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ABSTRACT

The field of exoplanet astronomy is advancing toward the atmospheric characterization of

Earth-like planets around nearby stars, with the ultimate goal of probing these exoplanets

for evidence of life. Yet despite requiring the development of telescopes and measuring

devices with unprecedented size and precision, this effort will yield only a fraction of

the information content per planet afforded by robotic explorations of Solar System bod-

ies. Given the diversity of terrestrial worlds within the Solar System, we can expect to

face significant ambiguity in understanding the habitability and histories of potential exo-

Earths, including potential “false positive” signatures of life. Given such limited data,

how can we hope to determine which worlds are habitable or inhabited, or to understand

more generally what factors make a planet habitable and give rise to life?

In this thesis, I propose solutions to this problem which draw upon the unique statis-

tical advantage offered by their sheer numbers and the wide range of planetary properties

they present. First, I demonstrate how existing knowledge about the frequency and sizes

of terrestrial planets can be used to probabilistically constrain the composition of Proxima

Centauri b - a nearby planet for which we have few direct measurements - and find that it

is quite likely to be a terrestrial planet. Next, I demonstrate how a similar approach could

be combined with future direct imaging observations of nearby stellar systems to deter-

mine which of their planets are most likely to be potentially habitable. This optimized

target selection strategy could save weeks to months of follow-up observing time on a

flagship-class space telescope. Following that, I present my analysis of the transit spec-

trum of WASP-4b, in which I approach the critical unresolved issue of stellar contamina-

tion which could limit the usefulness of this technique for studying habitable exoplanets

in the future. My Bayesian evidence-based approach presents a possible solution for fu-

ture analyses. In the final chapters, I focus on developing testable statistical hypotheses

for future surveys of habitable exoplanets which would shed light on how these worlds
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form and evolve. I begin by proposing that a correlation might exist between the ages

of habitable planets and the fraction which have oxygen, which I dub the “age-oxygen

correlation”. A successful test of this hypothesis would demonstrate that other inhabited

planets evolve in similar ways to Earth, and would suggest that atmospheric O2 can be

interpreted as robust evidence of life. Next, I expand in this direction by developing a

general framework for evaluating the potential of next-generation space telescopes to test

statistical hypotheses such as these. I apply the framework to demonstrate the require-

ments for an observatory to detect the existence of the habitable zone and constrain its

boundaries, as well as to measure the timescale of atmospheric evolution on Earth-like

planets. Finally, I condense my results into key recommendations for future efforts to

study habitable exoplanets and search for life beyond the solar system.
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CHAPTER 1

Introduction

1.1 Habitable worlds in the solar system and beyond

To date, Earth remains the only planet known to have ever sustained life. As such, it has

traditionally been used as the model for a habitable world in the search for life elsewhere.

Though a multitude of factors may affect the ability of life to flourish, the presence of

liquid water has been highlighted as the most important criterion for habitability, as its

unique properties as a chemical solvent have made it a necessity for all life on Earth.

Based on this criterion, the solar system may have hosted a multitude of habitable

worlds throughout its history. Both Mars and Venus may have been habitable in the past,

and both were rendered uninhabitable on their surface for different reasons. On Mars,

geological features show increasingly clear evidence of flowing water in its early history

(Malin and Edgett, 2003), and perhaps an ocean in the northern hemisphere (Fawdon

et al., 2018). Due both to its lack of a magnetic field and its smaller size and surface

gravity, Mars lost most of its atmosphere to stripping by the solar wind, and with it the

potential for life on its surface (Jakosky et al., 2015, 2017). Recent modeling suggests

