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Abstract 13 

The incorporation of cover crops in orchards and vineyards can increase soil organic carbon 14 

(OC) and improve nitrogen (N) availability. This study compared how three herbaceous 15 

under-vine cover crop assemblages affected OC and N pools in four edaphically distinct 16 

vineyard agroecosystems. Using physical fractionation and soil spectral analysis we: 1) 17 

compared effects of grass and legume mono- and poly-cultures on total, coarse (≥50 µm) 18 

and fine (<50 µm) pools of OC and total N (TN), as well as extractable N (ExN), and 2) 19 

assessed predictions of OC and TN pools by infrared spectroscopy (IRS) and partial least 20 

squares regression analyses (PLSR). Compared with the control treatment, total, coarse and 21 

fine fraction OC were greater in the presence of grasses and legumes; ExN was increased 22 

38% by legumes, and 78% in legume-grass mixture. With initial calibration, we used one soil 23 

spectral analysis to successfully derive models predicting contents of OC in the whole soil, 24 

and the allocation of OC to coarse and fine fractions. In addition to demonstrating the 25 

efficacy of incorporating grass and legume cover crops into vineyard cropping systems to 26 

improve OC and the storage and availability of N across diverse soil types, this study 27 

confirms the ability of IRS/PLSR to predict changes in OC concentrations related to 28 
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differential ground cover management. IRS/PLSR is an important and practical approach for 29 

the rapid quantification of short-term management impacts on SOM pools, contributing 30 

significantly towards improved understanding of soil C and N dynamics in vineyard 31 

agroecosystems.  32 

 33 

1. Introduction 34 

Vineyards are intensively managed agroecosystems and are particularly depleted in soil 35 

organic carbon (OC) and vulnerable to soil nitrogen (N) loss (García-Díaz et al. 2017). 36 

Typically, deep intensive tillage during vine establishment destroys aggregate structures and 37 

increases liberation of OC (Álvaro-Fuentes et al. 2008; Luo et al. 2010), while under-vine 38 

removal of natural vegetation using herbicide reduces soil organic matter (SOM) 39 

accumulation and protection (Eldon & Gershenson 2015; Whitelaw-Weckert et al. 2007). The 40 

direct effects of management practices on SOM retention render soils under perennial fruit 41 

crops especially vulnerable to degradation (Cheddadi et al. 2001; Lal 2004) and heightened 42 

contribution to global greenhouse gas emissions (Aguilera et al. 2015). Further, very few 43 

studies have accounted for the probability of future accelerated degradation of critical soil 44 

quality parameters predicted to occur in vineyards (Baldock et al. 2012; Treeby 2018). As 45 

important viticultural regions begin to transition towards lower input, organic vineyard 46 

management practices to improve soil health (Penfold et al. 2015; Wheeler & Crisp 2011), 47 

empirical research quantifying the impacts of differential management on critical soil 48 

parameters is of vital importance to the development of an environmentally sustainable 49 

wine growing industry.   50 

 51 

Incorporating residue retention practices in perennial fruit cropping systems can increase 52 

the accumulation of SOM, which improves OC sequestration and soil nutrient availability (Lal 53 

& Bruce 1999; Montanaro et al. 2010; Roldán et al. 2003). Further, SOM provides a substrate 54 

for the crucial soil biota which mediate soil C sequestration and mineralise organic N to 55 

plant-accessible inorganic N (Allison et al. 2010; Cookson et al. 2007; Keiblinger et al. 2010). 56 

Growing plants also influence SOM accumulation through their active root systems which 57 

contribute significantly to OC and N and improve aggregate stability (Kätterer et al. 2011; 58 



Ovalle et al. 2010a; Rasse et al. 2005). A reduction of soil tillage is also recommended to 59 

protect SOM in aggregates from microbial decomposition, although it has been suggested 60 

that the agricultural benefits of no-till may be smaller than previously thought (Luo et al. 61 

2010; Powlson et al. 2014). If no-till benefits are indeed low, then increasing plant inputs to 62 

agricultural systems is of particular importance for maintaining or enhancing stocks of SOM.  63 

 64 

Introducing herbaceous communities between or under vine rows in vineyards - termed 65 

cover cropping - has been shown to increase SOM inputs and, depending on the crop-type, 66 

to improve nutrient availability in viticultural systems (Gómez et al. 2011; Peregrina et al. 67 

2010; Steenwerth & Belina 2008b). However, the inclusion of ground cover on the normally 68 

bare soil under vines is a contentious management technique. This is largely owing to the 69 

high requirement for N in fruit development (Gabriella et al. 2019), combined with the 70 

concern that some cover crops, especially grasses, may compete with vines for nutrients, 71 

negatively affecting yield and fruit quality (Celette et al. 2009; Muscas et al. 2017). Legume 72 

cover crops can reduce the need for N fertiliser applications by returning biologically fixed N 73 

to the soil potentially facilitating the growth of agricultural crops and other cover crop 74 

species such as grasses (Baumgartner et al. 2008; Mitchell et al. 2017; Peoples et al. 2009). In 75 

vineyard cropping systems, legumes have been demonstrated to provide the equivalent of 76 

40 kg N ha-1 to grapevines (Ovalle et al. 2010b) and, in other cropping systems, to facilitate 77 

grass root growth and N uptake in legume-grass polycultures (Ramirez-Garcia et al. 2014). 78 

This is particularly important for SOM accumulation as grasses have a fine, dense root 79 

structure that contributes significantly to soil OC (Fisher et al. 1994; Ramirez-Garcia et al. 80 

2014); in cover crop species specifically, as much as 44% of plant biomass C has been 81 

attributed to roots (Guzmán et al. 2014). In other vineyard ground cover cropping trials, 82 

grass and legumes have increased soil OC and water-soluble carbon, improved N availability 83 

and increased microbial biomass (Karl et al. 2016; Steenwerth & Belina 2008a; Steenwerth & 84 

Belina 2008b). Importantly, whether a cover crop makes a significant contribution to SOM 85 

accumulation and nutrient retention is largely dependent on the plant functional type 86 

(Pendall et al. 2011; Peoples et al. 2009; Shennan 1992). 87 

 88 



Several studies have successfully examined and modelled OC dynamics in agricultural 89 

systems under differential management, using carbon pool data obtained from the physical 90 

separation of OC into its component fractions (Blair et al. 1995; Jagadamma & Lal 2010; 91 

Skjemstad et al. 2004; Zimmermann et al. 2007). The coarse (particulate) organic matter 92 

fraction consists of recently decomposed plant inputs, is considered to have a turnover time 93 

of years to decades and is most likely to respond quickly to changes in land management 94 

