decade. For example, one promising new probe of the EOS is anticipated with

the future measurement of post-merger gravitational waves – which are expected to

be emitted by a neutron star remnant of a binary merger, as the remnant relaxes

down to an equilibrium configuration (e.g., Bauswein and Janka, 2012; Read et al.,

2013; East et al., 2016; Rezzolla and Takami, 2016). (For a discussion of the de-

tectability of the post-merger signal, see Chapter 10.) However, with temperatures

far exceeding the Fermi energy and non-equilibrium compositions in the remnant,

it is in fact the finite-temperature EOS that these post-merger gravitational waves

probe. Thus, combining the EOS constraints derived from such a measurement with

the EOS constraints derived from cold neutron stars will require a robust framework

for disentangling the role of the underlying cold pressure, the thermal pressure, and
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the effect of the changing composition on the pressure for these dynamical phenom-

ena.

Currently, there exist only a few theoretical models for the EOS at non-zero

temperatures and non-equilibrium compositions. These models span a very limited

range of the physical possibilities that may arise in neutron stars interiors, and many

predict neutron star properties that are inconsistent with the latest observations

(e.g., radii & 13 km). In order to probe a wider range of underlying physics or

to study more observationally-consistent models, most modern merger simulations

employ an ad-hoc approach that consists of a thermal correction term added to

a parametrized cold EOS. The thermal correction is derived from an ideal-fluid

treatment of the matter (e.g., Janka et al., 1993), which assumes that the matter is

diffuse and non-interacting. While this ideal-fluid approximation was a useful first

step towards considering the role of the thermal pressure, it neglects the effects of

degeneracy, which can reduce the thermal pressure by up to four orders of magnitude

at neutron star densities. By so drastically over-estimating the thermal pressure,

the ideal-fluid approximation can introduce large errors into key observable features,

such as the lifetime of the remnant object and the post-merger gravitational wave

frequencies (Bauswein et al., 2010). Furthermore, this ad-hoc framework neglects

the changing proton fraction inside the star altogether. An improved framework to

address these issues will be the topic of Chapter 9.

1.6 Outline of this work

In this dissertation, I describe new contributions to the field of deriving EOS con-

straints from astrophysical observables, ranging from mass and radius measure-

ments, to gravitational waves from binary neutron star mergers.

I will start with a statistical framework that I have developed for optimally

inferring EOS constraints. In Chapter 2, I describe a new parametrization of the

EOS that has been systematically optimized to recover a wide range of possible EOS

behavior. In Chapter 3, I introduce a Bayesian statistical inference scheme to recover
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the pressures of this optimally-parametrized EOS. I also identify an important bias

in currently-used inference techniques, resulting from a statistical subtlety in the

marginalization of a multi-dimensional parameter-space and I demonstrate how to

avoid such pitfalls.

I then introduce a set of new, EOS-independent mappings between higher-order

moments of the mass distribution and the neutron star radius. In Chapter 4, I derive

maximal bounds on the moment of inertia for a pulsar of a given mass, which can be

used to map the anticipated measurement of the moment of inertia to the neutron

star radius in a model-independent way. In Chapter 5, I report a new universal map-

ping between the binary tidal deformability, as measured from a gravitational wave

event, and the neutron star radius. Both of these relationships provide a direct route

for transforming a high-order moment of the mass distribution to a corresponding

stellar radius. These transformations can thus facilitate novel comparisons between

radii inferred from three very different types of observations: X-ray spectra (for

the direct radius measurement), radio timing measurements (for the moment of

inertia), and gravitational waves (for the tidal deformability). This will allow for

an unprecedented check for systematic biases or modeling uncertainties in each of

these independent measurements, and has already provided new constraints on the

neutron star radius.

Motivated by the direct mapping from gravitational waves to the neutron star

radius, and the long-known correlations between the neutron star radius and the

nuclear symmetry energy (e.g., Lattimer and Prakash, 2001), Chapter 6 introduces

a new method for constraining the nuclear symmetry energy from a neutron star

merger event. I also report the resulting constraints on the slope of the symmetry

energy, L0, inferred from GW170817, which are in modest tension with what has

been found in terrestrial nuclear experiments.

With the new wealth of multi-messenger constraints on the EOS, it is no longer

obvious how to best compare experimental results that are measured in different

domains. In Chapter 7, I discuss statistical biases that can arise when the domain

of measurement differs from the domain of comparison and I introduce an optimized
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approach to robustly compare multi-messenger neutron star data.

In the final chapters of this dissertation, I transition to considering simulations

of dynamical phenomena. In Chapter 8, I report on results from state-of-the-art

supernova simulations from a collaborator, and I calculate the predicted mass func-

tions of the remnant compact objects. I compare these simulated mass functions to

the observed mass functions and find strong agreement, providing new evidence in

favor of these simulations. Using these results, I also identify the origins of different

features in the neutron star mass distribution. In Chapter 9, I introduce a new

microphysical framework to calculate the EOS at finite temperatures and arbitrary

compositions. This framework will allow for more robust and systematic studies

of EOS effects in future simulations of binary neutron star merger simulations and

core-collapse supernovae. Finally, in Chapter 10, I summarize the main conclusions

from this dissertation and discuss the future prospects for constraining the EOS

over the next decade.

Each chapter in this dissertation is based on the results of individual studies that

I led, but that include valuable contributions from several co-authors and collabo-

rators. At the start of each chapter, I include a citation and acknowledgment of the

contributors to the work included in that chapter and, to acknowledge these joint

efforts, I will switch to using “we” throughout.
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CHAPTER 2

An Optimal Parametrization of the EOS�

We will start with the topic of an optimally parametrized EOS, motivated by the

increasing number and precision of measurements of neutron star masses, radii, and,

in the near future, moments of inertia. One way to facilitate the mapping of such

observables to the EOS is through a parametrization of the latter. In this chapter,

we present a generic method for optimizing the parametrization of any physically

allowed EOS. In order to test our parametrization as generally as possible, we gen-

erate mock EOS that incorporate physically extreme behavior. We then apply our

parametrization to these mock EOS and determine the differences in masses, radii,

and moments of inertia between the parametrized and the full EOS. We optimize the

number of segments included in the parametric EOS by requiring these differences

to be smaller than the expected accuracy of observations. We find that sampling the

EOS with five fiducial densities that are evenly spaced in the logarithm of density

(i.e., using five polytropes) recreates the radii of the assumed EOS to within .0.5

km for the extreme cases and to within .0.12 km for 95% of a sample of 42 pro-

posed EOS with a wide range of input physics. Such a parametrization is also able

to reproduce the maximum mass to within . 0.04M� and the moment of inertia to

within .10% for 95% of the proposed EOS sample.

�A version of this chapter has been published previously as Raithel, Özel, and Psaltis (2016).

From Neutron Star Observables to the Equation of State. I. An Optimal Parametrization. ApJ,

831, 44. We thank Gordon Baym for useful comments on that manuscript and we gratefully

acknowledge support from NASA grant NNX16AC56G for this project.
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2.1 Optimizing the parametric EOS

We parametrize the EOS in terms of n piecewise polytropes,1 spaced between two

densities, ρmin and ρmax. We define the dividing density and pressure between each

piecewise polytrope to be ρi and Pi, respectively. Each polytropic segment is then

given by

P = Kiρ
Γi (ρi−1 ≤ ρ ≤ ρi), (2.1)

where the constant, Ki, is determined from the pressure and density at the previous

fiducial point according to

Ki =
Pi−1

ρΓi
i−1

=
Pi

ρΓi
i

(2.2)

and the polytropic index for the segment, Γi, is given by

Γi =
log10(Pi/Pi−1)

log10(ρi/ρi−1)
. (2.3)

Figure 2.1 shows an example of piecewise polytropes over three density segments,

with various values of their polytropic indices, Γ, to illustrate the behavior of

eqs. (2.1)-(2.3). Our primary goal in optimizing the parametrization is to re-

duce the errors in the prediction of observables (i.e., mass, radius, and moment

of inertia) below a threshold that is comparable to the uncertainties in present or

upcoming observations, while keeping the number of polytropic segments to a min-

imum. For the optimization process, we produce extreme, albeit physically allowed

EOS between 1−8 ρsat to test how well our parametrizations reproduce observables

with various numbers of polytropic segments included. Once our parametrization is

optimized, we then apply it to more reasonable, physically motivated EOS to test

its ability to recreate those as well.

In addition to the number of polytropes to include in the parametrization,

there are two other variables that we have to optimize: the density at which

the parametrization should start and the spacing of the polytropic segments.

For the question of where to start the parametrization, we explored starting at

ρ0 = 1014 g cm−3 as well as at ρ0 = ρsat. It is typically assumed that the EOS is

1See Appendix A for a discussion of a linearly parametrized EOS.
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Figure 2.1 Pressure as a function of density for a sample of piecewise polytropes.
The equation of state is divided into polytropic segments at three fiducial densities
that are uniformly spaced in the logarithm. In each segment, we allow the polytrope
in eq. (2.1) to have an index of Γ = 0, 1, or 2 to illustrate their general behavior.

known up to ρsat; however, Lattimer and Prakash (2001) showed that for a sample

of around 30 proposed EOS, the predicted pressures vary by a factor of 5 over the

range 0.5 ρsat < ρ < ρsat, even though these EOS are all meant to be consistent

with nuclear physics experiments in this density regime. This is because the ex-

trapolation of pressures from symmetric nuclear matter to neutron-rich matter is

poorly constrained. Meanwhile, densities below ∼ 0.5ρsat do not significantly affect

the global properties of the star. Therefore, we allowed our parametrization to start

at both 0.5ρsat and ρsat, in order to explore these two limits. As for the question of

how to space the polytropic segments, the preferred option is to space the segments

evenly in the logarithm of the density. A logarithmic spacing more finely samples

the low density region of the EOS, which is the region that most affects the resulting

neutron star observables (Lattimer and Prakash, 2001; Read et al., 2009a; Özel and

Psaltis, 2009). For completeness, we also explored a second possibility: spacing the
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fiducial densities between each polytropic segment linearly.

We found that the combination of starting the parametrization at ρsat and spac-

ing the fiducial densities evenly in the logarithm resulted in the smallest errors in

mass and radius. We therefore start the first polytrope at ρ0 = ρsat and space the

remaining fiducial densities evenly in the logarithm between ρ0 and 7.4 ρsat. We

set the last point, ρn = 7.4 ρsat, following the results of Read et al. (2009a) and

Özel and Psaltis (2009) who found that the pressure at this density determines the

neutron star maximum mass and that pressures at higher densities do not signifi-

cantly affect the overall shape of the resulting mass-radius curve. We determined the

pressure corresponding to each fiducial density by sampling whichever EOS we were

parametrizing, i.e., Pi = PEOS(ρi). For ρ ≤ ρ0, we connected our parametrization to

a low-density EOS.

We varied the total number of fiducial densities above ρsat from 3 to 12. Clearly,

as the number of polytropes used to represent the EOS increases, the errors in the

observables are expected to reduce. Our goal in the remainder of this chapter is

to determine the minimum number of fiducial densities required to reproduce the

mass, radius, and moment of inertia of a neutron star to within desired observational

uncertainties.

2.2 From EOS to observables

In order to determine how well our parametrizations were able to reproduce the

observations predicted by a given EOS, we used the Tolman-Oppenheimer-Volkoff

(TOV) equations and solved them to find the mass, radius, and moment of inertia.

The TOV equations give the pressure, P , and the enclosed mass, M , of the star

as a function of radius, according to eqs. (1.1) and (1.2). Additionally, the energy

density, ε, is given by

d
ε

ρ
= −Pd1

ρ
. (2.4)

To get the full relation between energy density and mass density, we can integrate
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eq. (2.4) for Γ 6= 1 to

ε(ρ) = (1 + a)ρc2 +
K

Γ− 1
ρΓ, (2.5)

where a is an integration constant. Along any density section of the EOS, requiring

continuity at either endpoint determines a such that eq. (2.5) becomes

ε(ρ) =

[
ε(ρi−1)

ρi−1

− Pi−1

ρi−1(Γi − 1)

]
ρ+

Ki

Γi − 1
ρΓi , ρi−1 ≤ ρ ≤ ρi (2.6)

where Ki and Γi are determined as in eqs. (2.2) and (2.3).

Similarly, for the case of Γ=1, eq. (2.4) becomes

ε(ρ) =
ε(ρi−1)

ρi−1

ρ+Ki ln

(
1

ρi−1

)
ρ−Ki ln

(
1

ρ

)
ρ, ρi−1 ≤ ρ ≤ ρi. (2.7)

We used eqs. (2.6) or (2.7) to relate an EOS to the energy density, and then used

that energy density to integrate the TOV equations outwards from the center of the

star. The radius at which the pressure becomes negligible gives the total mass and

radius of the star.

In order to calculate the moment of inertia, we simultaneously solved eqs. (4.1)

and (4.2) with two coupled differential equations for the relativistic moment of

inertia,
dI

dr
=

8π

3

(ε+ P )

c2

fjr4

1− 2GM
rc2

, (2.8)

and
d

dr

(
r4j

df

dr

)
+ 4r3 dj

dr
f = 0, (2.9)

where f(r) ≡ 1− ω(r)
Ω

, j ≡ e−ν/2(1− 2GM/rc2)1/2, ω(r) is the rotational frequency

of the local inertial frame at radius r, and Ω is the spin frequency of the star. The

boundary conditions for the second-order partial differential eq. (4.5) are[
df

dr

]
r=0

= 0 (2.10)

and

f(r = RNS) = 1− 2
G

c2

I

R3
NS

. (2.11)
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To solve these coupled equations, we integrated eqs. (4.4) and (4.5) outwards from

the center of the star, using eq. (4.6) as one boundary condition, and iterated it to

find the value of f0 for which eq. (4.7) is valid.

In this way, we determined the mass, radius, and moment of inertia for a given

equation of state.

2.3 Generating mock equations of state

In order to be as general as possible and go beyond the current sample of proposed

equations of state, we tested our parametrization on a sample of mock EOS that

incorporated extreme but physically allowed behavior, with the hypothesis that if

our parametrization could accurately capture these extreme cases, then it would be

able to reproduce more reasonable EOS as well.

Figure 2.2 Cumulative distribution of polytropic indices, Γ, calculated at all tabu-
lated densities in a given range in a sample of 49 proposed EOS. We found that the
majority of polytropic indices lie between Γ ∼ 1 and Γ ∼ 5 and we therefore set the
two extreme polytrope options in our mock EOS to have these indices.

For our mock EOS, we assumed the true EOS of neutron stars to be well known
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up to the nuclear saturation density. We then divided the high-density regime, from

1-8 ρsat, into 15 segments that were evenly-spaced in the logarithm of the density,

so that each segment would be small relative to the overall range of densities. The

logarithmic sampling also sampled the lower density region better and thus allowed

more variability in the region that most affects the global properties of the star

(Lattimer and Prakash, 2001; Read et al., 2009a; Özel and Psaltis, 2009). In each of

the 15 segments, we allowed our mock equation of state to be one of two extremes,

which we describe below (see § 2.4 for the addition of phase transitions to these

mock EOS).

We set both the upper and lower extremes of each segment to be polytropes.

To determine the polytropic index of each, we looked at a sample of 49 proposed

equations of state. This sample of EOS was compiled in order to include a wide

variety of physics and calculation methods, as in Read et al. (2009a). Using the

tabular data for each of these EOS, we calculated the polytropic indices for all

adjacent sets of pressure and density using eq. (2.3) for two density ranges. The

cumulative distribution of the resulting polytropic indices is shown in Figure 2.2.

We found that the majority of polytropic indices fell between Γ=1 and 5; therefore,

we set our nominal upper and lower extremes to have these indices and allowed any

sequence of polytropic indices across our density range.

There is, however, an absolute upper bound on the allowed polytropic index that

is set by the condition of causality, which requires that the pressure gradient inside

a neutron star obey the relation

dP

dε
≡
(cs
c

)2

≤ 1, (2.12)

where cs is the local sound speed.

We can use this relation to derive the corresponding bound on Γ by noting that

we can write eq. (2.12) as

dP

dε
=
dP

dρ

(
dε

dρ

)−1

=
(cs
c

)2

. (2.13)

For a polytrope, dP/dρ = ΓP/ρ, and the mass density-energy density relation of
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eq. (2.4) can be expanded to
dε

dρ
=

1

ρ
(ε+ P ) . (2.14)

The polytropic index can therefore be written as

Γ =
c2
s

c2

ε+ P

P
≤ ε+ P

P
≡ Γluminal. (2.15)

In order to ensure that our upper extreme did not violate causality, we set our upper

polytropic index to be the minimum of Γ = 5 and Γluminal.

With this set of steps, we obtained the pressure, mass density, and energy density

for each segment of our mock equations of state. The mock EOS start at ρsat, so

once the pressure at this density is determined, the above relations will uniquely

determine the rest of the behavior of each mock EOS. We introduced further freedom

in our mock EOS by allowing two significantly different pressures at the starting

point, ρsat. This is motivated by the fact that such a bifurcation is also seen among

the set of proposed EOS. We used the EOS SLy (Douchin and Haensel, 2001) and

PS (Pandharipande and Smith, 1975) to determine the lower and higher starting

pressures, respectively.

With 15 density-segments, two options for the polytropic behavior along each

segment, and two options for the starting pressure, our algorithm produced 2× 215

= 65,536 different mock EOS against which we could test our parametrization.

However, we excluded any mock EOS that were too soft to produce a 1.9 M�

neutron star (Demorest et al., 2010; Antoniadis et al., 2013), reducing our final

sample size to 53,343.

2.3.1 The mock EOS

The 53,343 extreme mock equations of state that reached 1.9 M� are shown in

Figure 2.3.

All possible trajectories through this grid are indeed included, with the constraint

that pressure must always increase with density (i.e., only monotonic behavior in

this grid is allowed). The broadening of the mock EOS at high pressures is a result
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Figure 2.3 The grid of 53,343 extreme, mock equations of state, starting at nuclear
saturation density with a pressure corresponding to either the EOS SLy (in red) or
PS (in blue). One sample mock EOS is shown bolded in black. Each mock EOS
is composed of 15 segments that are spaced evenly in the logarithm between 1 and
8 ρsat. Each segment is a polytrope with either Γ=1 or the minimum of Γ=5 and
Γluminal. Only EOS that reach 1.9 M� are shown here, leading to the absence of
segments in the lower right corner of the parameter space.

of our requirement that the upper polytropic limit must be the minimum of Γ=5

and Γluminal.

The corresponding mass-radius curves, calculated according to the method de-

scribed in § 2.2, are shown in Figure 2.4. As Figure 2.4 demonstrates, starting the

mock EOS at the two different pressures corresponding to the two families of pro-

posed EOS allowed us to fully span the range of reasonable radii. With this choice,

we achieved a dense sampling of mass-radius curves that span radii from ∼ 9-17 km

for M . 1 M�. Furthermore, the mock mass-radius curves include curves that shal-

lowly slope upwards, that are nearly vertical, and that bend backwards, indicating

that we have sampled a wide range of possible underlying behavior.

The trend of increasing maximum mass with radius is a result of our causality
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Figure 2.4 Mass-radius curves corresponding to the 53,343 mock EOS shown in Fig-
ure 2.3. The red curves are those that started at ρsat with the corresponding pressure
of the EOS SLy; the blue curves use the nuclear saturation pressure of EOS PS. By
including both starting pressures in our sample, we are able to densely sample a re-
alistic range of radii of ∼ 9-17 km. These mass-radius curves also show a wide range
of slopes, indicating that a large range of underlying physics is incorporated in this
sample. The dashed line shows the causal relationship of Mmax ∼ 0.24R(M�/km),
derived by Lindblom (1984). The small discrepancy between this line and the ob-
served cutoff in our M-R curves can be attributed to the different EOS that was
assumed in the low-density region of the Lindblom (1984) analysis.

constraint. Lindblom (1984) derived the maximum gravitational redshift of a neu-

tron star as a function of mass by assuming that the equation of state is trusted up

to 3×1014g cm−3 and configuring the resulting mass of the star to maximize the red-

shift. As in our analysis, that study required that the relationship between pressure

and density inside the star not violate causality. After converting their relationship

between the mass and maximum gravitational redshift to a mass-radius relation-

ship, we find that the corresponding relationship of Mmax ∼ 0.24R(M�/km), shown

as the dashed line in Figure 2.4, is very close to what is seen in our mock EOS.

The small differences between this relationship and that in our mock EOS can be
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attributed to the different EOS assumed up to the first fiducial density: Lindblom

(1984) assumed the EOS BPS, while we assumed either SLy or PS. Furthermore,

they assumed their EOS up to 3 × 1014 g cm−3, while we assumed SLy or PS only

up to ρsat ∼ 2.7× 1014 g cm−3.

2.3.2 Determining the goodness of the parametric representation

We quantified how well our parametrization represented the full EOS and chose

the optimal number of sampling points by comparing the radii of our results to

those found using the full EOS at three fiducial masses, M=1.4, 1.6, and 1.8 M�.

We also calculated ∆Mmax ≡ |Mmax(full)−Mmax(parametric)| to determine how

well our parametrization reproduced the maximum mass predicted by the full EOS.

Finally, we calculated the difference in the moment of inertia, ∆IA, predicted by

our parametrization and by the full EOS for a star of mass M = 1.338 M�, i.e., the

mass of the Pulsar A in the binary system PSR J0737−3039.

Given the typical uncertainties in the mass, radius, and moment of inertia, either

with current data or with those expected in the near future, our goal was to repro-

duce the radii to within half a kilometer, i.e., to require ∆R < 0.5 km at each of

the three critical masses. We also required ∆Mmax < 0.1 M�. Because the moment

of inertia for Pulsar A has not yet been measured, we did not impose strict require-

ments on ∆IA , but still included this observable in our results to see qualitatively

how well it compares to some reasonable predictions for IA.

2.3.3 Results of parametrization of mock EOS

Figure 2.5 shows the cumulative distribution of residuals in radius and mass for

when various numbers of polytropic segments were included in the parametrization

for our full sample of 53,343 extreme mock EOS. We found that our goal of ∆R <

0.5 km was achieved by sampling the EOS with 5 fiducial densities above ρsat (i.e.,

including 5 polytropes). Specifically, using 5 fiducial densities, we found that for

95% of the mock EOS, ∆R = 0.50, 0.44, and 0.48 km at M = 1.4, 1.6 and 1.8 M�,



45

Figure 2.5 (a)-(c): Cumulative distributions of the differences in radii between
our parametrization and the full EOS for all mock EOS shown in Figure 2.4. The
different colors represent the number of fiducial densities above ρsat (i.e., the number
of polytropic segments included in the parametrization). The radius residuals are
measured at 1.4, 1.6, and 1.8 M�, respectively. The vertical dashed lines mark a
residual of 0.5 km; the horizontal dashed lines mark the 95% level of the cumulative
distribution. We find that our goal of residuals ≤0.5 km is achieved with 5 fiducial
densities. (d): Cumulative distribution of the difference in maximum mass between
our parametrization and the full EOS. The lines and colors are as for the other three
panels, but here the vertical dashed line is shown at 0.1 M�, corresponding to our
desired maximum residual. This goal is also approximately achieved with 5 fiducial
densities.

respectively. In addition, a parametrization with 5 fiducial densities reproduced

Mmax to within 0.12 M� in 95% of the cases.

We also calculated the difference in the moment of inertia for a neutron star with

the same mass as Pulsar A in the double pulsar system, i.e., MA = 1.338M�. The

cumulative distribution of these residuals as a function of the number of polytropes
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included in the parametrizations is shown in Figure 2.6. By sampling the EOS

at 5 fiducial densities, we found that the residuals in moment of inertia are less

than 0.17 × 1045g cm2 in 95% of the cases. The moment of inertia for Pulsar A is

expected to be on the order of 1045g cm2 and is expected to be measured with 10%

accuracy (Kramer and Wex, 2009). As a result, depending on the exact value of the

forthcoming moment of inertia measurement, 5-6 fiducial densities may be required

to recreate the moment of inertia to the 10% accuracy level.

Figure 2.6 Cumulative distribution of the differences in moment of inertia for a
star of mass MA = 1.338 M�, calculated between our parametrization and the full
EOS. The different colors represent the number of fiducial densities above ρsat that
we included in our parametrization (i.e., the number of polytropic segments). The
vertical dashed line marks a residual of 10% for a hypothetical moment of inertia
measurement of 1045 g cm2; the horizontal dashed lines mark the 95% level of the
cumulative distribution. With 5 fiducial densities, the moment of inertia residuals
are less than 0.17 ×1045 g cm2 in 95% of cases. We therefore find that, depending
on the exact value of the upcoming measurement of the moment of inertia for Pulsar
A in the double pulsar system, 5-6 fiducial densities may be needed to reproduce IA
to the 10% accuracy level.

Even a parametrization with just 3 fiducial densities reproduced the radii of



47

∼80% of our extreme mock EOS to within 0.5 km. However, requiring ∆Mmax <

0.1M� and ∆ I/I . 10% requires more points. We therefore conclude that, given

the most recent observational uncertainties and the continuing prospects for even

smaller errors in the near future, a parametrization that samples the EOS at 5

fiducial densities is optimal. Specifically, we recommend spacing the five fiducial

densities evenly in the logarithm of the density, such that (ρ0, ρ1, ρ2, ρ3, ρ4, ρ5) =

(1.0, 1.4, 2.2, 3.3, 4.9, 7.4) ρsat.

2.4 Adding phase transitions to the mock EOS

We also considered more diverse equations of state by allowing there to be a first-

order phase transition in the mock EOS described in § 2.3. We allowed only one

phase transition per mock EOS, but allowed the phase transition to start in any of

our 15 density segments and to last anywhere between 1 and 15 segments. For the

remaining segments, the mock EOS was polytropic with an index of Γ=1 or the min-

imum of Γ=5 and Γluminal, as above. With the addition of these phase transitions,

there are now 2N × N(N + 1)/2 possibilities for N segments of the EOS, for each

possible starting pressure. For 15 segments and our two starting pressures (corre-

sponding to the EOS SLy and PS at ρsat), this corresponds to 7,864,320 possibilities

for the mock EOS.

We randomly sampled ∼175,000 of these mock EOS, with roughly half starting

at each of the initial pressures. We then applied our parametrization to each mock

EOS. As we did for the original set of mock EOS, we varied the number of polytropic

segments in the parametrization between 3 and 12 and calculated the resulting

residuals in radius, mass, and moment of inertia. The mass and radius residuals are

shown in Figure 2.7. With 5 fiducial densities above ρsat, i.e., the optimal number of

polytropic segments found in § 2.3.3, we found that 95% of the radius residuals were

less than 0.48, 0.43, and 0.46 km at 1.4, 1.6, and 1.8 M�, respectively. These errors

are comparable to those from the mock EOS without phase transitions. We also

found that 95% of the differences in maximum mass were less than 0.22 M�, which is
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Figure 2.7 Same as Figure 2.5 but for 176,839 randomly sampled mock EOS, each
of which include a single first-order phase transition. Approximately half of this
sample of mock EOS starts at a pressure corresponding to the EOS SLy at ρsat,
while the other half starts at the pressure predicted by the EOS PS at ρsat. We find
that a parametrization with five fiducial densities above ρsat (i.e., five polytropic
segments) is sufficient to reproduce the radii at our three fiducial masses to within
less than 0.5 km in 95% of cases. The errors in maximum mass are significantly
worse than for the sample of mock EOS without phase transitions: 95% of this
sample has ∆Mmax < 0.22M� or less.

a larger error than in our previous, less extreme sample of mock EOS. However, 70%

of the errors in maximum mass were still less than 0.1 M� for this sample, indicating

that this parametrization reasonably recreated the maximum mass for many of our

most extreme sample of mock EOS. The error distribution for the moment of inertia

was almost identical to the distribution for the sample without phase transitions.

We found that a parametrization with 5 fiducial densities reproduced the moment of

inertia to within 0.17 ×1045 g cm2 for 95% of the mock EOS with phase transitions.
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The tail end of all four distributions in Figure 2.7 extended to higher errors than

did the tail in Figure 2.5. This is because the arbitrarily-placed phase transitions in

this sample of mock EOS can make the resulting mass-radius curve have very sharp

turn-overs. If a sharp turn-over occurs near one of the fiducial masses at which

we measure radius residuals, we will infer an artificially high error. However, the

distributions in Figure 2.7 show that the probability of the true EOS falling in this

tail is small (. 5% with 5 fiducial densities). We therefore find that, for the vast

majority of cases, a parametrization that samples the EOS at 5 fiducial densities is

sufficient to reproduce radius and maximum mass observables to within 0.5 km and

0.1-0.2 M�, even if the EOS contains a first-order phase transition at an arbitrary

density and over an arbitrary range.

2.5 Application of the parametrization to physically-motivated EOS

Even though we optimized our parametrization using EOS that span a much wider

range of possibilities than the currently proposed ones, we nevertheless explored

how well this parametrization reproduced the physically-motivated EOS found in

the literature. To this end, we applied our optimized parametrization (5 fiducial

densities above ρsat) to a sample of 42 proposed EOS,2 which incorporate a vari-

ety of different physical possibilities and calculation methods. (The tabular data

for these EOS are compiled in Cook et al. 1994; Lattimer and Prakash 2001; Read

et al. 2009a; and Özel and Freire 2016). Our sample included purely nucleonic equa-

tions of state, such as: relativistic (BPAL12 and ENG) and nonrelativistic (BBB2)

Brueckner-Hartree-Fock EOS; variational-method EOS (e.g. FPS and WFF3); and

a potential-method EOS (SLy). We also include models which incorporate more

2This sample is smaller than the 49 EOS that we previously cited because we exclude from

this subsample any calculated EOS that become acausal, except for the EOS AP4. Even though

AP4 reaches a local sound speed of cs ∼ 1.1c by densities of ρ ∼ 6 ρsat and becomes more acausal

thereafter, we do include this EOS, as it is commonly used and included in the literature. We also

exclude from this sample two EOS that are not calculated to high enough densities to accommodate

our parametrization at 7.4 ρsat.



50

exotic particles, including, for example, a neutron-only EOS with pion condensates

(PS), a relativistic mean-field theory EOS with hyperons and quarks (PCL2), and

an effective-potential EOS with hyperons (BGN1H1).

Figure 2.8 Cumulative distribution of the residuals measured between the full EOS
and the parametric version for 42 proposed EOS. The parametrization uses 5 fiducial
densities above ρsat (i.e., it includes 5 polytropic segments). Left panel: Residuals
in radius, as calculated at 1.4, 1.6, and 1.8 M�. The vertical dashed line indicates
residuals of 0.5 km, while the horizontal line shows the 95% inclusion level (this
95% inclusion line is identical in all three panels). We find that the residuals are
less than 0.10, 0.12, and 0.09 km at 1.4, 1.6, and 1.8 M� respectively for 95% of
the proposed EOS. Middle panel: Differences in maximum mass. The vertical
dashed line indicates residuals of 0.1 M�. We find that the errors in maximum
mass are less than 0.04 M� for 95% of the proposed EOS. Right panel: Differences
in the moment of inertia for a star of mass MA = 1.338M�. The vertical dashed
line indicates residuals of 10% for a hypothetical moment of inertia measurement of
1045 g cm2. We find that 95% of the proposed EOS have residuals in the moment
of inertia of 0.02× 1045 g cm2 or smaller.

In applying our parametrization to these proposed EOS, we no longer connected

to SLy or PS for ρ < ρsat. Instead, we assumed that each EOS is known up to ρsat,

and we therefore used the full EOS that we were parametrizing for the low-density

regime. For ρ > ρsat, we applied our parametrization as above. After applying our

parametrization, we calculated the resulting residuals in radii at the three fiducial

masses,3 the maximum mass, and the moment of inertia. The residuals for our

3For every EOS, we only calculated and included the radius resdiual at a given mass if the EOS
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optimized, 5-polytrope parametrization are shown in Figure 2.8.

Figure 2.9 Top: Mass-radius relations for the EOS AP4, AL4, BGN1H1, and
SLy as solid lines. The dashed lines show our parametrization of each, with five
fiducial densities above ρsat. The different symbols represent the mass and radius of
a star with a central density equal to each fiducial density. Bottom: Pressure as a
function of mass density for these EOS. The symbols represent the location of each
fiducial density. We find that this parametrization reproduces the EOS to very high
accuracy in mass-radius space.

The errors in applying the parametrization to the proposed, physically moti-

vated EOS were much lower than for the more extreme, mock EOS. Our optimized

parametrization reproduced the radii of ∼95% of the proposed EOS to within 0.10,

0.12, and 0.09 km (at 1.4, 1.6, and 1.8 M�, respectively) and the maximum masses

of 95% of the EOS to within 0.04 M�. As examples, we show in Figure 2.9 the full

mass-radius relation as well as the one calculated from our parametrized EOS for

actually reaches that mass. If, for example, an EOS only produces masses up to 1.7 M�, we still

included the radius residuals at 1.4 and 1.6 M� and simply excluded the data point at 1.8 M�.
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several proposed EOS: AP4 (nucleonic), ALF4 (quark hybrid), SLy (nucleonic), and

BGN1H1 (includes hyperons). As seen here, the differences in mass-radius space are

extremely small.

2.6 Conclusions

In this chapter, we investigated an optimal parametrization of the neutron star

equation of state that can be used to interpret neutron star observations. We found

that a parametric EOS with five polytropic segments evenly spaced in logarithm

between 1 and 7.4 ρsat was sufficient to reproduce the radii of proposed EOS to

within 0.12 km and the maximum mass to within 0.04 M� in 95% of cases. This

parametrization was also able to reproduce the radii of our more extreme, mock

EOS to within 0.5 km, suggesting that even if a more extreme EOS is proposed or

realized in nature, our parametrization will be robust enough to reproduce it well.

The radii of approximately fifteen neutron stars have already been measured, for

most of which the masses are also known (Guillot et al., 2013; Guillot and Rutledge,

2014; Heinke et al., 2014; Nättilä et al., 2016; Özel et al., 2016; Bogdanov et al.,

2016). Even though the uncertainties in the individual radius measurements are of

order ∼2 km, combining all the measurements leads to a rather narrow range of

predicted neutron star radii. Moreover, these spectroscopic measurements will be

independently checked in the near future by, e.g., waveform modeling with NICER

(Gendreau et al., 2012). The forthcoming measurement of the moment of inertia,

which is a higher-order moment of the mass distribution of the star (Lyne et al.,

2004; Kramer and Wex, 2009), and the prospect of eventual measurements of other

higher-order moments using gravitational wave observations from coalescing neutron

stars (e.g., Read et al. 2009b; Del Pozzo et al. 2013; Agathos et al. 2015) will provide

additional constraints. Finally, the recent mass mesaurements of approximately two-

solar mass neutron stars (Demorest et al., 2010; Antoniadis et al., 2013) already place

strong priors on empirically inferred EOS.

Previous empirical inferences of the equation of state based on existing obser-
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vations typically relied on functional forms with 3-4 parameters (e.g., Özel et al.

2010a; Steiner et al. 2010; Özel et al. 2016; Steiner et al. 2016). It is difficult to

compare the errors produced in these parametrizations directly to our own, as they

are not always quantified in mass-radius space. Read et al. (2009a) report errors in

their parametrization in pressure vs. density: they find that a four-parameter EOS

produced average errors in logP of 0.013, which corresponds to a fractional error

in pressure of ∼3%. Similarly, Lindblom and Indik (2012) report errors in their

spectral parametrization in energy density vs. enthalpy space: their errors ranged

from 1 to 15% when they used 4−5 spectral parameters. Finally, Steiner et al.

(2013) performed a preliminary comparison between five different types of models

(e.g., a parametrization of two polytropes and one with four line segments) and

found the largest difference in the predicted radii between any two of their models

to be 0.8 km; however, these models were not necessarily optimized in terms of the

number of parameters.

Ultimately, it is the inverse process of what we have shown that will be of interest:

the inference of a parametric EOS from astrophysical measurements. We will address

this aspect of the problem in Chapter 3. However, our work here suggests that the

uncertainties in the inference of the EOS will be dominated by the quality of the data

and the uncertainties in the inversion process itself, rather than those introduced by

the parametrization of the EOS.
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CHAPTER 3

Bayesian Inference of EOS Pressures�

With this optimally parametrized EOS now in hand, the parameters can be deter-

mined using a Bayesian inference scheme. In this chapter, we perform the natural

next step to Chapter 2: using Bayesian statistical techniques to infer the pressures

of our optimized five-polytrope parameterization given samples of simulated astro-

physical measurements. We start in § 3.1 with an introduction to the Bayesian

methods that we will use in this chapter. In §3.2, we test the Bayesian inference on

a number of equations of state, ranging from simple polytropes to complex EOS with

significant phase transitions. We also aim to characterize the effect of measurement

uncertainties on our inferred pressures. The role of such uncertainties in the EOS

inference has also been considered by, e.g., Steiner et al. (2016) and Alvarez-Castillo

et al. (2016). Here, we will consider the effect of measurement uncertainties within

the framework of our own parametrization, focusing in particular on the errors as-

sociated with each inferred pressure for a variety of EOS and we compare the errors

introduced by both the three- and five-polytrope parameterizations.

We find that, if one wants to be fully agnostic about the physics of the EOS

at high densities, the full five-polytrope parametrization must be used. This is the

only way to ensure that complex structure and/or significant phase transitions are

allowed in the inferred EOS. However, if the true EOS is relatively simple or even

a single polytrope, the five-polytrope model will lead to over-parametrization. We

�A version of this chapter has been published previously as Raithel, Özel, and Psaltis (2017).

From Neutron Star Observables to the Equation of State. II. Bayesian Inference of Equation of

State Pressures. ApJ, 844, 156. During this work, CR was supported by NSF Graduate Research

Fellowship Program Grant DGE-1143953, FO acknowledges support from a fellowship from the

John Simon Guggenheim Memorial Foundation, and DP acknowledges support from the Radcliffe

Institute for Advanced Study at Harvard University.
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find that a regularizer can help reduce the effects of the over-parametrization, while

still allowing the complexity that is the benefit of the five-polytrope model. Finally,

in either case, it is important to use the full five- (or three-) dimensional posterior

likelihoods rather than a marginalization, which, as we demonstrate in §3.3, can

introduce biases as large as 1 km.

3.1 Bayesian inference of EOS pressures

In order to infer the pressures of our parametric EOS, we follow the Bayesian ap-

proach of Özel et al. (2016), which we recreate below. (For a similar analysis, see

Steiner et al. 2010). The pressures of interest are those at our five fiducial densities,

which, as described in Chapter 2, completely determine our piecewise-polytropic

EOS.

The posterior that a particular realization of our parametric EOS correctly de-

scribes a set of data can be written as

P (EOS|data) = P (P1, P2, P3, P4, P5|data). (3.1)

By Bayes’ theorem, we can rewrite this as

P (P1, P2, P3, P4, P5|data) = CP (data|P1, ..., P5)× Pp(P1, ..., P5), (3.2)

where C is a normalization constant, Pp(P1, ..., P5) is the prior on the set of five

pressures, and

P (data|P1, ..., P5) =
N∏
i=1

Pi(Mi, Ri|P1, ..., P5) (3.3)

is the likelihood of a particular realization of N total mass-radius observations, given

a set of EOS parameters.

To calculate the likelihood of observing a particular value of (M,R) given an

EOS, we compute the probability that the observation is consistent with each point

along the predicted M-R curve, and then take the maximum likelihood. That is, we

calculate

Pi(Mi, Ri|P1, ..., P5) = Pmax(Mi, Ri|P1, ..., P5, ρc), (3.4)
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where we have used the central density, ρc, to parametrize the mass-radius curve.

In the limit of small errors in either M or R, this method is equivalent to taking

the “closest approach” of the curve to the data point.

Finally, the likelihood that an observation of (Mi, Ri) is consistent with a point

on the mass-radius curve is given by

Pi(Mi, Ri|P1, ..., P5, ρc) =
1

2πσRi
σMi

exp
{
− [Mi −MEOS(ρc)]

2

2σ2
Mi

− [Ri −REOS(ρc)]
2

2σ2
Ri

}
,

(3.5)

where σRi
and σMi

are the measurement uncertainties associated with the radius

and mass, respectively. Here, REOS(ρc) and MEOS(ρc) are the radius and mass pre-

dicted by the set of pressures, (P1, ..., P5), that comprise our parametrized EOS for a

particular central density, ρc. In order to populate the five-dimensional posterior of

eq. (3.2), we use Markov-Chain Monte Carlo simulations following the Metropolis-

Hastings algorithm.

3.1.1 Priors on the pressures

For the priors on (P1, ..., P5) in eq. (3.2), we employ constraints from physical princi-

ples, laboratory nuclear physics experiments, and astrophysical observations. Specif-

ically, we require that:

(1.) The EOS be microscopically stable, i.e.,

Pi ≤ Pi+1. (3.6)

(2.) The EOS remain causal between the fiducial densities, i.e.,

dP

dε
=
c2
s

c2
≤ 1, (3.7)

where cs is the local sound speed.

(3.) Each EOS produce a neutron star with a mass of at least 1.97 M�, in order to be

within 1 σ of the mass measurement of the most massive neutron stars (Antoniadis

et al., 2013; Fonseca et al., 2016).

(4.) Pressures P1 ≥ 3.60 MeV/fm3 and P2 ≥ 11.70 MeV/fm3, in order to be

consistent with nuclear physics experiments.
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Constraint (4) provides lower limits on the pressures at the first two fiducial

densities. As noted in Özel et al. (2016), important constraints on the EOS in the

density regime around ρsat are obtained through nucleon-nucleon scattering exper-

iments at energies below 350 MeV and from the properties of light nuclei. Results

from such experiments can be extended by assuming two- and three-body potentials

at densities near ρsat (Akmal et al., 1998). However, the interactions at higher densi-

ties cannot be written in terms of static few-body potentials. We, therefore, impose

this nuclear physics constraint only on the pressures at our two lowest fiducial den-

sities: ρ1 = 1.4 ρsat and ρ2 = 2.2 ρsat. Because the three-nucleon interaction is

always repulsive, the most model-independent lower limit uses only the two-nucleon

interaction. Using the Argonne AV8 two-nucleon pressure as calculated in Gan-

dolfi et al. (2014), we find P (ρ1)=3.60 MeV/fm3 and P (ρ2)=11.70 MeV/fm3. The

AV8 potential is a simplified version of the Argonne AV18 potential (Wiringa et al.,

1995); however, as noted in Özel et al. (2016), the two-nucleon interaction pressures

are approximately the same for either version of the potential.

3.1.2 Regularizers

We also include a regularizer in our prior distributions, in order to reduce the ten-

dency of our model to over-parameterize simple EOS. The regularizer, ξ, is Gaussian

over the second logarithmic derivative of the EOS, i.e.,

ξ = exp

[
−(d2(lnP )/d(ln ρ)2)2

2λ2

]
, (3.8)

where λ is the characteristic scale. We determine a suitable value for λ by calculating

d2(lnP )/d(ln ρ)2 at our fiducial densities for a sample of 49 proposed EOS. This

sample of EOS was compiled from the literature in order to incorporate a wide

variety of physics and calculation methods, as in Read et al. (2009a). The cumulative

distribution of second logarithmic derivatives for this sample are shown in Fig. 3.1.

From this cumulative distribution, we find that 95% of the derivatives are . 2.

We, therefore, use a characteristic scale of 4 × this value, resulting in λ = 8 as our

Gaussian regularizer. Such a regularizer will apply, at most, a penalty of ∼ 3% to
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the likelihood that we would calculate for an EOS that has second derivatives that

occur in our sample of physically-motivated EOS.