Venus may have been habitable as recently as ∼ 1 billion years ago (Way et al., 2016),

but it was eventually pushed into a runaway phase, during which its water evaporated,

and after which a thick CO2 atmosphere formed from the carbon in its mantle. These

two examples provide clues into the key processes affecting planetary habitability and the

size and insolation limits beyond which habitability breaks down. Modern-day potentially

habitable worlds in the solar system include Titan (which has liquid methane rather than

water on its surface) and a number of bodies that might host sub-surface water oceans,

including the moons Europa, Enceladus, and Ganymede. The discovery of forms of life

with a unique origin to Earth’s in any of these environments would suggest that life-

bearing worlds should exist throughout the Milky Way.
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However, due to the finite number of planets and moons it contains, even an exhaustive

exploration of the solar system would still leave us with an incomplete understanding of

the factors that make planets habitable and the conditions under which life arises. Today,

the solar system hosts just one planet with a temperate climate and large bodies of liquid

surface water. All of its planets are approximately the same age, and information about

their pasts can only be inferred through geological evidence and evolutionary models.

The Sun is a warm G dwarf star, whereas most stars are cooler M dwarfs, and there likely

exist many types of terrestrial planets not represented in the solar system at all. Finally,

Earth may turn out to be the only inhabited world in the solar system, in which case the

search for extraterrestrial life would need to extend beyond our Sun.

By contrast, the number of planets discovered around other stars (extra-solar planets or

exoplanets) currently numbers over 4,0001 and continues to grow. This census includes a

number of potentially habitable worlds, such as systems of multiple temperate Earth-sized

planets (Gillon et al., 2017), tidally-locked planets with permanent day and night sides

(Turbet et al., 2016), and planets around highly active flare stars (Howard et al., 2018).

From these discoveries we can infer that at least millions of potentially habitable worlds

exist within the Milky Way, and efforts are already underway to discover the nearest ones

and probe them for signs of life. Due to the immense distances between the stars, our

knowledge about any one of these exoplanets will be limited - nevertheless, their sheer

number and diversity offer the only path toward a complete description of habitability

across the full range of planetary parameters.

This thesis focuses on strategies for leveraging the powerful statistical advantage

offered by exoplanets toward the specific goal of characterizing habitable worlds. In

the work presented here, I use statistical methods to better understand the properties of

recently-discovered planets, to propose more efficient methods for identifying habitable

worlds using next-generation observatories, and to develop new hypotheses for how hab-

itable planets evolve and determine what types of new observatories would be required to

test them. In this chapter, I will summarize current knowledge about habitable exoplanets

and review our prospects for characterizing them in the future. Following a brief review

1Per the NASA Exoplanet Archive.

https://exoplanetarchive.ipac.caltech.edu/
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of Earth’s history and its relevance to the search for Earth-like planets in Section 1.2, I

will summarize some recent findings in the field of exoplanet statistics in Section 1.3. In

Section 1.4, I will discuss the most promising techniques for characterizing habitable exo-

planets and concepts for next-generation observatories that would leverage them. Finally,

in Section 1.5, I will describe the outline for the rest of the thesis.

1.2 Co-evolution of Earth and its biosphere2

Earth as we know it today, with its temperate climate and oxygen-rich atmosphere, is

only one realization of a constantly evolving world. Up until 500 million years ago, Earth

would have been uninhabitable to humans as there was far too little oxygen to sustain

our respiration. Due to the steady increase in the Sun’s luminosity, Earth will likely lose

its water within 1–2 billion years, rendering it permanently uninhabitable (Caldeira and

Kasting, 1992). This means that for the majority of the Sun’s lifetime, Earth was or will

be a markedly different planet than it is at present, and this fact has important implications

for the search for Earth-like exoplanets.

Following the tumultuous events of Earth’s formation and the moon-forming impact,

life began to flourish during the late Hadean or early Archean eras under a predominantly

nitrogen and carbon dioxide atmosphere. At first, life converted sunlight into chemical en-

ergy through anoxygenic photosynthesis, a primitive form of photosynthesis that does not

produce O2. Before long, however, “whiffs” of oxygen would appear in localized regions,

hinting at the evolutionary development of oxygenic photosynthesis, the mechanism by

which most energy enters the ecosystem today (Anbar et al., 2007). This oxygen was at

first unable to spread globally, as it was quickly consumed through oxidation reactions

with rocks on the surface and reduced gasses in the atmosphere.