(Cambardella & Elliott 1992). Fine fraction (mineral associated) OC and N pools are generally 95 

considered to be less susceptible to alteration by differences in ground cover management, 96 

are more strongly influenced by the percentages of silt and clay in the bulk soil and can be 97 

vulnerable to destruction of aggregates by mechanical disturbance (Feng et al. 2016; 98 

McNally et al. 2017). Changes to bulk OC following different management practices can be 99 

small and incremental compared to the large background OC stock, so several studies, 100 

including this one, have focussed on examining changes to SOM fractions that serve as early 101 

indicators of long-term changes to bulk SOM (Cambardella & Elliott 1992; Cozzolino & 102 

Morón 2006; Ojeda et al. 2018).  103 

 104 

However simple, measuring SOM in fractions by physical separation is time consuming and 105 

for this reason may be prohibitive for routine analyses of agricultural soils (Poeplau et al. 106 

2013). Therefore, quantification of changes in SOM stocks can be challenging at the farm 107 

scale, and so techniques to measure these changes using simple and rapid spectral analyses 108 

are becoming increasingly popular (Baldock et al. 2018; Barthès et al. 2008; Bellon-Maurel & 109 

McBratney 2011; Malley et al. 2000). Infrared spectroscopy (IRS) combined with 110 

chemometric analyses to quantify soil chemical and physical properties is a continually 111 

developing but robust technique for the analysis of soil parameters, and with sufficient 112 

calibration has the potential to replace at least some traditional techniques of soil analysis 113 

(Bellon-Maurel et al. 2010; Cozzolino & Morón 2006). The potential of coupled IRS and 114 

partial least-squares regression analysis (IRS/PLSR) to predict OC content in bulk soil and 115 

particle fractions has proven useful for quantifying changes to OC relating to agricultural 116 

management (Baldock et al. 2018), especially when models are developed and validated 117 

within a particular ecosystem of interest (Baldock et al. 2013a). 118 



Quantification of the impacts of monoculture and mixed species under-vine cover crops on 119 

the improvement of soil quality in vineyards has not yet been attempted across multiple 120 

sites, nor across varied soil types. This study evaluated the potential for grass and legume 121 

cover crops to increase OC and N accumulation in under-vine soils in four edaphically distinct 122 

vineyard agroecosystems. Additionally, in an attempt to reduce the time and financial costs 123 

associated with quantifying OC and N contents at the farm scale (MacLeod et al. 2015; 124 

Schipanski et al. 2014), we also evaluated the use of IRS/PLSR spectral analysis to detect 125 

treatment level changes to OC and N pools, thereby developing a calibration dataset for use 126 

in vineyards. The aims of this study were: 1) to compare the effects of grass and legume 127 

cover crop mono- and polycultures on contents of OC,  TN and ExN in bulk soil and their 128 

associated coarse (≥50 µm) and fine (<50 µm) soil fractions; and 2) to assess the potential for 129 

using easily-acquired infrared spectra in combination with partial least squares analysis to 130 

build models that accurately predict the contents of OC and N in vineyard soils under 131 

differential management. We anticipate that by demonstrating the effectiveness of under-132 

vine cover cropping for improving soil carbon accumulation and nitrogen retention using a 133 

simple, cost effective technique, we might increase the adoption of sustainable viticulture 134 

practices in vineyards that have the benefit of improving soil health.  135 

 136 

2. Materials and Methods 137 

2.1 Experimental design and sites 138 

A set of intra-row cover crop experiments were planted in 2014 by the University of Adelaide 139 

and Wine Australia on commercial vineyards, in collaboration with local growers at Eden 140 

Valley, Nuriootpa, Langhorne Creek and Waikerie, in southern Australia (Fig 1). The 141 

experimental design consisted of grasses and legumes grown in monoculture and mixture, 142 

with an herbicide-treated (plant-free) control established in a fully randomised complete 143 

block design (Fig 2). Vines were Vitis vinifera “Shiraz” cultivar at Eden Valley and Nuriootpa, 144 

and “Merlot” cultivar at Langhorne Creek and Waikerie. Plant functional types (grass vs 145 

legume) were maintained across the sites, though it was necessary to adjust the cover crop 146 

varieties sown according to soil type and seasonal rainfall, which varied considerably across 147 

the viticultural regions. Details of site characteristics, vineyard management and cover crop 148 

species at the individual sites are given in Table 1. At each vineyard, there were four 149 



replicates of each treatment giving a total of 16 experimental plots per site. Plot lengths, 150 

vine spacing, and row widths varied among sites (Table S1, Supplementary materials), and 151 

care was taken to sample towards the centre of the plots and equally between vines to avoid 152 

edge effects. Effective weed control was maintained in the control (bare ground) treatments 153 

across sites with an average of 91% (± 5% SD) bare soil, whereas the grass and legume 154 

treatments had >80% vegetation cover, with bare soil averaging only 18.8 % (± 17% SD) 155 

across sites. The mixed grass and legume treatments averaged 75:25 legume:grass cover at 3 156 

sites (Eden Valley, Nuriootpa and Waikerie), differing at the Langhorne Creek site where the 157 

ratio was 55:45. All vineyards were drip-irrigated in the intra-row zone and, prior to 158 

commencement of the trials, all plots had been maintained for four years with bare soil 159 

under-vine, using herbicide. Herbicides were applied in the cover crop treatment plots in 160 

2014/15 to maintain treatment integrity and subsequent weed control was achieved using a 161 

line trimmer. The mid-row zones contained volunteer mixed swards maintained where 162 

required by mowing. The under-vine cover crops were not cut but were instead left to 163 

naturally senesce with all above-ground residues remaining in-situ. In the interest of 164 

providing information on important vine performance parameters we refer to a report 165 

prepared by (Penfold 2018) for these sites. Briefly, bunch yields were not negatively affected 166 

by the cover crop treatments and at some sites were increased under mixed cover crops 167 

compared with the control. Yeast assimilable nitrogen, which provides a measure of 168 

available N for the fermentation process and significantly determines fruit quality (Neilsen et 169 

al. 2010) was increased under legume cover crops (Penfold 2018).  170 

 171 



Figure 1: Location map of the studied commercial vineyard sites in South Australia. (Map credit: Johanna 172 
Pihlblad 2020) 173 

 174 

 175 

Figure 2: Plot level experimental design focused on under-vine treatments; a Control, b Grass only, c Legume 176 
only, d Grass + Legume (mixture). Mid-rows showing volunteer mixed sward. (Photo credit: Chris Penfold, 177 
2015) 178 
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Table 1: Site characteristics, vineyard management and plant species within treatments. Variables are 179 
reported as means (±se) 180 