Figure 3.1 Cumulative distribution of the second logarithmic derivative in pressure
at our five fiducial densities for a sample of 49 EOS taken from the literature. The
majority of second derivatives are . 2. We, therefore, take a conservative value of
λ = 8 in our Gaussian regularizer for this second derivative.

3.2 Testing the Bayesian inference with mock data

In this section, we test the Bayesian inference method described in §3.1 using differ-

ent sets of mock data. For most of the simulations described below, we assume an

underlying EOS and create a realization of a sample of mass-radius data that are

equidistant in mass between 1.2 and 2.0 M�. We assume Gaussian measurement

uncertainties with the same dispersions among the data points, which we denote

by σM and σR. We use a Monte Carlo method to draw a particular realization of

simulated measurements from these distributions and apply our Bayesian inference

method to this data set. We explore below how well the Bayesian inference method

works for different types of underlying EOS, as well as for different number and
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Figure 3.2 (Top) Inferred equation of state and mass-radius curve from a sample of
mock data, assuming a uniform prior distribution of pressures. The mock data are
drawn from the nucleonic EOS SLy (Douchin and Haensel, 2001) and are dithered
with Gaussian noise corresponding to σM = 0.1M�, σR = 0.5 km. The actual
curves for SLy are shown in black. The magenta curve represents the most likely
EOS inferred via our Bayesian method. The 68% credibility region is shown in
gray. (Middle) Identical to top panel, but with our Gaussian regularizer included in
the inversion. (Bottom) Identical data to the top two panels, but assuming a prior
distribution that is uniform in the logarithm of pressure and including a Gaussian
regularizer. Assuming a uniform distribution leads to a preference towards high
pressures in the regions where there are few data to constrain the inversion, while
assuming that the pressures are distributed uniformly in the logarithm leads to a
preference towards lower pressures. Including the Gaussian regularizer reduces the
sensitivity to the choice of prior.

quality of data points.

In Fig. 3.2, we show the result for one realization of mock data drawn from the

EOS SLy, with uncertainties of σR = 0.5 km and σM = 0.1 M�. EOS SLy is partic-
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Figure 3.3 Individual mass-radius curves contributing to the shape of the 68%
credibility region in the top panel Fig. 3.2. A few individual curves are shown here
to emphasize the fact that not all curves that can be drawn through this region will
actually have likelihoods within the 68% interval.

ularly challenging for a parametrization like ours that is optimized for potentially

more complex EOS because it is practically a single polytrope in the density range

of interest. We, therefore, use this example to explore the strengths and limits of

the inference as well as of the regularizer.

The black lines in Fig. 3.2 represent the EOS SLy, while the magenta lines show

the most-likely inferred EOS found with our Bayesian method. The gray bands

represent the 68% credibility regions. For five-dimensional likelihoods, the 68%

credibility region is defined as the region where∫ ∫ ∫ ∫ ∫
P (P1, ..., P5|data)dP1dP2dP3dP4dP5 = 0.68, (3.9)

exactly analogous to the lower-dimensional case. It should be noted that these

credibility regions show the spread of possible solutions only, and should not be

over-interpreted. That is, there are many curves that may be drawn through these
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Figure 3.4 Correlation plots for the inferred pressures at our five fiducial densities.
The inversion was performed using uniform priors and a Gaussian regularizer (λ =
8). The red diamonds mark the pressures of the true EOS (SLy) that we are trying to
infer. There are slight anti-correlations between adjacent pressures (e.g., P1 and P2),
but the non-adjacent pressures are relatively uncorrelated. The triangular shape of
the P4 vs. P5 correlation is due to the causality requirement, which is shown as the
red line.

regions that either have very small probabilities or violate one of our priors and

are therefore unphysical. For example, the curve that could be drawn along the

very edge of any of the bands is much less likely than those truly contained in

the 68% credibility region. To emphasize this point further, we show in Fig. 3.3

several of the individual mass-radius curves that contribute to the shape of the 68%

credibility region in the top panel of Fig. 3.2. The jagged edge of the contour is
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created by multiple different mass-radius curves. Indeed, the curve that follows

either edge in its entirety is not included in the 68% interval. The same can be said

for all of the grayed 68% credibility regions shown throughout this chapter, and thus

interpretations of those regions should be made with caution.

In the top panel of Fig. 3.2, we show the results of the inversion using uniform

priors in pressure in the absence of any regularizers. The inferred EOS contains

several sharp transitions between different polytropic indices. The middle panel

shows an inversion for identical data, but in which the Gaussian regularizer has been

added to the uniform priors. The stepped behavior that was shown in the top panel

is effectively eliminated by the regularizer. With the addition of the regularizer,

our inferred, most-likely EOS closely follows SLy. The errors in pressure for our

most-likely EOS are all less than 30% for this realization of mock data, while the

errors for P2 − P5 are 3−7%.

Because there is no physical motivation to assume that the prior distribution of

the pressures is uniform, we also tested the inversion with priors that are uniform

in the logarithm of pressure. The results of this test, with identical data as above

and the Gaussian regularizer included, are shown in the bottom panel of Fig. 3.2.

The top panel of Fig. 3.2 shows that assuming a uniform prior introduces a

preference towards higher pressures. On the other hand, assuming that prior is

uniform in the logarithm of pressures biases the results toward lower pressures. The

inversion is particularly sensitive to this bias in the low-mass/low-density region of

the EOS, where we lack data. Our Gaussian regularizer helps reduce this bias, as

shown in the middle and bottom panels of Fig. 3.2, in which the results are similar

for the two types of priors when the regularizer is also included.

In the absence of a regularizer, the freedom introduced by using five polytropes

in the parametrization combined with this sensitivity to prior distributions could

lead to significantly skewed results, or even the false inference of a phase transition

with a perceived high statistical confidence. It is, therefore, important to use a

Gaussian regularizer on the second derivative, with characteristic scale λ = 8, to

avoid this sensitivity to over-fitting.
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In Fig. 3.4, we explore potential correlations between the inferred parameters for

this test. Specifically, we show the correlations for the inversion using uniform priors

and the Gaussian regularizer (i.e., the middle panel of Fig. 3.2). There are slight

anti-correlations between adjacent inferred pressures, due to fact that, even with the

addition of the regularizer, we are still over-parametrizing our model while trying

to fit the effectively single-polytrope EOS SLy. Overall, however, the pressures that

are not adjacent are uncorrelated with one another. Özel and Psaltis (2009) showed

that, for a three-polytrope parametrization, parametrizing with the pressures as free

parameters instead of the polytropic indices reduced the correlations between the

inferred values. Figure 3.4 shows that the low levels of correlations are maintained

here.

In order to ensure that the Bayesian inference works well for other underlying

EOS and that the regularizer does not adversely limit our ability to detect potential

phase transitions, we tested the method on a number of different EOS as well. As an

example,1 we show in Fig. 3.5 the results of our method obtained for an underlying

EOS with significantly more structure than SLy; specifically, we generated a mock

EOS with an extreme change in the polytropic index (from Γ = 1 to Γ = 5) that

occurs in between two of our fiducial densities. This EOS is shown in the black solid

line of Fig. 3.5. This was again designed to challenge the inversion procedure, but

in the opposite extreme from EOS SLy. Even in this case, the most likely solution

still recovers all of the pressures to within ∼30%, and recovers P2 to within 11%.

Some previous studies (e.g., Steiner et al. 2016) have suggested that parametriz-

ing with polytropic segments disfavors phase transitions because polytropes natu-

rally go through the origin. However, continuity between segments, as required in

any reasonable parametrization, implies that the power law segments are never re-

quired to go through the origin. Small values of the exponent, and hence phase tran-

sitions, are thus fully allowed. Moreover, in Fig. 3.5, we show that our parametriza-

tion is able to recover a phase transition, even when the phase transition is offset

from the fiducial densities.

1See discussion around Fig. 3.8 for other examples of EOS with a wide range of predicted radii.
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Finally, in order to quantify the range of uncertainties in the inferred pressures

for different statistical realizations of the mock measurements, we generate a large

number of mock data sets drawn from the EOS SLy (as in Figs. 3.2−3.4) and applied

our method to each set. We summarize these results in Fig. 3.6, which shows the

cumulative distribution of errors in the most likely inferred pressures at each of

our five fiducial densities. We find that the pressure at ρ2 = 2.2 ρsat is the best

constrained, with errors less than 15% in 95% of the realizations. The other four

pressures have errors less than ∼20% in approximately half of the realizations, and

are correct to within less than 0.3 dex in every realization, where 1 dex represents

an order of magnitude.

3.3 Biases due to marginalization

The Bayesian inference scheme described in §3.1 provides five-dimensional poste-

riors, P (P1, ..., P5|data). While one might explore the marginalized distributions

over each pressure, Pi, this can easily lead to misinterpretations. It is possible, for

example, that just considering the most likely pressures from each marginalized dis-

tribution of Pi will produce an EOS that violates one of our priors. The pressures

are coupled to one another and marginalizing over any one dimension removes that

dependence. For this reason, we exclusively use the five-dimensional likelihoods to

interpret our results.

Another approach that is taken in some earlier studies (e.g., Steiner et al. 2010)

is to marginalize the output of the Bayesian inference in mass-radius space, rather

than over the pressures. This is done by creating a one-dimensional histogram of the

radii over a fixed grid of masses, for all possible mass-radius curves. Analytically, we

can derive such a marginalization by first writing the radius and mass as functions

of the five pressures and a central density, i.e.,

R = R(ρc, P1, ..., P5) (3.10a)

M = M(ρc, P1, ..., P5). (3.10b)
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Figure 3.5 Inferred equation of state and mass-radius curve from a sample of mock
data, assuming a uniform prior distribution of pressures and a Gaussian regularizer.
The mock data are generated from a two-polytrope EOS that we created to have
a break in polytropic index that does not line up with our fiducial densities, the
locations of which we show with dotted vertical lines to emphasize the misalignment.
The generating EOS is shown in black, our most likely inferred EOS is shown in
magenta, and the gray regions represent the 68% credibility regions.

For a fixed mass, we can write the radius equation instead as

R = R(P1, ...P5;M), (3.11)

which we can invert to recover P1 in terms of R and (P2, ..., P5) for a fixed mass.

One can then express the radius as a function of only the mass by marginalizing
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Figure 3.6 Cumulative distribution of the errors in the most likely inferred pressure
at each of the five fiducial densities for 32 realizations of mock data. For each
realization, we took 15 mock (M,R) data points from the EOS SLy and dithered
with noise drawn from Gaussian distributions corresponding to σM = 0.1 M� and
σR = 0.5 km. We find that P2 is the best constrained, with errors less than 15%
in 95% of cases, while the other pressures have errors less than ∼20% in half of the
realizations and are correct to within 0.3 dex in every realization.

across the other four pressures, i.e.,

P (R;M) =

∫
P [R(P2, ..., P5;M), P2, ..., P5]× Ĵ

(
R

P1

)
dP2...dP5, (3.12)

where Ĵ(R/P1) is the Jacobian that transforms from P1 to R. This is the analytical

equivalent of taking the one-dimensional histogram of radii over a grid of masses.

Equation (3.12) highlights the issues that marginalizing introduces. If the full

posterior, P [R(P2, ..., P5;M), P2, ..., P5], is relatively flat, then the highly non-linear

Jacobian will dominate the resulting marginalization. The marginalization is partic-

ularly sensitive to this bias when the data are sparse and have large errors. However,

the marginalization can be skewed for any data set, if the posterior distribution is

not sharply peaked enough to overcome the influence of the Jacobian.
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Figure 3.7 Top panel: Marginalization of the most common radii found during the
Bayesian inference for two separate EOS (left and right panels). This marginaliza-
tion is computed using histograms of radii for a fixed grid of masses, for which the
analytic equivalent is shown in eq. (3.12). Bottom panel: The probability distribu-
tion from the same Bayesian inference. The most likely solution is shown in magenta,
while the gray regions show the 68% credibility regions. In both cases, the mock
data and generating EOS are shown in black. For the data centered near 10 km,
the marginalized contours are offset from the most likely solution by ∼0.5 km. For
the data clustered near 12 km, the marginalization bias is smaller but still present.

Indeed, in Fig. 3.7, we show this effect for two different sets of data: one that

is clustered around R ∼ 10 km and one that is clustered around R ∼ 12 km.

Both inversions use 5 simulated (M,R) data points, with masses that are spaced

evenly between 1.2 and 1.8 M� and with measurement uncertainties of σR=1 km

and σM = 0.1 M�. For the smaller-radii dataset, the marginalized solution is offset

by & 0.5 km from the data at all masses (upper left panel). The most likely

solution, in contrast, goes right through the data (lower left panel). For the larger-

radii dataset, the effect is less extreme but still present: the marginalized solution
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is shifted approximately 0.4 km to the right of the data. The most likely solution,

again, goes through every data point. While the marginalized solution is indeed

within the error bars of the data, the most likely solution recreates the data almost

perfectly for a variety of data. Current radius data have even larger and often

overlapping error contours that will make this effect hard to identify by eye. It

is, therefore, extremely important that only the full five-dimensional likelihoods be

used to identify EOS constraints.

It should be noted that the choice of priors does affect the size and direction of

this bias. Here, we use a prior distribution that is uniform in pressure and includes

the Gaussian regularizer, while still requiring our other physical constraints (e.g.,

causality, a 2 M� star, etc.). Using a prior that is uniform in the logarithm of

pressure pushes the bias in the other direction, i.e. toward smaller radii, and also

pushes our most likely solution in that direction. The effect of the prior is stronger

here than in Fig. 3.2 because we have more sparse data.

Figure 3.8 shows the bias of the marginalized solutions for inversions of still

more data sets, each of which used uniform priors and the Gaussian regularizer.

This figure also shows that the effect persists whether three or five polytropes are

included in the parametrization. Each inversion used 5 simulated (M,R) data points

clustered near a radius between ∼ 10− 15 km, with masses between 1.2− 1.8 M�,

as in Fig. 3.7. We find that the bias is strongest at small radii. For data centered

near 9.6 M�, the bias is 1.1 km for a three-polytrope parametrization and 0.6 km for

our five-polytrope parametrization. We include the results for the three-polytrope

parametrization in order to emphasize that this bias is not a result of our specific

choice of parametrization, but is a problem stemming from the marginalization of

posteriors using sparse data. Given the large biases that can be introduced by the

marginalization, it is clear that the marginalized solution should not be trusted.

This is particularly true when the data have large, overlapping errors which will

make this effect difficult to identify. The maximum likelihood method that we have

used throughout this chapter does not suffer any such biases.
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Figure 3.8 Radius recovered in our inversion plotted against the true radius of the
underlying EOS. The radii are sampled at four masses between 1.2 and 1.8 M� and
then averaged to create each value of R. The gray, dotted line represents a perfect
inversion, with no introduced error. The magenta lines show the most likely solution,
with circles indicating the solution for our five-polytrope parametrization and crosses
indicating the solution for a three-polytrope parametrization. The blue lines and
points represent the solutions obtained via marginalization. The most likely solution
is consistent with the true value for all radii, while the marginalization solution is
only correct for radii & 12 km and only for the three-polytrope parametrization.
At small radii, the marginalization biases the recovered radii to larger values by as
much as ∼1 km.

3.4 Conclusions

In this chapter, we developed a Bayesian method that can be used to infer the

pressures of a parametrized EOS from a set of neutron star masses and radii. We

used a parametrization containing five polytropic segments starting at ρsat, which is

the form we found to be optimal in our previous work (Raithel et al., 2016).

We investigated the influence of various priors and measurement uncertainties

on the inferred pressures. We found that the freedom introduced by using five

polytropic segments in the parametrization (which is necessary to recreate the EOS
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using next-generation data to within expected uncertainties) caused the inferred

EOS to be too stepped in behavior. We, therefore, introduced a regularizer over the

second derivative of pressure, to mitigate that freedom without sacrificing the ability

to remain agnostic about the dense matter EOS. Combined with uniform priors over

the pressures, we were able to show that measurement uncertainties expected in the

near future will allow an inference of the pressure at ρ2 = 2.2ρsat to within ∼15%,

for a simple EOS. We were able to recreate the pressures at ρ3−ρ5 to within ∼ 20%

in approximately half of the realizations, and to within 0.3 dex for all realizations.

For a more complicated EOS with a significant break in the power-law indices, we

were able to infer the pressures at all densities to within ∼ 30%.

Finally, we showed that determining the posterior via marginalization in mass-

radius space may lead to significant biases. We found that, for data at small radii,

the marginalized mass-radius curves can be biased by nearly +1 km. Previously

published EOS inferences from neutron star radius measurements are likely to have

been affected by this bias in studies that used such a marginalization. It is better,

instead, to use the maximum of the five-dimensional likelihoods computed in the

Bayesian inference method. The most likely solutions do not suffer any such bias

and were able to recreate the true M −R curve for data at any radius.

It is difficult to compare our results to previous attempts to infer the pressures

of a parametrized EOS from data because other studies do not characterize the

uncertainties in the same ways. For example, Steiner et al. (2016) report that the

maximum uncertainty allowed in their inversion is a factor of 3 in the pressure,

purely from the requirement of causality, from their assumed crust EOS, and from

the requirement that an EOS produce a star with M ≥ 1.97 M�. They report that

the maximum uncertainty is closer to a factor of 2 near the central densities of the

maximum mass stars. However, these maximum uncertainties are due to the priors

of their model only, and would likely be smaller with the inclusion of data.

Using our approach, we find that the EOS can be inferred to high accuracy

with the expected quality of next-generation data. Given that the EOS is currently

poorly constrained at high densities, the possibility of constraining it to within even
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0.3 dex, and possibly to within 15% at 2.2 ρsat, will allow significant advances in

our understanding of the physics at work in the ultradense regime.
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CHAPTER 4

Model-Independent Mapping from a Moment of Inertia Measurement to the

Neutron Star Radius �

While the Bayesian inference scheme of Chapter 3 is the most direct way of con-

straining the EOS pressures, it can also be useful to perform cross-domain compar-

isons of neutron star properties, both as a way of further testing the predictions of

various EOS and also as a means of checking for systematic biases between different

measurements. For example, by comparing a moment of inertia measured from the

double pulsar system to the dozen radii measured from X-ray spectra, it becomes

possible to confirm the consistency of new measurements before incorporating them

into a final EOS inference. These sorts of cross-domain checks are particularly im-

portant in the era of sparse data, in which any particular experiment can wield

significant constraining power.

While it is trivial to check whether a moment of inertia and radius measurement

are consistent with each other given the predictions of a particular EOS, it is less

obvious how we can compare such measurements in a model-independent way. If

the ultimate goal is still to use these measurements to constrain the EOS, then it

is critical to avoid assuming an EOS prematurely. In the following chapters, we

introduce a series of new, EOS-independent mappings between various global prop-

erties of neutron stars. We start in the present Chapter 4 with a model-independent

mapping between the moment of inertia and the neutron star radius. In Chapter 5,

we derive a new direct mapping between the tidal deformability of a neutron star

merger and the stellar radius. In Chapter 6, we introduce a new way of mapping

�A version of this chapter has been published previously as Raithel, Özel, and Psaltis (2016).

Model-independent inference of neutron star radii from moment of inertia measurements. Phys.

Rev. C, 93, 3. We thank Norbert Wex, Paulo Freire, and Michael Kramer for numerous useful

discussions on this work.
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from the tidal deformability directly to the nuclear symmetry energy, for compar-

ison with laboratory-based experiments. Finally, in Chapter 7, we introduce an

optimized statistical approach for performing cross-domain comparisons in a robust

Bayesian way.

4.1 The moment of inertia in the double pulsar system

We will start with with a new mapping between the moment of inertia and the

neutron star radius. With the discovery and continued observations of the double

pulsar system, PSR J0737−3039 (Lyne et al., 2004), a neutron star moment of

inertia measurement has become imminent. The moment of inertia for Pulsar A in

this system can be measured from the periastron advance of the binary orbit, ω̇,

due to relativistic spin-orbit coupling, in conjunction with the measurement of the

decay of the orbital period, Ṗb (Damour and Schafer, 1988). Such a measurement

is expected with up to 10% accuracy within the next five years (Lyne et al., 2004;

Kramer and Wex, 2009; Lattimer and Schutz, 2005).

The moment of inertia, which is a higher moment of the mass profile within the

neutron star, provides a strong handle on the dense-matter EOS. Indeed, the con-

nection between the moment of inertia and the EOS has previously been explored.

For example, Morrison et al. (2004) calculated the moment of inertia for Pulsar A

for three classes of EOS and showed that a moment of inertia measurement would

let us distinguish between the three classes. Bejger et al. (2005) expanded on this

work and further explored the relation between the type of EOS and the resulting

moment of inertia. However, both these works rely on individual equations of state

at high densities and are limited by the fact that current calculations might be

sampling only a restricted range of the physical possibilities.

Neutron star studies and, in particular, measurements of their moments of in-

ertia, more directly constrain the stellar structure and the dense matter EOS than

low-energy laboratory experiments. In this chapter, we show how a moment of

inertia measurement, IA, for Pulsar A of the double pulsar system maps directly
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into the neutron star structure. There are two ways to accomplish this. The first

is to assume an EOS throughout the star and solve for the resulting stellar struc-

ture. However, as we will demonstrate, the currently proposed EOS already show a

spread in their predictions of the moment of inertia for a given stellar radius and it

is unclear, given the limited range of physics explored by the current sample of EOS,

whether this spread covers the entire range of possibilities. It is therefore unclear

what degree of uncertainty would be associated with a neutron star radius, given a

moment of inertia measurement.

In order to address this uncertainty, we follow here a second approach that maps

the moment of inertia measurements to neutron star structure in a more robust

way. We employ a method that assumes an EOS only up to the nuclear saturation

density and then configures the remaining mass to either maximize or minimize the

moment of inertia. This method is independent of assumptions of the behavior of

matter at densities above the nuclear saturation density and, thus, provides the

most model-independent constraints on the neutron star structure. We show how

even a weak upper bound on IA places an upper limit on the radius of Pulsar A,

which will ultimately provide more stringent constraints on the EOS. Once a more

precise measurement of IA is made, we show that we will be able to constrain the

radius to within ±1 km.

4.2 Neutron star moments of inertia for various EOS

We start by showing the widely varying moments of inertia and radii that are pre-

dicted for a given neutron star mass, if different EOS are assumed throughout the

star. To calculate the moment of inertia predicted by an EOS, we numerically in-

tegrate the Tolman-Oppenheimer-Volkoff (TOV) equations for stellar structure si-

multaneously with a relativistic version of the differential equation for the moment

of inertia (Glendenning, 1996).

The TOV equations, which were defined in the introduction and are repeated

here for convenience, determine the pressure, P , and the enclosed mass, M , of the
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star as a function of radius, such that

dP

dr
= −G(ρ+ P/c2)(M + 4πr3P/c2)

r2 − 2GMr
c2

(4.1)

and
dM

dr
= 4πr2ρ, (4.2)

where ρ is the energy density at an interior radius, r, and

dν

dr
=

2G

c2

M + 4πr3P/c2

r2(1− 2GM
rc2

)
, (4.3)

where e−ν is the gtt component of the metric for a slowly rotating star. The spin fre-

quency of Pulsar A is 44 Hz, so any rotational deformations of the star will indeed be

small. Equation (4.3) has the boundary condition ν(RNS) = ln (1− 2GMNS/RNSc
2),

where MNS and RNS are the mass and radius of the whole star.

The additional differential equations for the moment of inertia are

dI

dr
=

8π

3

(
ρ+

P

c2

)
fjr4

1− 2GM
rc2

, (4.4)

and
d

dr

(
r4j

df

dr

)
+ 4r3 dj

dr
f = 0, (4.5)

where f(r) ≡ 1 − ω(r)
Ω

, j ≡ e−ν/2
(
1− 2GM

rc2

)1/2
, ω(r) is the rotational frequency

of the local inertial frame at radius r, and Ω is the spin frequency of the star.

Equation (4.5) is a second-order partial differential equation with the two boundary

conditions [
df

dr

]
r=0

= 0 (4.6)

and

f(r = RNS) = 1− 2
I

R3
NS

. (4.7)

To solve these coupled equations, we integrate eqs. (4.4) and (4.5) outwards from

the center of the star, using eq. (4.6) as one boundary condition, and iterate it to

find the value of f0 for which eq. (4.7) is valid.
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The final component necessary to integrate these equations is a relation showing

how the density depends on the pressure; that is to say, we need some knowl-

edge of the neutron star equation of state. We first compiled a large number of

EOS incorporating a variety of different physics and calculation methods, as in

Cook et al. (1994); Read et al. (2009a). They include purely nucleonic equations of

state, such as: relativistic (BPAL12, ENG, and MPA1) and nonrelativistic (BBB2)

Brueckner-Hartree-Fock EOS; variational-method EOS (e.g. FPS and WFF1-3);

and a potential-method EOS (SLY). Our sampling also includes models which in-

corporate hyperons, pion and kaon condensates, and quarks, including, for example:

a neutron-only EOS with pion condensate (PS); relativistic mean-field theory EOS

with hyperons (GNH3 and H1-3); and an effective-potential EOS with hyperons

(BGN1H1).

For each EOS in our list, a given central density results in a unique mass and

radius, as well as a moment of inertia. From these results, we choose the central

density so that MNS = 1.338M�, i.e., the mass of Pulsar A. The corresponding

radius and moment of inertia for each EOS are shown in Fig. 4.1.

The moments of inertia in Fig. 4.1 vary by more than a factor of ∼3 and cor-

respond to radii that vary by nearly 10 km. Figure 4.1 also shows the empirical

relation for moments of inertia,

I ' (0.237± 0.008)MR2

[
1 + 4.2

Mkm

M�R
+ 90

(
Mkm

M�R

)4
]
, (4.8)

obtained in Lattimer and Schutz (2005) by fitting to a sample of EOS which do not

show significant softening at supranuclear densities and which are not self-bound.

In principle, this fit could provide tight constraints on R given a measurement of

the moment of inertia. However, the range of neutron star radii that correspond to

a given value of the moment of inertia is limited by the sample selection of EOS; it

remains possible that the true neutron star EOS has not yet been formulated and

is not within the uncertainties in this fit.
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Figure 4.1 Radii and moments of inertia predicted by 41 different equations of
state for a neutron star of mass MA = 1.338M�. The red shaded region is the
approximate range of moments of inertia by Lattimer and Schutz (2005) for EOS
that do not show extreme softening at supranuclear densities. Even though their
approximation follows the general trend, it does not span the entire range of radii
that correspond to a given value of the moment of inertia.

4.3 Absolute bounds on the moment of inertia

As shown in Fig. 4.1, the various EOS differ by a large degree in their predictions

for the moment of inertia and the corresponding radius. We present here a less

model-dependent method of determining the neutron star structure from a future

moment of inertia measurement. It is well known that the various EOS agree well

up to ρ ∼ ρsat, in the regime where there is experimental data to constrain the

models. Our goal is to determine the bounds that can be placed on the moment of

inertia without assuming further knowledge of any EOS.

To accomplish this, we followed the formalism of Sabbadini and Hartle (1977).

We assumed an EOS only in the outer layer of the star, at densities below some
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fiducial density, ρ0. Interior to ρ0, we assumed one of two configurations to either

maximize or minimize the resulting moment of inertia.

The configuration that maximizes the moment of inertia is the one that places as

much mass as possible away from the center the star while still maintaining physical

stability (see Fig. 4.2). This corresponds to a constant density core of mass Mc and

radius Rc, such that

ρc =
Mc

4πR3
c/3
≥ ρ0. (4.9)

For r < Rc, we keep the density constant, but still vary M and P according to

the TOV equations to maintain hydrostatic equilibrium. Having determined the

structure of the neutron star in this way, we then determined the moment of inertia,

as described above.

We repeated this calculation starting from different stellar radii, RNS, but keeping

the mass constant to MNS = 1.338M�. For each radius, we determined whether the

resulting core is stable using the condition

4π

3
R3

cρc ≤Mc ≤
2

9
Rc

[
1− 6πR2

cPc + (1 + 6πR2
cPc)

1/2
]
, (4.10)

(see (Sabbadini and Hartle, 1973)) which requires that the matter inside the core be

a perfect fluid at all densities and that it can be described by a one-parameter EOS;

that the energy density, ρ, is non-negative; and that both the pressure, P , and its

derivative with respect to ρ, dP/dρ, are non-negative.

The minimum moment of inertia configuration, on the other hand, concentrates

as much mass as close to the center of the star without causing the star to collapse.

This corresponds to two constant density cores, with ρc = ρ0 and ρinner ≥ ρc (see

Fig. 4.2). The inner core radius, Rinner, was determined by iteratively solving for

the radius which maximizes the mass at the center of the star while still maintaining

stability according to eq. (4.10).

As discussed in Sabbadini and Hartle (1977), this configuration technically re-

quires infinite pressure at the center of the star. We assumed the pressure to be

constant but finite for a small, innermost core in order to avoid numerical issues
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due to the infinity, and calculated the moment of inertia for the resulting stellar

structure.

ρ < ρ0 
  

ρc ≥ ρ0 

ρinner > ρ0 

RNS 

Rc 

Rinner 

Figure 4.2 Stellar configuration for the extremes of the moment of inertia. The
outermost envelope is the region where we assume a low-density EOS. The maximum
moment of inertia configuration does not have the region denoted by ρinner. The
minimum moment of inertia configuration requires ρc = ρ0.

To be even more conservative, we calculated maximum and minimum moments

of inertia for two cases: trusting the various EOS up to ρ0 = ρsat and trusting the

EOS up to ρ0 = 0.5ρsat. We first chose AP4 (a version of the APR equation of

state) to use as a representative EOS for the integration up to ρ = ρ0, as AP4 was

constructed to fit low-density data (Akmal et al., 1998). We show the resulting

bounds on IA in Fig. 4.3.

We then varied this assumption and used other EOS for the low-density portion

of the integration, the results of which are shown in Fig. 4.4. We also show in

this figure an example moment of inertia measurements with 10% accuracy. We

show that even for the extreme configurations that are obtained for the maximum

and minimum IA, we constrain the radius to within ±1 km. This constraint can
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become even tighter if additional considerations about the neutron star structure are

incorporated. For example, the observation of a 2 M� neutron star already places

a fairly EOS-independent lower limit on the radius by excluding radii less than 8.3

km (Özel et al., 2010c).

Figure 4.3 Extreme bounds on the moment of inertia of Pulsar A as a function
of its radius. The blue curve assumes the EOS, AP4, up to ρ0 = ρsat, while the
red curve assumes AP4 up to ρ0 = 0.5 ρns. Interior to ρ0, one of two constant-
density configurations was assumed, corresponding to whether we were maximizing
or minimizing the moment of inertia.

Figure 4.4 shows that these bounds depend very weakly on the low-density EOS;

i.e., assuming different EOS produces roughly the same bounds on the radius of

Pulsar A, given a measurement of IA. This is expected since all EOS agree fairly

well with each other up to ρ ∼ ρsat. Therefore, a moment of inertia measurement

of a pulsar of known mass will directly lead to a model-independent measurement

of its radius. This is important for a direct comparison of a moment of inertia

measurement to other astrophysical measurements of neutron star radii such as those
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Figure 4.4 Extreme bounds on the moment of inertia of Pulsar A, using different
EOS for the integration up to ρ0 = ρsat. The shaded region represents a sample
measurment of the moment of inertia to 10% accuracy, which will lead to absolute
bounds on the radius of approximately ±1 km.

from spectroscopic methods (Özel et al., 2016), without requiring any assumptions

about the EOS. It will also potentially allow measurements of neutron star radii at

different masses.

As in the case of neutron star radii, the measurement of the moment of inertia will

directly lead to quantitative constraints on the ultradense matter equation of state

(Lattimer and Prakash, 2001; Read et al., 2009a; Özel and Psaltis, 2009; Lattimer

and Steiner, 2014). As an example, a measurement of the moment of inertia with

10% uncertainty can be directly translated into constraints on the magnitude S and

the slope L of the symmetry energy at nuclear saturation density. Quantitatively,

for a measurement of I = 1.3× 1045 g cm2 for Pulsar A with a 10% uncertainty, the

framework presented in this chapter will lead to a radius inference with a similar level

of uncertainty. This leads to a measurement of the pressure at nuclear saturation
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density of Psat ∼ 2.6 MeV fm−3, with only somewhat larger uncertainty, as well as

of the symmetry energy parameter L ∼ 3Psat/ρsat ' 48± 10 MeV.
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CHAPTER 5

Gravitational Wave Events as a Direct Probe of the Neutron Star Radius �

We now turn to a new, direct mapping between the tidal deformability measured

from a binary neutron star merger and the neutron star radius. We find that, when

the chirp mass is specified, the effective tidal deformability of the binary system is

surprisingly independent of the component masses of the individual neutron stars,

and instead depends primarily on the ratio of the chirp mass to the neutron star

radius. Thus, a measurement of the effective tidal deformability can be used to

directly measure the neutron star radius. We use this new mapping to constrain

the neutron star radius to 9.8 < R < 13.2 km, at 90% credibility, independently

of the assumed masses for the component stars (assuming a flat prior in the tidal

deformability; see also Chapter 7 for other choices of priors). The result can be

applied generally, to probe the stellar radii in any neutron star-neutron star merger

with a well-measured chirp mass. The approximate mass independence disappears

for neutron star-black hole mergers. Finally, we discuss a Bayesian inference of the

equation of state that uses the measured chirp mass and tidal deformability from

GW170817 combined with nuclear and astrophysical priors and discuss possible

statistical biases in this inference.

�A version of this chapter has been published previously as Raithel, Özel, and Psaltis (2018).

Tidal Deformability from GW170817 as a Direct Probe of the Neutron Star Radius. ApJL, 857,

2. Some figures and text have been updated using results from Raithel (2019), Constraints on

the neutron star equation of state from GW170817. EPJA, 55, 90. We thank Sam Gralla for

useful discussions on this work. During both projects, CR was supported by the NSF Graduate

Research Fellowship Program Grant DGE-1143953, while FO and DP were supported by NASA

grant NNX16AC56G.
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5.1 Gravitational waves and the EOS

The first detection of gravitational waves from a neutron star-neutron star merger

(GW170817, Abbott et al. 2017c) marks the start of a new era in the study of neutron

stars, their associated transient events, and the dense-matter equation of state.

The electromagnetic counterpart that accompanied the event (Abbott et al., 2017d)

has confirmed neutron star mergers as the sources of at least some short-duration

gamma-ray bursts, as has long been theorized (Eichler et al., 1989; Narayan et al.,

1992; Berger, 2014), as well as the source of kilonovae, predicted to be powered by

the radioactive decay of merger ejecta (Li and Paczyński, 1998; Metzger et al., 2010).

Information about the component neutron stars and their underlying equation of

state is encoded in the waveform itself, which was observed by the two LIGO and

one Virgo detectors for ∼3000 orbital cycles prior to the merger (Abbott et al.,

2017c).

Several studies have already placed constraints on fundamental neutron star

properties using these observations. For example, Margalit and Metzger (2017) used

the combined gravitational wave and electromagnetic signals to set an upper limit

on the maximum neutron star mass, which is a sensitive constraint on the equation

of state at high densities (Özel and Psaltis, 2009). In another work, Rezzolla et al.

(2017) inferred the maximum neutron star mass from the event without relying on

models of the electromagnetic signal, instead using only the quasi-universal relations

that describe neutron stars and simple models of kilonovae.

The observed gravitational waveform can also be used to place direct constraints

on the neutron star EOS. In one of the first quantitative studies exploring EOS

effects on the waveform from the coalescence of two neutron stars, Read et al.

(2009b) showed that a realistic waveform would deviate significantly from a point-

particle waveform and that this could be observed with Advanced LIGO. The degree

of the deviation depends on the underlying EOS and, as a result, could be used to

differentiate between EOS that differ in radius by only ∼1 km (Read et al., 2009b,

2013; Lackey and Wade, 2015).
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The magnitude of the deviation is strongest at later times in the inspiral and

during the merger, i.e., in the phases where numerical relativity would be necessary

to model the waveforms. Nevertheless, Flanagan and Hinderer (2008) found that the

early phase of the inspiral depends cleanly on a single EOS-dependent parameter:

the tidal Love number, λ. The tidal Love number measures the ratio of the star’s

tidally-induced quadrupolar deformation, Q(tid), to the tidal potential caused by a

binary companion, ε(tid), i.e.,

λ ≡ −Q
(tid)

ε(tid)
(5.1)

or, in dimensionless form,

Λ ≡ λ

M5
≡ 2

3
k

(tid)
2

(
Rc2

GM

)5

, (5.2)

where R is the radius of the neutron star and M is its mass. Following the conven-

tion of Flanagan and Hinderer (2008), we call k2 the tidal apsidal constant. The

tidal apsidal constant depends both on the equation of state and the compactness

(GM/Rc2) of the particular star. For realistic, hadronic equations of state, k2 has

been constrained to lie in the range ∼ 0.05− 0.15 (Hinderer, 2008; Hinderer et al.,

2010; Postnikov et al., 2010).

The individual Love numbers for the two stars, Λ1 and Λ2, cannot be disentangled

in the observed gravitational waveform. Instead, what is measured is an effective

tidal deformability of the binary, Λ̃, which is a mass-weighted average of Λ1 and Λ2

that we describe in detail in §5.2. The expectation is thus that Λ̃ would measure a

mass-weighted compactness for the two neutron stars. Similarly, the two component

masses are not measured directly; rather, the chirp mass is.

We report here on a new simplification that arises in the effective tidal deforma-

bility of the binary when the chirp mass is measured accurately. We find that Λ̃

depends primarily on the ratio of the chirp mass to the neutron star radius. Thus,

we find that Λ̃ can be used as a direct probe of the neutron star radius, rather than

of the compactness as is typically assumed.

In §5.2, we describe the measured properties of GW170817. We show in §5.3

that the effective tidal deformability is approximately independent of the component
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masses, when the chirp mass is specified. In §5.4, we use the Newtonian limit to

show analytically that the mass-independence arises from an inherent symmetry

in the expression for the effective tidal deformability. In §5.5, we use this new

mapping between Λ̃ and R to place new constraints on the neutron star radius, and

we compare to existing constraints from X-ray observations. Finally, in §5.6, we

perform an example Bayesian inference of the neutron star EOS from the measured

tidal deformability and chirp mass and a limited number of prior physical constraints

and discuss important statistical biases that can occur in such inference schemes.

5.2 Properties of GW170817

The properties of GW170817 were inferred by matching the observed waveform with

a frequency-domain post-Newtonian waveform model (Sathyaprakash and Dhurand-

har, 1991), with modifications to account for tidal interactions (Vines et al., 2011),

point-mass spin-spin interactions (Mikóczi et al., 2005; Arun et al., 2011; Bohé et al.,

2015; Mishra et al., 2016), and effects due to spin-orbit coupling (Bohé et al., 2013).

The LIGO analysis using these models is summarized in Abbott et al. (2017c) and

references therein.

One of the most tightly constrained properties that was inferred is the chirp

mass, defined as

Mc =
(m1m2)3/5

(m1 +m2)1/5
= m1

q3/5

(1 + q)1/5
, (5.3)

where m1 and m2 are the masses of the primary and the secondary neutron stars,

respectively, and we have introduced the mass ratio, q ≡ m2/m1. The chirp mass

was constrained to Mc = 1.188+0.004
−0.002 M� at the 90% confidence level, independent

of the particular waveform model or priors chosen (Abbott et al., 2017c).

By assuming low-spin priors, as is consistent with the binary neutron star systems

that have been observed in our Galaxy, the component masses were inferred from the

chirp mass to lie within the ranges m1 ∈ (1.36, 1.60) M� and m2 ∈ (1.17, 1.36) M�,

with a mass ratio of q ∈ (0.7, 1.0), all at the 90% confidence level (Abbott et al.,

2017c). These masses are consistent with the range of masses observed masses in
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other neutron star systems (see Özel and Freire 2016 for a recent review of neutron

star mass measurements).

GW170817 also provided constraints on the effective tidal deformability of the

system, defined as

Λ̃ ≡ 16

13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

(m1 +m2)5
, (5.4)

(Flanagan and Hinderer, 2008; Favata, 2014). In eq. (5.2), we saw that the dimen-

sionless tidal Love number depends only on the stellar compactness and the tidal

apsidal constant, which in turn depends on the equation of state and compactness.

Combining these expressions, we can explicitly write the dependence of the effective

tidal deformability on neutron star properties as Λ̃ = Λ̃(m1,m2, R1, R2,EOS).

Abbott et al. (2017c) constrain the effective tidal deformability for GW170817 to

be Λ̃ ≤ 800 at the 90% confidence level, which disfavors EOS that predict the largest

radii stars. In the following analysis, we will show that this measurement can also

be used to directly constrain the radii of the individual neutron stars, independently

of the component masses.

5.2.1 Updated analysis of GW170817

The LIGO-Virgo collaboration published a revised analysis of GW170817, roughly

one year after the initial detection (Abbott et al., 2019). This revised analysis

improved on the initially-published constraints by re-calibrating the Virgo data, ex-

tending the range of frequencies included, using a new set of waveform models that

go beyond the post-Newtonian approximation, and incorporating source distance

measurements from the electromagnetic counterpart. With the new analysis, the

chirp mass was revised down slightly to Mc = 1.186+0.001
−0.001 M� and more detailed

information on the tidal deformability was provided. In particular, the LIGO-Virgo

collaboration reported a 90% highest posterior density interval of Λ̃ = 300+420
−230 (Ab-

bott et al., 2019). The majority of this chapter is primarily based on work (Raithel

et al., 2018) that was published prior to the 2019 reanalysis, and thus the main

results use the initially-published values forMc and Λ̃. However, Fig. 5.1 and § 5.5



88

come from a more recent review paper (Raithel, 2019), which incorporates the up-

dated values for Mc and Λ̃. We will make explicit which values for Mc and Λ̃ we

are using throughout this chapter, but the conclusions all remain the same for either

choice.

5.3 Effective tidal deformability for GW170817

We start with a simple illustration of our key result. Figure 5.1 shows the effec-

tive tidal deformabilities as a function of the stellar radii for a number of realistic

EOS. For each EOS, we calculated these tidal deformabilities for various values of

m1 that lie within the mass range inferred for GW170817 (shown in different sym-

bols). The corresponding values for m2 are calculated assuming a fixed chirp mass,

corresponding to the revised value of Mc = 1.186 M�.

We find that Λ̃ is almost entirely insensitive to the mass of the component stars

for the relevant mass range and depends instead primarily on the radius of the star.

In particular, Λ̃ changes by nearly an order of magnitude between R = 10 km and

R = 15 km, but, for a given radius, changes negligibly for masses spanning the full

range of m1 = 1.36− 1.6 M�.

An upper limit of Λ̃ . 800 immediately excludes radii above ∼13 km at the 90%

confidence level, without requiring detailed knowledge ofm1. As shown in Figure 5.1,

this rules out the EOS that predict the largest radii, such as the hyperonic EOS H4

(Lackey et al., 2006) and the field theoretic nucleonic EOS with a low symmetry

energy of 25 MeV, MS1b (Müller and Serot, 1996).