The transition into the Proterozoic era was marked by the most dramatic change in

the history of Earth’s atmosphere - one that was closely linked to the metabolic processes

of life (Figure 1.1). Over a brief time period, the oxygen content of the atmosphere

spiked from effectively zero to approximately 0.001 – 1% (by volume) during the “Great

2This section draws from Lyons et al. (2014), to which I refer the reader for a more in-depth review.
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Figure 1.1: The history of oxygen in Earth’s atmosphere since 4.5 billion years ago (Gya)
with major eras and events labeled, adapted from Lyons et al. (2014). Values before∼ 0.5
Gya are approximations or upper limits. Life most likely arose in the late Hadean or early
Archean era in an atmosphere rich in N2 and CO2. Oxygen, produced through photosyn-
thesis, appeared in local regions during the late Archean, but did not accumulate globally
until the Great Oxygenation Event at the beginning of the Proterozoic era. Another rapid
oxygenation event heralded the beginning of the Phanerozoic era and led to the develop-
ment of complex forms of life. Could similar evolutionary histories occur on inhabited
exo-Earths?
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Oxygenation Event” (GOE). What exactly caused the GOE remains under debate be-

cause, as mentioned earlier, oxygen-producing life had likely already existed for several

millions of years. The oxygen content of the atmosphere is determined by the balance

between its production by photosynthetic life and its destruction by the geological sinks

described above. Therefore, it is necessary that either photosynthesis rapidly expanded

and/or those sinks were dramatically reduced. For example, it has been suggested that

the escape of hydrogen from the upper atmosphere led to a long-term decline in Earth’s

inventory of hydrogen-rich reduced gasses, until it was insufficient to counter biological

oxygen buildup (Catling et al., 2001). Finally, the transition into the Phanerozoic era

corresponded with another increase in atmospheric oxygen, this time to its modern value

of ∼ 20%. The appearance of complex life, including animals, would soon follow. To-

day, Earth’s oxygen content is largely determined by the balance between its production

through photosynthesis and its consumption through respiration - another biological pro-

cess. From this synopsis, it is clear that Earth’s atmospheric evolution has been directly

tied to the presence of life.

Earth’s dramatic evolutionary history both complicates and motivates the search for

Earth-like exoplanets. On the one hand, given that known exoplanets range from mil-

lions to billions of years in age, we may be unlikely to find many that resemble Earth

in its modern state. In particular, O2 (and its byproduct O3, which is produced through

photochemistry in the upper atmosphere) is viewed favorably as a potential biosignature

due to its strong biological sources on Earth - but based on Earth’s own history, it may

be the case that even planets teeming with life have little to no oxygen in their atmo-

spheres (Reinhard et al., 2017). For these planets, alternative biosignatures indicating

strong chemical disequilibrium must be explored, such as the simultaneous presence of

CH4 and CO2 (Krissansen-Totton et al., 2018). On the other hand, the study of Earth’s

history offers us multiple examples of what habitable exoplanets might look like and the

ways in which life can affect their atmospheres over time. For example, in Chapter 5, I

show how a statistical analysis of the atmospheres of other habitable worlds could reveal

whether or not they, too, have co-evolved with life toward greater oxygen content. This

would require the detection of Earth-like planets of varying ages with both oxygen-free
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Figure 1.2: An estimate for the average number of potentially habitable planets per star
(η⊕) as a function of stellar mass. A potentially habitable planet is defined as having a size
between ∼ 0.8 − 1.4R⊕ and an orbit within the habitable zone (Kopparapu et al., 2014).
The grey line is based on Kepler data and accounts for the bias due to photoevaporation
highlighted by Pascucci et al. (2019), while the green line is a conservative extrapola-
tion for ultra-cool dwarf stars. These values were produced using the Bioverse code
presented in Chapter 6.

and oxygen-rich atmospheres. On balance, the expected diversity of evolutionary states

among habitable planets could greatly enhance the study of habitable worlds, but only if

enough such planets are observed to properly characterize that diversity.