 181 

Site Eden Valley Nuriootpa Langhorne Creek Waikerie 

Soil Classification* Black Sodosol Brown Sodosol Brown Sodosol Red Kandosol 

pH (H2O) 7.0 7.0 7.6 6.8 

pH (CaCl2) 6.3 6.4 6.9 6.2 

Sand** % 62.0 ± 1.9  55.0 ± 2.5  28.0 ± 6.8  84.0 ± 1.9  

Silt** % 12.0 ± 1.0  9.0 ± 1.1  38.0 ± 7.3  1.0 ± 4.1  

Clay** % 26.0 ± 2.0  36.0 ± 3.6 34.0 ± 7.7  15.0 ± 3.0  

Coarse Soil % 74.8 ± 4.7  58.4 ± 2.7 39.3 ± 2.8 92.2 ± 1.5 

Fine Soil %  25.0 ± 4.7 41.5 ± 2.7 60.6 ± 2.8 7.7 ± 1.5 

MAT (°C) 21.6 21.6 22.1 25.7 

MAP (mm) 620 525 415 255 

Fertiliser application***  

(kg ha/year, 2016-18) 

N – 0.03 

P – na 

N – 0.07 

P - na 

N – 0.02 

P - na 

N - 0.20 

P – 0.02 

Plot level Irrigation  

(L/year, 2016-18) 

1986 1125 3312 8496 

Vine Establishment (year) 1998 2001 1999 1998 

Vines (ha-1)/Spacing (m) 1962 / 1.7 1271 / 2.2 2312 / 1.7 1665 / 2.0 

Row width (m) 2.7 3.5 2.5 3.0 

Legume Only Medicago truncatula Medicago truncatula Medicago truncatula Medicago tornata 

 Medicago littoralis Medicago littoralis Medicago littoralis  

Grass Only Dactylis glomerata Dactylis glomerata Dactylis glomerata Dactylis glomerata 

Grass+Legume Festuca ovina Festuca ovina Festuca ovina Lolium rigidum 

 Trifolium fragiferum Trifolium fragiferum Trifolium fragiferum Medicago polymorpha 

*Soil classification data derived from Department of Environment and Water Soil and Land Program (Hall 2009). **n= 4; # 182 

n=16. ***N = nitrogen, P = phosphorus. MAT = Mean annual temperature, MAP = Mean annual precipitation. na = not 183 

applied.  184 



2.2 Cover crop composition and cover crop contributions to below-ground biomass 185 

Cover crop composition was assessed three times per year using the ‘Botanal’ method 186 

(Tothill et al. 1992). Briefly, composition was estimated from percentage cover of all species 187 

and bare soil in a 10.5 m2 quadrat and is an average estimate of percentage cover for the 188 

years 2015 and 2016.  189 

 190 

For the purposes of discussing C and N inputs as they relate to the cover crops, we 191 

compared cover crop root biomass among all treatments (including the control). Four soil 192 

cores of 5 cm diameter and a depth of 10 cm were removed from each replicate cover crop 193 

and control plot in March of 2017, composited, air dried and sieved to 2 mm, and all root 194 

biomass removed and quantified. Soils were air dried and roots carefully removed from dry 195 

soil (as opposed to washed) to comply with methods for the subsequent infrared spectral 196 

analysis (Baldock et al. 2013a). We separated biomass into fine herbaceous roots (<0.1 mm-197 

0.3 mm), fine vine roots (>0.3 mm-1 mm) and coarse vine roots (>1 mm) (Centinari et al. 198 

2016; Garcia et al. 2018; Roumet et al. 2008). Vine roots were easily distinguishable from 199 

cover crop roots due to their larger diameter, darker colour and acute branching angles 200 

(Klodd et al. 2016), but we were unable to distinguish between grass and legume root 201 

biomass in mixed treatments. On average, 95 – 100% of the root biomass in the treatments 202 

was contained in the 0-10 cm depth (data not shown), hence we chose to restrict sampling 203 

to this depth for the purpose of quantifying cover crop root contributions to measured 204 

variables. Cover crop treatment effects on root biomass were quantified only as they 205 

related to fine herbaceous root biomass; vine root biomass did not differ significantly 206 

among sites or treatments, including the herbicide control (data not shown). 207 

 208 

2.3 Total C, total N, extractable N and texture analyses 209 

To prepare soil for C, N and IRS analyses, 10 g of sieved (< 2 mm) air dried soil was ball 210 

milled for 180 s using a Retsch stainless steel ball mill (Baldock et al. 2014). The presence of 211 

inorganic C (IC) was evaluated by applying a few drops of 1M HCl to a well-homogenized 1g 212 

subsample of soil. Where a positive fizz test was recorded, carbonates were removed before 213 

C and N combustion analyses by acid digestion (Baldock et al. 2013a). At only one site within 214 



the study (Eden Valley) was carbonate removal necessary. Soil water content was 215 

determined gravimetrically by drying at 105° C, and all analyses were corrected for soil 216 

moisture content. The remaining air-dried bulk soil was kept aside for bulk density 217 

calculations and fractionation analyses.  218 

 219 

Texture analysis was undertaken by sedimentation (Shirazi & Boersma 1984) on sieved (<2 220 

mm), air dried soil to determine sand, silt, and clay contents (Table 1). Extractable N (mg g-1) 221 

was determined by shaking 40 ml of 2M potassium chloride (KCl) solution with 4.0 g soil (< 2 222 

mm) at 170 rpm for 1 hour and then filtering with a 2.5 µm ashless filter (Grade 42, 223 

Whatman plc, Kent, U.K). Soil extracts were stored at -20 oC until colorimetric analysis in a 224 

discrete analyser (AQ2, SEAL Analytical, Ltd., Milwaukee, WI USA). Total C (mg g-1) and TN 225 

(mg g-1) were obtained from combustion analyses using a LECO TruMac carbon and nitrogen 226 

analyser (LECO, St. Joseph, MI, USA). Site-level edaphic characteristics were measured and 227 

compared using soils obtained from the control treatments (n=16). 228 

 229 

2.4 Physical fractionation procedure  230 

The physical fractionation procedure used was modified from Baldock et al. (2014) and 231 

Skjemstad et al. (2004). Briefly, 10 g of sieved (<2 mm), air-dried bulk soil was dispersed in 232 

40 ml of a 5 g L-1 sodium hexametaphosphate solution by shaking on a flatbed orbital shaker 233 

overnight at 180 rpm. The dispersed soil and hexametaphosphate solution were poured on 234 

an automated sieving system (Analysette Pro, Fristch, Germany) equipped with a 50 µm 235 

sieve (Baldock et al. 2014). The shaker was set to apply DI water at a spray rate of 150 ml 236 

per minute, and to shake at an amplitude of 2.5 mm for no less than 3 minutes. Sieving was 237 

complete when the water exiting the machine ran clear. If this was not achieved within the 238 

allocated time, the process was repeated. Sieves were visually inspected to ensure that the 239 

fine particles had passed through and the >50 m fraction (coarse fraction) and the <50 m 240 

fraction (fine fraction) were separated and captured directly. The samples were then freeze 241 

dried and weighed. Coarse fraction samples were homogenised and ground for 60 s using a 242 

stainless-steel ball mill. Fine fractions were ground with a mortar and pestle by hand. 243 