The trend found in Figure 5.1 is for a sample of six EOS. However, this result

is more general, as we will now show. It has been reported previously that the

individual tidal deformabilities of neutron stars obey a universal relationship with

stellar compactness (Yagi and Yunes, 2013). In particular, Yagi and Yunes (2017)

found that the relationship can be written as

C = a0 + a1 ln Λ + a2(ln Λ)2, (5.5)

where C ≡ GM/Rc2 is the compactness and the coefficients were fit to be a0 =
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Figure 5.1 Effective tidal deformability of the binary system as a function of the
radius of the primary neutron star. The tidal deformability is calculated for various
primary masses (corresponding to the different symbols) using several proposed
equations of state (corresponding to the different colors). The mass of the secondary
neutron star is found assuming the revised chirp mass, Mc = 1.186 M�, from the
re-analysis of GW170817 (Abbott et al., 2019). Additionally, overlaid in blue is the

one-dimensional posterior distribution of Λ̃ for GW170817, as digitized from Abbott
et al. (2019) for the PhenomPNRT model. The thin purple swatch corresponds to

the quasi-Newtonian expansion of eq. (5.9) for q = 0.7 − 1.0. We find that Λ̃ is
relatively insensitive to m1 but scales strongly with radius, and that GW170817
strongly favors small radii . 13 km.

0.360, a1 = −0.0355, and a2 = 0.000705. The relation holds to within 6.5% for a

wide variety of neutron star EOS (Yagi and Yunes, 2017).

To see if the trend we have found between Λ̃ and R holds generically for a wide

range of EOS, we use the universal relation of eq. (5.5) to calculate the individual

tidal deformabilities, Λ1 and Λ2. We then calculate the effective tidal deformability

for the binary system, shown as the solid lines in Figure 5.2 for three different radii.

We find that when we use this universal relation to represent a much larger sample

of EOS, the trend holds. The effective tidal deformability of the binary depends
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extremely weakly on the component masses but strongly on the radii of the stars.
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Figure 5.2 Effective tidal deformability of the binary system as a function of the
primary mass, m1, when the chirp mass is held fixed at Mc = 1.188 M�. We
calculate Λ̃ for three fixed radii, R=10, 11, and 12 km, shown in purple, blue, and
green, respectively. The solid lines show the tidal deformability calculated using the
empirically-fit universal relation between the tidal deformability of each neutron
star and its compactness from Yagi and Yunes (2017), while the dashed lines show
the quasi-Newtonian approximation for Λi from eq. (6.15). The quasi-Newtonian
approximation is a good approximation to the full GR result.

The weak dependence of Λ̃ on the component masses is surprising and has not

been reported before. It renders Λ̃ a direct probe of the neutron star radius, rather

than of the compactness as is typically assumed. We turn now to an analytic

explanation of the origin of this result.

5.4 Effective tidal deformability in the Newtonian limit

In order to see why the dependence on mass in eq. (5.4) for Λ̃ is so weak, we turn to

the Newtonian limit. Yagi and Yunes (2013) showed that the Newtonian expression

for the tidal Love number of a star governed by a polytropic EOS with index n = 1
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(which is appropriate for the majority of realistic EOS) is simply

ΛN =
15− π2

3π2

(
Rc2

Gm

)5

. (5.6)

The full relativistic expression for the tidal deformability of a star is given by

Damour and Nagar (2009) for a given compactness and a parameter y, which is

the logarithmic derivative of a metric function, H, at the stellar surface. The full

expression is far more complicated than what we have introduced so far, but we

find that a relatively simple redshift correction to ΛN qualitatively reproduces the

universal results computed for more realistic EOS. We call this correction the “quasi-

Newtonian” expression and define it as

ΛqN =
15− π2

3π2

(
Rc2

Gm

√
1− 2Gm

Rc2

)5

. (5.7)

This corresponds to equation (96) of Damour and Nagar (2009) with β ≈ 1.

We can combine this with eq. (5.4) to write the quasi-Newtonian effective tidal

deformability as

Λ̃qN =
16

13

(
15− π2

3π2

)(
Rc2

Gm1

)5 (1 + 12q)
(
1− 2Gm1

Rc2

)5/2
+ (1 + 12/q)

(
1− 2Gqm1

Rc2

)5/2

(1 + q)5
,

(5.8)

where we have assumed that the radii for the two neutron stars are the same, as is

approximately true for n = 1 polytropic EOS. Finally, we can eliminate m1 in favor

ofMc and q using eq. (6.17), yielding an expression for Λ̃qN in terms of only q,Mc,

and R.

This quasi-Newtonian form of Λ̃qN is much simpler to work with, but is it a good

enough approximation? We show Λ̃ and Λ̃qN as functions of m1 in Figure 5.2 as

the solid and dashed lines, respectively, for fixed radii of R=10, 11, and 12 km and

fixed Mc = 1.188 M�. We find that the quasi-Newtonian approximation provides

a reasonable approximation of the full expression for Λ̃, calculated using the quasi-

universal relations. We can, therefore, use Λ̃qN to understand its dependence on the

masses.
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Expressing Λ̃qN as a series expansion around q = 1, we find

Λ̃qN = Λ̃0

(
1 + δ0(1− q)2

)
+O

(
(1− q)3

)
, (5.9)

where

Λ̃0 =
15− π2

3π2
ξ−5(1− 2ξ)5/2, (5.10)

δ0 =
3

104
(1− 2ξ)−2

(
−10 + 94ξ − 83ξ2

)
, (5.11)

and we have introduced

ξ =
21/5GMc

Rc2
(5.12)

as an “effective compactness.”

We note that expanding near q = 1 is not a restrictive choice. The known

population of neutron stars is observed to have a relatively small range of masses and

the observed mass distribution of double neutron stars is even narrower, suggesting

that most astrophysical merger scenarios will have q near unity (see Özel and Freire

2016).

From eqs. (5.9-5.12), we see that the effective tidal deformability of the binary,

Λ̃, scales approximately as R5 for a givenMc. When the mass ratio is close to unity,

the individual masses add only a small correction. For the measured chirp mass of

GW170817, we calculate the expansion coefficients for a few radii in Table 5.1. We

note that the mass dependence only enters at order (1 − q)2. Furthermore, the

weak dependence on mass becomes even weaker as the radius increases. Even for

R = 10 km, the mass dependent term adds at most a ∼4% correction to Λ̃qN for

the mass ratio range inferred for GW170817.

We show this quasi-Newtonian expansion for a range of q values, q ∈ (0.7, 1.0),

as the purple band in Figure 5.1 and find that it accurately recreates the trend

observed in that sample of EOS. Moreover, the width of this purple band – caused

by the uncertainty in q – is so narrow that the quasi-Newtonian expansion effectively

allows for a one-to-one mapping between Λ̃ and R.
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Table 5.1. Λ̃qN expansion terms for the initial chirp

mass (Mc = 1.188) measured from GW170817.

Radius Λ̃0 Expansion

R = 10 km 143.4 1 + 0.041
(

1−q
1−0.7

)2
+O

(
1−q
1−0.7

)3
R = 11 km 268.0 1 + 0.029

(
1−q
1−0.7

)2
+O

(
1−q
1−0.7

)3
R = 12 km 465.8 1 + 0.020

(
1−q
1−0.7

)2
+O

(
1−q
1−0.7

)3
R = 13 km 764.6 1 + 0.014

(
1−q
1−0.7

)2
+O

(
1−q
1−0.7

)3

5.5 Comparison to existing radius constraints

With the analytic, one-to-one mapping derived in eq. (5.9), we can now convert the

measured posterior distribution in Λ̃ to a poster distribution on the radius, according

to

P (R) = P (Λ̃)

∣∣∣∣∂Λ̃

∂R

∣∣∣∣. (5.13)

Using the updated posteriors on Λ̃ for GW170817 (Abbott et al., 2018), the corre-

sponding constraints on the radius are shown in Fig. 5.3, for a range of mass ratios.

GW170817 implies a 90% highest posterior density interval of 9.8 < R < 13.2 km

(for q = 1), with distinct likelihood peaks at ∼10.8 km and 12.3 km. Note, however

that these results are influenced by the fact that Λ̃ was originally measured assum-

ing a flat prior over Λ̃. By instead assuming a flat prior in the radius, the inferred

radii will be slightly smaller (see Chapter 7 for further discussion).

Figure 5.3 also shows, as the gray, dashed line, the radius inferred from a sample

of 12 X-ray radii measurements, under the assumption that all neutron stars share

a common radius and are governed a mono-parametric EOS (Özel et al., 2016). The

gravitational wave constraints on R are consistent with, though slightly broader

than those inferred from such X-ray measurements (for a more detailed comparison,

see Chapter 7). Finally, Fig. 5.3 indicates that the inferred radii are approximately
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Figure 5.3 Posterior distribution in radius from GW170817 for three different mass
ratios, shown in the different colors. The updated posterior distribution for Λ̃ (which

assumes a flat prior in Λ̃; Abbott et al. 2019) has been converted to posteriors
in radius using the quasi-Newtonian expansion of eq. (5.9). The resulting 90%
highest-posterior density interval corresponds to 9.8 < R < 13.2 km, for q = 1,
with likelihood peaks at R ∼10.8 and 12.3 km. The gray dashed line represents the
composite posterior in radius from 12 spectroscopic X-ray measurements, under the
assumption that all neutron stars share a common radius (Özel et al., 2016). There
is approximate agreement between the X-ray data and the higher probability peak
of the inferred radius from GW170817.

independent of the mass ratio, as expected from the weak q-dependence discovered

in eq. (5.9).

The measured constraints on Λ̃ can also be used to directly constrain the EOS,

using the type of Bayesian inference scheme that was discussed in Chapter 3. The

LIGO-Virgo Collaboration performed such an inference using a spectral parame-

terization of the EOS (Lindblom, 2010) and incorporating astrophysical priors on

the neutron star maximum mass to further constrain the parameter space. At the
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90% confidence level, the resulting EOS constraints correspond to predicted radii

of R1 = 11.9+1.4
−1.4 km and R2 = 11.9+1.4

−1.4 km (Abbott et al., 2018), which are consis-

tent with the constraints shown in Fig. 5.3. Using this spectral EOS sampling, the

LIGO-Virgo collaboration also reported direct constraints on the pressure, finding

the pressure at twice the nuclear saturation density to be 3.5+2.7
−1.7 × 1034 dyn/cm2,

and at 6ρsat 9.0+7.9
−2.6×1035 dyn/cm2, at the 90% confidence level (Abbott et al., 2018).
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Figure 5.4 Ensemble of EOS constraints from X-ray radius measurements and
GW170817. The orange and blue bands represent the EOS inferred from X-ray
measurements of neutron star radii in Steiner et al. (2013) and Özel and Freire
(2016), respectively. It should be noted that the blue band spans the range of in-
ferred EOS with posterior likelihoods that fall within 1/e of the maximum likelihood,
while the orange band represents the 68% credibility interval. The green hatched
band corresponds to the new constraints inferred from GW170817 with the LIGO-
Virgo parametric inference, at 90% credibility (Abbott et al., 2018). Finally, the
symbols show the constraints at 2ρsat from a non-parametric analysis of GW170817,
with error bars representing the 90% confidence intervals (Landry and Essick, 2019).
While these analyses report their constraints with differing confidences, the results
indicate that the constraints from GW170817 are approximately consistent with
existing inferences from X-ray measurements.
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In an independent analysis, Landry and Essick (2019) employed a non-parametric

inference of the EOS using priors generated with Gaussian processes that are con-

ditioned on a set of realistic EOS. In a Monte Carlo integration, synthetic EOS are

drawn from these non-parametric priors and used to predict the tidal deformabilities

for given component masses. These macroscopic properties are then compared with

the observed data to calculate the EOS likelihoods. The authors argue that this

method can more faithfully recreate complicated EOS, which may have phase tran-

sitions or other discontinuities. For GW170817, they find the pressure at twice the

nuclear saturation density to be 1.35+1.8
−1.2× 1034 dyn/cm2, for the case in which the

prior was only loosely trained on the realistic EOS, and 4.73+1.4
−2.5×1034 dyn/cm2, for

the case in which the prior was tightly trained on the sample EOS. For GW170817,

this method thus produces results consistent with the LIGO-Virgo parametric anal-

ysis (Abbott et al., 2018).

These EOS constraints are summarized in Fig. 5.4. The orange and blue bands

represent the EOS inferred from X-ray measurements of neutron star radii in Steiner

et al. (2013) and Özel and Freire (2016), respectively. In addition to using radius

measurements from X-ray bursts and quiescent low-mass X-ray binaries, both of

these studies also required consistency in the EOS with low-energy nucleon-nucleon

scattering data as well as sufficient pressure to support a maximum mass of & 2 M�.

Atop these previous X-ray constraints, Fig. 5.4 also shows the new constraints in-

ferred from GW170817 using the parametric Bayesian inference of Abbott et al.

(2018) (green hatched band). The non-parametric constraints of Landry and Es-

sick (2019) are shown as the purple and orange symbols, for the case of loose and

tight priors, respectively. While these analyses all report constraints at different

confidence levels, it is clear that the two types of observations (X-rays and gravi-

tational waves) give approximately consistent results. With additional data– both

of new gravitational wave sources and of new X-ray radii with potentially smaller

uncertainties – the constraints will become even tighter.
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5.6 Bayesian inference of the radius

Given these promising constraints on the EOS from gravitational wave data, we

now turn to a discussion of the biases that can be introduced by marginalizing the

posteriors in a Bayesian inference scheme. The issue of marginalization of a multi-

dimensional posterior space was first introduced in Chapter 3. Here, we explore the

issue in the context of an inference using gravitational wave data directly. Because

this work was performed prior to the publication of the full posterior information

on Λ̃, we perform a sample inference, in which we take the constraint on Λ̃ ≤ 800

to correspond to a Gaussian distribution, centered at Λ̃obs = 400 with a dispersion

of σΛ̃ = 243. We also use the initial inferred chirp mass from GW170817, which is

constrained to Mc = 1.188+0.004
−0.002 M�.

In our sample inference, we incorporate a variety of astrophysical and nuclear

physics priors, including that the EOS is microscopically stable and causal at all

pressures, that the lowest two pressures exceed the limit placed by two-nucleon in-

teraction, and that all EOS must produce a neutron star of at least 1.97 M�, in order

to be within 1σ of the measurements of the most massive neutron stars (Antoniadis

et al., 2013; Fonseca et al., 2016). We assume a uniform prior on the pressures. In

order not to over-parametrize the EOS, while still allowing the possibility of com-

plex behavior to be inferred, we also include a Gaussian regularizer over the second

derivative of the pressure (λ = 2), which penalizes sharp phase transitions. For

further details on the set-up of our Bayesian inference, see Chapter 3.

In addition to the above priors, which were extensively studied in Chapter 3, we

also place an upper limit on the maximum mass, Mmax < 2.33M�, which is the upper

limit of the 90% credibility level found in Rezzolla et al. (2017). This maximum

mass was inferred from GW170817 assuming only the quasi-universal neutron star

relations and simple models of kilonovae and is thus fairly model-independent.

The likelihood of a particular EOS is given by

P (EOS|Mc, Λ̃) = Ppr(EOS)P (Mc, Λ̃|EOS), (5.14)

where Ppr(EOS) represents the set of the priors on the EOS, which we describe
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above. Because of the high accuracy in the measurement of the chirp mass, we fix

it to the observed value, and use that to set m2 for any given m1. Then, eq. (5.14)

can be written as

P (EOS|Λ̃) = Ppr(EOS)× 1√
2πσΛ̃

exp
{
− [Λ̃EOS(m1,m2) − Λ̃obs]

2

2σ2
Λ̃

}
, (5.15)

where Λ̃EOS(m1,m2) is the effective tidal deformability for a particular set of the two

masses, m1 and m2, of each EOS that maximizes the likelihood. We choose to use

the maximum likelihood, rather than integrating over all combinations of m1 and

m2 to avoid biasing our results, as discussed in Chapter 3.

To populate the posteriors in eq. (5.15), we run a Markov Chain Monte Carlo

(MCMC) simulation with ∼ 106 points. For each EOS that is tested in our MCMC,

we also calculate the corresponding mass-radius relation using the standard TOV

equations. In the left panel Figure 5.5, we show the mass-radius relations corre-

sponding to the highest-likelihood solutions from our MCMC. The solid magenta

line shows the most likely solution, while the pink shaded band corresponds to the

range of EOS with probabilities within 1/
√
e of the maximum value. Figure 5.5

also shows, as the black dashed line, the radius that corresponds to the most likely

value of Λ̃ = 400 using the quasi-universal relation of eq. (5.9). Both our analytic

expansion of the Λ̃−radius relationship and the full Bayesian inference presented

here imply radii of ∼ 11.7 km, for these sample data. This Bayesian method can be

used to robustly infer the EOS as additional measurements of Λ̃ and Mc are made

from future neutron star merger events

To demonstrate the biases introduced by marginalization, we show in the mid-

dle and right panels of Figure 5.5 the results of our MCMC after they have been

marginalized in mass-radius space, as is frequently presented in some other studies

(e.g., Steiner et al., 2017; Most et al., 2018). This method of marginalization involves

calculating the posteriors over radius in a fixed grid of masses. However, because

there are far more large-radii EOS that produce a 2 M� neutron star, marginalizing

in this way effectively weights the large radii solutions much more heavily than any
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Figure 5.5 Left: Mass-radius relations corresponding to the most-likely EOS in our
Bayesian inference, with a sample distribution for Λ̃ centered at Λ̃ = 400 and a fixed
chirp mass ofMc = 1.188M�. The solid magenta line corresponds to the most-likely
EOS, while the pink band corresponds to the range of EOS with posteriors within
1/
√
e of the maximum value. The black dashed line shows the analytic prediction

from our Λ̃−R relation of eq. (5.9). We find excellent agreement between our Λ̃−R
prediction and the full Bayesian inference. Middle: Same as left panel, but showing,
in addition, the marginalized posteriors over the neutron star radii for a fixed grid
of masses. These marginalized likelihoods are shown in blue. By marginalizing the
posteriors in this way, the results are skewed to higher radii and away from the
maximum likelihood solution. Right: Marginalized likelihoods for an inference with
only the priors and no data. These marginalized posteriors are nearly identical to the
marginalized posteriors from the inference that incorporated data from a Λ̃ = 400
centered Gaussian. This method of marginalization over-weights the prior on the
EOS pressures imposed by the observation of a 1.97 M� neutron star. The results
of the marginalization are less sensitive to the input data and are not reliable.

other priors, or even than the data themselves. This can be seen in the middle panel

of Figure 5.5, which shows that the marginalized solution leads to an inferred radius

of ∼12.2 km, even though the maximum likelihood solution occurs at ∼11.7 km. To

further illustrate the point, we show in the right panel of Figure 5.5 the marginalized

posteriors for an inference with only priors and no data at all. The marginalized

posteriors with no data are effectively identical to the marginalized posteriors for the

inference that incorporated data from a Λ̃ = 400 centered Gaussian. This method

of marginalization weights the 2 M� prior so heavily that the data are effectively

ignored. We suspect that this bias also affects the posteriors presented in other
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works, e.g. Most et al. (2018).

5.7 Black hole-neutron star mergers

Finally, we comment that black hole-neutron star mergers are another source of

gravitational waves that may contain information about the neutron star EOS. The

tidal Love number of a black hole is zero (Damour and Nagar, 2009; Binnington and

Poisson, 2009), which greatly simplifies the effective tidal deformability of eq. (6.16).

However, this simplification also destroys the inherent symmetry in eq. (6.16), which

is the source of the mass independence in the neutron star-neutron star merger

scenario. Without this symmetry, a series expansion of Λ̃, as in eq. (5.9), includes

a correction term of order (1− q).
Due to the lower-order terms of O(1−q), there persists a stronger dependence on

the mass of the components. Thus, the effective tidal deformability measured from

a neutron star-black hole merger does not directly probe the radius, as in the case

of a neutron star-neutron star merger. Instead, a measurement of Λ̃ will primarily

probe the neutron-star compactness.

5.8 Conclusions

In this chapter, we found that the effective tidal deformability is approximately inde-

pendent of the component masses for a neutron star-neutron star merger, when the

chirp mass is specified. Because this surprising result is difficult to see analytically

in the full GR case, we introduce a quasi-Newtonian approximation that closely

reproduces the results found in full GR. In the quasi-Newtonian limit, we find that

the masses of the stars only enter at order O ((1− q)2), where q is the mass ratio.

We find that, for the chirp mass measured from GW170817, this introduces at most

a 4% mass correction to the effective tidal deformability for the entire range of mass

ratios. Thus, the effective tidal deformability can be considered as approximately

independent of the neutron star masses. This makes Λ̃ a direct probe of the neutron

star radius. For GW170817, we find that the revised posteriors on Λ̃ (assuming a
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flat prior in Λ̃) constrain the neutron star radius to 9.8 < R < 13.2 km, at 90% cred-

ibility. We find that these constraints are consistent with previous measurements

from the X-ray community.

We also incorporate other astrophysical priors and constraints from nuclear

physics in order to perform an example Bayesian inference of the pressures in a

parametric EOS, from the initial Mc value inferred in GW170817 and a sample

interpretation of the initial upper limit on Λ̃. We show that significant biases can

be avoided by robustly examining the maximum likelihood solutions in the multi-

dimensional parameter space, rather than introducing a marginalization in mass-

radius space. The marginalization tends to weight particular priors more heavily

than the actual data, which causes the resulting answer to skew systematically to-

wards larger radii. Finally, in the case of a neutron star-black hole merger, we find

that the vanishing Λ for the black hole breaks the symmetry in Λ̃ and makes it

depend more strongly on the component masses. Thus, a measurement of Λ̃ for

a neutron star-black hole merger probes the compactness of the neutron star, but

cannot be used as a direct probe of the radius.

Using the methods we have developed in this chapter, future gravitational wave

events can be used to directly and robustly constrain the neutron star radius, pro-

viding new constraints on the EOS.
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CHAPTER 6

Connecting Gravitational Wave Events to Fundamental Nuclear Parameters �

Motivated by the new one-to-one mapping between Λ̃ and R that was found in

Chapter 5 and by the long-known correlation between the radius and the nuclear

symmetry energy, in this chapter, we introduce a new method for mapping from

a tidal deformability to fundamental nuclear parameters. We focus in particular

on the low-order coefficients of the nuclear symmetry energy: namely, the value

of the symmetry energy at the nuclear saturation density, S0, and the slope of

the symmetry energy, L0. We find that the gravitational wave data are relatively

insensitive to S0, but that they depend strongly on L0 and point to lower values of

L0 than have previously been reported, with a peak likelihood near L0 ∼ 23 MeV.

Finally, we use the inferred posteriors on L0 to derive new analytic constraints on

higher-order nuclear terms.

6.1 Motivations for studying the nuclear symmetry energy

Determining the nuclear symmetry energy is one of the main goals of modern nuclear

physics. The symmetry energy, which characterizes the difference in energy between

pure neutron matter and matter with equal numbers of protons and neutrons, is

typically represented as a series expansion in density, with coefficients that represent

the value of the symmetry energy at the nuclear saturation density, S0, the slope,

L0, the curvature, Ksym, and the skewness Qsym, as well as higher-order terms. The

symmetry energy is one of the two main components in nuclear formulations of

�A version of this chapter has been published previously as Raithel and Özel (2019). Measure-

ment of the Nuclear Symmetry Energy Parameters from Gravitational-wave Events. 885, 2, 121.

We thank Dimitrios Psaltis, Kent Yagi, Andrew Steiner, and Zack Carson for useful conversations

related to this work. This work was supported by NSF Graduate Research Fellowship Program

Grant DGE-1746060 and support from NASA grant NNX16AC56G.
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the dense-matter EOS; the other being the energy of symmetric matter, which can

similarly be broken down into nuclear expansion terms.

Of these expansion terms, only the low-order parameters can be experimentally

constrained, as a result of the limited densities and energies that can be reached

in laboratory-based experiments. For example, experimental constraints on S0 and

L0 have been inferred by fitting nuclear masses, by measuring the neutron skin

thickness, the giant dipole resonance, and electric dipole polarizability of 208Pb, and

by observing isospin diffusion or multifragmentation in heavy ion collisions (Tsang

et al., 2012; Lattimer and Lim, 2013; Oertel et al., 2017). However, there exist

only limited experimental constraints on Ksym and no direct constraints on Qsym

(Lattimer and Lim, 2013).

The symmetry energy also plays a key role in a number of astrophysical phe-

nomena, from determining the neutron star radius (Lattimer and Prakash, 2001), to

affecting the gravitational wave emission during neutron star mergers (e.g., Fattoyev

et al. 2013), r-process nucleosynthesis in merger ejecta (Nikolov et al., 2011), and

the outcomes of core-collapse supernovae (e.g., Fischer et al. 2014). In the new grav-

itational wave era, measurements of the tidal deformability of neutron stars offer

a promising way to observationally constrain the symmetry energy. The first de-

tection of gravitational waves from a neutron star-neutron star merger, GW170817,

constrained the effective tidal deformability of the binary system to Λ̃ . 900 (Ab-

bott et al., 2017c). Subsequent work refined these constraints to Λ̃ = 300+420
−230 (90%

highest posterior density) for a system with chirp mass Mc = 1.186+0.001
−0.001 M�, for

low-spin priors (Abbott et al., 2019).1

Already, several analyses have set initial constraints on nuclear parameters using

the tidal deformability of GW170817. Malik et al. (2018) found evidence of corre-

lations between linear combinations of nuclear parameters and the neutron star

radius, tidal love number, and tidal deformability, for a wide range of EOS. They

used the inferred bounds on Λ1.4 from GW170817, i.e., the tidal deformability of

1Throughout this chapter, we will exclusively use the low-spin prior results for GW170817, as

is most relevant for binary neutron stars in our Galaxy.
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a 1.4 M� neutron star, to constrain the symmetric nuclear parameters as well as

Ksym, for given choices of L0. Carson et al. (2019) expanded this work to include a

broader set of EOS and used updated posteriors on Λ̃ to calculate the posteriors for

various nuclear parameters. In quoting final constraints on the high-order nuclear

parameters, the authors of both studies either limit L0 to a pre-determined range

or marginalize over priors on L0. However, one might expect Λ̃ to be particularly

sensitive to L0, as a result of the direct mapping between Λ̃ and the neutron star

radius (Raithel et al., 2018; De et al., 2018; Raithel, 2019) and the tight correlation

between the radius and L0 (Lattimer and Prakash, 2001).

In a more general analysis that allowed for variable L0, Zhang and Li (2019)

showed that a precision measurement of Λ1.4 maps to a plane of constraints on L0,

Ksym, and Qsym. They found that the tidal deformability is sensitive to the higher-

order symmetry terms (Ksym and Qsym), and conclude that there is no unique map-

ping between Λ1.4 and L0. Krastev and Li (2019) extended this work and showed

that the mapping gets even more complicated when the isotriplet/isosinglet inter-

action is allowed to vary. They found that assuming different density-dependences

of the symmetry energy can result in identical values of the Λ1.4, implying that

there can be no one-to-one mapping between the tidal deformability and individual

nuclear parameters.

While there may be no unique mapping of Λ to individual nuclear parameters

when the parameters are allowed to vary fully independently, we find that a more

restricted parameter space is often sufficient to reproduce a wide range of EOS.

With a well-motivated parameter reduction, we will show that it becomes possible

to directly map from the tidal deformability to nuclear parameters.

In this chapter, we introduce a framework to reduce the allowed space of nuclear

parameters and we show that constraints can, indeed, be placed directly on the

slope of the symmetry energy. Our method does not rely on priors from nuclear

experiments. We only assume that the density-dependence of the EOS can be

represented with a single-polytrope around the nuclear saturation density, which

decreases the parameter space significantly. This dimension-reduction allows us to
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map from observed constraints on Λ̃ directly to L0, independently of any nuclear

priors. We find that the tidal deformability is relatively insensitive to S0, as has

been assumed in the above analyses. However, we find that Λ̃ is quite sensitive to L0

and that GW170817 implies a relatively small value of 11.5 . L0 . 64.8 MeV, with

a most likely value of L0 = 23 MeV. These constraints are approximate, but they

point to values of L0 that are in modest conflict with those inferred from nuclear

physics experiments and theory. While our constraints extend to large values of L0

that are consistent with the results from past nuclear studies, this overlap occurs at

lower likelihood. Moreover, we find that our most likely value of L0 = 23 MeV lies

outside of the range of previously-derived constraints. Finally, we use the inferred

posterior on L0 to analytically constrain combinations of the higher-order nuclear

terms. We find that combinations of Ksym and K0 can be constrained by GW170817,

and that combinations of Ksym, Q0, and Qsym can also be constrained.

We start in §6.2 with an overview of the nuclear EOS formalism that we will

use in this chapter. We introduce our polytropic approximation of these EOS in

§6.3. In §6.4, we map the measurement of Λ̃ from GW170817 to posteriors over L0.

Finally, in §6.5, we use the posterior on L0 to constrain linear combinations of the

higher-order nuclear parameters.

6.2 Nuclear expansion of the equation of state

We start by introducing the EOS formalism that we will use to connect the tidal

deformability from a gravitational wave event to nuclear parameters. As discussed

in the introduction, we use this standard formalism to decompose the EOS into a

symmetric matter part and the symmetry energy, which we can generically write as

Eb(n, Yp) = E0(n) + Esym(n)(1− 2Yp)
2, (6.1)

where Eb(n, Yp) is the energy per baryon for a given density n and proton fraction

Yp, E0(n) is the energy of symmetric matter, and Esym(n) is the symmetry energy.

We represent the symmetric energy term with a series expansion and keep terms
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to third order, i.e.,

E0(n) = B0 +
K0

18
u2 +

Q0

162
u3 +O(u4), (6.2)

where the expansion is performed around the nuclear saturation density, nsat, and

u ≡ (n/nsat)− 1. Here, B0 is the bulk binding energy of symmetric matter at nsat,

and K0 and Q0 represent the incompressibility and skewness of symmetric matter.

Similarly, we expand the symmetry energy around u and write

Esym(n) = S0 +
L0

3
u+

Ksym

18
u2 +

Qsym

162
u3 +O(u4), (6.3)

where S0 represents the symmetry energy at nsat and L0, Ksym and Qsym give the

slope, curvature, and skewness of the symmetry energy, respectively.

Such expansions are commonly used in representing neutron star matter because

the coefficients can be linked to nuclear physics parameters near the saturation

density. While experimental constraints on certain of these parameters exist, in

order to be as general as possible, we will only assume knowledge of the bulk binding

energy term and fix it to B = −15.8 MeV (Margueron et al., 2018a). We will leave

the remaining six parameters (K0, Q0, S0, L0, Ksym, Qsym) free.

We can convert from the energy per particle to the pressure using the standard

thermodynamic relation,

P (n, Yp) = n2

{
∂[Eb(n, Yp) + Ee(n, Yp)]

∂n

}∣∣∣∣
Yp,S

, (6.4)

where S is the entropy, and we have formally included the electron contribution

to the total energy, Ee(n, Yp). However, for the current analysis, we neglect the

contribution of electrons and assume that the total energy is dominated by the

baryons.

The pressure for our nuclear expansion is then

P (n, Yp) =

(
n2

3nsat

)[
K0

3
u+

Q0

18
u2 +

(
L0 +

Ksym

3
u+

Qsym

18
u2

)
(1− 2Yp)

2

]
. (6.5)

For a cold star in β-equilibrium, the proton fraction is uniquely determined by

the density and the symmetry energy, according to

Yp
(1− 2Yp)3

=
64Esym(n)3

3π2n(~c)3
(6.6)
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where ~ is the Planck constant and c is the speed of light. (For a derivation of this

relationship and an analytic solution for Yp, see Appendix A of Chapter 9).

In order to simplify the subsequent calculations, we perform an additional series

expansion on the neutron excess parameter and define

(1− 2Yp)
2 ≈ a+ bu+ cu2 +O(u3), (6.7)

keeping terms up to second-order, as in eq. (6.5). The coefficients of this expansion

depend on the symmetry energy parameters of up to the same order, i.e., a =

a(S0), b = b(S0, L0), and c = c(S0, L0, Ksym).2 Thus, keeping terms to second order,

we can write the nuclear expansion of the pressure as

P (n, Yp) =

(
n2

3nsat

)
×{

aL0 +

(
bL0 +

K0 + aKsym

3

)
u +

(
cL0 +

bKsym

3
+
Q0 + aQsym

18

)
u2

}
. (6.8)

6.3 Polytropic approximation

While the expansion derived in §6.2 is useful for its direct connection to nuclear

parameters, it is also complicated. The pressure of eq. (6.8) depends on 6 nu-

clear parameters: S0, K0, Q0, L0, Ksym, and Qsym. However, many studies have

shown that a wide range of EOS can be approximated with piecewise polytropic

parametrizations (e.g., Read et al. 2009a; Özel and Psaltis 2009; Steiner et al. 2010;

Raithel et al. 2016). The pressure of a single-polytrope is given by

P (n) = Kpolyn
Γ, (6.9)

where the polytropic constant Kpoly and index Γ are free parameters. The pos-

sibility of modeling the EOS with a few number of polytropes motivated us to

explore whether the pressure in eq. (6.8) truly depends on all six nuclear parame-

ters independently, or whether, as we will show, the parameter space can be further

2We provide a Mathematica notebook to calculate these coefficients, along with corresponding

C routines, at https://github.com/craithel/Symmetry-Energy.
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restricted. In this section, we will show that modeling the full pressure of eq. (6.8)

with a single polytrope near the nuclear saturation density reasonably captures the

density dependence. We will then use this simplified model to derive constraints on

nuclear parameters using data from GW170817.

Our goal is to approximate the nuclear expansion pressure of eq. (6.8) with

the polytropic pressure of eq. (6.9). We require that these two expressions match

at nsat and then extrapolate to higher densities using the polytropic index. This

requirement uniquely determines the polytropic constant, so that our simplified

nuclear pressure can be written as

P (n) =
aL0nsat

3

(
n

nsat

)Γ

. (6.10)

At low densities of n ≤ 0.5 nsat, we fix the EOS to the nuclear EOS SLy (Douchin

and Haensel, 2001). For 0.5 nsat ≤ n < nsat, we perform a power-law interpolation,

to ensure matching between SLy and the polytropic approximation.

While our goal is to use the single-polytrope expression of eq. (6.10), we also

need to ensure that the EOS remains causal at all densities. This results in an

upper limit on Γ which changes with the density and which can be calculated as

follows. We start with the definition of the sound speed,(cs
c

)2

=
∂P

∂ε
≤ 1, (6.11)

where ε = (E +mc2)n is the total internal energy density, m is the baryon mass, cs

is the local sound speed, and c is the speed of light. For a polytropic EOS,

∂P

∂ε
=

ΓP

ε+ P
. (6.12)

Thus, the maximum polytropic index, corresponding to cs/c = 1, is simply

Γluminal =
ε+ P

P
. (6.13)

Whenever we implement eq. (6.10) throughout this chapter, we use the minimum

of Γ and Γluminal to ensure that causality is always obeyed. This results in a slight

decrease in Γ at high densities for some EOS.
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We infer a reasonable range for our baseline values of Γ by generating a sample

of 5,000 test EOS using eq. (6.8). The EOS are created by drawing independent

values of each of the six nuclear parameters (K0, Q0, S0, L0, Ksym, and Qsym) from

the experimentally-constrained distributions reported in Table I of Margueron et al.

(2018b) (a similar approach was taken in Carson et al. 2019). We exclude any EOS

that become hydrostatically unstable. We also require that the analytic expression

for Yp derived from eq. (6.6) be positive and less than 0.5 (i.e., neutron rich) across

the same density range. Finally, we require that the sound speed of each nuclear

EOS remains causal across a density range of n ∼ 1−3 nsat. We choose this density

range in order to focus our analysis on the regime that is responsible for determining

the neutron star radius, and hence the effective tidal deformability (Lattimer and

Prakash, 2001; Raithel et al., 2018). Moreover, the nuclear expansion formalism is

not necessarily valid at higher densities. At lower densities, we will instead use a

realistic, calculated EOS in the following analysis.

We fit each EOS in our sample with the simplified pressure model of eq. (6.10),

fixing L0 and S0 to their drawn values. We perform the fit across the same density

range, n = 1− 3nsat. We show the resulting distribution of Γ values in Fig. 6.1. We

find that nearly all of the EOS constructed with the nuclear expansion formalism can

be represented with a polytropic index of Γ ≈ 3− 4, with a most common fit value

of Γ ∼ 3.5. Moreover, we find that the residuals between the full nuclear expansion

EOS and our polytropic approximation are small. Figure 9.8 shows the distribution

of the residuals from the sample of EOS fits at a range of densities. At each density,

we calculate the residual as (Pfull − Ppoly)/Pfull, where Pfull corresponds to the full

nuclear expansion of eq. (6.8) and Ppoly corresponds to the polytropic approximation

of eq. (6.10). The top panel of Fig. 9.8 shows the histogram of the residuals, including

their sign. The bottom panel shows the cumulative distribution of the magnitudes of

the residuals. The residuals are small at low densities, where the tidal deformability

is expected to be determined and where the nuclear expansion formalism still applies.

At 2 nsat, the error introduced by our polytropic approximation is .17% for 90% of

the EOS sample.
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Table 6.1. Error in the polytropic approximation of a nuclear EOS for seven

realistic EOS.

EOS S0 L0 Γpoly R1.4 δR1.4 k2, 1.4 δk2, 1.4 Λ1.4 δΛ1.4

SFHx 28.7 23.2 3.98 12.02 0.04 0.09 0.03 399.96 0.20

SFHo 31.6 47.1 3.15 11.93 0.02 0.08 0.00 338.03 0.09

DD2 31.7 55.0 3.59 13.26 0.04 0.10 0.04 706.10 0.20

FSUGold 32.6 60.4 2.95 12.59 0.04 0.08 0.02 440.40 0.22

TMA 30.7 90.1 2.85 13.89 0.06 0.11 0.10 969.05 0.34

TM1 37.0 111.0 2.91 14.52 0.05 0.10 0.08 1162.94 0.30

NL3 37.4 118.5 3.42 14.82 0.03 0.11 0.03 1392.54 0.18

Note. — The first three columns list the EOS and its published symmetry energy param-

eters, in MeV. Γpoly provides our fit to the EOS across the density range 1-3 nsat. R1.4 (in

km), k2,1.4, and Λ1.4 represent the stellar properties of a 1.4 M� star, calculated using the

full tabulated EOS. The columns labeled δQ provide the fractional error between each stellar

property calculated using the full EOS and using the polytropic approximation of eq. (6.10).
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Figure 6.1 Distribution of polytropic indices fit to a sample of 5,000 nuclear ex-
pansion EOS using eq. (6.10). Each EOS was constructed using eq. (6.8) with the
six nuclear parameters, (K0, Q0, S0, L0, Ksym, and Qsym), independently drawn from
experimentally-constrained distributions. We find that nearly all of the EOS can be
with with Γ = 3− 4, while the most common Γ is ∼ 3.5

In addition to the large sample of mock EOS, we also calculate the errors intro-

duced by our polytropic approximation for seven realistic EOS. For each realistic

EOS in this sample, we use the full EOS3 to calculate the tidal apsidal constant for

a 1.4 M� star, k2,1.4; the radius of the corresponding star, R1.4; and Λ1.4 (see §6.4 for

more details on how these quantities are calculated). We report these values in Ta-

ble 6.1. We then calculate the same quantities using the polytropic approximation.

We start by fitting the tabulated EOS with a single polytropic index, Γpoly, between

1 − 3 nsat, while keeping the pressure at nsat fixed to the coefficient of eq. (6.10)

for the S0 and L0 of each EOS. We list the published values of S0 and L0
4 and the

3In practice, to simplify the calculation, we use a many-polytrope approximation. In this case,

we use 20 polytropes to represent the pressure between 1 and 10 nsat, which should be more than

sufficient.
4These values are compiled from the CompOSE database, https://compose.obspm.fr/home/.
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Figure 6.2 Left: Distribution of residuals between the pressure of the full nuclear
expansion in eq. (6.8) and our single-polytrope approximation of eq. (6.10), calcu-
lated at various fiducial densities (shown in the different colors). Right: Cumulative
distribution of the same residuals. We find that the single-polytrope approximation
reasonably captures the overall density-dependence of the pressure. At densities of
2 nsat, which are expected to determine the neutron star radius and hence the tidal
deformability, the errors of our polytropic approximation are .17% for 90% of the
EOS in our sample.

fit value for Γpoly in Table 6.1. We then use min(Γpoly,Γluminal) for densities above

nsat, and at low densities (n < 0.5 nsat), we use the full, tabulated EOS. We connect

between these two regimes with a power-law interpolation. Table 6.1 also shows the

fractional error in each quantity, Q, defined as

δQ =
QEOS −Qpoly

QEOS

, (6.14)

where Q is calculated using either the full EOS, QEOS, or the polytropic approxi-

mation of eq. (6.10), Qpoly.

We find very small errors in R1.4 and k2,1.4, which propagate to slightly larger

errors in Λ1.4 of . 30%, as a result of the strong radius-dependence of Λ ∼ R5 (see

eq. 6.15). Although the errors in Λ1.4 are modest, we find that our approximation

tends to under -estimate Λ1.4, compared to the full EOS. In the following analysis, we

will show that the direction of this bias actually acts to further reinforce our results.
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We revisit this point in §6.4. Finally, we note that there is no clear correlation

between the value of L0 and the size of the residual for these EOS.

We, therefore, conclude that the single-polytrope approximation reasonably

recreates the EOS for most combinations of the nuclear parameters. While this

approximation is not exact, it is a useful technique that will allow us to explore the

parameter-dependence of Λ̃ in a new way. Our simplified model depends only on

S0 and L0, thereby reducing a six-dimensional parameter space to two dimensions.

This will allow us to directly map from Λ̃ to S0 and L0, without requiring us to fix

or marginalize over the higher-order terms.

6.4 Relating the tidal deformability to the symmetry energy

Using the framework for pressure introduced in §6.3, we can now connect the ob-

served constraints on Λ̃ from a gravitational wave event to nuclear parameters. We

start with the general expression for the tidal deformability of a single star,

Λi =
2

3
k2

(
Gmi

Ric2

)−5

, (6.15)

where mi is the mass of the star, Ri is the stellar radius, and, following the con-

vention of Flanagan and Hinderer (2008), we call k2 the tidal apsidal constant. The

tidal apsidal constant depends both on the compactness of the star, as well as the

overall density gradient of the particular EOS (Hinderer, 2008; Hinderer et al., 2010;

Postnikov et al., 2010).

We follow the method outlined in Hinderer et al. (2010) for constructing a set

of augmented Oppenheimer-Volkoff equations. We integrate these stellar structure

equations to calculate the stellar mass, radius, and tidal apsidal constant for a given

central density. We then compute the effective tidal deformability of the binary

system as

Λ̃ =
16

13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

(m1 +m2)5
, (6.16)

where the subscripts indicate the component stars in the binary system.

We show the effect of L0 on each of these stellar properties in Fig. 6.3. For

demonstrative purposes, in this figure we have fixed S0=32 MeV and Γ = 3.5, as
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Figure 6.3 Left: Mass-radius curves for our polytropic approximation with varying
values for L0 (in MeV). Middle: Tidal apsidal constants for the same EOS, as a
function of stellar compactness (C = Gm/Rc2). Right: Tidal deformability as a
function of L0. In all three panels, we have fixed S0 to 32 MeV and Γ = 3.5. In
the right panel, Λ̃ is calculated assuming the q = 0.87 and Mc = 1.186 M�, as was
observed for GW170817. Within the polytropic approximation, we find that smaller
values of L0 correspond both to smaller radii and to smaller values of k2, resulting
in a smaller tidal deformability.

well as the component masses for calculating Λ̃ (see below for the effect of varying

each of these assumptions). We show the mass-radius relations for a variety of

L0 in the left panel of Fig. 6.3. The middle panel panel shows the tidal apsidal

constant as a function of the stellar compactness, for the same set of L0 values. We

find that smaller values L0 lead to both smaller radii and to smaller tidal apsidal

constants. Both of these trends act to reduce the tidal deformability of the star (see

eq. 6.15), as shown in the right panel of Fig. 6.3. We find that the dependence on

L0 persists both for Λ1.4 and for the binary tidal deformability, Λ̃. Thus, we expect

that the measurement of Λ̃ from a gravitational wave event should have significant

constraining power on L0.