1.3 How common are potentially habitable planets?

The field of exoplanet statistics seeks to understand the frequency of different types of

planets and how their measurable properties relate to one another. This effort benefited

immensely from the discovery of thousands of exoplanets by the Kepler Space Telescope

(Borucki et al., 2010) as well as multiple ground-based surveys to characterize nearby

exoplanets and refine measurements of Kepler host star properties. Statistical studies

based on these datasets have granted us a more nuanced understanding of which planetary

and stellar properties affect habitability, and to derive the first empirical estimates for the

frequency of potentially habitable planets orbiting nearby stars.
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1.3.1 Kepler occurrence rates and η⊕

The Kepler Space Telescope was launched with the goal of studying the frequency and

distribution of extrasolar planets, with a particular emphasis on determining the number

of Earth-sized planets in the habitable zone of a typical Sun-like star - with the “habitable

zone”, discussed below, being the range of distances from a star over which an Earth-like

planet could maintain liquid water on its surface. To do so, it continuously monitored

hundreds of thousands of stars within a single patch of the sky looking for transit events,

which occur when a planet orbits in front of its host star as viewed from Earth. During

the transit event, the planet temporarily blocks a small fraction of the star’s light, which

can be measured even though the planet itself cannot be resolved by the telescope. These

events occur once for each orbit the planet completes, and the fraction of light blocked

depends on the surface area of the planet relative to its star. As a result, Kepler was

not only able to detect thousands of exoplanets through the transit method, but also to

measure their periods and radii with high precision.

The primary results of the Kepler survey can be summarized by occurrence rates,

which quantify the average number of planets per star as a function of orbital period

and size. Occurrence rates are not trivial to derive from the Kepler catalog of detected

planets, as Kepler was biased toward the detection of short-period planets (which are more

likely to transit their stars and do so more frequently) and large planets (which block a

larger fraction of the stellar light). Any realistic analysis must quantify and correct for

these biases. A useful summary statistic of Kepler occurrence rates is η⊕ (pronounced

“eta Earth”), defined as the average number of planets per Sun-like star whose orbital

periods lie within the habitable zone and whose sizes are similar enough to Earth that they

might be habitable. The precise definition of η⊕ depends on assumptions made about the

habitable zone and the relationship between planet size and habitability, discussed below.

However, Kepler detected few planets around Sun-like stars whose orbital periods place

them within the habitable zone, and all of them are much larger than Earth. In order to

estimate η⊕, one must extrapolate from detections of planets with shorter periods and/or

larger sizes, and differences in extrapolation methods have led to varying estimates of η⊕.
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The true value of η⊕ is of high significance to NASA and other organizations seeking

to construct space telescopes capable of characterizing habitable planets, as it determines

the expected number of potential targets as a function of telescope design parameters.

Therefore, NASA’s Exoplanet Exploration Program Analysis Group chartered a Study

Analysis Group (SAG 13) to consolidate these disparate results into a single set of es-

timates for η⊕3. The “consensus” value that emerged was η⊕ ≈ 0.24, suggesting one

potentially Earth-like planet for every four Sun-like stars. However, evidence has since

arisen that most existing estimates of η⊕, including those consolidated by SAG 13, do not

sufficiently account for the effect of atmospheric loss on the period-radius distribution of

Kepler planets (Pascucci et al., 2019). Specifically, many short-period planets with large

atmospheres will end up losing them due to photoevaporation, leaving behind their small,

rocky cores. Extrapolations from this short period regime will therefore overestimate the

number of small, rocky planets within the habitable zone, where the stellar flux is lower

and more planets are able to maintain large atmospheres. On the other hand, a more recent

analysis that excluded planets receiving high amounts of flux (thus minimizing bias due

to photoevaporation) suggests values as high as η⊕ ∼ 1 - albeit with larger uncertainties

due to a limited sample size (Bryson et al., 2021). Despite the overall success of Kepler,

the true value of η⊕ remains only approximately constrained.