Organic C (mg g-1) and total N (mg g-1) content of the two fractions was determined on a 244 

LECO CNS-2000 analyser using the same methods as for bulk soil. The allocation of soil mass 245 



to the coarse and fine fractions was expressed as a percentage of the total mass of soil that 246 

was fractionated. 247 

 248 

2.5 IRS Analysis 249 

Infrared spectra (IRS) were obtained from air dried and finely ground soil as described by 250 

Baldock et al. (2013). Approximately 100 mg of prepared bulk soil was placed into 9 mm 251 

stainless steel autosampler cups and levelled. IR spectra were obtained using a Nicolet 6700 252 

FTIR Spectrometer (Thermo Fisher Scientific Inc., Waltham, MA USA) equipped with a KBr 253 

beam splitter, a DTGS detector and an AutoDiff automated diffuse reflectance accessory 254 

(Pike Technologies, Madison, WI, USA). For the set of 64 soil samples, the background signal 255 

intensity was acquired on a silica carbide disk by collecting 240 scans; two standard soils 256 

were included for determination of analytical precision. For each sample, 60 scans were 257 

collected over a spectral range of 8000-400 cm-1 with a resolution of 8 cm-1. Spectral peaks 258 

in several regions have been positively correlated with soil organic carbon, such as those 259 

between 1500 - 2853 cm-1 (Hunt 1977) as well as those related to aromatic carbon 260 

structures at 1580, 1390 and 1220cm-1 (Baldock et al. 2018; Janik et al. 2007). 261 

 262 

2.6 Statistical analysis and model selection 263 

We tested site-level differences on the dependent variables total organic C (OC), total N 264 

(TN), coarse and fine fraction OC and TN and extractable N (ExN) within the herbicide 265 

control treatments using the “aov” function in base R (R Development Core Team, 2018, 266 

version 3.5.1) and performed Tukey HSD tests to obtain multiple comparisons. All 267 

assumptions of normality and homogeneity of variance were met, and we report means 268 

with standard errors. As the root biomass data displayed unequal variance, we used R to 269 

perform Kruskal-Wallis tests and performed posthoc comparisons using the “dunnTest” 270 

function from the “FSA” package with Bonferroni adjusted p-values. In this instance we 271 

report median values and quartiles.  272 

Preliminary analyses revealed no interactions between site and cover crop treatments on 273 

soil parameters, so we evaluated treatment effects across sites. To test the effect of cover 274 

crop treatment on the dependent variables OC, TN, coarse and fine fraction OC and TN and 275 



ExN we used linear mixed effects models (LMEMs) constructed using the “lmer” function 276 

from the “lme4” package (Bates et al. 2014) within R (R Development Core Team, 2018, 277 

version 3.5.1). We tested the null hypothesis that cover cropping treatments did not affect 278 

these variables and included ‘site’ as a random effect. Response variables were sqrt 279 

transformed to meet model assumptions and allow direct comparison of the response 280 

variables with PLSR predictions which are optimally obtained using sqrt transformation 281 

(Baldock et al. 2013b). Examination of residual plots were satisfactory, indicating 282 

appropriate model selection. We used the “glht” function from the “multcomp” package 283 

(Hothorn et al. 2017) within the R statistical package to perform multiple comparisons using 284 

the Tukey’s HSD method. Single step adjusted p-values (α = 0.05) are presented and we 285 

report all summary statistics as means with standard errors. Unless otherwise noted, 286 

significant effects are considered at p < 0.05. 287 

 288 

2.7 Chemometric Analysis of Spectral Data 289 

Omnic software (Version 8.0, Thermo Scientific Inc.) was used to convert the reflectance 290 

spectra to absorbance spectra (Fig 3). All IR spectra were truncated to 6000 – 600 cm-1, 291 

baseline corrected and mean centred prior to analyses and all PLSR analyses were 292 

performed using the Unscrambler 10.3 Software (CAMO Software AS, Oslo, Norway). PCA is 293 

applied as a component of the PLSR analysis to identify spectral components most 294 

important for sample differentiation, and to identify outliers. A square root transformation 295 

(sqrt) of all measured analytical variables (OC, TN, Coarse and Fine OC) was performed to 296 

improve linearity and homogeneity of residuals prior to model derivation. PLSR derives 297 

predicted values via detection of the main multivariate syndromes, in this case the spectral 298 

components, that maximise the variance explained in the response variable (Wold et al. 299 

2001). Appropriate model selection was evaluated using the relationship between predicted 300 

PLSR values (ŷ) vs the measured (reference) (yi) values, and we report these fits using the 301 

slope, R squared value (R2), root mean square error (RMSE; equation 1) and the ratio of 302 

performance to variation (RPD; equation 2).        303 

RMSE = √∑
(yp𝑖−ŷp𝑖)²

n

𝑛

𝑖=1
       (1) 304 



where ypi is the observed (measured) value from the sample i, and ŷpi is the predicted 305 

value. 306 

 307 

RPD =   
SD𝑦

RMSE
          (2) 308 

 309 

where SDy is the standard deviation attributed to the measured reference values. 310 

 311 

The R2 represents the total variance of the residuals in the PLSR model, whereas the RMSE 312 

defines the standard deviation of the residuals. The RPD value divides the standard 313 

deviation (s) of the measured values in the calibration, validation or cross validation sets by 314 

their corresponding RMSE values (Chang et al. 2001; Nocita et al. 2014). RPD values >2 have 315 

been used to characterise robust model prediction (Chang et al. 2001). All resultant PLSR 316 

models were optimally derived from 4 factors, and where spectral outliers were identified 317 

they were removed from model derivation. For OCsqrt Coarse, we removed 3 spectral 318 

outliers from the calibration dataset after identifying standard residuals greater than 3 319 

times the standard error of calibration (SEC) which we attributed to equipment failure. 320 

Models were linear, and homogeneity of residuals was confirmed. 321 

 322 

To assess the potential for our IR/PLSR predicted values to detect treatment level 323 

differences, we compared the standard error of prediction (SEP) values from the PLSR 324 

models with the measured value differences between treatments. Differences in measured 325 

values between treatments that exceeded the model’s SEP were more likely to detect 326 

treatment level differences. SEP values were obtained from the PLSR models using equation 327 

3, which uses the measured data as a test set against the predicted values (Mevik & 328 