From eq. (6.16) and Fig. 6.3, it is clear that Λ̃ depends on the stellar masses and

radii, with an additional dependence on the EOS through k2. By introducing the

chirp mass,

Mc =
(m1m2)3/5

(m1 +m2)1/5
= m1

q3/5

(1 + q)1/5
, (6.17)

and the mass ratio q ≡ m2/m1, we can explicitly write the dependences of Λ̃ as

Λ̃(Mc, q, R1, R2,EOS). This is a particularly convenient choice because, for grav-
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itational wave events, we expect the chirp mass to be precisely measured and the

mass ratio to also be constrained. This was indeed the case for GW170817, for

which the the chirp mass was determined to beMc = 1.186+0.001
−0.001 M� and the mass

ratio was constrained to q ∈ (0.73, 1.00) at the 90% confidence level (Abbott et al.,

2019).

Additionally, we note that, given the masses of each star, the EOS can be used to

uniquely determine the corresponding radii.5 Within the polytropic approximation

of eq. (6.10), the EOS depends only on S0, L0, and Γ, where Γ is narrowly constrained

to be ∼ 3 − 4 for a wide range of realistic EOS. We can, therefore, summarize the

dependences of the tidal deformability as Λ̃ = Λ̃(Mc, q, S0, L0,Γ).
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Figure 6.4 The effective tidal deformability of the binary system, as a function of
S0 and L0. We calculate Λ̃ using the polytropic approximation of the nuclear EOS,
shown in eq. (6.10). From left to right, the polytropic index is fixed to Γ = 3,
3.5, or 4. In all panels, we fix the chirp mass and mass ratio to their central
values of q = 0.87 and Mc = 1.186 M� for GW170817. We find that Λ̃ is only
weakly dependent on S0, but that it is quite sensitive to L0. The constraints on
Λ̃ = 300 (+420/ − 230) from GW170817 (Abbott et al., 2019) point to relatively
small values of L0.

We have already shown that Λ̃ depends sensitively on L0 for fixed S0 and Γ. In

order to explore the full, more general dependences of Λ̃, we perform a grid search

across the range S0 ∈ (26, 38) MeV and L0 ∈ (10, 110) MeV. For each set of values,

5While there do exist some EOS for which the mass-to-radius mapping is not unique (notably,

the so-called “twin-stars,” which can have identical masses and different radii; see, e.g., Glenden-

ning and Kettner 2000), these EOS have complex structure that cannot be represented with single

polytropes. We, therefore, neglect these special cases for the present study.
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we construct an EOS according to eq. (6.10), fixing the mass ratio to q = 0.7, 0.87, or

1.0 and fixing Γ to 3, 3.5, or 4. In all cases, we fix the chirp mass to the central value

from GW170817 of 1.186 M�. For each combination of parameters, we compute the

mass, radius, and tidal apsidal constant by numerically integrating the augmented

TOV equations and then compute Λ̃ using eqs. (6.15-6.17). We show the resulting

contours of Λ̃ as a function of S0 and L0 in Fig. 6.4. The three panels correspond

to three different choices of Γ, with fixed q = 0.87. We find that the particular

choice of q does not significantly affect these or our later results, so we fix q to the

central value of 0.87 from GW170817 for the remainder of this analysis. We also

note that for some combinations of parameters, such as when Γ and L0 are very

small and S0 is large, the EOS becomes too soft to support the masses of the stars

inferred from GW170817. We indicate these unphysical combinations by leaving the

contours white in Fig. 6.4, and we attribute zero probability to them in the following

analysis.

We find that Λ̃ is only weakly dependent on S0, especially for smaller values of

Λ̃, as are preferred by the current gravitational wave data. In contrast, Λ̃ depends

quite sensitively on L0. We, therefore, focus on L0 in the following analysis and fix

S0 to a characteristic value of 32 MeV (Li and Han, 2013; Oertel et al., 2017).

This final simplification renders Λ̃ as a function only of L0, for fixed Γ. We can,

therefore, transform the measured posterior on Λ̃ to a posterior on L0, according to

P(L0) = P(Λ̃)

(
∂Λ̃

∂L0

)
, (6.18)

where we calculate the Jacobian term numerically.

We show the resulting one-dimensional posteriors on L0 in Fig. 6.5. Figure 6.5

also shows two current sets of constraints on L0, in dark and light green from Lat-

timer and Lim (2013) and Oertel et al. (2017), respectively, which are based on a

combination of astrophysical observations of neutron stars, nuclear experiments, and

theory. Earlier constraints on 43 < L0 < 52 MeV (68% confidence) were calculated

using neutron star radii alone (Steiner and Gandolfi, 2012). On the other hand,

theoretical calculations of the neutron matter EOS using quantum Monte Carlo
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Figure 6.5 One-dimensional posterior in L0, from GW170817 for q = 0.87 and
S0=32 MeV, for three choices of Γ. The dark and light green bands show the
combined constraints on L0 from previous neutron star observations, nuclear ex-
periments, and theory, as calculated in Lattimer and Lim (2013) and Oertel et al.
(2017), respectively. We find that the gravitational wave data point towards smaller
values of L0 than these previous studies have found.

methods (Gandolfi et al., 2012) or chiral effective field theory (Hebeler et al., 2013)

produce comparable constraints, of L0 = 31.3−63.6 MeV and L0 = 32.4−57.0 MeV,

respectively. We use the summary results from Lattimer and Lim (2013) and Oer-

tel et al. (2017) to encompass these theoretical, observational, and experimental

constraints.

We find that the gravitational wave data imply smaller values of L0 than these

previous studies have found. In particular, for Γ = 3.5, we find a 90% highest-

posterior density interval of 11.5 < L0 < 64.8 MeV, with a peak likelihood at

L0 = 23 MeV. There is a small correlation between the choice of Γ and the inferred

constraints on L0, with choices of larger values of Γ leading to lower values of L0.

We also note that the likelihoods have low-probability tails that extend to quite high

values of L0, which are consistent with the existing experimental constraints. We



118

find roughly equal probability for values of L0 above or below 30 MeV (Γ = 3.5),

indicating that it is equally likely that L0 is consistent or inconsistent with the

experimental constraints from Oertel et al. (2017), but that these constraints are

likely inconsistent with those of Lattimer and Lim (2013). For both Γ = 3.5 or 4,

the peak likelihoods in L0 lie outside the allowed constraints from either Lattimer

and Lim (2013) and Oertel et al. (2017). For Γ = 3, the peak likelihood falls at the

lower limit of the constraint from Lattimer and Lim (2013).

As we noted in §6.3, our polytropic approximation does introduce small errors

into the global stellar properties. In particular, we find that for realistic EOS,

our polytropic approximation tends to underestimate the tidal deformability. From

the right-hand panel of Fig. 6.3, it can be seen that having smaller values of Λ1.4

effectively pushes the constraints on L0 to larger values. Thus, the gravitational

wave data may prefer even smaller L0 than we have found here.

However, we note that much smaller values of L0 may be inconsistent with the

observations of neutron stars with M ≈ 2 M� (Demorest et al., 2010; Antoniadis

et al., 2013; Fonseca et al., 2016). Within our framework, we find Mmax ≥ 2 M� for

EOS with L0 & 20 MeV for Γ = 3.5 (see the left panel of Fig. 6.3). In contrast, for

smaller values of Γ, such low values of L0 result in EOS with insufficient pressure to

support massive neutron stars. For Γ = 3.0, we find that L0 must be & 45 MeV to

support Mmax ≥ 2 M�. Thus, while our most-likely constraints on L0 are consistent

with the observations of massive neutron stars, there is little freedom to reduce L0

much further, if we take into account this additional observational constraint.

Several recent studies connecting GW170817 to the nuclear EOS have either

restricted L0 to priors similar to those of Lattimer and Lim (2013) and Oertel et al.

(2017) or directly marginalized over such priors (Malik et al., 2018; Carson et al.,

2019). While the posteriors on L0 presented here are not exact, they do suggest

that GW170817 points toward small values of L0 that may be in tension with such

priors. We, therefore, conclude that it is important to explore the dependence of

gravitational wave data on L0 directly, in order to gain new information on L0 itself

as well as to avoid biasing the interpretation of higher-order parameters.
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6.5 Constraints on higher-order nuclear parameters

In §6.4, we showed that GW170817 directly maps to constraints on L0 using our

polytropic approximation of the nuclear expansion. In this section, we turn to the

higher-order nuclear terms. In particular, we will show that by taking the polytropic

approximation in eq. (6.10), we can place constraints on the allowed combinations

of the remaining four nuclear parameters.

We start by equating the polytropic approximation and the full nuclear expan-

sion, and match terms of equivalent order, i.e.,

aL0(u+ 1)Γ−2 = aL0 +

(
bL0 +

K0 + aKsym

3

)
u

+

(
cL0 +

bKsym

3
+
Q0 + aQsym

18

)
u2. (6.19)

For this expression to be true at all densities, the terms of equivalent order must

all sum to zero. For example, setting Γ = 3 implies the constraints

(a− b)L0 −
K0 + aKsym

3
= 0 (6.20a)

cL0 +
bKsym

3
+
Q0 + aQsym

18
= 0. (6.20b)

Likewise, setting Γ = 4 implies

(2a− b)L0 −
K0 + aKsym

3
= 0 (6.21a)

(c− a)L0 +
bKsym

3
+
Q0 + aQsym

18
= 0. (6.21b)

For Γ = 3.5, we introduce one final series expansion on the left-hand side of eq. (6.19)

to simplify (u+ 1)1.5 ≈ 1 + (3/2)u+ (3/8)u2 +O(u3). Using this approximation, we

can again require terms of the same order to sum to zero, and we find(
3a

2
− b
)
L0 −

K0 + aKsym

3
= 0 (6.22a)

(
c− 3a

8

)
L0 +

bKsym

3
+
Q0 + aQsym

18
= 0, (6.22b)
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where we recall that a = a(S0), b = b(S0, L0), and c = c(S0, L0, Ksym).

Thus, for a given choice of Γ, we have two independent sets of constraints:

the first connects the parameter set {S0, L0, K0, and Ksym}, while the second

connects {S0, L0, Ksym, Q0, Qsym}. In the following, we will use the posterior on

L0 from §6.4 to constrain the remaining combinations of higher-order terms using

these relationships.

We start with the first set of constraints, on {S0, L0, K0, and Ksym}. These

constraints correspond to eqs. (6.20a), (6.21a), and (6.22a). As in § 6.4, we fix

S0=32 MeV and find that this choice does not strongly affect the results. We

then use the 90%-credible interval on L0 from Fig. 6.5 to bound the allowed range

of Ksym − K0 values. We show the resulting constraints in Fig. 6.6 for each Γ.

In this figure, the light shaded regions represent the bounds on the Ksym − K0

relationship allowed by the 90%-credible interval on L0. The dark solid lines indicate

the Ksym−K0 relationship corresponding to the most likely value of L0, for a given

Γ.

We find that GW170817 places tight constraints on linear combinations of K0

and Ksym. For the three values of Γ, fixing L0 to its maximum likelihood value from

Fig. 6.5 yields

Γ = 3.0 : Ksym = 108.43− 1.201K0 (6.23a)

Γ = 3.5 : Ksym = 94.40− 1.201K0 (6.23b)

Γ = 4.0 : Ksym = 72.57− 1.201K0. (6.23c)

These equations correspond to the dark, solid lines in Fig. 6.6. The coefficient in

front of K0 is the same in all three cases because it is given simply by 1/a and hence

depends only on S0. The constant term depends on S0, L0, and the coefficients of

L0 in eqs. (6.20a), (6.21a), and (6.22a), and thus varies slightly with the choice of

Γ.

Previous studies have constrained K0 by fitting nuclear models to measurements

of the isoscalar giant monopole resonance. Depending on the analysis methods,

the results range from quite narrow, K0 = 248 ± 8 MeV (Piekarewicz, 2004) and
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Figure 6.6 Two-dimensional constraints on Ksym and K0, from GW170817. The
shaded regions bound the Ksym − K0 space allowed by eqs. (6.20a), (6.21a), and
(6.22a), for S0=32 MeV and L0 corresponding to the 90% confidence intervals from
Fig. 6.5. The dark, solid lines represent the Ksym −K0 relationship corresponding
to the most likely value of L0 from Fig. 6.5 for each Γ. We find that GW17017
constrains Ksym to values . 70 MeV, for a wide range K0.

K0 = 240±20 MeV (Shlomo et al., 2006), to broader bounds of K0 = 250−315 MeV

(Stone et al., 2014). If we take the broadest range of these allowed values and

assume 220 < K0 < 315 and combine this with our results in Fig. 6.6, we find that

−330 . Ksym . 25, at 90% confidence. This constraint on Ksym is broader than,

but consistent with previous results, including the constraint of Ksym = −111.8 ±
71.3 MeV that was derived from universal relations between Ksym and lower-order

expansion terms (Mondal et al., 2017).

Using the tidal deformability from GW170817, Malik et al. (2018) found con-

straints of −112 < Ksym < −52 MeV or −140 < Ksym < 16 MeV, depending on

their choice of prior for L0. In a similar analysis, Carson et al. (2019) derived con-

straints of −259 ≤ Ksym ≤ 32 MeV, after marginalizing over L0. Our results, which

are derived with the polytropic approximation and no priors on L0, are consistent
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with both of these analyses. However, if we take the Ksym(K0) relationship that

corresponds to the maximum likelihood in L0 (i.e., the dark solid lines in Fig. 6.6),

we find that the data point to smaller values of Ksym, below the lower bound from

the Malik et al. (2018) study and on the lower end of the Carson et al. (2019)

constraints. This is likely a consequence of the fact that these studies both used

priors that either forbade or disfavored low values of L0, such as those we find in

this chapter.

Finally, we turn to the second set of constraints on the parameters {S0, L0,

Ksym, Q0, Qsym}. As we did above, we will fix S0 = 32 MeV and use the maximum

likelihood in L0. We can then use eqs. (6.20b), (6.21b), and (6.22b) to calculate the

relationship between the remaining four parameters. For the most likely value of

L0, we find

Γ = 3.0 : Ksym = 103.4− 1.73Q0 − 1.44Qsym (6.24a)

Γ = 3.5 : Ksym = 253.3− 1.53Q0 − 1.28Qsym (6.24b)

Γ = 4.0 : Ksym = 311.8− 1.44Q0 − 1.20Qsym. (6.24c)

To our knowledge, no nuclear experiments have constrained Q0 or Qsym and only

broad theoretical bounds have been calculated. For example, Zhang et al. (2017)

found −800 < Q0 < 400 MeV based on analyses of energy density functionals.

Nevertheless, future experiments or astrophysical observations may one day provide

stricter bounds on Q0 or Qsym. Within our polytropic framework, any such measure-

ments can then be used to constrain the correlated parameters using these analytic

relationships.

6.6 Conclusions

In this chapter, we have introduced a new approximation of the nuclear EOS which

allows for a direct mapping from measured Λ̃ constraints to the symmetry energy

parameters. We have shown that a wide sample of nuclear EOS can be reasonably

represented with a single-polytrope approximation in the density range of interest,
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which simplifies the EOS to depend only on S0, L0, and Γ, rather than the full

six nuclear parameters. Moreover, we find that Λ̃ is relatively insensitive to S0.

With many future gravitational wave detections expected in the coming years, this

framework will make it possible to map the gravitational wave event directly to L0

or to combinations of higher-order nuclear parameters.

With this parameter-space reduction and focusing on the existing measurement

of Λ̃ from GW170817, we were able to map from the full posterior on Λ̃ = 300+420
−230

(Abbott et al., 2019) to posteriors on L0. We find that GW170817 points to signif-

icantly smaller values of L0 than have been previously been reported, with a peak

likelihood of L0 ∼ 23 MeV. We additionally use these posteriors on L0 to constrain

combinations of higher-order nuclear parameters, finding tight constraints on the

allowed combinations of Ksym and K0, as well as constraints on Ksym, Q0, and Qsym.

We note that the final constraints on L0 depend slightly on the choice of Γ

and, of course, will depend on the robustness of our polytropic approximation.

If the true combination of K0, Q0, S0, L0, Ksym, and Qsym produce an EOS with

significant sub-structure, then our single-polytrope approximation is not the optimal

approach. Moreover, if the dense-matter EOS contains a phase transition to quark

matter, then the polytropic approximation will be inadequate and, depending on

the particular formulation, the relationship between the tidal deformability and L0

may be significantly weaker as well (e.g., Zhu et al. 2018).

Nevertheless, the results in this chapter indicate that gravitational wave data

can significantly constrain the slope of the symmetry energy for nuclear EOS. This

is an important point. Previous studies connecting GW170817 to the nuclear EOS

have either fixed the allowed range of L0 or marginalized over L0 (Malik et al.,

2018; Carson et al., 2019), using priors from nuclear physics that we find to be in

modest conflict with the values inferred from GW170817. As the LIGO/Virgo team

continue to observe new gravitational wave events and further pin down the tidal

deformability of neutron stars, it will become increasingly important to develop

robust approaches to constrain the nuclear parameters in model-independent ways.
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CHAPTER 7

Optimized Statistical Approach for Comparing Multi-Messenger Neutron Star

Data�

With the wealth of new results coming in from electromagnetic observations of as-

trophysical sources, gravitational wave detections of binary systems, and laboratory-

based nuclear experiments – as well as the new direct mappings that let us directly

compare these results, as developed in Chapters 4-6 – we are now in an era of true

multi-messenger constraints on the neutron star EOS. In this chapter, we explore

the statistical biases that can arise when such multi-messenger data are mapped to a

common domain for comparison. We find that placing Bayesian priors individually

in each domain of measurement can lead to biased constraints. Using the first two

binary neutron star mergers as an example, we show that a uniform prior in the

tidal deformability can produce inflated evidence for large radii, even in the absence

of a measured signal. We present a new prescription for defining Bayesian priors

consistently across different experiments, which will allow for robust cross-domain

comparisons. Finally, using this new prescription, we provide a status update on

multi-messenger EOS constraints on the neutron star radius.

7.1 Overview of multi-messenger data for neutron stars

We start with a brief overview of current multi-messenger observations of neutron

stars. On the astrophysical side, X-ray observations of surface emission from neu-

tron stars in low-mass X-ray binaries (LMXBs) have constrained the radii of at least

�A version of this chapter has been submitted for publication to ApJ as Raithel, Özel, and

Psaltis, (2020, submitted). Optimized statistical approach for comparing multi-messenger neutron

star data. This work was supported in part by Chandra Grant GO7-18037X. CR was supported

by NSF Graduate Research Fellowship Program Grant DGE-1746060.
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a dozen sources (Özel et al. 2009; Güver et al. 2010; Guillot et al. 2013; Guillot and

Rutledge 2014; Heinke et al. 2014; Nättilä et al. 2016; Özel et al. 2016; Bogdanov

et al. 2016; for a recent review, see Özel and Freire 2016). Under the assumption

that all neutron stars have a common radius, these measurements combine to yield

a narrowly-constrained radius of R = 10.3±0.5 km (Özel et al., 2016). Additionally,

the NICER collaboration recently reported the first radius constraint for an isolated

X-ray pulsar (Bogdanov et al., 2019), which is quite broad but seems to favor rela-

tively large radii, R = 12.71+1.14
−1.19 km, for a multi-component, phenomenological set

of pulse-profile models (Riley et al., 2019). The LIGO-Virgo collaboration has also

now detected two likely binary neutron star mergers. The first event, GW170817,

provided strong constraints on the effective tidal deformability of the binary neutron

star system, Λ̃ = 300+430
−220 (Abbott et al., 2017c, 2019). While there was no strong

detection of tidal effects in the second event, GW190425, the masses from this event

render it likely to be a second binary neutron star system, which some studies have

already used in placing new, multi-messenger constraints on the neutron star EOS

(The LIGO Scientific Collaboration et al., 2020; Dietrich et al., 2020; Landry et al.,

2020).1

In addition to these astrophysical measurements, a wide variety of nuclear ex-

periments have placed complementary constraints on the low-density portion of the

EOS. For example, the two-body potential can be constrained from nucleon-nucleon

scattering data at energies below 350 MeV and from the properties of light nuclei,

which directly informs the EOS at densities near the nuclear saturation density, nsat

(Akmal et al., 1998; Morales et al., 2002). Experimental constraints are also often

expressed in terms of the nuclear symmetry energy, which characterizes the differ-

ence in energy between pure neutron matter and symmetric nuclear matter. The

1The LIGO Scientific Collaboration et al. (2020) does point out that, due to the weak mea-

surement of tidal effects, it remains possible that GW190425 contains at least one black hole.

Throughout this chapter, we will assume that GW190425 was, in fact, a binary neutron star

merger, as is assumed in the majority of the discovery paper (The LIGO Scientific Collaboration

et al., 2020).
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value of the nuclear symmetry energy at nsat and its slope, L0, have been constrained

by fits to nuclear masses; by measurements of the neutron skin thickness, the giant

dipole resonance, and electric dipole polarizability of 208Pb; and by observations

of isospin diffusion or multifragmentation in heavy ion collisions (e.g., Danielewicz

2003; Centelles et al. 2009; Roca-Maza et al. 2013; Tamii et al. 2011; Tsang et al.

2012; see Oertel et al. 2017 for a recent review).

With this diversity of data, the question then arises of how one might robustly

compare the results across the various domains. In this chapter, we will provide one

self-consistent method for comparing posteriors on the neutron star EOS from dif-

ferent types of experimental data, for any domain in which the prior is defined. This

method allows one to directly compare previously-published posteriors on observable

neutron star properties. As such, this approach is different from, but complemen-

tary to full Bayesian inferences, which attempt to combine multi-messenger data

to constrain the parameters of the EOS itself (for further discussion, see § 7.2).

For the properties considered in this chapter, we will focus specifically on recent

constraints from X-ray observations of the neutron star radius, gravitational waves

constraints on Λ̃, and nuclear experiments constraining L0. As we will show, defining

priors self-consistently across the multiple domains is critical for ensuring unbiased

constraints.

We start in § 7.2 with an overview of currently-used approaches for cross-domain

comparisons of neutron star data and we highlight some common pitfalls of these

methods, which motivate this work. In §7.3, we provide a brief review of Bayesian

statistics, in order to define the issues that arise when defining priors across differ-

ent domains. We then introduce consistent sets of Bayesian priors for the various

domains of comparison that are relevant for EOS constraints and we comment on

the use of a Jeffreys’ prior to solve this problem. In §7.4, we derive a set of an-

alytic transformation equations that facilitate the mapping of posteriors between

any two domains, making use of previously-published mappings between the nu-

clear symmetry energy and the radius, as well as between the radius and the binary

tidal deformability. These transformation functions allow for diverse sets of archival
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posteriors to be compared self-consistently. In §7.5, we apply the newly-derived

priors to the concrete example of the measured tidal deformability from GW170817

and GW190425. The choice of priors strongly dominates for the weakly-informative

GW190425, but for both events, the choice of a uniform prior in the tidal deforma-

bility inflates the evidence for large radii, while a uniform prior in R points towards

smaller radii. Finally, in §7.6, we combine a set of archival posteriors from X-ray

observations, the two gravitational wave events, and a recent study using heavy-ion

collisions and we present summary constraints on the neutron star radius.

7.2 Motivation and past work

Many studies have attempted to address the question of how to combine multi-

messenger data to constrain the neutron star EOS. Currently, there are several

different approaches that are commonly used in the literature. In this section,

we will give an overview of these methods and will highlight that, in the absence

of a community consensus on the appropriate prior distributions to assume, the

particular choice of priors can significantly affect the resulting constraints.

One way of combining multi-messenger data is to perform a Bayesian inference, in

which a single set of priors is defined in the EOS domain and likelihoods are sampled

in all domains of measurements (e.g., Steiner et al., 2010; Wade et al., 2014; Steiner

et al., 2016; Özel et al., 2016; Raithel et al., 2016; Riley et al., 2018; Landry and

Essick, 2019). Even though a Bayesian inference is, in principle, robust, there are

still choices to be made when setting up the framework. For example, while certain

priors are widely agreed upon, such as the requirement for the EOS to maintain

thermodynamic stability and for the sound speed to remain subluminal, others,

such as which parametrization to use or what priors to place on the parameters of

a particular model, are still being debated. Several studies have explored the role

of the EOS priors in inferences from X-ray radii (e.g., Steiner et al., 2016) or from

gravitational waves (e.g., Carney et al., 2018), and have found that the result is

indeed sensitive to the choice of parametrization. In order to avoid this sensitivity,
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Landry and Essick (2019) recently introduced a non-parametric inference scheme,

which uses Gaussian processes trained on a sample of theoretical EOS models. While

this approach allows for more direct characterization of the errors of the inferred

EOS function, it too requires a choice when defining the priors. In Landry and

Essick (2019), the priors are conditioned on a set of published EOS, which may

reflect historical trends more than the true range of possible physics.

Additionally, Bayesian inference schemes tend to be computationally expensive.

Calculating each likelihood requires an integration of the TOV equations to compute

masses, radii, and tidal deformabilities for every EOS sampled within the inference

scheme. As a result, it remains common to instead make use of archival (i.e., pub-

lished or publicly available) posteriors on intermediate parameters, such as R or Λ̃

(see Riley et al. 2018 for further discussion).

Archival posteriors can provide a useful consistency check between astrophysical

observations and a proposed EOS, at low computational cost. This provides an

alternative method for using multi-messenger data to inform EOS theory. For ex-

ample, many recent EOS analyses (e.g., Krastev and Li, 2019; Lim and Holt, 2019;

Blaschke et al., 2020; Christian and Schaffner-Bielich, 2020; Fattoyev et al., 2020;

Khanmohamadi et al., 2020; Marczenko et al., 2020) have compared the predictions

of their models to some combination of posteriors on Λ1.4 from GW170817, poste-

riors on R from GW170817, as inferred either through a Bayesian inference (e.g.,

using a spectral EOS, as in Abbott et al., 2018) or using quasi-universal relations

(e.g., Annala et al., 2018; De et al., 2018; Most et al., 2018; Raithel et al., 2018;

Coughlin et al., 2019; Radice and Dai, 2019; Raithel, 2019), and posteriors on R

from the recent NICER measurement (Miller et al., 2019; Riley et al., 2019). Other

studies have sought to incorporate more directly different types of measurements,

combining, for example, nuclear constraints on L0 with the LIGO posteriors on Λ̃

(Malik et al., 2018; Carson et al., 2019) and additionally with NICER posteriors

on R (Zimmerman et al., 2020), or directly comparing constraints from different

sources (e.g., Raithel 2019 for a comparison of LMXB posteriors and radii inferred

from posteriors on Λ̃; or Raithel and Özel 2019 for a comparison of posteriors on Λ̃
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and nuclear constraints on L0).

However, each of the above studies combines sets of posteriors that assume differ-

ent – and, as we will show, incompatible – sets of priors. These mixed priors imply

inconsistent assumptions about the universe that cannot be held simultaneously.

For example, the radius measurements that come from NICER or LMXBs tend to

assume a flat prior in R. In contrast, the LIGO posteriors on the tidal deformability

of GW170817 assume a flat prior in Λ̃ (Abbott et al., 2017c, 2019), and any radius

constraints from GW170817 that were inferred using the quasi-universal relations

between Λ̃ and R also implicitly assume this flat-in-Λ̃ prior. Because Λ̃ is a strong

function the neutron star radius (De et al. 2018; Raithel et al. 2018), a flat distri-

bution of Λ̃ implies a distribution of radii that strongly favors large radii. Similarly,

a flat prior distribution in the spectral indices of an EOS predicts a distribution of

radii and tidal deformability that increases with larger values (see, e.g., Fig. 2 of

Jiang et al. 2020). Because L0 also depends on R1.4 (Lattimer and Prakash, 2001),

a flat distribution in L0 implies a non-uniform distribution in R and Λ̃ as well. Be-

cause of these non-linear relationships, flat priors in R, Λ̃, L0, and the spectral EOS

indices are fundamentally incompatible with one another.

Combining posteriors that assume inconsistent priors can lead to biased conclu-

sions, which we demonstrate with a simple example in Fig. 7.1. We start by requiring

consistency between a particular theoretical EOS (shown as either dashed or dotted

lines, for two sample EOS) and a set of two archival posteriors on the radius. In

this example, one set of posteriors comes from a fictitious X-ray radius measure-

ment (shown in green; assumes a flat-in-R prior) and the second set of posteriors

comes from GW170817 (excluded 90% bounds shown with the purple hatched band;

derived assuming a flat-in-Λ̃ prior). When combining these inconsistent priors, we

would falsely conclude that the dashed EOS is incompatible with the joint data,

while the dotted EOS is allowed. However, if we instead transform the GW170817

radius constraint to assume a prior that is consistent with the X-ray measurement

(i.e., flat-in-R; shown in orange), we find that, in fact, the dotted EOS is ruled out

by the joint posteriors, while the dashed EOS is allowed, at 90% confidence. Similar
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false conclusions can be drawn whether the consistent set of priors is ultimately de-

fined in the radius domain, the Λ̃-domain, or some other domain altogether. Clearly,

defining priors self-consistently is necessary for deriving unbiased constraints.

Figure 7.1 Example consistency check between two theoretical EOS (shown as
dashed and dotted lines) and a collection of astrophysical data. A fictitious, broad
radius constraint from an X-ray observation is shown in green. We also show the
90%-confidence exclusion bounds on the radius that are inferred from the LIGO
posteriors on Λ̃ (Abbott et al., 2019), with two different choices of priors. In the
purple hatched band, we show the radii that are excluded if one assumes a flat prior
in Λ̃, as was used by the LIGO-Virgo collaboration. The orange band shows the
radii that are excluded if a flat prior in radius is instead assumed (we will derive
these bounds in §7.5). If the X-ray radius measurement, which assumes a flat-in-R

prior, and the raw gravitational wave constraint, which assumes a flat-in-Λ̃ prior,
are combined, then the dashed EOS would be ruled out at 90%-confidence, while
the dotted EOS would be allowed. In contrast, if we require consistent priors that
are both defined as flat-in-R (green and orange), then the dotted EOS would be
rejected, while the dashed EOS would be consistent with both measurements.
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While this conclusion may be a general feature of Bayesian statistics, our goal in

this chapter is to demonstrate the importance of maintaining self-consistent priors

and provide a method for doing so, specifically within the context of the neutron star

literature, where it remains common to combine inconsistent priors and where the

definition of a “non-informative” prior varies across subfields. Most work highlight-

ing the role of priors in constraining the neutron star EOS has focused on Bayesian

inference schemes, and hence focuses on priors that are defined within the EOS

domain (e.g., Steiner et al., 2016; Carney et al., 2018). Here, we focus on priors

that are defined in external, observable domains, specifically for use in transform-

ing the archival posteriors on R, L0 and Λ̃ that are widely used for cross-domain

comparisons.

7.3 Defining Bayesian priors

We start with a general review of Bayesian statistics, in order to illustrate the

problems that can arise when performing cross-domain comparisons of archival pos-

teriors. Bayes’ theorem states that, when modeling some collection of data with a

set of parameters ~θ, the posterior distribution on ~θ is given by

P (~θ|data) = Ppr(~θ)L(data|~θ), (7.1)

where Ppr(~θ) represents the Bayesian prior on ~θ and L(data|~θ) represents the likeli-

hood of observing the measured data given a particular set of values for ~θ.

We can transform this measurement of ~θ to a new set of parameters, ~φ, with a

simple transformation of variables,

P (~φ|data) = P (~θ|data)J
(
~θ

~φ

)
, (7.2)

where J represents the Jacobian of transformations. In the case that ~θ and ~φ

are both single parameters, the Jacobian is simply |∂θ/∂φ|. From eq. (7.2), it is

clear that, depending on the nature of this Jacobian, even a broad posterior on ~θ

can potentially lead to stringent constraints on ~φ, simply by the transformation of
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variables. While this is a general feature of Bayesian priors (e.g., Chapter 1.3 of Box

and Tiao, 1992), it becomes particularly relevant for neutron star EOS inferences,

in which key parameters of interest – namely, L0, R, and Λ̃ – are high-powered

functions of one another. As a result, requiring simultaneous consistency between a

theoretical EOS and a set of posteriors that assume flat priors in more than one of

these domains (as in e.g., Krastev and Li 2019; Lim and Holt 2019; Blaschke et al.

2020; Christian and Schaffner-Bielich 2020; Fattoyev et al. 2020; Khanmohamadi

et al. 2020; Marczenko et al. 2020), can potentially lead to false conclusions (as

shown in Fig. 7.1).

In order to avoid such biases, it is necessary to decide, a priori, what one wants

to take as “known” about the population of neutron stars or about the behavior of

nuclear matter, and then define priors in the other domains accordingly. There is

freedom to choose the domain in which the initial set of priors is defined, but once

that choice is made, it fixes the priors for the other variables. In the following, we

provide transformation functions that can be used to map a prior on L0, R, or Λ̃ to

the other domains, for use in self-consistent cross-domain comparisons.

We start with priors that are defined with respect to the slope of the nuclear

symmetry energy. If we consider L0 to be the fundamental variable on which we want

to define the prior, then we can define corresponding priors on R and Λ̃ according

to

Ppr; L0(L0) = Ppr(L0) (7.3a)

Ppr; L0(R) = Ppr(L0)

∣∣∣∣ ∂R∂L0

∣∣∣∣−1

(7.3b)

Ppr; L0(Λ̃) = Ppr(L0)

∣∣∣∣ ∂R∂L0

∣∣∣∣−1∣∣∣∣∂Λ̃

∂R

∣∣∣∣−1

. (7.3c)

In these equations, we have introduced a short-hand notation for the prior, Ppr; X(Y ),

which indicates a Bayesian prior on the measurement of a variable Y that is defined

with respect to a given prior on X. In defining the transformation of variables, we

have chosen to expand the derivatives so that we ultimately have only two derivatives

to calculate: ∂R/∂L0 and ∂Λ̃/∂R. This choice is particularly convenient because
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functions for R(L0) and Λ̃(R) have been previously reported in other works, as we

will review in §7.4.

If we instead choose the radius as the fundamental variable over which to de-

fine the prior, then the corresponding priors on the gravitational wave and nuclear

parameters are given by

Ppr; R(L0) = Ppr(R)

∣∣∣∣ ∂R∂L0

∣∣∣∣ (7.4a)

Ppr; R(R) = Ppr(R) (7.4b)

Ppr; R(Λ̃) = Ppr(R)

∣∣∣∣∂Λ̃

∂R

∣∣∣∣−1

, (7.4c)

where a natural choice for a minimally-informative prior might be a bounded uniform

distribution on R.

For the sake of completeness, we also include the set of self-consistent priors that

are defined with respect to Λ̃,

Ppr; Λ̃(L0) = Ppr(Λ̃)

∣∣∣∣∂Λ̃

∂R

∣∣∣∣∣∣∣∣ ∂R∂L0

∣∣∣∣ (7.5a)

Ppr; Λ̃(R) = Ppr(Λ̃)

∣∣∣∣∂Λ̃

∂R

∣∣∣∣ (7.5b)

Ppr; Λ̃(Λ̃) = Ppr(Λ̃). (7.5c)

For the flat prior on Λ̃ that the LIGO-Virgo collaboration assumed for GW170817

(Abbott et al., 2017c, 2019), eq. (7.5) represents the corresponding set of priors that

are implied for R and L0.

Finally, we note that, in this chapter, we focus on prior distributions that are

flat in the variable of interest, in order to be consistent with the many published

measurements that employ a flat prior in either R, Λ̃, or L0. Lacking other infor-

mation on what the distributions for these parameters should be, a flat distribution

is a reasonable choice. A truly uninformative prior – e.g., the Jeffreys’ prior, for

which the posterior is invariant to transformations of the prior (Jeffreys, 1946) –

might be a more robust choice. However, the Jeffreys’ prior is only well-defined for

a particular experiment. For example, a Jeffreys’ prior on Λ̃ can be derived from the
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Fisher information matrix for a gravitational wave measurement. The posterior for

such a measurement will be invariant under a transformation of the Jeffreys’ prior

to, say, the radius, which can also be used to parameterize the strain data. But,

the Jeffreys’ prior for R that is derived from the gravitational wave data will not be

the same as the Jeffreys’ prior for R that would be derived from an X-ray measure-

ment, which involves a different Fisher information matrix. In other words, there

is no “global” Jeffreys’ prior that can be defined for independent experiments that

measure the radius, tidal deformability, and symmetry energy. Thus, even if one

were to adopt the Jeffreys’ prior for one domain of interest, eqs. (7.3)-(7.5) would

still be necessary to transform that prior to the other domains.

7.4 Transformation functions

We now turn to deriving the transformation functions needed to calculate the priors

in eqs. (7.3)-(7.5). For each transformation function, we make use of the appropriate

relationships and provide the corresponding derivatives.

0 200 400 600 800 1000
Λ̃

0.000

0.002

0.004

0.006

0.008

0.010

PD
F

Flat prior in L0

Flat prior in R
Flat prior in Λ̃

9 10 11 12 13 14 15 16
R (km)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

PD
F

0 20 40 60 80 100 120 140
L0 (MeV)

0.000

0.005

0.010

0.015

0.020

0.025

PD
F

Figure 7.2 Left : Prior distributions mapped to the domain of Λ̃. Center : Prior
distributions mapped to the domain of R. Right : Prior distributions mapped to the
domain of L0. The purple lines represent the case of a uniform prior in L0, which has
been transformed to each of the domains using eq. (7.3). The orange lines represent
a uniform prior in R, which has been transformed according to eq. (7.4). The blue

lines represent a uniform prior in Λ̃, after transformation according to eq. (7.5).
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7.4.1 From the nuclear symmetry energy to the neutron star radius

We start at the microscopic level, with the mapping between the the slope of the nu-

clear symmetry energy, L0, and the neutron star radius. Many previous studies have

found evidence of strong correlations between these parameters (e.g., Lattimer and

Prakash, 2001; Steiner et al., 2013; Alam et al., 2016). Here, we use the approximate

relation

R1.4 ' (4.51± 0.26)

(
L0

MeV

)1/4

km, (7.6)

which was calculated as a function of pressure for a sample of realistic EOS in

Lattimer and Lim (2013) and later translated to be a function of L0 in Tews et al.

(2017). The derivative is then simply

∂R

∂L0

' (1.128± 0.065)

(
L0

MeV

)−3/4
km

MeV
, (7.7)

where we have assumed R ≈ R1.4, as is reasonable for EOS with nearly vertical

mass-radius relations.

7.4.2 From tidal deformability to the neutron star radius

We now turn to the relationship between the radius and the effective tidal deforma-

bility measured from a gravitational wave event. Several studies have shown that Λ̃

is effectively a mono-parameteric function of the neutron star radius (De et al., 2018;

Raithel et al., 2018), which scales quite strongly as Λ̃ ∼ R5−6, where the exponent

varies according to the slightly different assumptions made in these analyses. We

use the formalism of Chapter 5 to exactly calculate ∂Λ̃/∂R below.

In that study, we used a quasi-Newtonian framework for calculating Λ̃, in which

Λ̃ ≈ Λ̃0

[
1 + δ0(1− q)2

]
+O

(
(1− q)3

)
, (7.8)

where

Λ̃0 =
15− π2

3π2
ξ−5(1− 2ξ)5/2, (7.9)

δ0 =
3

104
(1− 2ξ)−2

(
−10 + 94ξ − 83ξ2

)
, (7.10)
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and ξ was introduced as an effective compactness, defined as

ξ ≡ 21/5GMc

Rc2
. (7.11)

In these equations, Mc is the chirp mass, q is the mass ratio of the binary (defined

such that q ≤ 1), G is the gravitational constant, and c is the speed of light.

Combining these results, one finds that the radius-dependence of the binary tidal

deformability scales approximately as Λ̃ ∼ R6.

In this framework, the derivative of Λ̃ is then given by

∂Λ̃

∂R
≈ ∂Λ̃0

∂R

1 +

δ0 + Λ̃0

(
∂δ0

∂R

)(
∂Λ̃0

∂R

)−1
 (1− q)2

 , (7.12)

where we neglect the higher-order terms and we use the auxillary derivatives given

by
∂δ0

∂R
= −δ0ξ

R

[
54 + 22ξ

−10 + 114ξ − 271ξ2 + 166ξ3

]
(7.13)

and
∂Λ̃0

∂R
=

5Λ̃0ξ

R

(
1

ξ
+

1

1− 2ξ

)
. (7.14)

The importance of the 2nd-order correction term in eq. (7.12) increases with the

chirp mass,Mc, and with the mass asymmetry of the binary. That is, larger values

of Mc and smaller values of q will both act to increase the coefficient of the 2nd-

order term. However, even for a very large Mc = 1.44 M�, as was measured

for GW190425, and for q = 0.7, as was the lower limit for both GW170817 and

GW190425, the correction term is at most 4%. Thus, we neglect the 2nd-order

correction term and simply approximate

∂Λ̃

∂R
≈ ∂Λ̃0

∂R
, (7.15)

which scales approximately as R5.

7.4.3 Summary of transformations

We now apply these transformation functions to compute the priors in eqs. (7.3)-

(7.5). For each fundamental variable, we assume a bounded uniform distribution.
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Figure 7.3 Left : Posteriors on Λ̃ from GW170817, after reweighting for each set of
priors and mapping to the chirp mass of event GW190425. The purple line indicates
the case of a uniform distribution in L0; the orange line represents a uniform prior
in R; and the blue line represents a uniform prior in Λ̃, as was originally used by the
LIGO-Virgo Collaboration. Center : Constraints on R inferred from each posterior
on Λ̃. Right : Constraints on L0 inferred from each posterior on Λ̃.
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Figure 7.4 Same as Fig. 7.3, but for the posteriors on Λ̃ measured from GW190425.
The measurement of Λ̃ was much less significant for this event compared to
GW170817, and thus the choice of prior strongly influences the subsequent infer-
ence of R or L0. In particular, for the original prior assumed by the LIGO-Virgo
collaboration, the low-significance constraint on Λ̃ implies an artificial measurement
of R.

We bound the uniform prior on Λ̃ to be positive and less than 1200, which is well

above the limits that were derived for either GW170817 (with an adjusted chirp

mass of Mc = 1.44 M�)2 or GW190425. We bound the uniform prior on R to be

2The binary tidal deformability is a mass dependent quantity. In order to compare the results

from GW170817 and GW190425 directly, we need to re-weight Λ̃ from the two events to have the
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between 9 and 16 km, in order to broadly encompass all viable physics formulations

and current measurements. Finally, we bound the uniform prior on the slope of

the symmetry energy such that L0 ∈ [10, 140] MeV, in order to be approximately

consistent with a wide range of experimental results (for a review, see, e.g., Lattimer

2012).

We show the resulting transformations of these priors in Fig. 7.2. In blue, we

show the original case of a uniform prior on Λ̃, as was used by the LIGO-Virgo

collaboration for both GW170817 and GW190425. The middle panel shows how

the flat prior in Λ̃ maps to a highly informative prior in R, which is biased towards

large radii. The right panel shows that a flat prior in Λ̃ is moderately biased towards

larger values of L0. Figure 7.2 also shows how a uniform prior in R or L0 transforms

to the other domains, in orange and purple lines, respectively. Clearly, a “non-

informative” prior in one domain can be highly informative in a different domain.