Other studies of Kepler occurrence rates focus on their dependence on stellar mass.

Kepler was biased toward the detection of planets around brighter stars such as the Sun,

and found a comparatively lower number of planets around low-mass M dwarfs. However,

Mulders et al. (2015b) showed that the average number of terrestrial planets orbiting these

low-mass stars is ∼ 3.5× as high as for Sun-like stars, suggesting a similar enhancement

to η⊕ for these systems. In Figure 1.2, I combine results from their analysis, the SAG 13

metastudy, and Pascucci et al. (2019) to derive estimates for the value of η⊕ as a function

of stellar mass. The relative ease of detecting potentially habitable planets orbiting low-

mass stars, combined with their higher predicted numbers, makes them attractive targets

for atmospheric characterization in the near future.

3See this URL and Kopparapu et al. (2018).

https://exoplanets.nasa.gov/exep/exopag/sag/#sag13
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Figure 1.3: The size distribution of Kepler exoplanets with periods shorter than 100 days,
from Fulton et al. (2017). The bimodal distribution shows two broad classes of small
exoplanets: smaller rocky planets with compositions similar to Earth (red), and larger ice
giants closer in composition to Neptune (blue). This suggests an upper limit on the size
of habitable planets between 1.4 – 1.7 R⊕.

1.3.2 Habitability and planet size

By using the transit method, Kepler was able to measure its planets’ sizes, but not their

masses, densities, or atmospheric properties. As such, any estimate of η⊕ depends on

some assumptions about the minimum and maximum radii which a habitable planet could

have.

A common definition of the minimum habitable radius is that below which the planet

is likely unable to withstand atmospheric stripping by its host star. With insufficient

atmospheric pressure, any liquid water on the surface would immediately evaporate. One

example of such a planet can be found in Mars, which almost certainly possessed a more

substantial atmosphere along with lakes and rivers of liquid water during its early history,

but whose atmosphere has since been stripped by the solar wind. Zahnle and Catling
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(2017) pointed out that the planets and moons in the solar system that have atmospheres

can be neatly divided from those without when plotting their insolations (I) versus escape

velocities (vesc). The dividing line can be expressed as:

I ∝ v4
esc (1.1)

Furthermore, exoplanets with measured radii and masses are found to crowd against this

line, suggesting it might be applicable beyond the solar system. The importance of in-

solation and escape velocity demonstrates that atmospheric escape is the key factor de-

termining which planets have atmospheres, rather than the conditions of their formation.

Applying this rule to rocky planets and assuming a fixed density, one can derive a mini-

mum radius below which planets are unlikely to maintain atmospheres:

R < (0.8R⊕)a−1/2
eff (1.2)

where aeff = (a/1AU)(L∗/L�)−1/2 is the semi-major axis (a, in AU) normalized by the

luminosity of the host star (L∗).

One possible upper limit on a habitable planet’s size can be derived from the subset

of transiting planets whose masses can be constrained through radial velocity or transit

timing variation measurements. Combining their measured masses and radii yields con-

straints on their densities, and therefore their likely composition. Weiss and Marcy (2014)

and Rogers (2015) noted that planets larger than approximately 1.5 R⊕ begin to take on

low bulk densities more consistent with Neptune or Uranus than Earth. More recently,

Fulton et al. (2017) found evidence that two distinct populations of planets existed in the

Kepler sample - one with smaller sizes and the other with larger sizes, shown in Figure