Cederkvist 2004).  329 

 330 

SEP =
1

𝑛𝑀
∑ (𝑓𝑀(𝑥𝑖) −  𝑦𝑖)

𝑛𝑀
𝑖=1         (3) 331 



where the measured data is represented as  M  {(𝑥𝑖, 𝑦𝑖)}, and 𝑓𝑀  is the standard deviation 332 

of the measured data estimated by √𝑉𝑀 /𝑛𝑀 , 𝑉𝑀 being the sample variance of M. 333 

 334 

3. Results 335 

3.1 Among-site comparisons of soil organic carbon and nitrogen concentrations 336 

Total soil OC (mg g-1) ranged from 7 to 17 mg g-1 and differed among sites at α = 0.10; total 337 

OC was highest at Eden Valley and lowest at Waikerie, with the other sites intermediate 338 

(Table S2). TN ranged from 0.5 to 1.8 mg g-1 and followed a similar pattern as OC: TN at 339 

Waikerie was significantly lower than at Eden Valley (Table S2). Extractable N (ExN, µg g-1) 340 

ranged from 2.4 to 7.3 g g-1, and was 204% greater at Eden Valley than Nuriootpa, with the 341 

other sites intermediate (p≤0.01).  342 

 343 

Coarse fraction OC concentration (mg g-1) ranged from 1.5 to 12 mg g-1 and was significantly 344 

higher at Langhorne Creek than at the Waikerie and Nuriootpa sites, with Eden Valley being 345 

intermediate (Table S2). Coarse fraction TN (mg g-1) was significantly higher at the 346 

Langhorne Creek site than at Eden Valley and Nuriootpa (Table S2). 347 

 348 

Fine fraction OC concentration ranged from 12 to 47 mg g-1, and was highest at Eden Valley 349 

and Waikerie, intermediate at Nuriootpa, and lowest at Langhorne Creek; it was 280% 350 

higher at Eden Valley than at the Langhorne Creek site (Table S2). Fine fraction TN (mg g-1) 351 

followed a similar pattern, with Eden Valley having the highest TN concentration, 352 

approximately 300% greater than Langhorne Creek (Table S2). 353 

 354 

3.2 Fine root biomass comparison among cover-crop treatments  355 

Fine root biomass did not differ significantly among sites (p=0.09) but was higher in 356 

treatments containing grasses compared to those without (p≤0.001). No fine root biomass 357 

was measured in the herbicide-treated controls; biomass was 2.2 kg m2 ([0-6.2]) in legume 358 

treatments, 10.6 kg m2 ([3.9-34.3]) in mixed treatments and 69.2 kg m2 ([32.3-94.1]) in the 359 

grass treatments.  360 



3.3 Cover crop effects on soil OC, TN and ExN contents 361 

Preliminary analyses indicated no interaction between cover crop treatments and site 362 

effects, so here we examined treatment effects across all sites. Treatments containing 363 

grasses increased total OC (mg g-1) across sites, being on average 14% higher in the grass 364 

and mixed treatments compared with the legume and control (Table 2). Mixed cover crop 365 

treatments increased TN by approximately 15% from the control, grass and legume (Table 366 

2). ExN (µg g-1) was positively affected by the presence of legumes (Table 2), and grasses 367 

and legumes grown together resulted in ExN on average 75% greater than in control and 368 

grass only treatments, and 17% more than in legume only treatment at α = 0.10 (p=0.09). 369 

 370 

Table 2: Means (+/- standard errors) of the dependent variables total, coarse and fine fraction soil OC and TN 371 

and ExN by treatment with results of linear mixed effects models examining the effects cover crop type on the 372 

dependent variables, across the four sites (n=16). Different lowercase letters represent significant differences 373 

between treatment groups (α= 0.05). Values of OC and TN were measured and reported as concentrations (mg 374 

g-1) in bulk soil, and coarse and fine fractions.  375 

 376 

Cover Crop OC (mg g-1) 
Bulk 

TN (mg g-1) 
Bulk 

Ex N (µg g-1) OC (mg g-1) 
Coarse 

TN (mg g-1)  
Coarse 

OC (mg g-1) 
Fine 

TN (mg g-1) 
Fine 

Grass Only 14.22 ± 1.22 b 1.24 ± 0.16 a   4.77 ± 0.43 a 7.42 ± 1.43 b 0.62 ± 0.06 35.50 ± 4.74 b 3.45 ± 0.38  

Legume Only 13.62 ± 1.10 a 1.15 ± 0.10 a 6.82 ± 0.62 b 6.96 ± 1.15 b 0.67 ± 0.11 32.77 ± 4.23 a 3.76 ± 0.35  

Mixture 14.64 ± 1.29 b 1.31 ± 0.15 b 8.80 ± 0.10 c 9.36 ± 1.86 b 0.68 ± 0.10 34.56 ± 4.55 b 3.37 ± 0.39  

Control 11.41 ± 1.02 a 1.05 ± 0.14 a 4.93 ± 0.56 a 5.36 ± 1.01 a 0.55 ± 0.06 30.57 ± 3.91 a 2.67 ± 0.56  

p-value  <0.01 0.01 ≤ 0.01  ≤ 0.01 0.51 0.02 0.11 

 377 

Treatment effects on coarse fraction OC (mg g-1) revealed an average of 45% more OC (mg g-378 

1) in grass, legume and mixed treatments compared with the control (Table 2). There were 379 

no treatment effects on coarse fraction TN (mg g-1) (Table 2).  380 

 381 

Fine fraction OC (mg g-1) across sites was positively affected by treatments containing grass, 382 

which were on average 10% greater than the control and legume (Table 2). Fine fraction TN 383 

(mg g-1) did not differ among treatments.  384 



3.4 IRS-derived predictions for carbon and nitrogen pools 385 

The obtained spectra defined by site are presented in Fig 3. As a component of the PLSR 386 

analysis, principle components analysis (PCA) was used to identify differences by site and 387 

treatment in the IR spectra. No outliers were removed from the PCA, as potential outlier 388 

removal did not improve the explained variance proportions nor alter the spectral loadings. 389 

PCA revealed separation among sites (Fig 4a), but not among treatments (data not shown); 390 

the first four components accounted for 98% of the variation in the spectra (Fig 4a). Loading 391 

spectra for the first 4 principle components revealed that positive signals around 3700, 392 

3600, 2000, 1950, 1700, 1500, 1200, 1100, 900, 650 and 600 cm-1 contributed most to PC1 393 

(Fig 4b). In our spectra (Fig 3), significant positive peaks in these regions occur at 2000, 394 