Figure 7.2 also demonstrates the incompatibility of assuming flat priors in more

than one of these domains. For example, a flat prior in R assigns equal probability

to stars with radii of 10 or 15 km, whereas a flat prior in Λ̃ assigns 8.5× more

probability to the larger star. A flat prior in L0 implies that the 15 km star is ∼ 3×
more likely than the 10 km star. While any of these may be a valid prior distribution

to choose, they clearly describe very different physical assumptions.

7.5 Example application to gravitational wave data

With these transformation functions in hand, we now turn to a concrete example,

in order to further highlight how the interpretation of some specific measurements

can rely on the priors. In this section, we will calculate posteriors for Λ̃ using priors

that are minimally informative in either Λ̃, R, or L0. We will then map each set

of posteriors to constraints on R and L0, in order to illustrate the sensitivity of the

same chirp mass. Thus, we adjust the chirp mass of GW170817 to match the central value of

the chirp mass for GW190415, Mc = 1.44 M�, in order to facilitate this comparison. For the

chirp-mass adjusted posteriors on Λ̃ from GW170817, see The LIGO Scientific Collaboration et al.

(2020).
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resulting constraints to the particular choice of priors.

We start with the posteriors on Λ̃ from GW170817, which were measured as-

suming a flat prior in Λ̃ (Abbott et al., 2017c, 2019). These posteriors are shown

in blue in the left panel of Fig. (7.3), for an adjusted chirp mass ofMc = 1.44 M�.

We then modify the published posterior to calculate the posterior that would have

been inferred had the prior been uniform in radius (shown in orange) or uniform in

L0 (shown in purple). We calculate these new posteriors as

P (Λ̃|data) = Pold(Λ̃|data)

[
Ppr, new(Λ̃)

Ppr, old(Λ̃)

]
, (7.16)

where Ppr, new(Λ̃) indicates the new prior, which is given by eq. (7.3c) for the case

of a uniform prior in L0 or by eq. (7.4c) for the case of a uniform prior in R . Here,

Ppr, old(Λ̃) represents the original, uniform prior on Λ̃ and Pold(Λ̃|data) represents

the original, published posterior. By dividing the reported posterior by the old prior,

we recover the original likelihood.

We then transform each of the three, new posteriors on Λ̃ to find the correspond-

ing constraints on R, according to

P (R|data) = P (Λ̃|data)

∣∣∣∣∂Λ̃

∂R

∣∣∣∣. (7.17)

We similarly transform the posteriors on Λ̃ to constraints on L0, according to

P (L0|data) = P (Λ̃|data)

∣∣∣∣∂Λ̃

∂R

∣∣∣∣∣∣∣∣ ∂R∂L0

∣∣∣∣. (7.18)

The inferred constraints on R and L0 are shown in the middle and right panels

of Fig. 7.3, respectively. At 68% confidence (highest-posterior density), the radius

is constrained to R = 10.9+1.8
−0.6 km for uniform priors in L0, R = 10.9+0.8

−0.7 km for

uniform priors in R, and R = 11.1+1.8
−0.6 km for uniform priors in Λ̃. There is a small

difference between the inferred constraints, depending on which choice of prior is

used. In particular, assuming a flat prior in Λ̃ or L0 leads to evidence for slightly

larger radii compared to the radii that are inferred when a flat prior distribution in

R is assumed. Accordingly, radius constraints that are derived from posteriors on
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Λ̃ which assume a flat-in-Λ̃ prior (e.g., Annala et al., 2018; De et al., 2018; Raithel

et al., 2018; Coughlin et al., 2019; Radice and Dai, 2019) will tend to favor larger

radii, purely as an artifact of the prior. This effect will be important to take into

account when comparing gravitational wave constraints on R to X-ray constraints

on R, which typically assume priors that are flat in the radius. However, the data

for GW170817 are constraining enough that the overall effect of the prior remains

small for this event.

In contrast, Fig. 7.4 shows that the constraints inferred from Λ̃ for GW190425

are much more sensitive to the choice of the prior. As for GW170817, the LIGO-

Virgo collaboration reported posteriors on Λ̃ assuming a uniform prior distribution

on Λ̃ (The LIGO Scientific Collaboration et al., 2020). However, unlike GW170817,

the resulting posteriors for GW190425 essentially represent a non-detection: the

authors state that they lack the requisite sensitivity to detect matter effects for

this system (The LIGO Scientific Collaboration et al., 2020). Nevertheless, they

report constraints on Λ̃, the neutron star EOS, and R, assuming that GW190425 is

indeed a binary neutron star system based on its component masses. Following suit,

we re-weight the reported posteriors on Λ̃ to determine the posteriors that would

have been inferred had a uniform prior in R or L0 instead been used, according

to eq. (7.16). The resulting posteriors, and their transformations to R and L0, are

shown in Fig. 7.4.

We find that the choice of prior strongly influences the resulting constraints on

R and L0 for GW190425. In particular, the assumption of a flat prior in Λ̃ leads to

the inference of quite large radii, R = 13.2+1.5
−1.7 km (68% credibility interval), even

though no significant matter effects were detected in the actual measurement. The

inference of large radii is purely an artifact of the transformation of variables. If

we instead use a uniform prior in the radius, then the corresponding constraints

on R are also relatively uniform, as one would expect from a non-detection, such

that it does not make sense to report a 68% credibility interval. We find that

the constraints on R are essentially flat across the range of 9-13 km, with values

of R & 13 km disfavored. Figure 7.4 thus demonstrates that the prior outweighs
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the actual data for this event. Moreover, Fig. 7.4 demonstrates that comparing in

the radius domain, when the measurement and original prior were defined in the

Λ̃ domain, can produce inflated evidence for large radii, even in the absence of a

measured signal.

The conclusion that the prior outweighs the data for GW190425 may be obvious

when the posteriors are examined in the domain in which they are made. In this

case, the relatively flat posterior measured for Λ̃ is clearly mostly consistent with

the flat prior that was assumed, and we can conclude that the event was not very

informative. The picture becomes less clear, however, when transforming to a dif-

ferent domain and then making comparisons in that domain. In fact, several studies

are already starting to compare the radii inferred from GW190425, which are com-

pletely prior-dominated, to the predictions of theoretical EOS (e.g., Blaschke et al.,

2020; Marczenko et al., 2020). Even when made only at a qualitative level, such

comparisons provide false evidence for large radii, while the data themselves bear

little-to-no constraining power.

The two gravitational wave events that have been detected so far are relatively

straightforward to identify as “strongly” and “weakly” constraining events. How-

ever, in the coming years, it is likely that the LIGO-Virgo collaboration will measure

many events whose constraints on Λ̃ fall in the more intermediate category of con-

straining power. When interpreting these events, it will be important to not only

define priors that are consistent with one another, but to explicitly acknowledge

which domain the priors are defined within and to understand how that choice

influences subsequent transformations to other observable quantities.

7.6 Composite constraints on the neutron star radius

With the new prescription for defining priors introduced in this chapter, we now

present summary constraints on the neutron star radius, using the latest results

from X-ray data, gravitational waves, and nuclear constraints on L0.

These results are summarized in Figure 7.5 for two choices of priors. In this
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Figure 7.5 Top: Constraints on the neutron star radius from X-ray observations,
gravitational wave inference, and nuclear experimental data, assuming a uniform
prior in each of the measured quantities (i.e., Λ̃, R, and L0). Bottom: Constraints
on the neutron star radius from the same data, but now assuming a uniform prior in
the radius. We find that using prior distributions that are chosen to be minimally-
informative in the radius results in more evidence for smaller radii.

figure, we include likelihoods from GW170817 (in blue, Abbott et al., 2019) and

GW190425 (in green, The LIGO Scientific Collaboration et al., 2020), X-ray con-

straints on the radii of 12 neutron stars in LMXBs (in red, Özel et al. 2016; for
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an alternative set of LMXB X-ray radius constraints, see, e.g., Steiner et al. 2013),

the X-ray timing results from NICER for PSR J0030+0451 (in orange, Riley et al.,

2019), and a recent constraint on L0 from an analysis of single and double ratios of

neutron and proton spectra from heavy-ion collisions (in purple, Morfouace et al.,

2019). While we only include a single constraint on L0, we note that this posterior

(L0 = 49.6 ± 13.7 MeV, with values below 32 MeV or above 120 MeV forbidden3)

is consistent with the results of a recent meta-analysis of several dozen studies that

determined L0 = 58.7± 28.1 MeV (Oertel et al., 2017). Thus, we include the Mor-

fouace et al. (2019) results in Fig. 7.5 as a representative and recent example of

Bayesian constraints on L0.

The top panel of Fig. 7.5 shows the composite posteriors on R assuming uniform

priors in the domain of each measurement, as is commonly done in the literature;

i.e., uniform priors on Λ̃ for the gravitational wave events, uniform priors on R for

the X-ray data, and uniform priors on L0 for the heavy-ion collision inference. In

contrast, the bottom panel of Fig. 7.5 shows the constraints on R that are derived

when a uniform prior on R is assumed for each measurement. Figure 7.5 illustrates

that using a uniform prior in each variable leads to more evidence for larger radii

from the Λ̃ and L0 measurements, while the radius measurements that are made

in directly in this domain remain relatively small. Thus, by mixing posteriors with

inconsistent priors, the resulting constraints become muddled. In contrast, when we

define the priors self-consistently in the radius domain, the resulting constraints are

overall shifted to slightly smaller radii and a clearer picture emerges. We note that

one could also define the priors self-consistently with respect to Λ̃ or L0 or even a

different parameter altogether, in which case the inferred radii may shift to slightly

larger values, compared to the bottom panel of Fig. 7.5, but would, again, provide

3The constraints from Morfouace et al. (2019) assume a uniform prior for 32 < L0 < 120 MeV.

Because the prior goes to zero outside of this range, we cannot rigorously recover the likelihood

for very large or small values of L0. Instead, when we re-weight the posterior to use a prior that

is uniform in R, we simply assume that the likelihood continues as the inferred Gaussian outside

of this range.
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an internally consistent picture.
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Figure 7.6 Joint posterior distribution on the radius, determined by various com-
binations of experimental data. Orange lines correspond to any combination of
experimental results that include the 12 LMXB sources. Blue lines indicate combi-
nations that include the NICER source, PSR J0030+0451, as the only X-ray data.
The purple line shows the constraints inferred from only gravitational wave and
nuclear contraints; i.e., with no X-ray data.

Finally, Fig. 7.6 shows the joint posterior distribution for various combinations

of these experimental and observational constraints, with uniform priors defined in

the radius domain. The orange lines show the joint posterior distributions for any

combination of experimental constraints that include the data for the 12 LMXB

sources, with the darkest orange line representing the joint posterior including all

of the data shown in Fig. 7.5. The blue lines represent the joint posteriors for

any combination of data that include the NICER pulsar as the only X-ray source.

Finally, the purple line represents the joint posterior for just the nuclear and the

gravitational wave constraints (i.e., excluding all X-ray sources).
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We find that the data from the 12 LMXB sources (as analyzed by Özel et al.

2016) are the most constraining measurement included in this chapter. Any joint

posteriors that contain these data point to R ∼ 10− 11.5 km. Moreover, small radii

are supported by any combination of results that exclude the NICER data, including

the combination of gravitational wave and L0 constraints alone. In contrast, if the

NICER source is included as the only X-ray data, then the resulting radii are much

larger, R ∼ 12 − 13 km. Currently, the NICER collaboration has published radius

constraints for just a single source, PSR J0030+0451, using a multi-component,

phenomenological pulse-profile model to fit the data. As more physical pulse-profile

models are developed and more sources are included in the analysis, it will be

interesting to see whether this systematic offset persists.

Given the current tension between the NICER constraints and the LMXB and

gravitational wave constraints, it is all the more crucial to consider the role of

the prior when combining these posteriors. Different choices of the prior – either

on exterior parameters like L0, R, or Λ̃, as considered in this chapter, or on the

parameters of the EOS itself – will provide a different relative weight to each of these

measurements. Thus, by naively picking a particular prior, one may also be granting

more constraining power to a particular type of experiment. Of course, if the chosen

prior is well-motivated, then this is exactly what should happen. However, we raise

the issue here to point out that – for the current state of sparse, and sometimes

conflicting, neutron star data – the choice of even “non-informative” priors can

significantly affect the resulting analysis and should be not be adopted naively.

As the community continues to work towards ever-more stringent constraints on

the neutron star radius, these joint posteriors can be helpful for understanding the

relative constraining power of each additional measurement and how this compares

to the information provided by the prior. Joint posteriors can also help to identify

systematic offsets between different types of measurements. For a recent example

of a comparison of joint posteriors in a fully Bayesian inference that also includes a

treatment for systematic offsets, see Al-Mamun et al. (2020). Finally, we note again

that regardless of which data are included in any meta-analysis, defining the priors
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to be self-consistent is an important step towards getting unbiased constraints.

7.7 Conclusions

With the recent flood of multi-messenger constraints on the neutron star EOS, it

is important to start identifying the statistical biases that enter into comparisons

of these diverse data sets. In this chapter, we have highlighted the importance of

defining a consistent set of priors and of understanding the role that those priors

play, when transforming to different domains. We introduced a general prescription

for calculating consistent priors and derived the relevant transformation functions

so that archival posteriors from different experiments can be robustly compared.

Using the example of GW170817 and GW190425, we showed that assuming a

Bayesian prior that is “non-informative” in Λ̃ leads to a highly-informative constraint

on R, even in the absence of a measured signal. In particular, a flat prior in Λ̃ biases

the resulting constraint on R to large values, whereas with a flat prior in the radius

provides evidence for slightly smaller radii.

As the community continues to collect more and higher quality data, the relative

importance of the priors should diminish. We have already shown this for the case

of radius constraints inferred from Λ̃ for GW170817, for which the choice of prior

does not strongly affect the resulting posterior. However, for gravitational waves in

particular, we may see far more low-significance events than we do GW170817-like

events. Thus, if we hope to use the future constraints on Λ̃ to compare with other

radius measurements, it is important to account for the role of the assumed priors.

As new events – gravitational and otherwise – continue to be observed, the

general prescription introduced in this chapter will facilitate increasingly stringent,

and statistically robust, constraints on the neutron star EOS.
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CHAPTER 8

The Birth Mass Distribution of Neutron Stars and Black Holes�

In the final chapters of this dissertation, we will consider the additional insight

into neutron stars can be gained through simulations of dynamical phenomena. We

start in this chapter with a study of the neutron star and black hole birth mass

distributions. In this work, we use the observed distributions of neutron star and

black hole masses to directly confront the predictions of stellar evolution models

and one-dimensional neutrino-driven supernova simulations, which were provided

by co-author Tuguldur Sukhbold and collaborator Thomas Ertl. We find excellent

agreement between the black hole and low-mass neutron star distributions created

by these simulations and the observations. We show that a large fraction of the

stellar envelope must be ejected, either during the formation of stellar-mass black

holes or prior to the implosion through tidal stripping due to a binary companion,

in order to reproduce the observed black hole mass distribution. We also determine

the origin of one of the bimodal peaks of the neutron star mass distribution, finding

that the low-mass peak (centered at ∼ 1.4 M�) originates from progenitors with

MZAMS ≈ 9 − 18 M�. The simulations fail to reproduce the observed peak of

high-mass neutron stars (centered at ∼1.8 M�) and we explore several possible

explanations. We argue that the close agreement between the observed and predicted

�A version of this chapter has been published previously as Raithel, Sukhbold, and Özel (2018).

Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements.
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black hole and low-mass neutron star mass distributions provides new promising

evidence that these stellar evolution and explosion models are accurately capturing

the relevant stellar, nuclear, and explosion physics involved in the formation of

compact objects.

8.1 Previous studies of the compact object mass distribution

The masses of compact objects that are formed through massive star evolution are

relics of the various physical processes that take place during the star’s lifetime and

subsequent death. First, whether the star explodes and forms a neutron star or

implodes to form a black hole is largely determined by the advanced-stage evolution

in the stellar core. Beyond the star’s fate, the pre-supernova core structure also

influences the mass of the resulting neutron star following a successful explosion.

If instead the star implodes, the black hole mass is affected by the star’s mass loss

history. Second, the key processes that take place during the core collapse itself,

such as neutrino transport and multi-dimensional turbulence, can also influence the

nature of the outcome. Furthermore, the dense matter equation of state plays a

role in determining the possible range of neutron star and black hole masses, setting

both the maximum neutron star mass and potentially the minimum black hole mass.

Because the mass distribution of compact objects is collectively shaped by each of

these processes, it has the potential to provide insight into the fundamental physics

underlying stellar evolution, the supernova (SN) explosion mechanism, and the dense

matter equation of state.

Observationally, the mass distribution can be inferred from the known sample of

neutron star and black hole masses. Many black hole masses have been measured

from X-ray binary systems, while over 30 precision neutron star masses have been

measured from double neutron stars and millisecond pulsars (for a recent review of

the latter, see Özel and Freire 2016). To infer the black hole mass distribution, Özel

et al. (2010b) combined measurements from 16 low-mass X-ray binaries, finding that

it follows an exponential decline. Farr et al. (2011) fit a similar sample of black hole
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masses from 15 low-mass X-ray binaries, but also included black holes from 5 high-

mass X-ray binaries. They found that the low-mass population follows a power-law

distribution, while the combined population follows an exponential decline. The

mass distribution of neutron stars has also been measured, with an ever-growing

and precise sample (Thorsett and Chakrabarty, 1999; Özel et al., 2012; Kiziltan

et al., 2013; Antoniadis et al., 2016). The most recent study by Antoniadis et al.

(2016) inferred a bimodal distribution, possibly indicating two separate formation

channels for creating neutron stars.

From the theoretical side, there have been recent new developments in our un-

derstanding of the evolution of massive stars and the modeling of their explosions.

In particular, during the advanced stages of core evolution of massive stars, the

interplay of convective burning episodes of carbon and oxygen gives rise to final pre-

supernova structures that are non-monotonic in initial mass (Sukhbold and Woosley,

2014). The pre-supernova core structure of a massive star, i.e., the density gradient

surrounding the iron core, is known to play a pivotal role in determining whether

the star explodes or implodes (e.g., Burrows et al. 1995). Several recent studies

have explored the connection between this final core structure and the landscape of

neutrino-driven explosions of massive stars through numerical and semi-analytical

approaches (O’Connor and Ott, 2011; Ugliano et al., 2012; Pejcha and Thompson,

2015; Ertl et al., 2016; Sukhbold et al., 2016; Müller et al., 2016; Murphy and Do-

lence, 2017). While these works differ in their scope and complexity, all find that

there is no single initial mass below which stars only explode and above which only

implode. Instead, they recover a much more complicated landscape of explosions as

dictated by the pre-supernova evolution of massive stars.

A number of previous studies have explored the connection between the super-

nova mechanism and the observed distribution in compact objects. For example,

Pejcha et al. (2012) used the mass distribution of double neutron stars to constrain

the entropy coordinate in the progenitor at which the explosion must originate. In

another work, Kochanek (2014) related the observed mass distribution of black holes

to the core compactness of the progenitor star, in order to constrain core-collapse
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SN models. Both studies, however, used mass cuts, rather than realistic explosion

simulations, to determine the predicted remnant masses.

Sukhbold et al. (2016; hereafter, S16) surveyed the explosion outcomes, includ-

ing the nucleosynthesis yields, light curves, and compact remnants, for a large set of

stellar models using a novel one-dimensional neutrino-driven explosion mechanism,

based on Ugliano et al. (2012) and Ertl et al. (2016). While three-dimensional mod-

els are the gold standard in understanding SN explosions, they are computationally

expensive and prohibit an exploration of a large parameter space. Furthermore, al-

though great progress is being made in multi-dimensional explorations of the prob-

lem, a consensus has not yet been reached in the community (Janka et al. 2016,

and references therein). Though simplified, the one-dimensional treatment in S16

allows for large parameter-space studies. In that work, the authors explored the

outcomes due to various parameterizations of the central engine applied to 200 pre-

SN stars with initial masses between 9 and 120 M�. They performed a preliminary

comparison of the remnant masses produced in their simulations to the observed

populations of black holes and neutron stars, and found reasonable agreement in

the produced mass range. However, the comparison was qualitative as they did not

properly weight the observed masses or explore any observational biases.

This new, fine grid of stellar evolution models, combined with a simplified, para-

metric explosion mechanism and combined with a better quantitative understanding

of remnant mass distributions, now make it possible to confront these theoretical

models with remnant mass observations in a systematic way. One potential difficulty

in such a comparison, however, is that the theoretical models describe single-star

evolution, while all precision mass measurements come from binary systems. We

argue that a meaningful comparison can nevertheless be made for the following

reasons.

For late-time mass transfers (cases B and C; Smith 2014), the He-core mass,

which is the main determinant for the final pre-SN structure (Sukhbold and Woosley,

2014), is not appreciably affected by the mass transfer. Thus, for these scenarios,

the remnant outcome will not be strongly affected by binary evolution. On the other
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hand, in early stable mass transfers via Roche-lobe overflow, the He core mass can

be affected. However, this effect can be at least partially encompassed by a stronger

mass loss efficiency in the single-star models. In other words, even though the models

here describe single star evolution, due to the uncertain nature of mass loss (e.g.,

Renzo et al., 2017), the single star models can be representative of some close binary

scenarios. We revisit this point in §8.6.3. For millisecond pulsars, which are spun

up by accretion from their binary companion after forming, Antoniadis et al. (2016)

found that the accretion rates onto the neutron star are very inefficient, and that the

observed masses must be close to their birth masses. Thus, we take the approach

in this chapter that comparing the remnant masses measured from binary systems

to theoretical models of single-star evolution indeed can provide a reasonable first

constraint on the theoretical models.

With these motivations, we directly confront the stellar evolution models and SN

outcomes of S16 with the observed black hole and neutron star mass distributions.

We describe the stellar evolution and supernova models in more detail in §8.2. In

§8.3, we review the current collection of observed compact object masses. In §8.4,

we compute the simulated black hole mass distribution, in order to compare it to the

observed distribution on a level playing field. We find that the fraction of the stellar

envelope that must be ejected during the SN implosion in order to recreate the

observed black hole mass distribution is quite large. In §8.5, we compute the mass

distribution of neutron star remnants and find surprisingly close agreement between

the simulated outcomes and low-mass peak of the observed bimodal distribution

of Antoniadis et al. (2016). We explore the origin of this peak and find that it

originates from progenitors with zero-age main sequence masses (MZAMS) in the

range MZAMS ≈ 9− 18 M�. We discuss in §8.6 possible explanations for the lack of

high-mass neutron stars and LIGO-mass black holes in the simulations. Finally, we

discuss the possible implications of our inferred distributions for stellar evolution

and explosion models more generally.
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8.2 Pre-SN stellar evolution and explosion

The nucleosynthesis yields, remnant masses, and light curves due to neutrino-driven

explosions from a wide range of solar metallicity massive stars were surveyed recently

in S16. In the following, we briefly highlight aspects of that work that are relevant

to the present study.

All of the progenitor models used in S16 were computed using the one-

dimensional implicit hydrodynamics code KEPLER (Weaver et al., 1978). The main

progenitor set consists of 200 non-rotating, solar metallicity models with initial

masses between 9 and 120 M�, and were mostly compiled from Woosley and Heger

(2007), Sukhbold and Woosley (2014), and Woosley and Heger (2015). Between the

initial masses of 13 and 30 M�, the models were calculated with 0.1 M� increments.

As will be shown in §8.5, the large number of models with fine resolution in initial

mass space were critical in uncovering discrete branches in the neutron star mass

distribution.

Mass loss rates from Nieuwenhuijzen and de Jager (1990) were employed in all

models. While the lightest stars don’t lose much mass throughout their evolution,

the mass loss gradually strengthens with increasing initial mass. The entire envelope

was lost for stars with initial masses above 40 M� and a Wolf-Rayet wind from

Wellstein and Langer (1999) was adopted for these stars. Due to coarse sampling

in mass space for high-MZAMS stars and due to the assumed input physics, nearly

all Wolf-Rayet pre-SN stars lost their He-envelopes as well, and, therefore, died as

carbon-oxygen (CO) cores.

Although the He core mass, and hence the final pre-supernova structure, is in-

sensitive to mass loss for the lighter stars that don’t lose all of their envelope, the

masses of black holes that are formed if the star implodes have an appreciable de-

pendence on the adopted prescription of mass loss. For stars with MZAMS < 40 M�,

the amount of envelope remaining sets the range of possible black hole masses upon

implosion, while for stars with MZAMS > 40 M�, the final star mass approximately

sets the possible black hole mass.
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The final fates of KEPLER pre-supernova progenitors were modeled from the onset

of core collapse through core bounce and to either a successful explosion or implosion

with the Prometheus-Hot Bubble code (P-HOTB, Janka and Mueller 1996; Kifonidis

et al. 2003). P-HOTB is a one-dimensional Eulerian hydrodynamics code with a sim-

plified gray neutrino-transport solver and a high density equation of state (Lattimer

and Swesty 1991, with K=220 MeV). The simulations were run for sufficiently long

times in order to determine the final mass cuts and explosion energies. For technical

details and further discussion see Ugliano et al. (2012) and Ertl et al. (2016).

A major improvement of the recent studies such as S16, Ugliano et al. (2012),

and Ertl et al. (2016) over the previous surveys is that the explosion outcomes were

free from arbitrary mass cuts and directly dialed-in explosion energies (e.g., Woosley

et al. 2002; Chieffi and Limongi 2013; Nomoto et al. 2013). This was achieved by cal-

ibrating the free parameters of an analytic proto-neutron star (PNS) cooling model

to reproduce the observables of SN1987A for five different models of the progenitor

star: W15, W18, W20, N20, and S19.8. Each model resulted in a particular choice

of parameters (which we call the “central engine,” henceforth) and each central

engine was then applied to the 200 KEPLER pre-supernova models. Furthermore,

S16 improved the low ZAMS-mass end compared to Ugliano et al. (2012) by adding

SN 1054 as a calibration anchor and interpolating the core parameters to account for

the reduced PNS contraction in the case of small PNS masses (see S16 for details).

Finally, each explosion yielded a unique set of observational outcomes, including

the remnant mass, that is characterized by the pre-supernova core structure of the

progenitor. This, in turn, allowed us to construct the expected compact remnant

mass distributions for each central engine.

Figure 8.1 shows the baryonic remnant masses produced by one sample engine

(W18) as a function of the initial progenitor mass. A successful explosion results in

a neutron star for most models (purple), but in a very small number of cases that

experienced significant amount of fallback, a light black hole is formed (gray stars).

Since such fallback black holes occur infrequently and only at relatively high mass
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Figure 8.1 Baryonic remnant masses as a function of the progenitor ZAMS mass, for
the central engine W18. Neutron star remnant masses from successful explosions
are shown in purple. The range of possible black hole masses, shown in gray, is
bound by the He-core mass (green circles) and pre-SN mass (orange diamonds)
of the progenitor, because an uncertain fraction of the stellar envelope may be
ejected either during the formation of the black hole, via the Nadyozhin-Lovegrove
mechanism (Nadezhin, 1980; Lovegrove and Woosley, 2013), or prior to the implosion
by tidal stripping from a binary companion. The gray dashed line denotes the initial
progenitor mass. Note the co-existence of neutron star and black hole outcomes
between MZAMS ∼ 15− 21 M� and 25−28M�.

models, we omitted them from our analysis.1

Although a failed explosion would certainly form a stellar-mass black hole, its

exact mass is not well determined for progenitors that retain some amount of en-

velope by the time of implosion (i.e., for stars with MZAMS < 40 M�). A weak

shock, which is launched by the loss of the proto-neutron star binding energy in the

Nadyozhin-Lovegrove effect, may be able to eject a fraction or all of the remain-

1We verified that the fallback black holes do not affect our conclusions by repeating the analysis

described in §8.4 and including an additional branch to model them with a Gaussian distribution.

We found no significant change to our results.
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ing envelope (Nadezhin, 1980; Lovegrove and Woosley, 2013; Coughlin et al., 2017;

Fernández et al., 2017). Additionally, it is possible that some of the progenitor en-

velope may be stripped by a binary companion prior to the implosion. If common

Type I-b/c SNe arise from progenitors that have lost their envelope to a compan-

ion (e.g., Dessart et al. 2012, 2015), it would not be surprising to if some of these

stripped cores fail to explode. Thus, we might expect that a fraction of all remnant

black holes come from the collapse of stripped cores. The black hole masses from

stellar implosions (gray lines in Fig. 8.1) are thus bounded by the He-core (green

circles) and the final pre-SN (orange diamonds) masses of the progenitor, and ulti-

mately depend on how much of the stellar envelope gets ejected during or prior to

the implosion. We analyze this further in §8.4.

Finally, we note the presence of large intervals in MZAMS-space over which the

outcomes switch between neutron stars and black holes in Fig. 8.1. As has previously

been reported, the explodability of the pre-SN star is not determined by only the

initial mass (O’Connor and Ott, 2011; Ugliano et al., 2012; Pejcha and Thompson,

2015; Ertl et al., 2016; Sukhbold et al., 2016; Müller et al., 2016; Murphy and

Dolence, 2017). For example, Ertl et al. (2016) propose a new two-dimensional

parameter space to characterize pre-SN stars and to predict whether a neutron star

or a black hole forms following core collapse. Specifically, a separatrix can be drawn

in this space such that any model that falls above it will explode, while models

below it will implode. In this framework, we interpret the large intervals of neutron

star or black hole outcomes to result from repeated crossings of this separatrix as

the initial mass varies and the core structure changes. In addition, there are also

smaller intervals in initial-mass space, such as between MZAMS ∼ 15 and 21 M� and

between 25 and 28 M� in which the locus of pre-SN stars in this parameter space

straddles the separatrix and, correspondingly, the outcome frequently changes. As

a result, even very small changes in the initial conditions may turn a successful

explosion into an implosion or vice versa. We, therefore, interpret the outcomes

in these mass ranges not as rapid oscillations between the two types of remnants

but rather as the co-existence of two channels with different likelihoods (see also
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the discussion in Clausen et al. 2015). We show this probabilistic interpretation of

outcomes in Fig. 8.2, where we plot the relative fraction of neutron stars produced,

fNS, as a function of the initial mass. We identify several regions where the outcomes

can be only neutron stars, only black holes, or a combination of the two. We use

these branches to appropriately weight the remnant outcomes when comparing the

simulated and observed mass distributions in §8.4-8.5.

Figure 8.2 Fraction of neutron stars formed as a function of progenitor initial mass,
for the outcomes shown in Fig. 8.1. The initial mass has been binned to produce
the minimum number of bins while still capturing whether a mass region has only
neutron star outcomes, only black hole outcomes, or some combination of the two.

8.3 Observations of remnant masses

The simulation outcomes described in §8.2 can be directly compared to the observed

masses of compact objects, as we will describe in §8.4 and 8.5. First, however, we

review the current status of the measurements. The observed masses, which are

summarized in Fig. 8.3, come from a few primary types of observations: timing



157

and spectra of X-ray binaries containing stellar-mass black holes, timing of millisec-

ond pulsars with white dwarf companions as well as of the double neutron stars,

and, most recently, the detection of gravitational waves from black hole-black hole

mergers and the first neutron star-neutron star merger.
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Figure 8.3 Observed masses of neutron stars and black holes. The green points
show neutron stars, while the black points show black holes. The red vertical lines
represent the error bars for each measurement. The red vertical arrows denote upper
and lower measurement limits, and should not be taken as Gaussian uncertainties.
The gray arrows connect the progenitors to the outcome mass for each of the six
confirmed and one candidate detection of gravitational waves from merging black
holes and neutron stars.
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Black hole masses are typically measured dynamically from X-ray binaries. Data

on 23 confirmed black hole X-ray binaries and on 32 additional transient systems

with candidate black hole members have been compiled in Özel et al. (2010b).

From these data, masses are provided for 16 confirmed black holes, based on some

combination of constraints on the mass ratio, inclination angle, or the mass function

for the system. A similar compilation can be found in Farr et al. (2011), which

focused on the masses of 15 black holes in low-mass X-ray binaries undergoing

Roche-lobe overflow, as well as 5 black holes in wind-fed, high-mass X-ray binaries.

Several masses in Fig. 8.3 are also taken from the more recent compilation found

on the StellarCollapse website,1 from Wiktorowicz et al. (2014), and the references

therein. Finally, the most recent estimate on GX 339-4 by Heida et al. (2017) has

also been included in Fig. 8.3.

Neutron star masses are also measured dynamically, but with different methods.

While spectra from an optically bright companion can be used to constrain the

neutron star mass, the majority of masses are measured from radio pulsar timing. In

particular, for millisecond pulsars with white dwarf companions, the measurement

of any post-Keplerian parameters in the pulsar timing residuals can be used to

constrain the pulsar mass, when combined with the mass function. Precision masses

for 32 millisecond pulsars were recently summarized in Antoniadis et al. (2016).

Precision masses for the sub-population of double neutron stars are also determined

from the timing measurement of at least two post-Keplerian parameters. For a

recent review of all neutron star mass measurements, see Özel and Freire (2016).2

Finally, there has been a new addition to these families of mass measurements,

thanks to the first detections of gravitational waves by LIGO and subsequently, the

LIGO-Virgo Collaboration. To date, five confirmed detections have been made from

the mergers of binary black holes (Abbott et al., 2016c,d, 2017b; The LIGO Scientific

Collaboration et al., 2017a,b). The sixth set of gravitational wave black holes shown

1http://www.stellarcollapse.org/bhmasses
2The neutron star masses can be found at:

http://xtreme.as.arizona.edu/NeutronStars/data/pulsar masses.dat
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in Fig. 8.3 is from the candidate black hole-black hole merger LVT151012 (Abbott

et al., 2016b). As shown in Fig. 8.3 and as we will discuss more in §8.6.1, some of

these black hole masses are larger than had previously been observed or even thought

possible. Additionally, the first detection of gravitational waves from a neutron star-

neutron star merger was recently announced (Abbott et al., 2017c), and offers a new

way of adding measurements to the collection of neutron star masses as well.

The most uncertain of these masses are those that come from the measurement

of a single post-Keplerian parameter in a neutron star or black hole binary, with no

additional constraints on the system. Such measurements provide only an upper and

lower limit to the component masses, which we represent in Fig. 8.3 with vertical red

arrows. These arrows represent a likely mass range for an assumed isotropic distri-

bution of binary inclination and should not be interpreted as Gaussian uncertainties.

We also note that Fig. 8.3 does not include any measurements with only an upper

or lower limit; we include only points with both an upper and lower limit, or with

well-defined error bars. All error bars (shown as the solid red lines) represent the

68% confidence intervals, except for the LIGO masses, which denote 90% confidence

intervals. Finally, we note that the black hole mass measurement for NGC 300 X-1

has been excluded due to the likely asymmetric irradiation of stellar winds, which

contaminates the mass measurement (Tom Maccarone, priv. communication).

8.4 Black hole mass distribution

Our goal is to directly compare the outcomes of the S16 stellar evolution and SN

simulations with the measured remnant masses discussed above. We first focus on

the models that produce remnant masses larger than the maximum, theoretically-

allowed neutron star mass and, therefore, yield black holes.

The observed masses of compact objects have previously been fit with simple

functional forms. The functional forms have been chosen to provide a theoretically

motivated description of the data and to help facilitate a direct comparison between

the observations and theory. We, therefore, start by creating analytic functions
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Figure 8.4 Same as Fig. 8.1, but only showing the implosion black holes. Solid
diamonds indicate black holes that are formed from the collapse of only the He- or
CO-core; open circles indicate black holes formed from the collapse of the entire
star. We also label the two progenitor mass ranges, across which we fit the black
hole masses with analytic functions. We show the fits to the remnants of implosions
in which the entire star collapsed and in which only the core collapsed in orange
dashed and green solid lines, respectively.

to model the remnant masses as a function of their ZAMS progenitor masses. By

convolving these functions with the initial mass function (IMF), we determine the

expected distribution, which can then be directly compared to the observed distri-

bution.

Figure 8.4 shows the black hole remnant masses calculated in the simulations

described in §8.2 for engine W18. For simplicity, we only show the outcomes from

one particular engine in Fig. 8.4, but we include results from all of the following five

engines from S16 in our analysis: W15, W18, W20, N20, and S19.8. Each model

produces qualitatively similar results to those shown in Fig. 8.4, so we average the

results from each model in the following analysis.

In Fig. 8.4, we also identify two different branches of mass outcomes, so that

each branch is well-approximated by a single function. The branches are divided

as follows: Branch I spans 15 ≤ MZAMS ≤ 40M�, which corresponds to the range

of red supergiant models that retained significant amounts of the envelope upon

implosion. Branch II spans 45 ≤MZAMS ≤ 120M�, which corresponds to the range

of models that lost all of their envelopes and die as Wolf-Rayet stars.
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In Branch I of the black hole masses, the outcomes are bounded by two possi-

bilities: (1) He-core implosion, which occurs in the event that the entire hydrogen

envelope is ejected by a weak shock during the black hole formation or has been

tidally stripped by a binary companion prior to the collapse, or (2) implosion of

the entire pre-SN stellar mass. In our modeling of these outcomes, we allow for a

variable fraction of the envelope to be ejected, which we denote as fej. For the more

massive progenitors in Branch II, which do not retain their hydrogen and helium en-

velopes, fej has no physical meaning. For these models, the only scenario considered

is the collapse of the CO-core.

Accordingly, the filled diamonds in Fig. 8.4 indicate that the entire stellar enve-

lope was ejected prior to or during the implosion and only the core collapsed to form

the black hole. We represent remnant masses from this scenario as MBH,core, which

have an ejection fraction, fej = 1. On the other end of the spectrum, open circles

indicate that the entire pre-SN star collapsed to form the black hole. We specify

remnant masses from this scenario as MBH,all, with ejection fractions of fej = 0.

The gaps between these branches are due to the discrete sampling of the S16

simulations. For Branch I, we separately fit the outcomes from core-only implosions

and the implosions in which the entire star collapses with simple functional forms.

For Branch II, we consider only the outcomes of core-only implosions. We select

the functions from a set of power-law or first-, second-, or third-order polynomials,

by minimizing the RMS of the residuals. If the RMS of the residuals is < 1% for

more than one of the polynomials, we take the lowest-order function. However, we

note that the conclusions we find are largely independent of the particular models

chosen.

The functions for MBH,core and MBH,all differ quite significantly from each other

in Branch I because MBH,core depends on the assumed input physics in the stellar

modeling but does not depend on the mass loss for this range of progenitor masses,

whereas MBH,all is highly sensitive to the particular mass loss prescription and its

efficiency. In contrast, for the stars in Branch II, the final masses of the resulting

CO-cores are strongly dependent on both the assumed red supergiant and Wolf-
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Table 8.1. Fraction of outcomes that yield black holes in each branch

of Fig. 8.4 for the five central engine models included in our analysis.

Branch XBH,W15 XBH,W18 XBH,W20 XBH,N20 XBH,S19.8 XBH,Avg

I 0.686 0.635 0.878 0.500 0.474 0.635

II 0.875 0.750 1.00 0.500 0.500 0.725

Rayet mass loss prescriptions, but the resulting core uniquely determines the black

hole mass.

In Branch I, we find that the outcomes from implosions in which only the He-core

collapses (fej = 1) are well-fit by a linear model and find

MBH,core(MZAMS) = −2.024 + 0.4130MZAMS, 15 ≤MZAMS ≤ 40M�. (8.1)

with residuals of 0.9%.

For the outcomes in Branch I for the implosions in which the entire star collapses

(fej = 0), we find that a third-order polynomial with parameters

MBH,all(MZAMS) = 16.28 + 0.00694(MZAMS − 21.872)− 0.05973(MZAMS − 21.872)2

+ 0.003112(MZAMS − 21.872)3, 15 ≤MZAMS ≤ 40M� (8.2)

is necessary to keep the residuals ∼1%. A second-order polynomial fit produces

larger residuals of ∼4%.

In Branch II, we only consider the implosion of the CO-core, since there is no

remaining envelope at these high masses. We find that fitting these outcomes with

a power-law model is sufficient and find

MBH,core(MZAMS) = 5.795 + 1.007× 109(MZAMS)−4.926, 45 ≤MZAMS ≤ 120M�.

(8.3)

with residuals of ∼9%. This larger residual is due to a single data point. Fitting

instead with a second- or third-order polynomial improved the residuals by less than
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∼0.5% and made no significant change to the final distribution, so we chose to use

the simpler power-law model.

In order to probe regimes in which there may be partial ejection fractions, we can

extrapolate from our fits of the special cases of fej = 0 or 1, using the approximation

MBH(MZAMS; fej) = fejMBH,core(MZAMS) + (1− fej)MBH,all(MZAMS). (8.4)

We use this formalism for its simplicity but also note that the pre-SN core

structures and the binding energy outside the He-cores are not identical in models

where the stars retain some of their envelopes. As a result, the ultimate fraction of

the envelope that gets ejected upon implosion is likely not the same for all progenitor

masses. Considering the uncertain nature of this mechanism, in this work we adopt

a simple scenario where fej has the same value for all applicable stars, in order to

explore its effect on the resulting black hole mass distribution.

Using this combined model for each branch, we calculate the probability of a

particular black hole remnant mass as

P (MBH|MZAMS; fej) =

∣∣∣∣dMBH(MZAMS; fej)

dMZAMS

∣∣∣∣−1

δ[MZAMS −MZAMS(MBH)], (8.5)

where the δ-function encapsulates the relationship between MZAMS and MBH at the

value at which the probability distribution is evaluated. Finally, to get the distri-

bution of black holes for each branch, we marginalize over the progenitor masses,

i.e.,

P (MBH; fej) =

∫
P (MBH|MZAMS; fej)P (MZAMS)dMZAMS, (8.6)

where for the probability of finding a particular mass, MZAMS, in the initial mass

distribution, we use the Salpeter IMF,

P (MZAMS) = C(MZAMS)α, (8.7)

with α=-2.3 and C=0.065 (Salpeter, 1955).

We weight the probability of each branch by a value, XBH, which represents the

fraction of outcomes in that branch that produced black holes. These weighting
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fractions, which are shown in Table 8.1 for each engine, reflect the fact that the

explosion outcomes can form either neutron stars or black holes in certain mass

ranges, as discussed in §8.2, and need to be treated probabilistically. Note that we

do not include fallback cases in the number of successful black holes, but do include

them in the number of possible outcomes.

8.4.1 Comparing the simulated and observed black hole mass distribu-

tions

We calculate the final black hole mass distribution by summing the probability

contributions for each branch, as found in eq. (8.6), and weighting each contribution

by the ratios, XBH, of Table 8.1. We include in this analysis the results from each

of the five central engines, which we average together. We show the resulting black

hole mass distribution, for various ejection fractions, in Figure 8.5.

We find that, in general, the smaller the ejection fraction, the narrower the

expected mass distribution. This is because the pre-SN mass is less sensitive to the

initial mass in Branch I than the He-core mass is, as shown in Fig. 8.4. Additionally,

we find that smaller ejection fractions produce larger black holes, as expected. For

an ejection fraction of 0, the distribution is confined to MBH ∼ 12 − 16 M�, with

sharp peaks at ∼ 13 and 16 M�. In contrast, we find that an ejection fraction of 0.9

leads to a mass distribution with a soft decay, spanning from MBH ∼ 5− 12 M�.