1.3. The emerging consensus from these results is that a dichotomy exists between smaller

rocky planets and larger ice giants, with the dividing radius placed somewhere between

1.4 – 1.7 R⊕. Planets larger than this have sufficient gravity to maintain thick, H/He dom-

inated atmospheres, while smaller planets will lose these thick envelopes but retain more

massive species such as N2. The larger planets, which likely resemble Neptune, would

not be hospitable to Earth-like life.
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1.3.3 The habitable zone

While we have some data to suggest how habitability varies with planet size, we have

very little to inform us as to the location of the Sun’s habitable zone (except that, by

definition, it must include Earth). As a result, estimates of the habitable zone’s boundaries

are typically based on modeling the energy balance of an Earth-like planet at varying

distances from the Sun. The most commonly cited estimate (∼ 0.95 – 1.7 AU, Kopparapu

et al., 2013, 2014) is based on a model of the carbon cycle that has been successfully

used to describe Earth’s climate history. In this model, atmospheric CO2 is dissolved

into rainwater, which precipitates it onto to the surface where it undergoes weathering

reactions with rocks. The carbonate products of these reactions are then carried by streams

and rivers into the ocean, where they are ultimately deposited onto the seafloor. Over

long timescales, the carbon will be subducted into the mantle, where CO2 is reforged

and returned to the atmosphere through volcanic outgassing. Crucially, both the amount

of rainfall and the rate of weathering reactions increase with temperature, leading to a

stabilizing feedback mechanism: if Earth warms up, the deposition rate of atmospheric

CO2 increases, leading to a weaker greenhouse effect which acts against the warming

trend. The opposite is true as well: if Earth cools down, the carbon sinks become less

efficient, allowing an increase in atmospheric CO2 through volcanic outgassing and a

stronger greenhouse effect to counteract the cooling trend (Walker et al., 1981). This

stabilizing feedback, in principle, would allow an Earth-like planet to maintain habitable

surface temperatures much farther from the Sun than 1 AU, leading to a broad habitable

zone (Kasting et al., 1993).

The boundaries of the habitable zone are the limits beyond which this feedback breaks

down. Planets much closer than ∼ 0.95 AU are predicted to undergo a runaway green-

house effect, causing the oceans to rapidly evaporate. Once all of the planet’s water is

evaporated, solar photons will split H2O, and the lone H atoms will be lost to space.

Without hydrogen, the planet’s water cannot be reconstituted, thus it has undergone per-

manent water loss. Meanwhile, planets farther than ∼ 1.7 AU become so cold in their

upper atmospheres than even CO2 cannot maintain a gaseous form. The CO2 condenses
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into clouds, which provide no greenhouse effect while also increasing the planet’s reflec-

tivity, thus reducing its temperature further. Eventually, all of the CO2 condenses and the

planet freezes over. No such frozen Earth-like planets exist in the solar system, though

they might exist around other stars (Kasting et al., 1993).

The predicted range of 0.95 – 1.7 AU is valid for a Sun-like star, but the habitable zone

is also a function of stellar mass. Lower-mass stars are far less luminous, so the habitable

zone is much closer in (approximately∼ 0.1 – 0.2 AU for a typical red dwarf; Kopparapu

et al., 2014). The habitable zone is additionally dependent on the planet’s reflectivity,

volcanic outgassing rates, and other factors affecting its energy balance that are not trivial

to measure. Critically, all habitable zone estimates are model-derived, as we lack the

means to empirically test them. Such a test is, however, potentially within the scope of

future observatories designed to characterize habitable worlds. In Chapter 6, I suggest a

simple test to detect the habitable zone and constrain its boundaries that involves studying

how the presence of water vapor in exoplanet atmospheres varies with their distances from

their stars. Others have proposed to investigate whether CO2 concentration truly does

increase for planets farther from their stars as climate models predict (Bean et al., 2017;

Checlair et al., 2019; Lehmer et al., 2020). In either case, the existence and boundaries of

the habitable zone cannot be inferred through observations of any individual planet, but

only by analyzing a statistically relevant sample.