1700, 1500 and 1200 cm-1, however peaks at 2000, 1500 and between 3700-3600 are 395 

possibly overlapped by mineral signals as these peaks have previously been attributed to 396 

the presence of quartz and clay (Hunt 1977; Janik & Skjemstad 1995). Similar positive peaks 397 

around 3700-3600 soil spectra have previously been attributed to clay minerals (Janik & 398 

Skjemstad 1995). Peaks around 2800, 2500 and 1800 have previously been attributed to the 399 

presence of carbonates (Hunt 1977). Although we detected a minimal amount of IC in the 400 

Eden Valley samples (data not shown), the spectral signature related to carbonates was not 401 

significant. Mineralogy contributed most to the spectral variations across sites, with some 402 

important contributions from organic components.  403 

 404 

Because many of the spectral peaks overlap in areas that define both mineral and organic 405 

characteristics, IRS/PLSR was expected to be less sensitive in its ability to predict treatment 406 

level differences than direct combustion analyses. Therefore, in order to measure the ability 407 

of IRS/PLSR to quantify treatment level differences, we only tested the PLSR predicted 408 

values by treatment where compositional differences were evident from combustion 409 

analyses.  410 



Figure 3: Mean (+95% CI) absorbance spectra by site (baseline corrected 6000-600cm-1) obtained in the control 411 

treatments. Values are stacked (+0.5) by site for ease of interpretation. Grey shading indicates the within site 412 

95% confidence interval (n = 4).  413 



 414 

Figure 4 a) PCA plots for the first 3 principle components demonstrating separation between sites. Red 415 

diamonds = Eden Valley, yellow triangles = Nuriootpa,  blue squares = Langhorne Creek, grey circles = Waikerie 416 

b) PCA loadings spectra (cm-1) for each significantly contributing principle component. Individual y axes 417 

demonstrate the relative percentage variation explained by each individual principle component. 418 

 419 

3.5 Using PLSR to predict OC and TN pools from IRS data  420 

Summary statistics from PLSR models calibrated using spectral data and tested using 421 

measured values are presented in Table 3. Our derived models, using data from all sites to 422 

predict treatment effects on OCsqrt (Fig S1a), TNsqrt (Fig S1b), OCsqrt coarse and OCsqrt fine, 423 

a 

b 



predicted a significant amount of variation in the measured variables (Table 3). Our derived 424 

models predicting TN (mg g-1) in the soil fractions were excluded from the results as the IRS-425 

predicted values explained only 57% (RPD = 1.00) and 67% (RPD = 0.99) of the variation in 426 

the coarse and fine fractions, respectively, and were therefore not considered to be reliable 427 

(Chang et al. 2001). Additionally, our bulk soil TNsqrt predicted values were highly correlated 428 

with those obtained for OCsqrt, which is not uncommon (McCarty et al. 2002; Reeves & 429 

McCarty 2000). Simple linear regression revealed that the PLSR-derived beta coefficients for 430 

OCsqrt and TNsqrt were highly correlated (r2 = 0.90, p<0.0001) which suggests that OCsqrt and 431 

TNsqrt are being predicted with a very similar PLSR algorithm (Fig 5). We therefore focus the 432 

discussion on the derived PLSR models to predict OC contents, and exclude discussion of the 433 

IR/PLSR results for TN.  434 

 435 

Figure 5: PLSR derived β coefficients for OCsqrt and TNsqrt, as obtained from an optimal number of (4) model 436 

factors. Spectral peaks that most influence the models overlap significantly, and simple linear regression 437 

between the β coefficients further demonstrates high correlation between the two variables OCsqrt and TNsqrt  438 

 439 

OCsqrt = -0.004 + 13.841*TNsqrt, r2 =0.90 

OCsqrt 

TNsqrt 



3.6 Using IRS/PLSR derived OC predictions to quantify treatment effects among cover 440 

cropping treatments  441 

The potential capacity of our IR/PLSR predicted values to detect treatment level differences 442 

was assessed by comparing the range of measured OCsqrt values for each model with the 443 

model’s standard error of prediction (SEP). This information provides the measured OC 444 

value increase between treatments that would be required to be detected by the model 445 

(Table S3). Then, using the same LMEM structure previously described, we tested 446 

differences among treatments using model predicted values. On average across sites, the 447 

OCsqrt predicted values in mixed treatments (3.91 (mg g-1)0.5 [3.55-4.27]) were on average 448 

6.5% greater than the control, legume and grass treatments (3.67 (mg g-1) 0.5 [3.46-3.88]), 449 

(p=0.04). Predicted OCsqrt coarse values were also significantly different among treatments 450 

(p=0.02), where the mixed treatment (2.79 (mg g-1) 0.5 [2.50-3.08] was predicted to be 13% 451 

greater than the control, legume and grass treatments (2.46 (mg g-1) 0.5  [2.20-2.72], despite 452 

a high model SEP (Table S3). Treatment effects on fine fraction OC were not detected. As 453 

expected, predicted values were less sensitive at detecting differences than combustion 454 

measurements. 455 

 456 

Table 3: Summary statistics calculated according to equations 1 and 2 for the derived partial least square 457 

regression models for bulk OCsqrt, TNsqrt, and OCsqrt coarse and OCsqrt fine. Cal = calibration, Val= validation. 458 

RMSE = Residual mean square error, RPD = Ratio of performance to deviation.  459 

Variable   Factors n Slope Offset r R2 RMSE Bias SE s RPD 

(Bulk) OC 

(mg g-1) 0.5 Cal  4 64 0.946 0.200 0.972 0.946 0.176 0.000 0.177 0.739 4.175 

  Val 
 

64 0.930 0.250 0.964 0.931 0.201 0.000 0.203 0.760 3.744 

(Bulk) TN 

(mg g-1) 0.5 Cal  4 64 0.960 0.040 0.979 0.960 0.045 0.000 0.045 0.224 4.978 

  Val 
 

64 0.953 0.040 0.972 0.950 0.049 0.000 0.049 0.229 4.673 

OC Coarse 

(mg g-1) 0.5 Cal  4 61 0.869 0.331 0.932 0.869 0.352 0.000 0.355 0.907 2.555 

  Val 
 

61 0.846 0.387 0.910 0.828 0.404 -0.004 0.408 0.975 2.390 

OC Fine 

(mg g-1) 0.5 Cal  4 64 0.935 0.357 0.967 0.935 0.397 0.000 0.400 1.519 3.798 

  Val 
 

64 0.925 0.406 0.955 0.915 0.462 -0.006 0.466 1.568 3.365 

 460 



4. Discussion 461 

4.1 Grass and legume cover crops both contribute positively to soil OC  462 

After accounting for the variability in OC concentration across the sites, grasses consistently 463 

increased OC in the total pool, coarse and fine fractions. We attribute the increases in OC 464 

contents to greater root biomass in treatments containing grass, with fine root biomass 465 

being, on average, 22% higher than in legume-only treatments. Indeed, in cropping systems 466 

it has been shown that, on average, 35% more root biomass-derived C is retained in the soils 467 

compared with shoot-derived C in a single growing season (Puget & Drinkwater 2001) and 468 

root-C has been demonstrated to be a significant contributor to long term soil OC storage 469 