In the bottom panel of Fig. 8.5, we show two black hole mass distributions in-

ferred from the observed black hole masses in our Galaxy. The first distribution was

calculated in Özel et al. (2010b) from black hole masses measured from 16 low-mass

X-ray binaries. The resulting distribution was well-fit by a decaying exponential.

The second distribution was calculated similarly by Farr et al. (2011) from mass

measurements of 15 black holes in low-mass X-ray binaries and 5 black holes in

high-mass, wind-fed X-ray binaries. In this study, they fit several different models

to the data and found strong evidence for an exponentially decaying profile of the
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Figure 8.5 Top: Mass distribution of black holes averaged from the simulations for
all five central engines. Different colors represent different fractions of the stellar
envelope that are ejected either during the implosion, by a weak shock, or prior to
the implosion, via tidal stripping by a binary companion. Bottom: Comparison to
the observed mass distributions of Farr et al. (2011) and Özel et al. (2012), shown
in the black dashed and dotted lines, respectively. Here, the green line represents
the distribution that would be inferred from the underlying simulated distribution
for fej = 0.9, if a decaying exponential form is assumed. We find that to recreate
the observed distribution, a relatively large ejection fraction is required.

form,

P (MBH;Mmin,M0) =
exp(Mmin/M0)

M0

×

exp(−MBH/M0), MBH ≥Mmin

0, MBH < Mmin

, (8.8)

where Mmin is the minimum black hole mass, which was found to be 5.3268 M�,
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and M0 is a scale mass found to be 4.70034 M� (Farr et al., 2011).

In order to make the comparison between these observed distributions and our

simulated distribution more directly, we note that the substructure in the simulated

distributions is finer than the typical uncertainties in the observations and would

not be observable as is. Thus, we also calculate the distribution that would be

inferred from the underlying simulated distribution, by drawing 200 random black

hole masses from the simulated distribution and fitting them with the exponential

decay model of eq. (8.8). This “inferred,” simulated distribution is shown for fej =

0.9 in the bottom panel of Fig. 8.5, and shows close agreement with the observed

distribution in our Galaxy.

Finally, we calculate the likelihood of the “inferred” distributions for each ejec-

tion fraction, assuming the same functional form of eq. (8.8). We calculate the

likelihood as

L = exp

[
−
∑
i

(Pinferred(MBH,i; fej)− Pobs(MBH,i))
2

Pobs(MBH,i)

]
, (8.9)

where Pobs(MBH,i) is the probability given in eq. (8.8) for the inferred parameters

from Farr et al. (2011), for black holes above the minimum mass of Farr et al. (2011)

in our sampling. We show these likelihoods in Fig. 9.8, and find that ejection frac-

tions of fej & 0.9 have the highest likelihoods, given the observed mass distribution.

This implies not only that the S16 simulations are closely reproducing the black

hole masses observed in our Galaxy, but also that a large fraction of the stellar en-

velope must be ejected in order to form the observed black holes, either during the

implosion itself or beforehand, through tidal stripping from a binary companion.

Finally, we note that, for all ejection fractions in the solar-metallicity models

of S16, there appear to be no black holes with masses above 12 − 16 M�. This is

particularly interesting in light of the recent inferences of black holes with M ≥
22 M� that have been made with the first LIGO and Virgo gravitational wave

detections (Abbott et al., 2016c,d, 2017b; The LIGO Scientific Collaboration et al.,

2017b), as can be seen in Fig. 8.3. We discuss this further in §8.6.1.
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Figure 8.6 Likelihood that the inferred, simulated distribution matches the observed
distribution of black hole masses, for various ejection fractions. We find that the
likelihood peaks when a relatively large fraction of the stellar envelope has been
ejected, fej > 0.9.

8.5 Neutron star mass distribution
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Figure 8.7 Neutron star baryonic masses as a function of the progenitor mass, for
engine W18. We identify 7 distinct branches in this distribution. The analytic
functions that we fit to each branch are shown in purple.
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We calculate the neutron star mass distribution with the same method that

we used for the black hole distribution of §8.4. Figure 8.7 shows the neutron star

remnant masses for various progenitors, as calculated with the W18 engine. The

neutron star masses produced by the five different engines that we used in §8.4 are

offset slightly from one another, although each give approximately similar results.

As a result, in order to avoid introducing artificial noise by combining these slightly

different sets of outcomes, we only include engine W18 in the following analysis and

take it to be representative of all five models.

Within the neutron star remnant masses, we identify 7 distinct segments that

we fit with simple analytic functions, as in §8.4. We show the analytic functions

that we fit to each branch in Fig. 8.7 in purple.

We find that the first branch is best fit by a third-order polynomial with param-

eters

MNS,b(MZAMS) = 2.24 + 0.508(MZAMS − 14.75)

+ 0.125(MZAMS − 14.75)2 + 0.0110(MZAMS − 14.75)3,

9 ≤MZAMS ≤ 13M�. (8.10)

The RMS of the residuals to this fit is ∼ 1.3%. Here, MNS,b is the baryonic mass of

the neutron star. The baryonic masses are the natural output of the stellar evolution

and explosion models, which we will later convert to gravitational masses.

We find that Branches II−IV are sufficiently fit with linear models, with residuals

< 1% for

MNS,b(MZAMS) = 0.123 + 0.112MZAMS, 13 < MZAMS < 15M�, (8.11)

MNS,b(MZAMS) = 0.996 + 0.0384MZAMS, 15 ≤MZAMS < 17.8M�. (8.12)

and

MNS,b(MZAMS) = −0.020 + 0.10MZAMS, 17.8 < MZAMS < 18.5M�. (8.13)

We find Branch V to be approximately randomly distributed, and thus fit it with
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a Gaussian distribution, i.e.,

P (MNS,b|MZAMS) =
1√
2πσ

exp [−(MNS,b −M0)2/2σ2], (8.14)

where M0 and σ are the mean and standard deviation of the distribution. For

Branch V (18.5 ≤MZAMS < 21.7M�), we find the standard deviation to be σ = 0.155

and the mean to be M0 = 1.60 M�.

Branch VI is best fit by a third-order polynomial with parameters

MNS,b(MZAMS) = 3232.29− 409.429(MZAMS − 2.619)

+ 17.2867(MZAMS − 2.619)2 − 0.24315(MZAMS − 2.619)3,

25.2 ≤MZAMS < 27.5M�, (8.15)

with residuals ∼3%.

Finally, we fit Branch VII (60 ≤MZAMS ≤ 120M�) with a Gaussian distribution

and find σ = 0.016 and M0 = 1.78 M�. It should be noted, however, that Branch VII

contains only two points; as a result, the parameters of this particular fit should be

interpreted with caution. We show the Gaussian distributions on the right side of

each MZAMS range in Fig. 8.7.

We use the analytic functions for Branches I−IV and VI to calculate the prob-

ability distribution of neutron star masses, according to

P (MNS,b|MZAMS) =

∣∣∣∣dMNS,b(MZAMS)

dMZAMS

∣∣∣∣−1

δ[MZAMS −MZAMS(MNS,b)], (8.16)

For Branches V and VII, we simply use the fitted Gaussian distribution for

P (MNS,b|MZAMS).

Finally, we marginalize the probabilities of each branch by

P (MNS,b) =

∫
P (MNS,b|MZAMS)P (MZAMS)dMZAMS, (8.17)

and use the IMF of eq. (8.7) for P (MZAMS), as in §8.4. We calculate the total

distribution by summing the probability contributions from each branch, weighted

by the fraction of outcomes that produce neutron stars (XNS) in that branch. We list
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Table 8.2. Fraction of outcomes that yield

neutron stars in each branch of Fig. 8.7.

Branch XNS, W18

I 1.00

II 1.00

III 0.679

IV 0.833

V 0.500

VI 0.652

VII 0.400

Note. — Only the W18 engine results were included in

our analysis of neutron star distributions.

these fractions in Table 8.2. We show the neutron star baryonic mass distribution,

along with the contributions from each branch, in Fig. 8.8.

We convert from the baryonic (MNS,b) to the gravitational (MNS,g) mass distri-

bution with the transformation

P (MNS,g) = P (MNS,b)

∣∣∣∣dMNS,b

dMNS,g

∣∣∣∣−1

, (8.18)

where MNS,g is the gravitational mass and we calculate the derivative using the

relationship between binding energy (BE) and baryonic and gravitational masses,

Mb = Mg + BE. (8.19)

For the binding energy, we use the Lattimer and Prakash (2001) approximation

BE = MNS,g ×
(

0.6β

1− 0.5β

)
, (8.20)

where β ≡ GMG/Rc
2 is the neutron star compactness. We find that the gravita-

tional mass distribution depends only weakly on the choice of radius in the binding

energy approximation, so we use a characteristic value of 12 km.
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Figure 8.8 Baryonic mass distribution of neutron stars from the S16 simulations.
The overall distribution is shown in black. The various dashed colors represent the
contributions from each branch of ZAMS progenitors.

8.5.1 Comparing the simulated and observed pulsar mass distributions

We calculate the gravitational mass distribution as described in §8.5 and show the

outcome as the dotted line in Fig. 8.9. However, because the substructure between

the various peaks is finer than could be detected with realistic observational un-

certainties as before, we also compute and show in the same figure the Gaussian

distribution that would be inferred from this underlying distribution. We calculate

this Gaussian by drawing 200 points from the underlying distribution and fitting

with a single Gaussian function, i.e.,

P (MNS,g) =
1√
2πσ

exp−(M−M0)/2σ2

. (8.21)

We show the most-likely value for the mean, M0, and standard deviation, σ in

Table 8.3 and the resulting distribution in green in Fig. 8.9. Finally, we also include

in Fig. 8.9 the observed neutron star mass distribution inferred from 33 millisecond

pulsars in Antoniadis et al. (2016) in orange. The parameters of the low-mass peak
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of the Antoniadis et al. (2016) distribution, shown in Table 8.3, agree within 1-σ

with the inferred parameters from the S16 distribution.
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Figure 8.9 The gravitational mass distribution of neutron stars predicted from the
S16 simulations (black dotted line) and the Gaussian distribution that would be
inferred from the mock data that we produced from the full simulated distribution
(green line). The orange line shows the observationally determined mass distribution
of millisecond pulsars from Antoniadis et al. (2016). We find that the simulated
mass distribution aligns very closely with the low-mass component of the observed
distribution.

We can determine the origin of the low-mass peak of the observed distribution

by comparing with the simulated distributions of each branch, which are shown

in Fig. 8.8. We find that progenitors in Branches I−III, i.e. with MZAMS = 9 −
17.8M�, are the dominant contributors to the low-mass peak that agrees well with

the observed one.

We also see that the narrow peak at MNS,g ∼ 1.6 M� originates primarily from

progenitors in Branch VII, with a modest enhancement from Branch IV. Because

branch VII contains only two neutron stars that are fit with a Gaussian, its properties

could easily be affected by a larger number of simulations in that mass range and it
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Table 8.3. Gaussian Parameters for low-mass

neutron star peak in Fig. 8.9

Source of distribution M0 (M�) σ

Antoniadis et al. (2016) observations 1.393 0.064

S16 simulations 1.399 0.098

should be interpreted with caution. Finally, Branches V and VI contain very broad

distributions and correspondingly do not contribute significantly to any particular

peak.

In the overall comparison of neutron star masses, we find excellent agreement

between the simulated distribution and the low-mass peak of the observed mass

distribution. We wish to emphasize here that this is a highly constrained compari-

son, with no parameters that can be adjusted in either distribution to improve their

relative alignment. As described in §8.2, the simulations are calibrated only to re-

produce the energetic properties of SN 1987A and SN 1054. The alignment that

we see in Fig. 8.9, in addition to the alignment in the black hole mass distribution,

therefore, seem to be a natural consequence of calibrating to the global energetic

properties. Therefore, we argue that this level of agreement in the mass distribu-

tions provides a strong and independent validation of these stellar evolution and

explosion models.

8.6 Missing high-mass remnants

In the analyses of §8.4 and 8.5, we found that the remnant mass distributions pre-

dicted by the S16 simulations show close agreement with both the observed black

hole mass distribution and low-mass neutron star distribution, offering new evidence

in support of these models. However, these simulations do not produce the high-

mass LIGO black holes that can be seen in Fig. 8.3 and are missing the high-mass
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component of the observed pulsar mass distribution. In this section, we explore

possible explanations for these discrepancies.

8.6.1 High-mass black holes

The recent detection of gravitational waves from black hole binary GW150914 pro-

vided the first observational evidence of “heavy” stellar-mass black holes (M &

25 M�). The black holes in this binary were inferred to have masses of 29+4
−4

and 36+5
−4 M� (Abbott et al., 2016d). In an initial characterization, Abbott et al.

(2016a) proposed that the formation of such massive black holes via single-star evo-

lution requires weak winds, which in turn requires an environment with metallicity

Z . 1/2 Z�. Subsequent detections have found further evidence of additional

“heavy” stellar-mass black holes (Abbott et al., 2016c, 2017b; The LIGO Scientific

Collaboration et al., 2017b).

The mass range of implosion outcomes due to a sample central engine applied

to low metallicity progenitors is illustrated in Figure 8.10. The models are the

ultra-low metallicity (10−4Z�) “U-series” set from Sukhbold and Woosley (2014),

which consists of 110 models with initial masses between 10 and 65 M�. At such a

low metallicity, mass loss is negligible and both the He core and final pre-supernova

masses increase monotonically with initial mass. At lower initial mass, the explosion

landscape is similar to the solar metallicity models, since the pre-supernova core

structure in these stars are not strongly affected by metallicity. For more massive

models, however, the cores are significantly harder to explode. Indeed, with the

adopted sample central engine, all stars implode above MZAMS > 30 M�. From

this figure, it is clear that black holes can be formed with MBH & 25M�, when the

metallicity is sufficiently reduced.

An alternate channel for heavy stellar-mass black hole formation from single

stars has recently been proposed in the form of strong magnetic fields. Petit et al.

(2017) showed that for progenitor stars with MZAMS in the range 40 − 80 M�,

the presence of strong surface magnetic fields can significantly quench mass loss

by magnetically confining a fraction of wind material to the star’s surface. For a
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Figure 8.10 The range of possible black hole masses, bound by the pre-SN and He
core masses of imploding progenitors, are shown for the ultra-low 10−4 Z� metallicity
models and a sample central engine (N20). The input physics in these models are
identical to the those employed in this chapter, with the exception of the reduced
metallicity. Compared to the models with solar metallicity shown in Fig. 8.4, the
mass loss here is negligible and thus the implosions from the heaviest models allow
the formation of heavy stellar mass black holes.

strongly magnetic 80 M� star, this reduces the mass lost during the main-sequence

evolution by 20 M�, which is the equivalent mass loss reduction achieved by reducing

the stellar metallicity to Z ∼ 1/30 Z� for a non-magnetic star (Petit et al., 2017).

The S16 simulations do not include magnetic fields or rotation, but such a model

offers another possible mechanism for producing black holes in the regime that was

probed by the LIGO detection, without reducing the metallicity.

Numerous studies have also explored the effect of binary evolution for produc-

ing heavy stellar mass black holes. Typically, simulations of binary massive star

evolution result in the formation of a common envelope, via Roche lobe overflow

(e.g., Voss and Tauris 2003). Accretion through the common envelope could, in

principle, increase the mass of a star’s He core and hence the mass of the post-SN
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black hole remnant to what was observed in the LIGO detections (Belczynski et al.,

2016; Kruckow et al., 2016; Woosley, 2016; Eldridge and Stanway, 2016; Stevenson

et al., 2017). However, there remain many uncertainties in the common-envelope

physics used that affect the possible outcomes (see, e.g., Ivanova et al. 2013).

It is possible to avoid the uncertainties and pitfalls of the common envelope

scenario by requiring a close binary orbit. In this mechanism, the close companions

tidally spin up one another. The rapid rotation then induces mixing that is faster

than the chemical gradient build-up due to nuclear burning, so that the stars remain

chemically homogeneous throughout hydrogen burning. This keeps the stars from

developing massive hydrogen envelopes and thus offers a way in which the stars

could evolve to black holes without ever undergoing significant mass transfer. It

has been shown that in such models, it is indeed possible to form heavy black

holes, with M & 25 M� (de Mink and Mandel, 2016; Mandel and de Mink, 2016;

Marchant et al., 2016). However, there remain large uncertainties in the efficiency

of the mixing processes involved and in the impact of stellar winds on the orbital

evolution, making it unclear whether this channel is likely or even possible (Mandel

and de Mink, 2016).

Finally, many studies have found that dynamical assembly of black hole binaries

in dense stellar clusters can also produce more massive black holes, via multi-body

encounters, mass segregation, and gravitational focusing. These processes favor

heavier black holes, which are already easier to form in the low-metallicity envi-

ronments of globular clusters (Mapelli, 2016; O’Leary et al., 2016; Rodriguez et al.,

2016; Askar et al., 2017; Park et al., 2017). If this is the primary way in which

LIGO-mass black holes are formed, the single-star evolution framework of S16 and

this chapter would not apply.

As a final remark, there may still be an upper bound on the expected masses

of “heavy” stellar-mass black holes that might play a role in the above formation

mechanisms. A recent analysis by Woosley (2017) predicts that no black holes with

masses between ∼52 and 133 M� should be found in nature in close binary systems

due to pulsational pair-instability effects. While this is in agreement with the current
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massive black hole detections by the LIGO-Virgo collaboration, mergers within a

Hubble time from more complicated systems with more than two components could

violate this bound.

8.6.2 Missing high-mass neutron stars

In §8.5, we also found that the high-mass peak of the observed neutron star mass

distribution of Antoniadis et al. (2016) was not reproduced by the S16 simulations,

despite very close agreement in the low-mass regime. Indeed, the S16 simulations

do not produce any neutron stars with masses above MNS,g > 1.7 M� and it is

possible that the lack of high-mass neutron stars could imply incomplete physics in

the stellar evolution models. Recent work by Sukhbold et al. (2017), which employs

updated physics and a denser grid of models, finds the pre-SN core structures to

be intrinsically multi-valued, including for the mass range 14 < MZAMS < 19 M�.

Without performing full explosions of the pre-SN models, that study finds tantalizing

evidence that neutron stars with MNS,g ∼ 1.9 M� can be made by the most massive

stars with a significant second oxygen shell burning (MZAMS ∼ 15 M�). Whether

these new models can recreate the high-mass peak of neutron star distribution will

be explored in a future work.

Alternatively, the discrepancy would disappear if the observed high-mass peak

is due to accretion rather than a second population of neutron star birth masses.

However, Antoniadis et al. (2016) argue against such a path: they highlight several

examples of high-mass neutron stars with companions that would be too small to

allow significant accretion, inferring that the birth masses must be & 1.7 M�. Even

if we allow some accretion and lower the high-mass component to 1.7 M�, such a

population of neutron stars is still missing from the simulations. We discuss two

other possibilities below.
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Effect of rotation

More massive neutron stars are generally made by more massive main sequence stars,

yet only a few models with MZAMS > 30 M� successfully explode in the neutrino-

driven formalism of S16. The effects of rotation are expected to be important

in the deaths of these heavier stars (e.g., Heger et al., 2005), and therefore the

inclusion of rotation in the modeling of both the evolution and explosion may result

in more successful explosions at higher initial mass and consequently in more massive

neutron stars.

8.6.3 Effect of binary evolution

It is also possible that the explodability of the pre-SN stars and the resulting compact

object masses are influenced by binary evolution. The potential impact of binary

evolution is particularly important to consider in our comparison, since the observed

black hole and pulsar masses all come from binary systems, while the models of S16

assume single-star evolution.

While the reproduction of observed compact object mass distributions in this

study may suggest that binary effects are negligible, such an argument is not con-

clusive. As an example, single-star models had historically reproduced the observed

populations of massive stars, even though binary effects were known to be impor-

tant in ∼70% of those stars. It was eventually shown that the assumed mass loss

rates had been set 3−10 times too high in the single-star models and were effectively

compensating for mass loss due to binary Roche-lobe overflow or common envelope

evolution (see Smith 2014 for a review). It is natural to ask whether the single-star

models of S16 may similarly include physics that is mimicking binary effects.

Given the uncertain nature of mass loss (e.g., Renzo et al., 2017), the prescrip-

tions employed in the models of S16 may well be overestimating what is really

experienced by single massive stars. In the current work, we cannot quantify to

what extent the final pre-SN masses of the S16 progenitors or the ejections frac-

tions inferred in §8.4 are influenced by binary effects. However, we can qualitatively
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say that the net mass loss effects from binaries would have to closely match the

combined result from the employed mass loss prescriptions (Nieuwenhuijzen and de

Jager, 1990; Wellstein and Langer, 1999) and the relatively high envelope ejection

fraction of fej ∼0.9, in order to reproduce the agreement we find with the observed

remnant masses.

Another important consideration is the assumed initial mass function. The for-

mation of binary systems requires a specific set of conditions, and the formation

of binaries that remain bound even after one member explodes requires an even

more restrictive scenario. The mass function of binaries that can produce compact

objects with bound companions, therefore, might differ from that of isolated stars.

Throughout our analysis, we used the Salpeter IMF. It is possible that using a more

representative mass function could increase the weighting given to the high-mass

stars, and perhaps enhance a high-mass peak of neutron stars. Fully exploring such

a binary mass function could be carried out using detailed population synthesis mod-

els. We note, however, that in the case of the high-mass neutron star peak, given

the absence of neutron stars with masses above 1.7 M� in the S16 results, modifying

the initial mass function alone is unlikely to produce the missing high-mass peak.

8.7 Conclusions

In this chapter, we directly confronted the outcomes from the stellar evolution mod-

els and neutrino-driven explosion simulations of S16 with the observed neutron star

and black hole mass distributions. Given that the central engines of the simulations

were calibrated only to reproduce the 56Ni mass, kinetic energy, and neutrino burst

timescale of SN 1987A and the kinetic energy of SN 1054, it is perhaps surprising

that the remnant mass distribution from these simulations agrees so closely with

the observed black hole mass distribution and the low-mass distribution neutron

stars. This degree of agreement can be taken as evidence that the stellar evolution

and explosion models we studied here have reached a point where they are accu-

rately capturing the relevant stellar, nuclear, and explosion physics involved in the
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formation of compact objects.

In comparing the simulated and observed mass distributions, we find that the

stellar evolution and explosion models are able to accurately reproduce the observed

black hole distribution (Özel et al., 2010b; Farr et al., 2011), if a large fraction of the

stellar envelope is ejected during the SN (fej ∼ 0.9). However, the solar-metallicity

models we use in this chapter do not produce heavy stellar-mass black holes, the

existence of which have recently been confirmed by the LIGO gravitational wave

detections. We show that similar models to those used in S16 can indeed produce

heavier black holes, if the metallicity is sufficiently reduced. We also review alter-

nate mechanisms that may produce such black holes, including via rapid rotation

in binary evolution or strong magnetic fields in single-star evolution, but large un-

certainties remain in the current understanding of these mechanisms.

We also find very close agreement between the simulated distribution of neutron

star masses and the low-mass peak of the observed bimodal distribution found by

Antoniadis et al. (2016); specifically, that the simulated and observed Gaussian

distributions agree to within their 1-σ uncertainties. From the S16 simulations, we

determine that the low-mass neutron stars originate from progenitors with MZAMS ≈
9 − 18 M�. However, the simulations do not reproduce the observed high-mass

peak at MNS,g ∼ 1.8 M�. In fact, the simulated distribution ends below MNS,g ∼
1.7 M�. We explore several possibilities for this discrepancy, including that the high-

mass formation channel might require consideration of the binary mass function (as

opposed to the single-star IMF we use here), or consideration of additional physics,

such as the impact of rotation on the explodability of high-mass progenitors.

The method we have developed here, of directly confronting the simulated out-

comes with measured mass distributions, will allow further tests of new models and

ultimately will allow us to better understand the formation of compact objects.

With the framework developed here, other formation channels may be tested as

well, offering a new way to constrain stellar evolution and explosion models.
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CHAPTER 9

Finite-Temperature Extension for Cold Neutron Star EOS �

The astrophysical observations discussed in this dissertation so far – from measure-

ments of neutron star masses and radii, to the moment of inertia and even the tidal

deformability, which is set early in the inspiral of a neutron star merger – all place

constraints on the EOS of cold, neutron-rich matter. Meanwhile, nuclear physics

experiments, such as those discussed in Chapter 6 probe the EOS of hot, symmet-

ric matter. In between these two regimes lie many dynamical phenomena, such

as the core-collapse supernovae discussed in Chapter 8, the formation and cooling

of proto-neutron stars, and the late-stages of a binary neutron star merger, all of

which depend on the EOS at finite temperatures for matter with varying proton

fractions. In this chapter, we introduce a new framework to accurately extend any

cold nucleonic EOS, including piecewise polytropes, to arbitrary temperature and

proton fraction for use in numerical simulations of dynamical phenomena.

9.1 Dynamical phenomena and the finite-temperature EOS

Many dynamical phenomena, including core collapse supernovae, the formation and

subsequent cooling of proto-neutron stars, and both the electromagnetic and grav-

itational signals from neutron star mergers, depend sensitively on the neutron star

EOS at densities where the EOS is not well understood. In addition, for these dy-

namical phenomena, there are two further complications. First, temperatures may

�A version of this chapter has been published previously as Raithel, Özel, and Psaltis (2019).

Finite-temperature Extension for Cold Neutron Star Equations of State. ApJ, 875, 1. We thank

Vasileios Paschalidis for useful discussions and comments on this work. CR was supported during

this project by NSF Graduate Research Fellowship Program Grant DGE-1143953. FO and DP

acknowledge support from NASA grant NNX16AC56G.
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range from below the Fermi temperature, for which “cold” EOS suffice, to temper-

atures of up to 10-100 MeV in neutron star mergers (e.g., Oechslin et al. 2007).

Second, the composition may range from nearly pure neutron matter to symmetric

matter, with some dynamical timescales shorter than the timescale required to es-

tablish β-equilibrium. While astrophysical observations of stationary neutron stars

probe the cold EOS in β-equilibrium and laboratory experiments constrain the hot

EOS of symmetric matter, extrapolations between the two regimes remain difficult.

(For a schematic representation of these various regimes, see Fig. 9.1. For recent

reviews, see e.g., Lattimer and Prakash 2016; Özel and Freire 2016.) Such extrapo-

lations to arbitrary proton fraction and temperature add further uncertainty to the

EOS and complicate numerical simulations of these phenomena.

In the zero-temperature limit, a large number of EOS have been calculated, rang-

ing from purely nucleonic models (e.g., Baym et al. 1971; Friedman and Pandhari-

pande 1981; Akmal et al. 1998; Douchin and Haensel 2001) to models incorporating

quark degrees of freedom using state-of-the-art results from perturbative QCD (e.g.,

Fraga et al., 2014). Laboratory experiments and neutron-star observations do not

yet have sufficient power to distinguish between these models. Furthermore, it is

likely that these EOS do not span the full range of possible physics. This possibil-

ity has motivated the creation of a large number of parametric EOS, as were first

introduced by Read et al. (2009a) and Özel and Psaltis (2009). These parametric

models do not require a priori knowledge of the high-density nuclear physics gov-

erning the EOS and, hence, can be used to probe unknown physics from neutron

star observations.

A much smaller number of EOS that self-consistently incorporate finite-

temperature effects have been calculated to date. Among the most well-known

of these are the LS model, which is based on finite-temperature compressible liquid

drop theory with a Skyrme nuclear force (Lattimer and Swesty, 1991); as well as the

EOS of Shen et al. (1998), which was calculated using relativistic mean field (RMF)

theory with a Thomas-Fermi approximation. More recently, the statistical model

developed in Hempel and Schaffner-Bielich (2010) has been applied to an additional
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∼10 combinations of RMF models and nuclear mass tables.

Figure 9.1 Cross-section of a phase diagram, containing temperature as a func-
tion of neutron excess, where neutron excess is defined as the difference between
neutron and proton densities, nn and np, compared to the total baryon density.
The approximate regimes probed by various terrestrial and astrophysical phenom-
ena are indicated. The dense-matter EOS is primarily constrained by observations
of neutron stars and by laboratory data from nuclei and nuclear experiments. Many
dynamical phenomena, such as neutron star mergers, supernovae, and the cooling
of proto-neutron stars, lie in the intermediate regions of parameter space where the
temperature is non-zero and the matter can be at a variable proton fraction.

Just as parametrizations of the cold EOS have proven useful in representing a

broader range of physics, so too would a parametric finite-temperature EOS be useful

for incorporating EOS effects into supernova and merger calculations. To this end,

many authors have employed so-called “hybrid EOS,” in which a thermal component

for an ideal fluid is added to an arbitrary cold EOS to account for heating (Janka

et al., 1993). The ideal-fluid thermal component is parametrized in terms of a simple

adiabatic index as Pth = εth(Γth−1), where Pth and εth are the thermal pressure and

energy density and Γth is the adiabatic index, which is assumed to be constant. Such

an approach is computationally simple, but neglects the effect of degeneracy on the

thermal pressure. At high densities and finite temperatures, part of the available
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energy acts to lift degeneracy, rather than contributing additional thermal support.

This causes a net reduction in the thermal pressure at high densities, compared to

the prediction for an ideal fluid.

The density-dependence of these thermal effects depends directly on the density-

dependence of the nucleon effective mass, as has been shown for many EOS (Con-

stantinou et al., 2014, 2015). Constantinou et al. (2015) performed a Sommerfeld ex-

pansion to approximate the thermal properties at next-to-leading order and showed

that the expansion terms require both the effective mass and its derivatives. Given

a complete expression for the density-dependence of the effective mass, they showed

that this formalism can be used to accurately approximate the thermal properties

of a wide variety of EOS. Constantinou et al. (2017) later expanded this work and

showed that the formalism can be used to recreate even models beyond mean field

theory, such as the two-loop exchange model of Zhang and Prakash (2016).

The strong dependence of thermal properties on the effective mass can also

be seen in the behavior Γth. For example, Constantinou et al. (2015) compared

two EOS with similar zero-temperature properties but with different single-particle

potentials, and hence different density-dependences in their nucleon effective masses.

They found substantially different thermal properties for the two EOS and that a

constant Γth model failed to describe either EOS. Zhang and Prakash (2016) also

found a strong density-dependence in Γth for their two-loop exchange model. These

results indicate that Γth has a significant density-dependence for a diverse range of

analytic models, which is not captured in the constant Γth approximation of the

hybrid EOS.

Neglecting the effect of degeneracy on the thermal pressure has important con-

sequences for dynamical simulations as well. For example, Bauswein et al. (2010)

compared the properties of a neutron star-neutron star merger that would be pre-

dicted by a hybrid EOS and by more realistic EOS. Specifically, they compared

the Shen et al. (1998) and Lattimer and Swesty (1991) EOS to hybrid EOS that

were constructed from the zero-temperature versions of these same EOS with either

Γth = 1.5 or 2. They found that using the hybrid EOS predicts post-merger fre-
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quencies from a hypermassive neutron star that are 50-250 Hz smaller than what is

found with a realistic finite-temperature EOS. Moreover, the lifetime of the hyper-

massive remnant can deviate by a factor of two from the more realistic value and the

post-collapse accretion disk mass around the resulting black hole can differ by up

to 30% when the simplified thermal effects are used (Bauswein et al., 2010). These

results all suggest that it is indeed important to account for the effect of degeneracy

on the thermal pressure when simulating neutron star mergers.

The Sommerfeld expansion results of Constantinou et al. (2015) can be used

to explicitly correct a hybrid EOS to include degenerate effects, as long as the

particle interactions and potentials of the cold EOS are known. However, requiring

knowledge of the potentials of the cold EOS renders these corrections inapplicable

to piecewise-polytropic EOS or other parametric forms of the EOS that are agnostic

in their descriptions of the microphysics.

The goal of this chapter is to develop a physically-motivated framework for incor-

porating the thermal pressure that maintains the wide applicability of the hybrid

EOS approach. With such a model, it will be possible to robustly add thermal

effects to any cold EOS in β-equilibrium, without having to make the simplifying

assumptions of an ideal fluid at all densities. The framework we present in this chap-

ter is specific to neutron-proton-electron (n-p-e) matter, but could be generalized to

include more exotic particles. We also include a symmetry-energy dependent correc-

tion that extrapolates the proton fraction away from β-equilibrium. The complete

model thus allows us to build an EOS at finite-temperature and arbitrary proton

fraction from any cold n-p-e EOS in neutrinoless β-equilibrium, including piecewise-

polytropic EOS. Moreover, the model is analytic and in closed-form and thus can

be calculated efficiently in dynamical simulations.

We start in §9.2 with a brief review of existing finite-temperature EOS and a

discussion of the regimes in which thermal effects become important. In §9.3, we

outline our model. We provide the symmetry-energy dependent extrapolation to

arbitrary proton fraction in §9.4. In §9.5, we introduce our M∗-approximation of

the thermal effects. We summarize the model in §9.6, in which all of the relevant
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equations can be found in Boxes I and II. Finally, we quantify the performance

of our model in §9.7. We find that with a relatively small set of parameters, our

complete model is able to recreate existing finite-temperature EOS with introduced

errors of .20%, for densities above the nuclear saturation density.

9.2 Overview of finite-temperature EOS

Before introducing our new approximation for the pressure at arbitrary proton frac-

tion and temperature, we will first briefly review the finite-temperature EOS that

have been previously developed.

Two of the most widely-used finite-temperature EOS are the models of Lat-

timer and Swesty (1991, hereafter LS), which is based on a finite-temperature liquid

drop model with a Skyrme nuclear force, and Shen et al. (1998, hereafter STOS)

which is an RMF model that is extended with the Thomas-Fermi approximation.

An additional eight EOS have been calculated with the framework of Hempel and

Schaffner-Bielich (2010, hereafter, HS), which is a statistical model that consists

of an ensemble of nuclei and interacting nucleons in nuclear statistical equilibrium

and, hence, goes beyond the single nucleus approximation that both LS and STOS

assume. Each HS EOS represents the nucleons with an RMF model and additionally

includes excluded volume effects. Of the RMF models that have been used with the

HS method, six are nucleonic: TMA (Toki et al., 1995), TM1 (Sugahara and Toki,

1994), NL3 (Lalazissis et al., 1997), FSUGold (Todd-Rutel and Piekarewicz, 2005),

IUFSU (Fattoyev et al., 2010), DD2 (Typel et al., 2010); while the models BHBΛφ

and BHBΛ include hyperons with and without the repulsive hyperon-hyperon in-

teraction mediated by the φ meson, respectively (Banik et al., 2014). Additionally,

Steiner et al. (2013) created a set of two finite-temperature EOS, SFHo/x, that also

used the statistical method of HS, but with new RMF parameterizations and con-

straints from neutron star observations. There are also the EOS of G. Shen, which

are based on a virial expansion and nuclear statistical equilibrium calculations at

low densities and RMF calculations at high densities, using the models FSUGold
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(Shen et al., 2011a) and NL3 (Shen et al., 2011b). Tables of these various EOS can

be found on the website of M. Hempel,1 stellarcollapse.org, and/or the CompOSE

database.2

More recently, several new finite-temperature EOS have been added to the

CompOSE database. These include the SLY4-RG model, which is calculated in nuclear

statistical equilibrium using a Skyrme energy functional (Gulminelli and Raduta,

2015; Raduta and Gulminelli, 2018), as well as chiral mean field theory models,

which include hyperons as additional degrees of freedom (e.g., Dexheimer, 2017),

generalized relativistic density functional models (e.g., Typel, 2018), and models

calculated using a variational method applied to two- and three-body nuclear po-

tentials (e.g., Togashi et al., 2017).

For the sake of simplicity in the following analysis, we will focus on a subset

of these EOS and will include only models that are nucleonic. In particular, our

sample will include STOS as well as the eight nucleonic EOS calculated with the

HS method, to represent the models based on RMF theory. We will also include

LS (with a compression modulus K = 220 MeV) and SLY4-RG, to represent non-

relativistic models with Skyrme nuclear forces.

In spite of the increasing number of finite-temperature EOS that have been

calculated, they nevertheless span a relatively limited range of physics, especially

when compared to the diversity of cold EOS models. In order to span a broader

range of possible physics, many authors have used the so-called “hybrid EOS,” which

assume that the thermal pressure is given simply by an ideal-fluid term that can be

added to any cold EOS. The hybrid EOS were first introduced by Janka et al. (1993)

and have been used in many subsequent works (for recent reviews, see Shibata and

Taniguchi, 2011; Faber and Rasio, 2012; Baiotti and Rezzolla, 2017; Paschalidis and

Stergioulas, 2017). In these hybrid EOS, the thermal pressure is written as

Pth,hybrid(n, T ) = nEth,hybrid(n, T )(Γth − 1), (9.1)

where Eth,hybrid(n, T ) is the thermal contribution to the energy per baryon, n is the

1https://astro.physik.unibas.ch/people/matthias-hempel/equations-of-state.html
2https://compose.obspm.fr/home/
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baryon number density, and Γth is the thermal adiabatic index and is constrained

to be 1 ≤ Γth ≤ 2. In the hybrid approximation, Γth is assumed to be constant.

Following Etienne et al. (2008), the hybrid temperature-dependence of Eth,hybrid

is included as an ideal fluid plus a contribution from relativistic particles, i.e.,

Eth,hybrid(n, T ) =
3

2
kBT +

4σ

c

fs
n
T 4, (9.2)

where kB is the Boltzmann constant, T is the temperature, and σ ≡ π2k4
B/[60~3c2]

is the Stefan-Boltzmann constant, with ~ the Planck constant and c the speed of

light. The parameter fS represents the number of ultra-relativistic species that

contribute to the thermal pressure. For kBT � 2mec
2, where me is the mass

of an electron, photons will dominate and fS=1. For kBT � 2mec
2, electrons

and positrons become relativistic as well and yield fS = 1 + 2 × (7/8) = 11/4.

Finally, for kBT & 10 MeV, thermal neutrinos and anti-neutrinos appear, rendering

fs = 11/4 + 3 × (7/8) = 43/8. If right-handed neutrinos were to exist, this would

become fs = 11/4 + 3× 2× (7/8) = 8.

We note that all 12 EOS discussed above neglect neutrinos in their calculations.

The STOS EOS additionally neglects leptons and photons, which we add in wherever

we use STOS in this chapter. For the STOS thermal lepton and photon contribution,

we use eq. (9.2) with the appropriate lepton density. For the cold lepton energy, we

add the contribution for a degenerate gas of relativistic electrons. Because all the

EOS neglect neutrinos, we will also neglect neutrinos in our comparisons and thus

we will calculate fS only as

fS =

1, kBT < 1 MeV,

11/4, kBT ≥ 1MeV.
(9.3)

We, therefore, account for the degrees of freedom introduced by the possible

presence of ultra-relativistic positrons. However, throughout this chapter, we will

assume that the population of positrons is small and that their contribution to the

pressure or energy at higher densities is negligible. If there were a scenario in which

the population of positrons were significant compared to the electrons, one would
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have to explicitly account for the positrons in particle-counting as well as in imposing

charge neutrality.

Figure 9.2 Phase diagram for regimes of interest in neutron star simulations. The
blue shaded region represents the regime where the total pressure is dominated by
the cold pressure, to within 1%, for the STOS EOS with proton fraction Yp = 0.1.
The red shaded region represents the T − n range where the thermal pressure is
dominated by the ideal-fluid pressure (Pth = nkBT ), to within 1%, for the same
EOS and fixed Yp. The white range in between these two extremes represents the
phase space in which degenerate thermal effects are important. For comparison, the
green line shows the profile of a hypermassive neutron star (HMNS) remnant 12.1 ms
after a neutron star merger from the simulations of Sekiguchi et al. (2011) using the
STOS EOS. The orange and purple lines show the profiles of a proto-neutron star
(PNS) 200 ms after the bounce in a core-collapse supernova simulation and at the
end of de-leptonization in the same simulation, both with a bulk version of the LS
EOS (Camelio et al., 2017).

In order to highlight the regimes where a realistic finite-temperature EOS and

the hybrid approximation differ, we show a phase diagram in Fig. 9.2. In this plot,

we show various regions calculated for the EOS STOS, all at a fixed proton fraction
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of Yp = 0.1. The total pressure, Ptotal, is thus calculated at Yp = 0.1 and a given

temperature. The cold contribution, Pcold, is calculated at the same Yp and at zero-

temperature.3 Finally, the thermal contribution, Pth, is defined as Ptotal − Pcold for

the same proton fraction.

In this figure, the blue shaded region shows the regime where the total pressure

is dominated by the cold pressure; there, the thermal pressure of STOS contributes

< 1% of the total pressure. The red shaded region represents the regime where the

thermal pressure can be approximated by the ideal fluid pressure (Pth,ideal = nKBT ),

to within 1%. The white region between these two extremes represents the range

of parameter space in which the thermal pressure is important but the ideal-fluid

approximation does not yet apply. In this white region, the effects of degeneracy on

the thermal pressure cannot be neglected.

For comparison, we also show in Fig. 9.2 the projected temperature-density

profiles from three different simulations of relevant astrophysical phenomena. The

green line shows the profile of a hypermassive neutron star remnant 12.1 ms after the

merger of two 1.35 M� neutron stars, as simulated using the EOS STOS (Sekiguchi

et al., 2011). The orange and purple lines both come from numerical simulations

of the evolution of a proto-neutron star using a bulk-version of the LS EOS. The

orange line gives the profile of the proto-neutron star at 200 ms after the core bounce,

while the purple line shows the profile of the proto-neutron star at the end of the

de-leptonization phase (Camelio et al., 2017). We note that these profiles are not

necessarily calculated at Yp = 0.1, but we include them nevertheless to show the

approximate relevant temperatures and densities for such phenomena.

In order to further explore the dependence on the proton fraction, we also cal-

culated the regime where degeneracy dominates for increasing values of Yp. We

find that as the proton fraction increases towards Yp = 0.5, the white degeneracy

3We note that, throughout this chapter, we use the coldest HS calculation, performed at kBT =

0.1 MeV, as an approximation of the zero-temperature EOS. Even though the STOS EOS is

calculated at T = 0 MeV, we use the kBT = 0.1 MeV table as our cold component for this EOS

as well, in order to maintain consistency with the HS set of EOS.
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region in Fig. 9.2 shrinks, but still largely encompasses the shown profiles. We thus

find that all of these simulations primarily probe the phase space where degenerate

thermal effects are important. This suggests that using the hybrid approximation,

instead of the full thermal pressure, may bias the outcomes from such simulations.

9.3 Generic model of a finite temperature EOS

In order to construct a finite-temperature EOS at arbitrary proton fraction, our

model must be able to extrapolate from β-equilibrium to an arbitrary Yp, as well as

from cold matter to an arbitrary temperature. This will naturally introduce dials

into our model that can be adjusted to represent a wide range of physics, based on

the symmetry energy, its slope, and the strength of particle interactions we wish to

include. Moreover, we will show that with a small set of parameters, the EOS that

are currently in use in the literature can be replicated to high accuracy.

We start with our model in general terms, for which we will derive analytic

expressions in the following sections. Our final model will be for the complete

energy per baryon, E(n, Yp, T ), separated into analytic, physically-motivated terms.

A summary of the final equations can be found in Boxes I and II in §9.6.