(Fisher et al. 1994; Molina et al. 2001; Rasse et al. 2005), contributing an average of 2.4 470 

times the amount of OC compared with senesced shoots (Rasse et al. 2005).  471 

 472 

A higher potential for the retention of C in fine soil fractions because of mineral adsorption 473 

(Solomon et al. 2012), coupled with higher grass root biomass may explain the observed 474 

increase in fine fraction C under grass treatments. Higher root biomass is also likely to have 475 

a greater effect on C retention and aggregate stability in clay soils than in sandy soils due to 476 

particle binding occurring between high surface area minerals (Six et al. 1998; Six et al. 477 

2006; Tisdall & Oades 1982). In a study comparing the effects of grasses and legumes on soil 478 

aggregate structures, grasses were found to positively influence stability, compared to 479 

legumes which decreased it (Pérès et al. 2013). However, it has been suggested that in low 480 

nutrient, sandier soils more prone to C and N losses (Lobe et al. 2001), legumes may have 481 

greater potential to build root biomass and contribute to aggregate stability compared to 482 

grasses, as they are more resilient under less favourable conditions (Garcia et al. 2018). 483 

Although we did not measure the direct impacts of these crop species on soil matrix 484 

structures, we highlight their positive benefits to the system via their role in the provision or 485 

retention of nutrients and carbon that may lead to increases in overall plant biomass and 486 

the subsequent building of SOM.  487 

 488 

As changes to bulk SOC resulting from differential management are not easily detected in 489 

the short-term, measuring changes in the more sensitive coarse organic matter fraction is 490 

becoming increasingly popular and was useful to confirm treatment level effects in our 491 



study (Cambardella & Elliott 1994; Ojeda et al. 2018). The positive effects of grass and 492 

legume cover crops on OC concentration were, as expected, more strongly observed in the 493 

coarse fraction (Ojeda et al. 2018) where legumes were also found to increase OC. It is well 494 

understood that N transfer from legumes to grasses can increase growth of the whole plant, 495 

including root biomass, root density and rooting depth (Heichel & Henjum 1991; Peoples et 496 

al. 2009; Peoples et al. 2015; Ramirez-Garcia et al. 2014) which can, in turn, increase soil 497 

carbon accumulation (Fornara & Tilman 2008). Compared with grasses, legumes are also 498 

considered to provide a more readily decomposable source of C from root structures owing 499 

to lower root C:N ratios and higher root N contents (Fornara et al. 2009). Therefore, we can 500 

explain the measured positive impacts on coarse fraction OC resulting from grasses by their 501 

dense root biomass (Fisher et al. 1994), from legumes owing to their increased root 502 

decomposability (Amato et al. 1984; Fornara et al. 2009), and from mixtures because of 503 

potential facilitation and complementarity (Duchene et al. 2017). Despite differences in site 504 

management, rainfall, fertilisation and irrigation, the incorporation of legumes into cropping 505 

systems has been shown to positively affect the mean residence time of C in soil owing to 506 

the deposition of more resistant, aromatic forms of OC (Drinkwater et al. 1998; Gregorich et 507 

al. 2001). Moreover, the presence of legumes has been shown to slow the decomposition of 508 

grass roots via a reduction in microbial priming (Saar et al. 2016), potentially enhancing OC 509 

content in mixed swards.  510 

 511 

4.2 Grass + legume mixtures increase soil nitrogen to a greater extent than legumes grown 512 

alone 513 

The majority of vineyard-based cover cropping studies have focussed on the potential for 514 

resource competition, and were performed in pure grass stands, missing an opportunity to 515 

explore the possible effects of legume-grass complementarity and increased nutrient 516 

retention by grass roots (Beslic et al. 2015; Celette et al. 2009; Ripoche et al. 2011). Across 517 

our sites, treatments containing legumes had higher concentrations of soil extractable N, 518 

likely owing to the presence of N-fixing symbionts which are known to increase available N 519 

(Peoples et al. 2009). Unexpectedly, however, the increases in soil available and total N 520 

were greatest in our mixed treatments. In many cover cropping systems, N retention has 521 

been shown to increase in grass-legume mixtures compared with monocultures (Finney et 522 



al. 2016). Therefore, although grasses are rarely seen to be beneficial in vineyard cropping 523 

systems, N retention by root structures is a currently undervalued benefit that could be 524 

obtained via the incorporation of mixed- compared with legume-only cover crops in 525 

vineyard systems. Cover crop effects on N retention were not, however, directly tested in 526 

our study. In addition to N retention, N fixation in legumes has been shown to be up 527 

regulated by the presence of grasses in mixed stands compared with legumes grown alone 528 

(Nyfeler et al. 2011). Further, despite the perception that grass cover crops may negatively 529 

influence N availability to vines (King & Berry 2005a), other studies have found that deeper-530 

rooted, mature grapevines are fairly robust to competition with grasses for both N and 531 

water (Klodd et al. 2016). Earlier data from these field sites showed that fruit yield was not 532 

affected by the legume-only or mixed sward, and yeast-available N in fruit was higher in 533 

treatments containing legumes (Penfold 2018). Therefore, the combined benefits of 534 

increased N retention and symbiotic N fixation in grass and legume mixtures demonstrate 535 

that mixed cultivations have the potential to contribute significantly to building more 536 

resource-efficient viticultural systems.   537 

 538 

4.3 IRS/PLSR accurately predicts soil OC pools in vineyard agroecosystems, detecting 539 

treatment level differences 540 

Total OC and TN are two of the parameters most accurately predicted using IRS and visible 541 

near infrared spectroscopy (Brunet et al. 2007; St. Luce et al. 2014). Both the spectrally 542 

derived OC and TN models accurately predicted the measured OC and TN contents 543 

(p<0.001), however due to correlation between the model β coefficients (Fig. 5), we 544 

excluded the PLSR predictions for TN from our analysis. In a few previous studies, IRS 545 

determination of N content in soils has been shown to be closely correlated with predictions 546 

of C content (Malley et al. 2000; Morra et al. 1991; Reeves & McCarty 2000). Thus, we focus 547 

our discussion on the reliability of IRS to predict OC contents and highlight the need for 548 

further calibrations of IRS models for soil N contents along a gradient of N availability.  549 

 550 

This study confirms the accuracy of IRS/PLSR for predicting OC concentration in edaphically 551 

distinct vineyard agroecosystems, as well as the reliability of using IRS/PLSR to detect the 552 

effects of differential management (i.e., cover crop types). Between our two most 553 



contrasting treatments (control vs mixture), treatment-level differences in total OC were 554 

accurately predicted using the IR/PLSR derived estimates. Similarly, for the coarse OC 555 

fraction, we were able to use the IRS/PLSR predicted values to detect a treatment 556 

difference, again only in the mixed treatment. The conservativeness of the predicted values 557 

is likely an artefact of the nature of PLSR model derivation, which predicts the response (y) 558 

variables based on the independent variables (x) by explaining as much of the covariance as 559 

possible between x and y (Zhao et al. 2014). In a dataset where measured variables display a 560 

naturally large amount of variation, PLSR ‘smooths’ the within-treatment variation in the 561 

derivation of the y predictions to a greater extent than analysis of variance does using 562 

transformed, measured values. Nevertheless, if SEP values are larger, and differences 563 

between organic C contents are smaller, a high level of replication will be required to reduce 564 

the signal-to-noise ratio and improve predictive capacity (Forouzangohar et al. 2015). In an 565 

agricultural study reporting coarse fraction OC contents similar to ours, changes to OC after 566 

differential management were also successfully detected with a similar SEP (1.1 mg g-1)0.5, 567 

but over a longer timeframe (9 years) (Baldock et al. 2018). Prediction errors for other OC 568 

spectral models of 2.70 mg g-1 (McCarty et al. 2002) and 6.70 mg g-1 (Grinand et al. 2012) 569 

were larger than we observed, but the former models were calibrated across a larger 570 

variation in OC contents which likely allowed for strong predictive capacity despite large 571 

SEPs. It is important to note that the PLSR-derived estimates of increases in total and coarse 572 

fraction OC were ~40% more conservative than those obtained from combustion analyses. 573 

By successfully comparing measured pools with spectrally-derived estimates of OC, we have 574 

demonstrated the capacity of the calibration dataset to predict carbon pools among 575 

different cover cropping treatments and highlight its potential to be used in other vineyard 576 

agroecosystems for the same purpose.  577 

 578 

4.4 Improving the predictive capacity of IRS/PLSR for application across varied soil types 579 

Organic matter is a complex mixture of chemically diverse, mostly infrared-active 580 

compounds which are difficult to differentiate with clearly separated spectral peaks (Janik & 581 

Skjemstad 1995). Mineral composition is considered to control predictions of C and N 582 

contents in fractions using spectra obtained from whole soil and, in our derived spectra, 583 

peaks associated with changes to C contents were strongly associated with mineral peaks. A 584 



high degree of correlation between silt+clay fraction C and total OC has been found 585 

elsewhere (Brunet et al. 2007), and therefore, it may be argued that using IRS to detect 586 

changes in OC content is more to do with the ‘relatedness’ of OC to other mineral 587 

components than to a direct measurement of OC content itself. Nevertheless, as we 588 

continue to recognise the roles of different components of the soil matrix in the building 589 

and maintenance of OC (Allison 2012; Solomon et al. 2012) we suggest that soil spectral 590 

analysis will become an increasingly useful tool to predict changes to OC pools. There is 591 

potential to separate spectral diversity relating to mineralogy from diversity in organic 592 

compounds via larger sample sets spanning a greater range of organic C contents collected 593 

in texturally similar soils (Brunet et al. 2007). In contrast, it is possible that spectral diversity, 594 

such as occurs in the presence of compounds that correlate positively (clay minerals) and 595 

negatively (quartz minerals) with organic C contents, may be reduced in more homogenous 596 

soil samples and diminish the predictive capability of IRS/PLSR (Van Groenigen et al. 2003; 597 

Wight et al. 2016). These limitations emphasise the need for repeated calibrations across a 598 

range of soil types, as in the current study, to improve the accuracy of IR predictions for 599 

wider geospatial applicability. In recommending the IRS/PLSR technique for similar 600 

applications, we would advise caution using existing calibration models in uncalibrated 601 

systems; specific calibration of the IRS/PLSR technique in various soil types to produce 602 

robust models is of vital importance to the development of the method. A comprehensive 603 

library of spectral indicators that can reliably detect changes in organic matter composition 604 

across variable soil types would also help to predict the outcomes of differential 605 

management in diverse systems.   606 

 607 

4.5 Conclusions 608 

Traditional ground cover management practices in vineyards will require significant re-609 

thinking and improvement to prevent significant soil degradation (Daane et al. 2018). 610 

However, expanding industry engagement in vineyard management practices that improve 611 

soil health by increasing soil OC and N relies on both proving the efficacy of practices such as 612 

cover cropping for this purpose (García-Díaz et al. 2018), and making the results of 613 

differential management easily quantifiable and accessible (Askari et al. 2015). This study 614 

contributed to achieving both outcomes by demonstrating the positive influence of cover 615 



crops on important soil properties, and by demonstrating the capacity of soil spectroscopy 616 

to detect management-related changes across varied vineyard soil types. Whilst it is well 617 

understood that grass cover crops can increase soil OC, and legumes soil N, it is not common 618 

to discover that legumes can also improve soil OC, or that grasses play a role when grown 619 

alongside legumes in increasing soil N to a greater extent than legumes grown alone. 620 

Despite the potential benefits of cover cropping, there is industry resistance to 621 

incorporating grasses in the under-vine region because of perceived cover crop-vine 622 

nitrogen competition, which has been indicated in previous studies, but not assessed in 623 

mixed grass+legume cultivations (Celette et al. 2009; King & Berry 2005; Vystavna et al. 624 

2020). Not only were yields and fruit quality unaffected by the cover cropping treatments  in 625 

our study, we demonstrated that the combination of grass and legume cover crops in the 626 

under-vine region represents a more valuable contribution towards the building and 627 

maintenance of OC and N in the rooting zone, where vines can access it, than legume cover 628 

crops alone.  629 

 630 

The ongoing development of soil spectroscopy for the purpose of monitoring soil health is 631 

likely to contribute significantly to improving the sustainable management of vineyard 632 

agroecosystems internationally (Dunne et al. 2020; Sanderman et al. 2020; Sepahvand et al. 633 

2019). With relatively low-effort sample collection and processing, our acquired IRS/PLSR 634 

analyses accurately predicted total and coarse OC (mg g-1) across all sites confirming the 635 

usefulness of IRS/PLSR to predict OC pools from easily obtained bulk soil analyses, in 636 

different soil types. Additionally, and most importantly, we successfully used IRS/PLSR to 637 

predict differences in OC pools related to differential ground cover management in vineyard 638 

agroecosystems; this represents an important contribution to validating new approaches for 639 

the rapid quantification of short-term impacts of differential management strategies for the 640 

viticultural industry.   641 
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