We can expand the energy per particle of nuclear matter, Enucl, about the neutron

excess parameter, (1− 2Yp), to second order as

Enucl(n, Yp, T ) = Enucl(n, Yp = 1/2, T ) + Esym(n, T )(1− 2Yp)
2, (9.4)

where Enucl(n, Yp = 1/2, T ) represents the energy of symmetric nuclear matter and

Esym(n, T ) ≡ 1

2

∂2Enucl(n, Yp, T )

∂(1− 2Yp)2

∣∣∣∣
Yp=1/2

(9.5)

is the symmetry energy. The proton fraction is related to the overall baryon density,

n, according to

Yp =
np
n

=
Np

Nn +Np

, (9.6)

where np is the proton density, Np is the total number of protons, and Nn is the

total number of neutrons. Throughout this chapter, we enforce charge-neutrality,
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which requires that the proton and electron densities balance. Thus, the electron

density, ne, can be written as

ne = Ypn. (9.7)

Finally, by requiring that the baryonic components combine to give the total density

n, we can write the neutron density as

nn = (1− Yp)n. (9.8)

We can further expand eq. (9.4) by separating the energy of cold, symmetric

matter from its thermal contribution, i.e.,

Enucl(n, Yp, T ) =Enucl(n, Yp = 1/2, T = 0)

+Enucl,th(n, Yp = 1/2, T )

+Esym(n, T )(1− 2Yp)
2.

(9.9)

Here and throughout the chapter, we use the subscript “th” to indicate the thermal

contribution to a variable, after the cold component has been subtracted.

In order to write the energy with respect to a cold EOS in β-equilibrium, as is

often most relevant to start from in the study of neutron stars, we eliminate the

cold, symmetric term in eq. (9.9) to yield

Enucl(n, Yp, T ) =Enucl(n, Yp,β, T = 0)

+Enucl,th(n, Yp = 1/2, T )

+Esym(n, T )(1− 2Yp)
2

−Esym(n, T = 0)(1− 2Yp,β)2,

(9.10)

where Yp,β represents the proton fraction of a zero-temperature system in β-

equilibrium. We note that the proton fraction depends on the density, i.e.,

Yp,β = Yp,β(n), but for simplicity we suppress this in our notation.

Finally, we must add the contribution of leptons and photons to this expression.

The zero-temperature energy from relativistic degenerate electrons is given by

Elepton(n, Yp, T = 0) = 3KYp(Ypn)1/3, (9.11)
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where the extra factor of Yp comes from our definition of E as the energy per baryon,

combined with eqs. (9.6) and (9.7). Here, K ≡ (3π2)1/3(~c/4). Additionally, there

will also be a thermal contribution, Elepton,th(n, Yp, T ), which we derive in §9.5.

Thus, our skeletal model for the total energy is given by the following set of

equations:

E(n, Yp, T ) = E(n, Yp, T = 0) + Eth(n, Yp, T ) (9.12a)

E(n, Yp, T = 0) = E(n, Yp,β, T = 0)

+ Esym(n, T = 0)
[
(1− 2Yp)

2 − (1− 2Yp,β)2
]

+ 3K
(
Y 4/3
p − Y 4/3

p,β

)
n1/3

(9.12b)

Eth(n, Yp, T ) = Enucl,th(n, Yp = 1/2, T )

+ Elepton, th(n, Yp, T )

+ Esym,th(n, T )(1− 2Yp)
2.

(9.12c)

From these relations, we can derive the pressure via the standard thermodynamic

relation,

P ≡ −∂U
∂V

∣∣∣∣
Nq ,S

= n2

[
∂E(n, T = 0)

∂n

]∣∣∣∣
Yp,S

(9.13)

where U is the total energy, V is the volume, Nq is the number of each species q, and

S is the total entropy. From eq. (9.6), it is clear that evaluating these derivatives at

constant Nq is equivalent to evaluating them at constant Yp. In this chapter, we will

mainly plot results in terms of pressure. We summarize the complete expressions

for pressure in Box II of §9.6.

While this set of expressions may seem to have a large number of terms, this

separation allows these terms to be represented analytically. Moreover, as we will

show, the parameters of each term are linked directly to physics on which there

are experimental constraints and of which further constraints are the motivation of

many observations of astrophysical neutron stars: namely, the value of the symmetry

energy at the saturation density, the slope of the symmetry energy, and the strength

of interactions between particles.
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9.4 Derivation of the cold symmetry energy in the Fermi Gas limit

We turn first to the symmetry energy correction term, Esym(n, T ) of eq. (9.4). The

symmetry energy is defined as the per-nucleon difference in energy between symmet-

ric matter and pure neutron matter. In other words, the symmetry energy represents

the excess energy of matter with unequal numbers of protons and neutrons. In nu-

clear models, the symmetry energy is typically calculated as an expansion around

the nuclear saturation density, for matter with Yp = 1/2. In eq. (9.4), we perform

the expansion with respect to the proton fraction and, in the following section, will

introduce a density-dependence to extrapolate beyond the saturation density, where

the coefficients of our approximation are experimentally constrained. In this sec-

tion, we will provide the approximation for Esym(n, T ) at zero-temperature. For the

thermal contribution to the symmetry energy, which turns out to be negligible, see

§9.5.

It is particularly useful to parameterize the symmetry energy in terms of its

separate kinetic and potential components at zero-temperature (e.g., Tsang et al.,

2009; Steiner et al., 2010), modified by a parameter η to account for short-range

correlations due to the tensor force acting between a spin-triplet or isospin-singlet

proton-neutron pair. These correlations can significantly reduce the kinetic sym-

metry energy to even a negative value at the saturation density, compared to the

kinetic energy of an uncorrelated Fermi gas model (Xu and Li, 2011; Vidaña et al.,

2011; Lovato et al., 2011; Carbone et al., 2012; Rios et al., 2014; Hen et al., 2015).

In this framework, we parameterize the symmetry energy of eq. (9.12b) as

Esym(n, T = 0) = ηEkin
sym(n) +

[
S0 − ηEkin

sym(nsat)
]( n

nsat

)γ
, (9.14)

as in Li et al. (2015). Here, Ekin
sym(n) is the “kinetic” symmetry energy, arising from

the change in the Fermi energy of a gas at density n as the relative proton/neutron

fraction changes, nsat = 0.16 fm−3 is the nuclear saturation density,4 and the second

4We note that nsat does vary slightly among the EOS in our sample, but we fix the value to

nsat = 0.16 fm−3 in order to more easily compare the various EOS. We find that this does not

significantly affect the results.
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term represents the “potential” symmetry energy which accounts for the interactions

between particles. Because the exact form of the potential symmetry energy is not

well known, it is anchored at the saturation density by the magnitude of the overall

symmetry energy, S0 ≡ Esym(nsat), and is given an arbitrary density-dependence

through the constant γ.

In contrast, the kinetic energy term can be calculated directly from the nuclear

momentum distribution. The kinetic energy of a free Fermi gas is given simply by

εk,q
n

=
3

5
Ef (nq) (9.15)

where εk,q is the kinetic energy per particle, q represents the particle (either a neutron

or proton), and Ef (n) is the Fermi energy,

Ef (nq) =
~2

2m

(
3π2nq

)2/3
, (9.16)

in which m is the mass of the relevant particle. For our approximation, we will

neglect the small difference between the proton and neutron mass and simply take

m ≈ mn, where mn is the neutron mass.

By taking the difference between symmetric matter and pure neutron matter,

the kinetic symmetry energy as a function of the total density is then

Ekin
sym(n) =

3

5

[
2Ef

(
np = nn =

1

2
n

)
− Ef (nn = n)

]
=

3

5

(
21/3 − 1

)
Ef (n).

(9.17)

We can also eliminate the parameter η in eq. (9.14) by introducing the constant

L, which is related to the overall slope at the saturation density via,

L ≡ 3nsat

[
∂Esym(n, T = 0)

∂n

]∣∣∣∣
nsat

. (9.18)

Combining eqs. (9.14) and (9.18), we can solve for η in terms of the quantities S0 and

L, which are constrained by nuclear physics experiments for matter near Yp = 1/2

(Lattimer and Lim, 2013). We find

η =
5

9

[
L− 3S0γ

(21/3 − 1) (2/3− γ)Ef (nsat)

]
, (9.19)
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Table 9.1. Symmetry energy parameters

characterizing each EOS at kBT = 0.1 MeV.

EOS S0 (MeV) L (MeV) γ

TM1 36.95 110.99 0.75

TMA 30.66 90.14 0.66

NL3 37.39 118.49 0.62

FSG 32.56 60.43 1.11

IUF 31.29 47.20 0.52

DD2 31.67 55.03 0.91

STOS 36.95 110.99 0.77

SFHo 31.57 47.10 0.41

SFHx 28.67 23.18 -0.045

LS 29.3 74.0 1.05

SLY4-RG 32.04 46.00 0.35

.

Note. — S0 and L are fixed to the values predicted for

each EOS, while γ is a fit parameter. All fits are performed

for densities above n ≥ 0.01 fm−3 and nsat=0.16 fm−3
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thereby leaving one free parameter, γ, which is constrained by nuclear experiments

to lie in the range ∼ 0.2 to 1.2 (see, e.g., Fig. 2 of Li et al. 2015; Tsang et al. 2009).

We thus have a complete expression for the symmetry energy that depends only

on the three parameters γ, S0, and L which, in principle, can be constrained by

nuclear experiments. We can now use this functional form to fit for γ, by combining

it with the following relationship between the symmetry energy and Yp,β for charge-

neutral n-p-e matter in neutrinoless β-equilibrium,

Yp,β
(1− 2Yp,β)3

=
64

3π2n

[
Esym(n, T = 0)

~c

]3

(9.20)

(for a derivation of this relation, see, e.g., Blaschke et al., 2016, or Appendix B).

When solved for Yp,β, this becomes

Yp,β =
1

2
+

(2π2)1/3

32

n

ξ

{
(2π2)1/3 − ξ2

n

[
~c

Esym(n, T = 0)

]3
}
, (9.21)

where, for simplicity, we have introduced the auxilary quantity ξ, defined as

ξ ≡
[
Esym(n, T = 0)

~c

]2

×

24n

1 +

√
1 +

π2n

288

(
~c

Esym(n, T = 0)

)3


1/3

. (9.22)

For each of the EOS in our sample, we stitch together a complete cold EOS

at β-equilibrium from the publically-available tables at fixed Yp, by requiring that

µe + µp − µn = 0, where µi is the chemical potential of each species. We then

use the corresponding density-dependent proton fraction, Yp,β, to fit for γ using

eqs. (9.14)-(9.20) and keeping S0 and L fixed for each EOS. We perform the fits using

a standard least-squares method and limit the density range to n ≥ 10−2 fm−3. In

principle, eqs. (9.14)-(9.20) apply only to n-p-e matter, which will be uniform only

above 0.5nsat. However, in practice, we find a very small difference in the fits for

γ whether we include densities above 0.5nsat = 0.08 fm−3 or whether we start the

fits at a slightly lower but still astrophysically relevant cutoff of n = 10−2 fm−3. We

show the resulting fit values in Table 9.1.

We note that the range of EOS provided in Table 9.1 is intentionally broad.

While the symmetry energy parameters of some of these EOS disagree with the
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combined set of experimental constraints (see Lattimer and Lim 2013 for a recent

review), or are in disagreement with certain theoretical considerations such as chiral

effective field theory results for pure neutron matter (see, e.g., Krüger et al., 2013),

they are all consistent with at least some experimental constraints on S0 and L.

We find that γ spans roughly the range of experimentally-allowed values, between

0.15 and 1.0, as expected, with the exception of SFHx. SFHx has an extremely low

value of L, which makes the result of the fit highly sensitive to the density range

that is included. For consistency, we still constrain the densities to n ≥ 10−2 fm−3

for the fit to this EOS; however, the inferred value for γ ranges from the reported

value of −0.04 up to 0.18, depending on where the density cutoff is placed. Thus,

the particular value for γ for SFHx should be taken with some caution.

We have here used eq. (9.20) to fit for γ from the β-equilibrium proton fractions

of realistic EOS. We wish to also emphasize that eq. (9.20) can, of course, be used

to calculate Yp,β, given a choice of S0, L, and γ. Once these three parameters are

specified, eqs. (9.21)-(9.22) can be used to calculate Yp,β for any EOS. As a result,

all that is required of the cold EOS is knowledge of the run of pressure with density.

This feature makes it possible to apply our model to piecewise polytropes or other

families of parametric EOS that may not directly calculate Yp,β.

We show an example of the performance of this model for Esym(n, T = 0) in

Fig. 9.3 for the EOS NL3 (Lalazissis et al., 1997, 1999) and DD2 (Typel et al., 2010).

We show these two EOS as representative samples, with NL3 representing the family

of EOS with larger L values and DD2 representing the EOS with smaller symmetry

energy slopes (see Table 9.1). The top panel of Fig. 9.3 shows the zero-temperature

pressure predicted by NL3 and DD2 at Yp = 0.1 as blue and orange diamonds,

respectively. The colored lines show our model: starting with the corresponding

EOS in β-equilibrium, adding the symmetry energy correction of eqs. (9.14)-(9.19),

and correcting for the leptons, all according to eq. (9.12b). For these models, we

take the values of S0, L, and γ for each EOS from Table 9.1. We note that we are

plotting pressures, but could have similarly shown the energy. We use eq. (9.13) to

convert the equations of this section to pressures; for the complete set of pressure
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Figure 9.3 Top: Pressure as a function of density for EOS NL3 and DD2, at
kBT = 0.1 MeV and Yp = 0.1, as blue and orange diamonds, respectively. The solid
lines show our model of the pressure, calculated using eqs. (9.12b) and (9.14-9.20).
Our model starts with the respective EOS in β-equilibrium and adds the appropriate
symmetry energy and lepton corrections to extrapolate to Yp = 0.1. For S0, L, and
γ, we use the values listed in Table 9.1. Bottom: Residuals between the true EOS
at Yp = 0.1 and our model. We find that our model extrapolates from β-equilibrium
to Yp = 0.1 reasonably well, especially at high densities where the model introduces
an error of . 1% compared to using the full EOS.

expressions, see §9.6 and Box II.

The bottom panel of Fig. 9.3 shows the residuals between our model and the

pressure predicted by each EOS at Yp = 0.1. We find that our model performs very

well at densities above 0.5 nsat, with errors . 10%. At the highest densities, using

our model compared to the full EOS introduces errors of only ∼1%. The residuals
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for the other EOS in our sample are comparably small.

For Yp=0.3, we find the residuals between our model and NL3 and DD2 are

comparable to those shown in Fig. 9.3. We, therefore, conclude that this model

reasonably captures the Yp-dependence of the cold EOS, for a large range of L

values.

We thus have an expression for the symmetry energy at zero-temperature that

depends only on n, Yp, S0, L, and the narrowly-constrained parameter γ. There

are two possible routes for creating a finite-temperature EOS with this framework.

One possibility is to start from a cold, physically-motivated EOS, which will provide

predicted values for S0, L, and Yp,β. In this case, eq. (9.20) can be used to fit for γ.

We have provided such fits for the EOS in our sample in Table 9.1. Alternatively,

a cold, parametric EOS can be chosen, for which the underlying physics are not

specified. In this case, a user can freely specify S0, L, and γ, which will uniquely

specify Yp,β. For the EOS in our sample, we find that this approach is able to

accurately extrapolate from β-equilibrium to arbitrary proton fraction, introducing

errors of . 10% for densities of interest (above 0.5 nsat), and errors of . 3% at high

densities.

9.5 Thermal contribution to the energy

We now turn to the thermal energy, which was first defined in eq. (9.12c) as

Eth(n, Yp, T ) = Enucl,th(n, Yp = 1/2, T )

+ Esym,th(n, T )× (1− 2Yp)
2

+ Elepton,th(n, Yp, T ).

It is useful to further divide the thermal energy into density regimes, over which

the matter displays distinct behaviors. At the lowest densities, the contribution

from relativistic leptons and photons dominates. At intermediate densities, an ideal-

fluid description suffices. However, at high densities, matter can remain partially

degenerate even at intermediate-to-high temperatures. In the high-density regime,

some of the available energy goes into lifting the degeneracy of the particles rather
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than adding thermal support and, accordingly, the thermal pressure can dip well

below the prediction for an ideal fluid. (See Fig. 9.6 for the markedly different

behaviors in thermal pressure across these three regimes.)

It is, therefore, convenient to write the thermal energy as

Eth(n, Yp, T ) =


Erel(n, T ), n < n1

Eideal(T ), n1 < n < n2

Eth,deg.(n, Yp = 1/2, T ) + Esym,th(n, T )(1− 2Yp)
2, n > n2

(9.23)

where the relativistic component,

Erel(n, T ) =
4σ

c

fs
n
T 4, (9.24)

and the ideal component,

Eideal(T ) =
3

2
kBT (9.25)

are given as in eqs. (9.2) and (9.3). Here, Eth,deg.(n, Yp = 1/2, T ) is the degenerate

thermal energy of symmetric matter, which we introduce below. We note that,

because the ideal-fluid and relativistic terms do not depend on the proton fraction,

the symmetry-energy correction is only relevant in the degenerate regime. Finally,

we define the first transition density, n1, as the density at which the relativistic and

ideal-fluid energies are equal. The second transition density, n2, is the density at

which the ideal-fluid energy is equal to the degenerate thermal energy, for a given

temperature and proton fraction.

This piecewise expression of the thermal energy is convenient for later calcula-

tions of the thermal pressure and the sound speed. However, the discontinuities at

the transition densities are artificial and will create problems in numerical simula-

tions, potentially leading to undesired reflections of matter waves at density bound-

aries. Thus, whenever we actually implement the thermal energy or pressure, we

use a smoothed version instead. This smoothed version is of the form

Eth(n, Yp, T ) ≈ Erel(n, T ) +
[
Eideal(T )−1 + Eth,deg.(n, Yp, T )−1

]−1
(9.26)
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where we have added the latter two terms inversely to ensure that the ideal term

dominates at intermediate densities and the degenerate term dominates at the high-

est densities. The smoothed approximation is also more computationally efficient

than the piecewise version, as it does not require the calculation of transition den-

sities, which will vary with the temperature and proton fraction.

In order to calculate the thermal energy in the degenerate regime, we consider

the nucleons as a free Fermi gas. In that limit, the leading-order thermal energy of

degenerate matter is given by

Edeg
th, q(n, Yq, T ) = a(Yqn,M

∗)

(
Nq

Np +Nn

)
T 2,

= a(Yqn,M
∗)YqT

2

(9.27)

for a single-species system of particle q. For simplicity, we have introduced the

level-density parameter a, which is defined as

a(nq,M
∗) ≡ π2k2

B

2

√
(3π2nq)

2/3 (~c)2 +M∗(nq)2

(3π2nq)
2/3 (~c)2

, (9.28)

where M∗(nq) is the Dirac effective mass of the relevant species at a specific density.

(For a complete derivation at next-to-leading order in temperature, see Constantinou

et al., 2015).

As an example, the thermal nuclear energy for symmetric matter would be

Edeg
th, nucl(n, T ) =

[
a(np,M

∗
p,SM)Np + a(nn,M

∗
n,SM)Nn

Np +Nn

]
T 2

= a(0.5n, 0.5M∗
SM)T 2,

(9.29)

where the subscript SM stands for symmetric matter and, in the second line, we

have used the fact that nn = np = 0.5n in symmetric matter. We have further made

the approximation that the effective masses of neutrons and protons are comparable

in symmetric matter and that the average of these two effective masses gives the

overall effective mass of symmetric matter, i.e., M∗
n,SM ≈M∗

p,SM ≈ 1/2M∗
SM.

By likewise defining the thermal energy per baryon for pure neutron matter
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(PNM), we can calculate the thermal contribution to the symmetry energy, as

Esym,th(n, T ) =

0, n < n2

[a(n,M∗
PNM)− a(0.5n, 0.5M∗

SM)]T 2, n > n2,
(9.30)

where the low-density limit of Esym,th arises from the fact that both pure neutron

matter and symmetric matter behave identically as ideal or relativistic fluids at

n < n2.

In principle, this symmetry energy term extrapolates the thermal energy of sym-

metric nuclear matter to arbitrary proton fraction. However, we find that including

this term has a negligible effect on the results. In particular, making the approx-

imation Eth, nucl(n, Yp, T ) ≈ Eth, nucl(n, Yp = 1/2, T ) introduces an average error of

. 1% in the total pressure across the density range of interest. We thus neglect the

thermal correction to the symmetry energy for the remainder of the chapter.

For leptons, the degenerate thermal pressure is even simpler. The effective mass

of electrons is approximately constant, due to their small cross-sections of interac-

tion. Hence, M∗
e ≈ me. This allows us to write eq. (9.27) simply as

Edeg
th, e−(n, Yp, T ) = a(Ypn,me)YpT

2, (9.31)

where we have required that the electron fraction balance the proton fraction in

order to satisfy the requirement of charge neutrality and we have used eq. (9.6) to

substitute Yp. We note that in the presence of a significant population of positrons,

the proton fraction in eq. (9.31) should be replaced by the net lepton fraction.

With expressions for the degenerate and ideal fluid thermal terms in hand, we

can now write a complete version of eq. (9.12c) for Eth as follows:

Eth(n, Yp, T ) =


4σfsT

4/(cn), n < n1

(3/2)kBT, n1 < n < n2

[a(0.5n, 0.5M∗
SM) + a(Ypn,me)Yp]T

2, n > n2

(9.32)

where we have neglected the thermal contribution to the symmetry energy, as dis-

cussed above.
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We thus have a complete expression for the thermal energy of matter as a function

only of the density, temperature, proton fraction, and the effective mass of the

nucleons in symmetric matter.

9.5.1 M∗-approximation

A full calculation of Eth using eq. (9.32) requires knowledge of the Dirac effective

masses in symmetric matter, and hence the scalar meson interactions and particle

potentials of a particular EOS. We instead choose to express the Dirac effective

mass with a physically-motivated yet computationally-simple approximation. At

low densities, the effective mass must approach the dominant nucleon mass, while

at higher densities, M∗ must decrease as particle interactions become important.

We represent this behavior by introducing a power-law expression,

M∗(nq) =

(mc2)−b +

[
mc2

(
nq
n0

)−α
]−b

−1/b

, (9.33)

where m is the nucleon mass (which we take to be the neutron mass, mc2 =

939.57 MeV)6 and n0 is the transition density above which M∗ starts to decrease.

The exponent b determines the sharpness of the transition and α specifies the power-

law slope at high densities. We find that b = 2 works well to represent the curvature

connecting the low- and high-density regimes, and thus fix it to this value in the

following analysis, leaving just two free parameters to describe the effective mass,

M∗ = M∗(n0, α).

We fit the effective masses together at kBT = 1, 10, and 47.9 MeV for nine of the

EOS in our sample, using a standard least-squares method across the entire density

range provided. We exclude the models LS and SLY4-RG here because the effective

masses for these EOS are not currently published (but see §9.5.3 for a separate

6The EOS in our sample vary in their low-density limit of M∗ from 938−939.57 MeV. This

parameter can easily be adjusted to any low-density value for M∗. For simplicity, however, we

take it to simply be the neutron mass. We find that this simplification has a negligible effect on

our results.
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comparison with these models). The results of these fits are given in Table 9.2 for

symmetric matter. For completeness, we also include in Table 9.2 the fits for pure

neutron matter, which can be used to calculate Esym,th(n, T ) in eq. (9.30).

We show the performance of the fit for NL3 in Fig. 9.4. In this fit, we use the NL3

tables calculated at kBT = 1, 10, and 47.9 MeV (shown in purple, orange, and blue,

respectively) with a proton fraction of Yp=0.01, to emulate pure neutron matter.

We show our approximation for M∗ as the black solid line. We find that the M∗-

approximation accurately captures the behavior predicted by the full EOS, with fit

parameters n0 = 0.10 fm−3 and α = 0.90. Figure 9.5 shows the M∗ predictions and

our approximation thereof for Yp = 0.5. The M∗-approximation is similarly able

to capture the behavior of symmetric matter, with slightly adjusted parameters

n0 = 0.11 fm−3 and α = 1.08.

As a brief aside, we note a discontinuity in the first derivative of M∗ at approx-

imately half the nuclear saturation density for large Yp and low temperatures (seen

most clearly in the purple stars in Fig. 9.5, at nsat/2 ≈ 0.08 fm−3). This disconti-

nuity is an artifact of the treatment of the first-order phase transition to uniform

nuclear matter at these densities in the original EOS calculations.

There is an easily understood origin of this artifact. Lattimer and Swesty (1991),

Shen et al. (1998), and Hempel and Schaffner-Bielich (2010) all use a Maxwell con-

struction to calculate the phase transition at approximately half the nuclear satu-

ration density. At low proton fractions, where matter is approximately made up of

a single species, the Maxwell construction works well to represent the phase tran-

sition. However, the Maxwell construction is invalid for multi-component species:

When a system has more than one significant component, the Gibbs construction

must instead be used (Glendenning, 1992, 2000). Because all EOS that are included

in this section use the Maxwell construction, they all suffer from artifacts due to

this choice at roughly half the saturation density, where the transition to uniform

nuclear matter occurs.

Correcting these artifacts would require re-calculating all EOS with a different

formalism and is beyond the scope of this chapter. However, we note that at high
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Table 9.2. Parameters characterizing M∗, fit together

at kBT = 1, 10, and 47.9 Mev, for either pure neutron

matter (PNM) or symmetric matter (SM).

PNM (Yp = 0.01) SM (Yp= 0.5)

EOS n0 (fm−3) α n0 (fm−3) α

TM1 0.11 0.73 0.12 0.86

TMA 0.11 0.65 0.13 0.77

NL3 0.10 0.90 0.11 1.08

FSUGold 0.10 0.61 0.11 0.72

IUFSU 0.11 0.72 0.12 0.85

DD2 0.08 0.68 0.10 0.84

STOS 0.11 0.76 0.12 0.90

SFHo 0.21 0.82 0.22 0.89

SFHx 0.16 0.77 0.17 0.88

Range 0.08-0.21 0.61-0.90 0.10-0.22 0.72-1.08

Mean 0.12 0.74 0.13 0.87

Note. — We fix b = 2 and m = mn in all fits.
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Figure 9.4 Dirac effective mass as a function of the number density, for NL3 at
Yp=0.01 (pure neutron matter) and kBT = 1, 10 and 47.9 MeV (in purple, or-
ange, and blue, respectively). The symbols represent the effective mass predictions
for the full version of NL3. The solid black line shows our approximation using
eq. (9.33). We find that, with fit parameters n0 = 0.10 fm−3 and α = 0.90, the
M∗-approximation accurately reproduces the values predicted by the full EOS.

temperatures (kBT &15 MeV), the non-uniform phase of matter disappears (see

discussion around Fig. 5 in Shen et al. 1998). Thus, we can avoid the issue altogether

by performing our fit to M∗ at only the highest temperatures, when Yp is large. In

practice, we find that whether we fit only the kBT = 47.9 MeV curve for M∗ or

we fit the curves for all the temperatures together, the difference in the resulting

parameters is small. We, therefore, choose to perform the fits to three temperatures

(kBT = 1, 10 and 47.9 MeV) together and use the same method for both low and

high proton fractions.

Returning to our discussion of the M∗ model, we note that the errors introduced

by using our M∗-approximation are comparable to those shown in Figs. 9.4 and
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Figure 9.5 Same as Fig. 9.4, but for Yp = 0.5 (symmetric matter). We find that, with
fit parameters n0 = 0.11 fm−3 and α = 1.08, theM∗-approximation again reproduces
the values predicted by NL3 reasonably well, up to ∼ 10 nsat. At low temperatures,
the discontinuity in the effective mass stems from the Maxwell construction used in
the original EOS calculation to represent the phase transition to uniform nuclear
matter. At high temperatures, this artifact disappears.

9.5 for the full set of nine EOS in this section. We thus conclude that our M∗-

approximation reasonably captures the density-dependence of the Dirac effective

mass, while greatly simplifying subsequent calculations.

Moreover, we find that the range of inferred fit parameters is relatively narrow.

In particular, for a wide range of temperatures and EOS, we find that the transition

density lies in the range n0 ∈ (0.08, 0.22) fm−3, with an average value of ∼0.13 fm−3

for both pure neutron matter and symmetric matter. The power-law index charac-

terizing the decay of M∗ is similarly well constrained, with α ∈ (0.61− 0.90), with

an average value of 0.74 for pure neutron matter; and α ∈ (0.72 − 1.08), with a

slightly higher average value of 0.87 for symmetric matter. We find only a weak
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dependence of n0 and α on the temperature, thus suggesting that these parameters

could be treated as constants for use in numerical simulations.

9.5.2 Performance of the M∗-approximation of thermal effects at fixed

Yp

We now turn to a comparison between the M∗-approximation of the thermal effects

and the nine EOS listed in Table 9.2. As in §9.4, we make the comparison in terms

of the pressure, rather than the energy, and use eq. (9.13) to convert between the

two. The expressions for Pth(n, Yp, T ) are given in Box II in §9.6. In particular,

all results shown here use the smoothed approximation of the thermal pressure, as

defined in eq. (9.39).

In order to focus specifically on the thermal pressure, we calculate the thermal

contribution to the pressure from each realistic EOS in our sample by subtracting

the cold component at the same Yp.

In general, we find excellent agreement between the M∗-approximation and the

thermal pressures calculated from the full EOS. We show an example in Fig. 9.6 for

NL3. We find that our approximation of Pth closely recreates the full calculation for

NL3 for nearly all densities and temperatures explored here. For comparison, we

also include in Fig. 9.6 the hybrid approximation with Γth = 1.67 as dashed lines.7

The full thermal pressure agrees with the hybrid approximation only at intermedi-

ate densities. At the lowest densities, this value of Γth overestimates the contribu-

tion from relativistic species. At higher densities that are relevant for forming and

merging neutron stars, particle interactions become important and the ideal-fluid

approximation grossly overestimates the thermal pressure, remaining several orders

of magnitude above the true thermal pressure.

In order to gain an intuitive understanding of the behavior of Pth, we also ex-

7We choose the relatively low value of Γth = 1.67 in order to minimize the residuals of the

hybrid model. This value of Γth ensures the hybrid EOS matches an ideal fluid at intermediate

densities. Larger values, as are more commonly used in numerical simulations, would cause the

hybrid Pth to overestimate even the ideal regime.
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Figure 9.6 Smoothed thermal pressure as a function of density for the EOS NL3 with
Yp = 0.1. The various colors are calculated at kBT=1 MeV (purple), kBT=10 MeV
(orange), and kBT=47.9 MeV (blue). The thermal pressure of the full EOS is shown
as the symbols, while the solid lines represent the M∗-approximation of Pth, using
the fit parameters for NL3 from Table 9.2 (n0 = 0.11 fm−3, α = 1.08). The dashed
lines show the Γth = 1.67 hybrid approximation at each temperature. We find
excellent agreement between the M∗-approximation and the full thermal pressure
and find that the M∗-approximation offers a significant improvement over the hybrid
EOS.

plore an extreme range of the M∗ parameters. Specifically, in Fig. 9.7, we zoom

in on Pth at kBT = 10 MeV and Yp = 0.5 and show the effect of varying the pa-

rameters n0 and α for symmetric matter. We intentionally take extreme values for

the parameters, well beyond the ranges found in Table 9.2, in order to emphasize

that the variations between more realistic parameter choices will be small. Even for

these unreasonable choices of values for n0 and α, we find that Pth approximates the

full thermal pressure reasonably well and, in all cases, better than the ideal fluid

approximation. Analyzing the specific dependences more closely, we see in Fig. 9.7

that the parameter n0 controls the density at which the rise in the thermal pres-
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Figure 9.7 The M∗-approximation of the thermal pressure at kBT = 10 MeV and
Yp = 0.5, with intentionally extreme choices of the parameter values. The top panel
shows the effect of varying n0 for a fixed value of α = 0.8; the bottom panel shows
the effect of varying α for fixed n0=0.12 fm−3.

sure starts to slow. This corresponds to the density at which particle interactions

become significant and degenerate thermal effects can no longer be ignored. The

parameter α, which controls the power-law slope of M∗, directly controls the height
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Figure 9.8 Residuals between the smoothed M∗-approximation of the thermal pres-
sure and the full results calculated for each EOS listed in Table 9.2. From left to
right, the panels are at kBT = 1, 10 and 47.9 MeV; all three panels are for Yp = 0.1.
The various colors represent the different EOS. For comparison, we also include the
residuals between the full EOS NL3 and the ideal-fluid approximation (Γth = 1.67)
as the black dashed line. The vertical dotted line marks nsat. Our M∗-approximation
of Pth produces residuals that are up to three orders of magnitude smaller than the
ideal-fluid approximation.

of the dip in Pth. This makes intuitive sense: if particle interactions are stronger,

M∗ decreases more rapidly, α will be larger, and the thermal pressure will deviate

even more drastically from the ideal-fluid approximation as part of the free energy

is taken up by those interactions.

Finally, we compare the M∗-approximation of the thermal pressure against the

full sample of EOS listed in Table 9.2. We show the corresponding residuals at three

temperatures in Fig. 9.8 and find that the residuals are typically . 30% at densities

above 0.5 nsat. For comparison, Fig. 9.8 also shows a sample set of residuals between

the full thermal pressure from NL3 and the hybrid approximation (Γth = 1.67) as

the black dashed line. We find that the M∗-approximation produces residuals that

are up to three orders of magnitude smaller than the ideal-fluid approximation used

in hybrid EOS, with only two additional parameters that are easy to specify.

9.5.3 M∗-approximation for non-RMF models

We have so far only calculated the thermal pressures using the sub-sample of EOS

for which there exist published tables of the effective masses. While this allowed us
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to directly test the performance of the M∗-approximation, this set of EOS happens

to also be calculated exclusively with RMF models. In this section, we compare

the M∗-approximation to the LS and SLY4-RG models, which are calculated using

non-relativistic Skyrme energy functionals (see § 9.2). We also include here the two-

loop exchange model of Zhang and Prakash (2016), which is an extension of mean

field theory. We note that the pressures of the Zhang and Prakash (2016) EOS are

reported only at Yp = 0 and 0.5, which is why this EOS is not included in our full

sample. As a result of these and other limitations in the publicly-available values

for this EOS, all comparisons in this section are made at Yp = 0.5 and T = 20 MeV.

We also fix n0 and α to the mean values for symmetric matter from Table 9.2 for

all three EOS.

Figure 9.9 shows the residuals between the M∗-approximation of the thermal

pressure and the true EOS for these three models. For comparison, this figure also

shows the corresponding residuals between the hybrid approximation and the true

EOS (dashed lines). In general, we find that the M∗-approximation of the thermal

pressure results in larger residuals for these EOS compared to the RMF models,

but that it still offers a significant improvement over the hybrid approximation at

densities above ∼ nsat.

We also compared the residuals at T = 50 MeV and found that the M∗-

approximation performed comparably to the hybrid approximation at this temper-

ature. In fact, for densities between nsat and 0.7 fm−3, the hybrid approximation

produces slightly smaller residuals in the thermal pressure for these non-RMF mod-

els. In this regime, the hybrid approximation tends to over-estimate the thermal

pressure for these models, while the M∗-approximation tends to under-estimate Pth

by a similar degree. However, even in this case, the M∗-approximation still offers

an appreciable improvement over the hybrid approximation at the highest densities,

above ∼ 0.7 fm−3.
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Figure 9.9 Residuals between the smoothed M∗-approximation of the thermal pres-
sure and the true EOS at Yp=0.5 and T = 20 MeV for three non-RMF models. For
n0 and α, we use the mean fit values for symmetric matter from Table 9.2. The
dashed lines show the corresponding residuals between the true EOS and the hybrid
approximation using Γth=1.67, at the same proton fraction and temperature. The
three EOS shown are LS (pink), SLY4-RG (green), and the two-loop model of Zhang
and Prakash (2016) (“TL(sc)”, blue). We find that, while the M∗-approximation
produces slightly larger residuals for these EOS than for the RMF models, it nev-
ertheless offers a significant improvement over the hybrid approximation at high
densities.

9.6 Putting it all together

We now summarize the equations and approximations that we have developed so

far to represent the total energy per particle in Box I.
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Box I: Total Energy Expressions for Finite-Temperature Dense Gas.

The energy per particle of n-p-e matter is given by

E(n, Yp, T ) =
(
Cold EOS in β-equilibrium

)
+ 3K

(
Y 4/3
p − Y 4/3

p,β

)
n1/3

+ Esym(n, T = 0)
[
(1− 2Yp)

2 − (1− 2Yp,β)2
]

+


4σfsT

4/(cn), n < n1

(3/2)kBT, n1 < n < n2

[a(0.5n, 0.5M∗
SM) + a(Ypn,me)Yp]T

2, n > n2,

where the symmetry energy is approximated as

Esym(n, T = 0) = ηEkin
sym(n) +

[
S0 − ηEkin

sym(nsat)
]( n

nsat

)γ
,

Ekin
sym(n) =

3

5

(
1− 21/3

)
Ef (n),

η =
5

9

[
L− 3S0γ

(1− 21/3) (2/3− γ)Ef (nsat)

]
,

and the terms of the M∗-approximation are given by

a(nq,M
∗
q ) ≡ π2k2

B

2

√
M∗

q (nq)2 + (3π2nq)2/3(~c)2

(3π2nq)2/3(~c)2

and

M∗(nq) =

(mc2)−b +

[
mc2

(
nq
n0

)−α
]−b

−1/b

.

The parameters S0, L, and γ ∈ (0.2 − 1.2) are freely specified; this will uniquely

specify Yp,β. Alternatively, S0, L, and Yp,β may be specified and the proton fraction

may be fit for γ. We provide fits to γ for eleven EOS in Table 9.1. We find that for

M∗
SM, n0 ∼ 0.13 fm−3 and α ∼ 0.9 provide reasonable fits to most EOS.

Using the expressions for the energy from Box I., we can derive the pressure
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via the standard thermodynamic relations of eq. (9.13), where the derivatives are

evaluated at constant Yp, Yp,β, and S. The total entropy of the relativistic, ideal-

fluid, and degenerate terms is given by

S(n,Np, Nn, Ne, T ) =


Srel, n < n1

Sideal, n1 < n < n2

Sdeg, n > n2,

(9.34)

where n1 and n2 are the thermal energy transition densities, as defined in §9.5.

The entropy of a gas of relativistic leptons and photons is given by

Srel =
16σfs

3c

(
Np +Nn

n

)
T 3. (9.35)

The entropy of a monatomic ideal fluid is given by the Sackur-Tetrode equation,

Sideal = (Np +Nn +Ne) kB ×
{

ln

[(
Np +Nn

Np +Nn +Ne

)
n−1

(
mkBT

2π~2

)3/2
]

+
5

2

}
.

(9.36)

Finally, the entropy of a degenerate Fermi gas in our framework is given by

Sq = 2aqNqT (9.37)

for a particle q, so that the total entropy for the degenerate terms is

Sdeg = 2 {a(0.5n, 0.5M∗
SM)[Nn +Np] + a(Ypn,me)Ne}T. (9.38)

We summarize the resulting pressure equations in Box II.
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Box II: Pressure Expressions for Finite-Temperature Dense Gas.

The pressure of n-p-e matter is given by

P (n, Yp, T ) =
(
Cold EOS in β-equilibrium

)
+K

(
Y 4/3
p − Y 4/3

p,β

)
n4/3

+ Psym(n, T = 0)
[
(1− 2Yp)

2 − (1− 2Yp,β)2
]

+


4σfsT

4/(3c), n < n1

nkBT, n1 < n < n2

−
[
∂a(0.5n,0.5M∗

SM)

∂n
+ ∂a(Ypn,me)

∂n
Yp

]
n2T 2, n > n2,

where n1 and n2 are the thermal energy transition densities for a particular temper-

ature and proton fraction. The symmetry pressure, corresponding to our model of

the symmetry energy, is

Psym(n, T = 0) =
2η

3
nEkin

sym(n) +
[
S0 − ηEkin

sym(nsat)
]( n

nsat

)γ
γn.

The full analytic expression for Yp,β is given in eq. (9.20) and derived in Appendix B.

The M∗-approximation derivatives are given by

∂a(nq,M
∗)

∂n

∣∣∣∣
Yq

= −
(

2a(nq,M
∗)

3n

)
×{

1− 1

2

[
M∗(nq)

2

M∗(nq)2 + (3π2nq)2/3(~c)2

](
(3π2nq)

2/3(~c)2

M∗(nq)2
+ 3

∂ ln[M∗(nq)]

∂ lnn

∣∣∣∣
Yq

)}
,

and
∂ ln[M∗(nq)]

∂ lnn

∣∣∣∣
Yq

= −α
[

1−
(
M∗(nq)

Yqmc2

)2
]
,

where, for symmetric matter, we replace M∗(nq)→ 0.5M∗
SM(0.5n) and for the elec-

trons, M∗(nq)→ me.

As in Box I., there are five free parameters: S0, L, γ, n0, α. A user may freely specify

S0, L, and Yp,β and fit for γ. Alternatively, a user may specify S0, L, and γ, which

will uniquely specify Yp,β. We provide fits for γ, n0, and α for the EOS in our sample

in Tables 9.1 and 9.2.
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The piecewise definitions of the thermal energy and pressure are mathematically

convenient, but the sharp transitions are themselves unphysical, as discussed in

§9.5. We, therefore, instead implement the thermal pressure using a smoothed

approximation of the form

Pth(n, Yp, T ) ≈ Prel +
(
P−1

ideal + P−1
deg

)−1
. (9.39)

This smoothed approximation of the thermal pressure is used for the figures through-

out this chapter. We note that we use this separate smoothing for both the ther-

mal pressure and the thermal energy (as in eq. 9.26) in order to keep the problem

tractable. However, this is not mathematically exact since, formally, the energy is

the proper thermodynamic function and the pressure should, ideally, be derived from

the smoothed energy. Nevertheless, the errors introduced by the separate smoothing

approximations will be limited to the regions close to the transition points. Phys-

ically, the mismatch between the approximate thermal energy and pressure will

correspond to a small error in the sound speed in these regions, which we neglect

for the present purposes.

Finally, we note that our model allows significant freedom in creating a new

finite-temperature EOS. We have provided a set of parameters that correspond to

physically-motivated EOS, but if one wishes to vary these parameters significantly,

it will be useful to check that the resulting EOS is still physical. One requirement

of a realistic EOS is that the sound speed remain sub-luminal at all densities and

temperatures of interest. For this reason, we include in Appendix C a calculation

of the sound speed for astrophysical merger scenarios.

9.7 Complete model: Comparison of realistic EOS at arbitrary Yp and

T

In §9.4, we found that our model is able to extrapolate from β-equilibrium to an

arbitrary proton fraction with resulting errors of . 10% at densities above 0.5 nsat.

Similarly, in §9.5.2, we showed that the M∗-approximation is able to reproduce the
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Figure 9.10 Our approximation of P and the EOS pressures predicted by NL3
and DD2 (in blue and orange, respectively). The EOS predictions are shown as
the diamonds, while our model is shown as the solid lines. The three panels are
at Yp = 0.1 and kBT = 1, 10, or 47.9 MeV (from left to right). We find that our
approximation is able to closely recreate the pressures predicted by NL3 and DD2
at densities above nsat for all temperatures.

Figure 9.11 Residuals between our approximation of P and the EOS pressures
predicted by the eleven EOS in our sample. The three panels are at Yp = 0.1 and
kBT = 1, 10, or 47.9 MeV (from left to right). The vertical dotted line marks nsat.

thermal pressure of realistic EOS, at fixed Yp, to within ∼ 30% for a variety of EOS

based on RMF theory. In this section, we quantify the performance of our complete

model: starting with a cold EOS in β-equilibrium, and extrapolating to arbitrary

temperature and proton fraction.

Figure 9.10 shows an example of a complete model for NL3 and DD2 at three

different temperatures. For our approximation, we start with the relevant cold EOS

in β-equilibrium and add the corrections outlined in Box II, to extrapolate the
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pressure to Yp = 0.1 and the three indicated temperatures. We take the values

for n0, α, and γ listed in Tables 9.1 and 9.2 for each EOS. We show the results

as the solid lines in Fig. 9.10, while the predictions of the full EOS are shown as

the diamonds. We find close agreement between our approximation and the full

pressures predicted by NL3 and DD2, especially at densities above ∼ 0.5 nsat.

Figure 9.11 shows the corresponding residuals between our approximation and

the full EOS for NL3 and DD2, as well as the rest of our sample of EOS. For each

EOS in this figure, we use the values for n0, α and γ listed in Tables 9.1 and 9.2,

where possible. For LS and SLY4-RG, for which we do not have fit values for n0 and

α, we use the average parameter values for symmetric matter in Table 9.2. We find

that our approximation works comparably well to recreate any of the EOS in our

sample. Moreover, we find that for n & nsat, the residuals are . 20% at all three

temperatures.

For all the EOS in our sample, the error introduced by our model increases in the

vicinity of ∼ 0.5nsat. This is a result of the break-down in the Esym approximation

at low densities. Our derivation of Esym in §9.4 assumed uniform n-p-e matter, but

at densities below ∼ 0.5 nsat, the matter becomes inhomogeneous. Nevertheless,

with the exception of LS, the errors at these densities are still typically . 50%.

We have thus verified that our model is able to recreate realistic EOS at rel-

evant densities, with a simple set of parameters. The implications of this result

are two-fold. First, this approximation can be used in lieu of more complicated

calculations, to analytically represent the EOS that are commonly used in the lit-

erature with reasonable accuracy. Second, it implies that our approximation can

be reliably used to create new finite-temperature EOS for n-p-e matter that probe

different physics through the choice of n0, α, γ, S0, and L. Our model allows further

freedom in creating a new finite-temperature EOS through the choice of the cold,

β-equilibrium EOS. We thus find that this model can span a broad range of possible

physics, with parameters that are directly tied to the underlying physics and that

can be integrated with minimal computational cost to a large array of numerical

calculations.
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9.8 Conclusions

In this chapter, we have developed a general framework for calculating the pressure

of neutron-star matter at arbitrary proton fraction and finite temperature. Our

model is designed so that the corrections we have developed here can be added to

any cold n-p-e EOS in neutrinoless β-equilibrium. The model is based on a set of

five physically-motivated parameters: S0, L, γ, n0, and α. The first three, S0, L, and

γ characterize the symmetry energy and can be chosen to match a particular EOS or

set of priors from laboratory experiments. The parameters n0 and α are introduced

through our M∗-approximation, where n0 represents the density at which particle

interactions become important and α characterizes the strength of those interactions.

We find that the effective masses of nine realistic EOS can be well characterized by

our M∗-approximation with a relatively narrow range of these parameters, with

average values of n0 ∼ 0.13 fm−3 and α ∼ 0.9.

The complete model is able to extrapolate from cold matter in β-equilibrium

to arbitrary proton fraction and temperature. We find that our model is able to

recreate a sample of eleven realistic EOS with resulting errors of . 20% at a variety

of temperatures and proton fractions, above nsat. In particular, by including the

effects of degenerate matter, our M∗-approximation reproduces the thermal pressure

of realistic EOS with residuals that are several orders of magnitude smaller than the

hybrid EOS that are commonly used in the literature.

In addition to providing a 1−3 orders-of-magnitude improvement over the ideal-

fluid approximation of the thermal pressure, this model also includes the effects

of changing the proton fraction, which is particularly relevant in simulating the

formation and cooling of proto-neutron stars.

The complete model can thus be used to accurately recreate the realistic EOS

that are currently in use in the literature with a set of simple, analytic functions.

Furthermore, the model can be used to calculate new finite-temperature EOS that

span a wide range of underlying physics, following one of two possible paths. One

possibility is to choose a physically-motivated cold EOS, which will provide predic-
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tions for the β-equilibrium proton fraction and symmetry energy parameters. These

can then be used to fit for the free parameter γ, and then used to extrapolate to

an arbitrary proton fraction. Alternatively, one can use a cold, parametric EOS

that does not specify the microphysics. In this case, there is freedom to choose

the symmetry energy parameters to probe entirely new physics. In either case, one

can freely choose the interaction parameters to control the relative importance of

thermal effects. All together, these possibilities will allow a new and wide range of

physics to be robustly probed in studies of dynamical neutron star phenomena.
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CHAPTER 10

Future Prospects

This is an exciting time for studying the neutron star EOS. With the new gravita-

tional wave events that are expected to be observed over the coming years and the

ever-growing sample of electromagnetic observations of neutron stars, the commu-

nity is poised to gain unprecedented insight into the neutron star interior. Given the

wealth and diversity of these new data, it is becoming more important than ever to

have a robust framework for combining and interpreting neutron star observables.

In this dissertation, I attacked this problem from many angles. I developed a

Bayesian scheme to robustly infer the pressures of an optimally parametrized EOS

from a diverse set of astrophysical observations. I also derived a series of new, model-

independent mappings between global neutron star properties, including between the

moment of inertia and the stellar radius, Λ̃ and the radius, and Λ̃ and the nuclear

symmetry energy. Combined with the statistical framework that I developed for

robustly comparing measurements made in different domains, these mappings can be

used to place independent constraints on the same quantities. Using this framework,

I derived new constraints on the neutron star radius of 10.2 < R < 11.7 km from

GW170817 (68% confidence; for a flat prior in R), which is already competitive,

though consistent with the results from X-ray spectroscopic measurements. I also

calculated new constraints on the slope of the nuclear symmetry energy and found

modest tension with the results from laboratory-based nuclear physics experiments.

Additionally, using the observed distribution of neutron star and black hole masses,

I confronted the predictions of recent stellar evolution models and neutrino-driven

supernova simulations, and found new evidence in favor of these models. I further

used these simulations to uncover the progenitors of the low-mass population of

neutron stars. Finally, I introduced a new framework to robustly calculate the

dense-matter EOS at arbitrary temperatures and compositions, for use in future
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simulations of core-collapse supernova and neutron star mergers. In this final chapter

of my dissertation, I turn to the prospects for deriving new EOS constraints, given

upcoming new facilities and anticipated advances in numerical simulations in the

coming years.

10.1 Upcoming new data

Over the next two decades, new observations of neutron stars – both from existing

and from proposed next-generation facilities – will enable new EOS constraints.

In some cases, these new observations will provide more stringent constraints on

existing measurements (e.g., the neutron star radius), in which case the framework

that I have developed throughout this dissertation can be used to immediately derive

tighter constraints on the EOS. However, in other cases, the new observatories being

planned may offer entirely new insight into the neutron star interior (e.g., with the

anticipated detection of post-merger gravitational waves). In this section, I will

present an overview of some upcoming observational developments that will further

advance neutron star science.

10.1.1 X-ray observations

I will start at high energies. As discussed in Chapter 7, the NICER collabora-

tion recently released its first X-ray dataset for four millisecond pulsars (Bogdanov

et al., 2019), along with two, independent analyses of the radius of PSR J0030+0451

(Miller et al. 2019; Riley et al. 2019). Radius constraints for the other three sources

are expected to follow soon (Bogdanov et al., 2019). Because the NICER data are

fully public, independent research groups will have the opportunity to re-analyze

these data and calculate their own constraints on R using different sets of assump-

tions, which may provide increasingly robust constraints as the theoretical pulse-

profile models are improved.

While NICER is the current, state-of-the-art X-ray instrument for neutron star

science, there are several proposals for new X-ray facilities now under consideration
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that would allow further advances. For example, the Spectroscopic Time-Resolving

Observatory for Broadband Energy X-rays (STROBE-X) is a proposed NASA probe-

class mission, with spectral and timing sensitivity that would enable precision radius

measurements for nearly two dozen new pulsars (Ray et al., 2019). Additionally, the

proposed soft X-ray observatory, Lynx, is one of the four NASA Strategic Mission

concepts under consideration by the 2020 Decadal Survey. While Lynx will have

the sensitivity and spectral resolution to measure high-quality radii from spectra

of quiescent and bursting LMXB sources, its biggest contribution to neutron star

science is likely to come through new 3D maps of dozens of supernova remnants.

By measuring remnant morphologies, kinematics, and chemical abundances, these

maps will provide provide new constraints on the supernova explosion mechanism

(The Lynx Team, 2019). Finally, on the European front, the Advanced Telescope

for High-ENergy Astrophysics (Athena) has been selected as ESA’s new flagship

X-ray observatory and is expected to launch in the early 2030s. The sensitivity,

high spectral resolution, and high count rate of Athena will allow additional spec-

troscopic radius measurements from neutron stars in quiescent LMXBs or during

a photospheric radius expansion (Motch et al., 2013; Nandra et al., 2013). As the

sample of high-quality radius measurements grows – especially if the neutron stars

span a wide range of masses – the Bayesian inference scheme developed in Chapter 3

can be used to place increasingly stringent constraints on the EOS.

10.1.2 Radio pulsar observations

At longer wavelengths, further advances are anticipated with the upcoming Square

Kilometer Array (SKA), a next-generation radio telescope array with an effective

collecting area of 1 km2, spread across Australia and South Africa. The first phase

of the SKA is set to begin construction in 2021, with initial science results expected

by the mid-2020s (SKA, 2020). Phase 2 of the SKA is particularly exciting, as it will

potentially discover all radio pulsars in the Galaxy that are currently beamed in our

direction (approximately 10,000 puslars; Keane et al. 2015), although it may take

more than a decade to develop the necessary technology (SKA, 2020). In addition
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to increasing the population of known pulsars – some of which may reside in exotic

systems, such as a black hole-pulsar binary – the SKA will also provide excellent

precision for pulsar timing experiments.

As was discussed in Chapter 1, one of the most reliable methods for determining

the mass of a pulsar is through the measurement of at least one post-Keplerian

parameter from a carefully-tracked sequence of pulse arrival times. For many pulsar-

white dwarf binaries, the only measurable post-Keplerian parameters are those that

are related to the Shapiro delay, which is caused by the increase in light-travel time as

the pulsar’s emission travels through the gravitational well of its binary companion.

The delay is strongest for edge-on systems (which provide a more direct line-of-

sight path through the gravitational well of the companion) or for systems with

more massive companions (which have deeper gravitational wells). The high timing

precision of the SKA will make it possible to measure the Shapiro delay for up to

5× as many systems as is currently possible, including for pulsars with companions

as small as 0.1 M� and inclination angles down to 40◦ (Tauris et al., 2015; Watts

et al., 2015). Not only will this provide a more complete sample of the neutron star

mass distribution, but it may also help constrain Mmax, through the detection, or

non-detection, of new massive pulsars.

The SKA is also expected to provide improved constraints on the moment of

inertia. The prediction of a 10%-accurate measurement of the moment of inertia for

PSR J0737-3039A (Kramer and Wex, 2009) assumed the availability of 5 µs timing

precision. With anticipated precision of up to 50 ns, the SKA will be able to more

narrowly constrain IA for this system. Additionally, the first phase of the SKA

is expected to discover roughly 100 new double neutron star systems by the mid-

2020s, of which some may have suitable geometry to measure additional moments

of inertia (Watts et al., 2015). With the mapping developed in Chapter 4, any such

measurements can be translated directly into constraints on the neutron star radius

that are fully independent from the growing sample of X-ray radii.

Given other recently launched new radio facilities – such as the Chinese Five-

hundred meter Aperature Radio Telescope (FAST) and the Canadian HI Intensity
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Mapping Experiment (CHIME) – precision tracking of pulsars can be expected to

improve even over the next few years. FAST, which is now the largest single-dish

radio telescope in the world, observed first light in 2016 and already has a timing

accuracy of 120 ns, with a design sensitivity goal of 30 ns (Nan et al., 2011, 2017).

Overall, the sensitivty of FAST will be comparable to that of the SKA, though the

SKA will be able to survey a much larger portion of the sky and may have better

survey sensitivity depending on the particular configuration of the array (Smits

et al., 2009). Meanwhile, CHIME, which was originally designed to measure baryon

accoustic oscillations and fast radio bursts, is turning out to be an excellent pulsar

telescope as well. With the effective area of a 100-m class radio telescope and a

much wider field of view of 250 square-degrees, CHIME is able to time 10 pulsars

simultaneously at all times, while still meeting is primary science goals (Ng, 2018).

10.1.3 Gravitational waves

Perhaps most promisingly, the LIGO-Virgo Collaboration is continuing to observe

new neutron star merger systems. At the time of writing this dissertation, the

LIGO-Virgo network – consisting of the Advanced LIGO (aLIGO) and Advanced

Virgo (AdV) detectors – has just finished its third observing run, O3. To date, two

binary neutron star mergers have been confirmed (GW170817 and GW190425) and

there are an additional 10 publicly-announced triggers that are categorized as either

likely neutron star-neutron star systems or neutron star-black hole systems.1

Based on the results from O1, O2, and the first 50 days of O3, The LIGO

Scientific Collaboration et al. (2020) recently reported new merger rates for bi-

nary neutron star systems. In the first estimate, the authors treat GW170817 and

GW190425 as two counts detected from the same underlying population of uniform-

in-component-mass binary neutron star systems (M1,2 ∈ 0.8-2.3 M�) and infer a

neutron star merger rate of R = 980+1490
−730 Gpc−3 yr−1. In a second calculation,

1This includes all systems with greater 50% likelihood of being in either cate-

gory, according to the April 2020 version of the GraceDB Public Alerts database:

https://gracedb.ligo.org/superevents/public/O3/.
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the authors assume that the two events represent separate counts from individual

populations (as in Kim et al. 2003) – i.e., the authors treat GW170817 as a single de-

tection from a population of binaries with mass and spin parameters consistent with

that event, while GW190425 is treated as a detection from a separate population

of GW190425-like binaries. By combining these independent rates and integrat-

ing over the population parameters, the resulting merger rate is slightly higher,

R = 1090+1720
−800 Gpc−3 yr−1 (The LIGO Scientific Collaboration et al., 2020).

In order to estimate the number of expected detections from these astrophysical

rates, one needs to know the search volume, V T , where V is the orientation-averaged

co-moving volume surveyed by the detectors and T is the total observing time, after

accounting for the detector duty cycles. The accessible volume, in turn, is defined

with respect to a detector range R, which is the distance at which a binary neutron

star inspiral can be detected with a SNR of at least 8. Thus, by extending the range

of a single detector by a factor of 2, the number of expected counts increases by a

factor of ∼8. With a network of X detectors, the sensitivity further increases by a

factor of up to
√
X.

The binary neutron star ranges for existing and upcoming detectors are summa-

rized in Table 10.1. Over the next decade, there are significant upgrades planned

to the existing aLIGO and AdV detectors, which will increase their detector ranges

by a factor of ∼ 3 by 2025. Additionally, the O4 observing run is expected to bring

KAGRA, the Japanese gravitational wave observatory, fully online; while, LIGO-

India is expected to join the network in the second half of O5 (Abbott et al., 2018).

On slightly longer timescales, LIGO Voyager is a proposed upgrade that would

push the detector ranges to the limit possible within the constraints of the existing

vacuum chambers. Expected to be operational by the mid-to-late 2020s, Voyager

would provide a further factor of 3 increase in the binary neutron star detection

range (to 1100 Mpc) and would extend sensitivity down to a lower frequency cutoff

of 10 Hz, enabling longer-term tracking of the early inspiral (The LIGO Scientific

Collaboration, 2017).

To push the limits of ground-based gravitational wave astronomy further, we
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Table 10.1. Binary neutron star detection ranges for existing and

upcoming detectors.

O3 O4 O5

Observing period: 2019-2020 2021-2020 2024-2025

LIGO 110-130 Mpc 160-190 Mpc 330 Mpc

Virgo 50 Mpc 90-120 Mpc 150-260 Mpc

KAGRA − 25-130 Mpc 130+ Mpc

LIGO-India − − 330 Mpc

.

Note. — Detector ranges summarized from Abbott et al. (2018).

will need to construct new facilities. LIGO is currently proposing a next-generation

detector, LIGO Cosmic Explorer, which would take advantage of Voyager technology

and apply it to much longer interferometric arms (40 km; i.e., a factor of 10 longer

than in the existing experiment). With a goal to increase the binary neutron star

detection range to 3-4 Gpc and to push the low-frequency sensitivity limit down to

5 Hz, the LIGO team is proposing for Cosmic Explorer to begin initial observations

in the 2030s and reach full sensitivity by the 2040s (Reitze et al., 2019). A similar

European proposal is being proposed, called the Einstein Telescope, which would be

built with 10 km arms and have a design sensitivity down to 1 Hz. Einstein Telescope

would reach binary neutron star mergers out to a horizon of 1 Gpc (Sathyaprakash

et al., 2012).

While these next-generation proposals have broad science goals and the exact

design specifications are still being debated, neutron star science will most benefit

from increased sensitivity at low frequencies (1-10 Hz), which will enable long-term

tracking of the early inspiral and will thus improve the SNR, as well as from in-

creased sensitivity in the kHz range. The high-frequency regime, in particular,

may provide new insight into the neutron star EOS, through the possible detection
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of post-merger gravitational waves (e.g., Bauswein and Janka, 2012; Read et al.,

2013; Clark et al., 2014; East et al., 2016; Rezzolla and Takami, 2016). While no

post-merger signal was detected from GW170817 (Abbott et al., 2017e), at design

sensitivity, the aLIGO+AdV network could detect such emission with a SNR of at

least 5 at distances of 20-40 Mpc (Takami et al., 2014; Clark et al., 2016). While

the likelihood of observing a GW170817-like (or closer) event soon is small, that

likelihood grows with time. Moreover, the detection range would increase dramat-

ically with proposed upgrades or the construction of next-generation facilities. For

example, with LIGO-Voyager, the detection range for post-merger signals would

extend to 141+181
−112 Mpc, while for Cosmic Explorer and Einstein Telescope, the de-

tection ranges are 415+535
−330 Mpc and 267+343

−208 Mpc, respectively (Clark et al., 2016).

Additionally, it has recently been shown that through coherent mode stacking of

data from multiple weak events, post-merger oscillations could still be detected to

high significance, potentially sufficient to constrain the neutron star radius to within

. 1% with just one year of observations with Cosmic Explorer (Yang et al., 2018).

Finally, by observing a merger at lower frequencies – i.e., very early in the in-

spiral – Cosmic Explorer and Einstein Telescope will be able to provide advanced

warning for electromagnetic follow-up. This early warning is crucial, as it gives the

electromagnetic community more time to scan the 90% credibility region of the sky

(as inferred from the gravitational waves) and to localize a counterpart before it

fades. It is expected that Einstein Telescope will be able to give an early warning

alert up to 1-20 hours before merger, for any binary neutron star merger out to

distances of 40 Mpc. For events at a distance of 400 Mpc, a network of Einstein

Telescope and the Cosmic Explorer will be able to provide an alert 3 hours before

the merger for 98% of systems (Chan et al., 2018). The counterpart to GW170817 is

still the only observed kilonova to date and was the closest– and thus best studied–

GRB ever detected. With more electromagnetic data on future counterparts, we

will be able to answer outstanding questions regarding the nature of jet emission

in GRBs and the abundance patterns of heavy elements produced during r-process

nucleosynthesis. We will also be able to better characterize the properties of the
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merger ejecta, including its mass, velocities, and composition, which may allow us

to further probe the EOS.

10.2 New simulations of binary neutron star mergers

In order to connect these late-stage observables from a neutron star merger – includ-

ing both the post-merger gravitational waves and the electromagnetic counterpart

– back to the EOS, detailed numerical simulations are necessary. In the case of

the post-merger gravitational waves, actually measuring such a signal requires the

construction of a waveform template, which in turn needs to be calibrated using

the results of merger simulations in full 3+1 numerical relativity that model the

dynamically changing spacetime for various EOS. To connect the electromagnetic

counterpart back to the EOS, further simulations are needed to develop a map-

ping between properties of the merger ejecta and specific features of the resulting

light curves. For recent reviews on the progress being made on these problems, see,

e.g., Fernández and Metzger (2016); Baiotti and Rezzolla (2017); Paschalidis and

Stergioulas (2017); Baiotti (2019); Shibata and Hotokezaka (2019); Bernuzzi (2020);

Radice et al. (2020).

However, it is important to point out that compared to the EOS constraints

discussed throughout the rest of this dissertation, these late-stage observables probe

a fundamentally different region of parameter space: the finite-temperature EOS

with non-equilibrium compositions. There are currently only a few theoretical mod-

els that can describe dense matter at non-zero temperatures and non-equilibrium

compositions and these EOS span a very limited range of the physical possibili-

ties that can arise in neutron star interiors, which greatly limits the generality of

many existing merger simulations. To probe a wider range of possible physics, other

simulations resort to unphysical approximations of the thermal pressure, while si-

multaneously neglecting the changing composition. The microphysical framework

that I developed in Chapter 9, which includes the effects of degenerate matter on

the thermal pressure and accounts for changes in the composition of the matter, will
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allow for more realistic simulations of neutron star mergers in the coming years. I

have already started a new study using this framework in a suite of merger simula-

tions in full 3+1 numerical relativity. These simulations use the Illinois code, which

consists of the Cactus infrastructure for spacetime evolution,2 the Carpet driver to

implement Berger-Oliger type adaptive mesh refinement,3 and the IL-GRMHD code

to solve the equations of general relativistic (ideal) magnetohydrodynamics (Etienne

et al., 2015). Using these simulations, we intend to systematically determine the

role of thermal and compositional effects on the properties of the merger ejecta, the

lifetime of the remnant, and the post-merger gravitational wave spectrum. Such

studies will help us prepare to interpret the new gravitational wave events that are

expected to be observed over the next few years and as we anticipate next-generation

gravitational wave detectors.

10.3 Conclusions

Upcoming new facilities for both electromagnetic and gravitational wave astronomy

will provide a wealth of insight into the neutron star interior over the coming years.

When it comes to the detection of new late-stage merger observables, however,

there remain outstanding theoretical questions regarding the uncertain nature of the

thermal and compositional physics that will need to be addressed. The framework

that I developed in this dissertation to calculate the EOS at arbitrary temperatures

and compositions will help us start to answer these questions, by allowing us to

systematically and robustly study EOS effects in new simulations of neutron star

mergers. As we await the detection of late-stage observables from future mergers, the

methods that I developed for mapping the tidal deformability to constraints on the

stellar radius and nuclear symmetry energy can be applied to the many neutron star

inspirals that will be observed over the next few years. Additionally, as upcoming X-

ray and radio facilities provide new measurements of neutron star radii, moments of

inertia, and more massive pulsars, the framework that I developed throughout this

2http://www.cactuscode.org/
3http://www.carpetcode.org/
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dissertation can be used to calculate increasingly stringent constraints on the EOS.

Looking forward to the next decade, as these data come in and new simulations are

realized, the prospects for further constraining the neutron star EOS are bright.
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CHAPTER 11

Appendices

APPENDIX

A Linear parametrization of the EOS

For completeness in our search for an optimally parametrized EOS (see Chapter 2),

we also explored a parametrization that uses linear segments between a number of

density points to represent the EOS. As in the case of our polytropic parametriza-

tion, we started this parameterization at ρsat and spaced the segments evenly in the

logarithm of the density. The EOS along each linear segment is given by

P = miρ+ bi (ρi−1 ≤ ρ ≤ ρi), (A1)

where continuity at the endpoints implies

mi =
Pi − Pi−1

ρi − ρi−1

(A2)

and

bi = Pi−1 −
(
Pi − Pi−1

ρi − ρi−1

)
ρi−1. (A3)

Using this linear relationship for pressure to integrate the differential equa-

tion (2.4), we find that the energy density in this case is given by

ε(ρ) = (1 + a)ρc2 +mρ log ρ− b, (A4)

where a is an integration constant. By requiring continuity in the energy density at

the endpoints of each segment, we can solve for the integration constant such that

ε(ρ) =

(
εi−1 + bi
ρi−1

−mi log ρi−1

)
ρ+miρ log ρ− bi, (ρi−1 ≤ ρ ≤ ρi). (A5)
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We used equation (A5) to relate the linear EOS to the energy density and then used

that energy density to integrate the TOV equations and solve for the total mass,

radius, and moment of inertia of the neutron star.

We applied a five-segment parametrization to the ∼53,000 mock EOS shown in

Figure 2.4 and calculated the errors in radius at 1.4, 1.6, and 1.8 M� as well as the

errors in the maximum mass. In this way, we can directly compare these results

with those from the five-polytrope optimal parametrization in Figure A1. We find

that the polytropic parametrization performs modestly better. However, the linear

parametrization is still able to recreate the radii of the full EOS to within . 0.5 km

for ∼80% of the extreme, mock EOS.

Even though our mock EOS are composed of polytropic segments, there are

multiple mock EOS segments per parametrization segment. Moreover, the mock

EOS segments are offset from the parametrization segments. We therefore do not

expect that the mock EOS should significantly bias the performance of a polytropic

parametrization over a linear parametrization.

In order to see how well the linear parametrization performs for more physically

motivated EOS, we also applied it to the sample of 42 proposed EOS from § 2.5.

We compare these results to those of the polytropic parametrization in Figure A2.

We find again that the polytropic parametrization performs better than the linear

parametrization, although the differences between the two parametrizations are most

significant at radius and maximum mass errors that are well below observational

uncertainties.

It is likely that the same levels of errors could be achieved by the linear

parametrization if more than five segments were included; however, for five seg-

ments, the polytropic parametrization performs modestly better in most cases. A

polytropic parametrization is also the more natural choice for the neutron star EOS.

We, therefore, recommend a five-segment polytropic parametrization over a linear

one.
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Figure A1 (a)-(c): Cumulative distributions of the differences in radii between a
polytropic parametrization and the full EOS (solid line) and the differences between
a linear parametrization and the full EOS (dashed line). These differences were
calculated for all mock EOS shown in Figure 2.4. Both parametrizations contain
five fiducial densities (i.e., five segments). The radius residuals are measured at 1.4,
1.6, and 1.8 M�, respectively. The vertical dashed lines mark a residual of 0.5 km;
the horizontal dashed lines mark the 95% level of the cumulative distribution. We
find that a polytropic parametrization results in smaller errors, but that the lin-
ear parametrization still achieves the desired radius residual of 0.5 km for ∼80% of
our extreme, mock EOS. (d): Cumulative distribution of the difference in maximum
mass between each parametrization and the full EOS. The lines and linestyles are as
for the other three panels, but here the vertical dashed line is shown at 0.1 M�, cor-
responding to our desired maximum residual. We find that the linear and polytropic
parametrizations perform comparably well in recreating the neutron star maximum
mass.
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Figure A2 Same as Figure A1 but for 42 proposed, physically-motivated EOS.
We find that a polytropic parametrization results in smaller errors, but that both
parametrizations are able to recreate the radii and maximum masses of the full
EOS to well below the expected observational uncertainties of 0.5 km and 0.1 M�,
respectively.

B Relationship between the β-equilibrium proton fraction and the sym-

metry energy for n-p-e matter

In this appendix, we derive the relationship shown in eq. (9.20), which asserts that

the cold β-equilibrium proton fraction is uniquely specified by the symmetry energy.

At zero-temperature for n-p-e matter, the total energy per baryon is given by

Etot(n, Yp) = En(n, Yn) + Ep(n, Yp) + Ee(n, Ye), (B1)

where En is the energy per baryon of neutrons, Ep is the energy per baryon of

protons, and Ee the energy per baryon of electrons. Here, we also introduce the
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neutron fraction, Yn ≡ (1− Yp), and the electron fraction, Ye = Yp, where the latter

equality holds in a charge-neutral system.

In order to find the minimum of the total energy, we differentiate with respect

to Yp and get
∂Etot(n, Yp)

∂Yp
=
∂En
∂Yn

∂Yn
∂Yp

+
∂Ep
∂Yp

+
∂Ee
∂Ye

∂Ye
∂Yp

, (B2)

where all the partial derivatives here and throughout this appendix are evaluated at

constant entropy and baryon density and we have suppressed the notation for clarity.

By substituting in the chemical potential of a species i, given by µi ≡ ∂Ei/∂Yi|S,n,

eq. (B2) simplifies to
∂Etot(n, Yp)

∂Yp
= −µn + µp + µe, (B3)

which is zero in β-equilibrium. Alternatively, we can write the total energy as an

expansion about nuclear symmetric matter with electrons added, i.e.,

Etot(n, Yp) = Enucl(n, 1/2) + Esym(n)(1− 2Yp)
2 + Ee(n, Ye). (B4)

This results in

∂Etot(n, Yp)

∂Yp
= −4(1− 2Yp)Esym(n) +

∂Ee
∂Ye

∂Ye
∂Yp

. (B5)

By charge neutrality and the definition of the chemical potential, the second term

is simply µe. Combining eqs. (B3) and (B5) in β-equilibrium gives

µe = 4(1− 2Yp,β)Esym(n). (B6)

For relativistic electrons,

µe =
√
p2
fc

2 +m2
ec

4 ≈ pfc, (B7)

where pfc = (3π2Yen)1/3~c is the Fermi momentum of the electrons. Combining this

expression for µ with eq. (B6) yields

(3π2Yp,βn)1/3~c = 4(1− 2Yp,β)Esym(n), (B8)

or, rearranged to match eq. (9.20),

Yp,β
(1− 2Yp,β)3

=
64Esym(n)3

3π2n(~c)3
. (B9)
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Solved for Yp,β, this gives

Yp,β =
1

2
+

(2π2)1/3

32

n

ξ

{
(2π2)1/3 − ξ2

n

[
~c

Esym(n, T = 0)

]3
}
, (B10)

as in eq. (9.21), and where ξ is defined as

ξ ≡
[
Esym(n, T = 0)

~c

]2

24n

1 +

√
1 +

π2n

288

(
~c

Esym(n, T = 0)

)3


1/3

, (B11)

as in eq. (9.22).

Thus, if the form of Esym(n) is known, this will uniquely specify Yp,β. Alterna-

tively, if the β-equilibrium proton fraction is known from the cold EOS, it can be

used to fit for the parameters of the particular model of Esym. In the context of this

paper, specifying Yp,β, S0, and L can be used to fit for the parameter γ; or, speci-

fying S0, L, and γ can be used to calculate Yp,β. The latter option is particularly

useful as it allows our framework to be applied to parametric EOS that may not

calculate Yp,β directly.

Finally, we provide the derivative of Yp,β, which is required to calculate the sound

speed in Appendix B. The derivative at constant entropy is given by

∂Yp,β
∂n

∣∣∣∣
S

=
1

16

(π
2

)2/3
{

(2π2)1/3

(
1− nφ
ξ

)
+ ξ

[
~c

Esym(n, T = 0)

]3

(3x− φ)

}
(B12)

where for simplicity we have introduced the quantities

φ =
1

2n
(3xn+ 1) +

1

6n

{
1 +

π2n

288

[
~c

Esym(n, T = 0)

]3
}−1/2

(3xn− 1) (B13)

and

x =
1

n2

Psym(n, T = 0)

Esym(n, T = 0)
. (B14)

C Calculation of the sound speed

In Chapter 9, we provided the complete set of expressions necessary to extend any

cold EOS to non-equilibrium conditions and arbitrary temperature. These expres-

sions can be used to create a new finite-temperature EOS, by varying either the



240

cold, underlying EOS or any of the five parameters of our model. In creating a new

EOS, it is useful to always to check that the choice of parameters results in a model

that is causal at all densities and temperatures of interest. To that end, we here

provide a sample calculation of the adiabatic sound speed for our model.

The sound speed will need to be calculated differently depending on the relevant

timescales for the astrophysical system at hand. If the sound-crossing timescale is

longer than the time for weak interactions, then matter will remain in β-equilibrium

as the system evolves and the proton fraction will change accordingly. This scenario

may correspond to the early phases of a neutron star merger or the cooling of

proto-neutron stars. Alternatively, if the dynamical timescale is shorter than the

timescale required to maintain β-equilibrium, as in the late stages of a merger, the

proton fraction will remain approximately constant.

In this appendix, we will calculate the sound speed for the latter case: of a

system with a constant proton fraction. For such a system, the adiabatic sound

speed, cs, is defined as (cs
c

)2

≡ ∂P (n, T )

∂ε

∣∣∣∣
S,Yp

(C1)

where ε ≡ E(n, T )n + mc2n is the relativistic energy density, consisting of the

classical internal energy density and the rest mass density. Here, we have suppressed

the proton-fraction dependence of the pressure and energy models because we are

considering a system that maintains its initial proton fraction, Yp,β(n). We can

expand this derivative as follows

(cs
c

)2

=
∂P (n, T )

∂n

∣∣∣∣
S,Yp

(
∂ε

∂n

∣∣∣∣
S,Yp

)−1

=
∂P (n, T )

∂n

∣∣∣∣
S,Yp

[
n

E(n, T )n+ P (n, T ) +mc2n

]
,

(C2)

For each term in the pressure expressions of Box II., we calculate and provide

the derivatives at constant entropy below.

For a tabular, cold EOS in β-equilibrium, the cold pressure derivative must be
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calculated numerically. For a polytropic cold EOS, however, the derivative is simply

∂Pcold(n, T = 0)

∂n

∣∣∣∣
S,Yp

=
Γ

n
Pcold(n, T = 0), (C3)

where Γ is the polytropic index. In the following expression for the complete deriva-

tive, we assume the cold EOS can be represented as a polytrope. However, if this is

not the case, the first term should simply be replaced by the numerical derivative of

the cold EOS. The total derivative for the case of a constant proton fraction is then

∂P (n, T )

∂n

∣∣∣∣
S,Yp

=
Γ

n
Pcold(n, T = 0) +


16fsσT

4/(9cn), n < n1

5T/3 n1 < n < n2

∂Pth,deg(n,T )

∂n

∣∣∣∣
S,Yp

n > n2.

(C4)

The degenerate thermal pressure of nucleons and electrons, Pth,deg, is given for

symmetric matter by

Pth,deg(n, T ) = − [aSM′+ ae′Yp,β]n2T 2, (C5)

as in Box II. We assume that this is approximately equal to the β-equilibrium

expression because the thermal symmetry-energy correction is small, as discussed in

§9.5. This assumption will likely introduce a small error into the final sound speed,

which we neglect for the present purposes.

In this appendix, for brevity, we will use the following notation: aSM ≡
a(0.5n, 0.5M∗

SM) and ae ≡ a(Yp,βn,me). Additionally,

aSM′ ≡
∂a(0.5n, 0.5M∗

SM)

∂n

∣∣∣∣
Yq

= −2aSM

3n

{
1− B

2
(C + 3A)

}
, (C6a)

ae′ ≡
∂a(Yp,βn,me)

∂n

∣∣∣∣
Yq

= −2ae

3n

{
1− BC

2

}
, (C6b)
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where we have introduced

A ≡ A(nq,M
∗) =

∂ lnM∗(nq)

∂ lnn

∣∣∣∣
Yq

= −α
[

1−
(
M∗(nq)

mc2

)2
]

(C7a)

B ≡ B(nq,M
∗) =

M∗(nq)
2

M∗(nq)2 + (3π2nq)2/3(~c)2
(C7b)

C ≡ C(nq,M
∗) =

(3π2nq)
2/3(~c)2

M∗(nq)2
. (C7c)

For the symmetric nuclear terms, nq → 0.5n and M∗(nq)→ 0.5M∗
SM(0.5n). For the

lepton term, nq → Yp,βn and the effective mass is simply the electron mass.

Using the entropy expressions of §9.6, we can then write the derivative of the

degenerate thermal pressure as

∂Pth,deg(n, T )

∂n

∣∣∣∣
S,Yp

= −
[
∂(aSM′)
∂n

∣∣∣∣
S,Yp

+
∂(ae′)
∂n

∣∣∣∣
S,Yp

Yp,β

]
n2T 2

+2Pth,deg(n, T )

[
1

n
− aSM′+ ae′ · Yp,β

aSM + aeYp,β

] (C8)

The second derivative of aSM is given by

∂(aSM′)
∂n

∣∣∣∣
S,Yp

= aSM′
(
aSM′
aSM

− 1

n

)
+

2aSM

3n2
B

[
3A2 − 1

3
B(3A+ C)2 +

1

3
C +

3n

2

∂A

∂n

]
(C9)

The second derivative of the electron term, for which A → 0 due to its constant

effective mass, is simply

∂(ae′)
∂n

∣∣∣∣
S,Yp

= ae′
(
ae′
ae

− 1

n

)
+

2ae

9n2
BC(1−BC) (C10)

Finally, the second-derivative of the M∗ term is given by

∂A

∂n
=

∂

∂n

[
∂ lnM∗(nq)

∂n

]
=

2α

n

[
M∗(nq)

Yqmc2

]2 [
∂ lnM∗(nq)

∂n

]
, (C11)

where we have assumed that M∗ is defined here for symmetric matter, so that

M∗(nq)→ 0.5M∗
SM(0.5n).
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GRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes.
Classical and Quantum Gravity, 32(17), 175009. doi:10.1088/0264-9381/32/17/
175009.

Faber, J. A. and F. A. Rasio (2012). Binary Neutron Star Mergers. Living Reviews
in Relativity, 15, 8. doi:10.12942/lrr-2012-8.

Farr, W. M., N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel, and
V. Kalogera (2011). The Mass Distribution of Stellar-mass Black Holes. ApJ,
741, 103. doi:10.1088/0004-637X/741/2/103.

Fattoyev, F. J., J. Carvajal, W. G. Newton, and B.-A. Li (2013). Constraining the
high-density behavior of the nuclear symmetry energy with the tidal polarizability
of neutron stars. PhRvC, 87(1), 015806. doi:10.1103/PhysRevC.87.015806.

Fattoyev, F. J., C. J. Horowitz, J. Piekarewicz, and B. Reed (2020). GW190814:
Impact of a 2.6 solar mass neutron star on nucleonic equations of state. arXiv
e-prints, arXiv:2007.03799.

Fattoyev, F. J., C. J. Horowitz, J. Piekarewicz, and G. Shen (2010). Relativistic
effective interaction for nuclei, giant resonances, and neutron stars. PhRvC, 82(5),
055803. doi:10.1103/PhysRevC.82.055803.

Favata, M. (2014). Systematic Parameter Errors in Inspiraling Neutron Star Bi-
naries. Physical Review Letters, 112(10), 101101. doi:10.1103/PhysRevLett.112.
101101.

Fernández, R. and B. D. Metzger (2016). Electromagnetic Signatures of Neutron
Star Mergers in the Advanced LIGO Era. Annual Review of Nuclear and Particle
Science, 66(1), pp. 23–45. doi:10.1146/annurev-nucl-102115-044819.

Fernández, R., E. Quataert, K. Kashiyama, and E. R. Coughlin (2017). Mass Ejec-
tion in Failed Supernovae: Variation with Stellar Progenitor. ArXiv e-prints.

Fischer, T., M. Hempel, I. Sagert, Y. Suwa, and J. Schaffner-Bielich (2014). Symme-
try energy impact in simulations of core-collapse supernovae. European Physical
Journal A, 50, 46. doi:10.1140/epja/i2014-14046-5.
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Mikóczi, B., M. Vasúth, and L. Á. Gergely (2005). Self-interaction spin effects in
inspiralling compact binaries. PhRvD, 71(12), 124043. doi:10.1103/PhysRevD.
71.124043.

Milisavljevic, D. and R. A. Fesen (2015). The bubble-like interior of the core-
collapse supernova remnant Cassiopeia A. Science, 347(6221), pp. 526–530. doi:
10.1126/science.1261949.

Miller, M. C., F. K. Lamb, A. J. Dittmann, S. Bogdanov, Z. Arzoumanian, K. C.
Gendreau, S. Guillot, A. K. Harding, W. C. G. Ho, J. M. Lattimer, R. M. Lud-
lam, S. Mahmoodifar, S. M. Morsink, P. S. Ray, T. E. Strohmayer, K. S. Wood,
T. Enoto, R. Foster, T. Okajima, G. Prigozhin, and Y. Soong (2019). PSR
J0030+0451 Mass and Radius from NICER Data and Implications for the Prop-
erties of Neutron Star Matter. ApJL, 887(1), L24. doi:10.3847/2041-8213/ab50c5.

Mishra, C. K., A. Kela, K. G. Arun, and G. Faye (2016). Ready-to-use post-
Newtonian gravitational waveforms for binary black holes with nonprecessing
spins: An update. PhRvD, 93(8), 084054. doi:10.1103/PhysRevD.93.084054.

Mondal, C., B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, and X. Viñas
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N. Paar, and D. Vretenar (2013). Giant quadrupole resonances in 208Pb, the
nuclear symmetry energy, and the neutron skin thickness. PhRvC, 87(3), 034301.
doi:10.1103/PhysRevC.87.034301.

Rodriguez, C. L., C.-J. Haster, S. Chatterjee, V. Kalogera, and F. A. Rasio (2016).
Dynamical Formation of the GW150914 Binary Black Hole. ApJL, 824, L8. doi:
10.3847/2041-8205/824/1/L8.

Sabbadini, A. G. and J. B. Hartle (1973). Upper Bound on the Mass of Non-
Rotating Neutron Stars. Astrophysics and Space Science, 25, pp. 117–131. doi:
10.1007/BF00648231.

Sabbadini, A. G. and J. B. Hartle (1977). Bounds on the moment of inertia of
nonrotating neutron stars. Annals of Physics, 104, pp. 95–133. doi:10.1016/
0003-4916(77)90047-1.

Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution. ApJ, 121,
p. 161. doi:10.1086/145971.

Sathyaprakash, B., M. Abernathy, F. Acernese, P. Ajith, B. Allen, P. Amaro-Seoane,
N. Andersson, S. Aoudia, K. Arun, P. Astone, and et al. (2012). Scientific ob-
jectives of Einstein Telescope. Classical and Quantum Gravity, 29(12), 124013.
doi:10.1088/0264-9381/29/12/124013.

Sathyaprakash, B. S. and S. V. Dhurandhar (1991). Choice of filters for the detection
of gravitational waves from coalescing binaries. PhRvD, 44, pp. 3819–3834. doi:
10.1103/PhysRevD.44.3819.

Sekiguchi, Y., K. Kiuchi, K. Kyutoku, and M. Shibata (2011). Gravitational Waves
and Neutrino Emission from the Merger of Binary Neutron Stars. Physical Review
Letters, 107(5), 051102. doi:10.1103/PhysRevLett.107.051102.

Shen, G., C. J. Horowitz, and E. O’Connor (2011a). Second relativistic mean field
and virial equation of state for astrophysical simulations. Phys. Rev. C, 83, p.
065808. doi:10.1103/PhysRevC.83.065808.



266

Shen, G., C. J. Horowitz, and S. Teige (2011b). New equation of state for astrophys-
ical simulations. Phys. Rev. C, 83, p. 035802. doi:10.1103/PhysRevC.83.035802.

Shen, H., H. Toki, K. Oyamatsu, and K. Sumiyoshi (1998). Relativistic equation of
state of nuclear matter for supernova and neutron star. Nuclear Physics A, 637,
pp. 435–450. doi:10.1016/S0375-9474(98)00236-X.

Shibata, M. and K. Hotokezaka (2019). Merger and Mass Ejection of Neutron Star
Binaries. Annual Review of Nuclear and Particle Science, 69, pp. 41–64. doi:
10.1146/annurev-nucl-101918-023625.

Shibata, M. and K. Taniguchi (2011). Coalescence of Black Hole-Neutron Star
Binaries. Living Reviews in Relativity, 14, 6. doi:10.12942/lrr-2011-6.

Shlomo, S., V. M. Kolomietz, and G. Colò (2006). Deducing the nuclear-matter
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