Combining these lines of evidence, we come to a heuristic definition for a poten-

tially habitable planet: that it resides within the circumstellar habitable zone defined by

Kopparapu et al. (2014) and has a radius between 0.8a−1/2
eff – 1.4 R⊕ (i.e. a conservative in-

terpretation of the maximum size of a rocky planet). This is the definition commonly used

to estimate η⊕ when predicting the detection yield of future space telescopes (e.g., Koppa-

rapu et al., 2018), and planets that meet it are referred to here and elsewhere as “exo-Earth

candidates” (or EECs). However, the phrasing potentially habitable acknowledges that a

vast array of factors affect planetary habitability, so the number of truly habitable planets

per star is likely smaller than η⊕.
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Figure 1.4: Optical layout of the coronagraphic imager for the LUVOIR space telescope
concept, from Juanola-Parramon et al. (2019). Two deformable mirrors are used to correct
wavefront errors, then the stellar light is removed from the image using the focal plane
mask. The apodizer and Lyot stop reduce diffraction effects from the stellar light, which
would otherwise overwhelm the image.

1.4 Future prospects for characterizing habitable exoplanets

Even given conservative estimates for η⊕, the detections by Kepler suggest that dozens

to hundreds of Earth-sized planets exist in the habitable zones of stars within ∼ 50 pc

from the Sun. This finding has motivated the development of several concepts for space-

and ground-based observatories and instruments that could efficiently characterize this

sample and conduct the first systematic search for life beyond the solar system. Two

promising observing techniques for achieving this goal are direct imaging, which mea-

sures the planet’s spectrum directly by spatially resolving it from the host star, and transit

spectroscopy, which measures the spectrum of the host star as filtered through the planet’s

atmosphere during a transit event. In either case, the spectrum contains absorption, scat-

tering, and emission features that reveal the abundance of different atoms and molecules

in the atmosphere. Here, I will review how these techniques could be implemented to

study habitable planets within the coming decades, as well as the strengths, limitations,

and statistical biases inherent to each. In Chapter 6, I will delve more deeply into how

these factors affect the usefulness of either technique for conducting statistical studies of

the terrestrial exoplanet population.
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Figure 1.5: Simulated reflected light spectrum of an exo-Earth around a Sun-like star
as observed with the LUVOIR space telescope, from The LUVOIR Team (2019). The
imager can simultaneously observe in ultraviolet, visible, and near-infrared channels, but
only one bandpass within each of these channels can be observed at a time (separated by
vertical lines). Key features include H2O (an indicator of habitability), O2/O3 (a potential
biosignature), and CO2.

1.4.1 Direct imaging from space

In direct imaging observations, light from the planet is spatially resolved from its host

star so that the observer can measure its spectrum directly. The spectrum is dominated

either by reflected light from the host star or thermal emission from the planet itself,

depending on the planet’s temperature and the wavelength range observed. While direct

imaging is conceptually simple, it faces steep technical challenges as the star is orders of

magnitude brighter than the planet. This factor is commonly quantified by the planet-to-

star brightness contrast ratio, which for a planet observed in reflected light at quadrature

phase (where the star-planet-observer phase angle equals 90◦) can be written as:

ξ =
Ag

π

(
Rp

a

)2

(1.3)

where Ag is the planet’s geometric albedo, Rp is its radius, and a is its separation from the

host star (e.g., Traub and Oppenheimer, 2010). Since all telescopes have limited resolu-

tion and the angular planet-star separation on the sky is typically very small, the brighter

light from the star overlaps with and easily obscures that of the planet. Astronomers can

mitigate this effect by using large telescopes with sharper image resolution, by designing
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instruments to reduce the amount of starlight reaching the detector (without also blocking

light from the planet), and by developing observational and data processing techniques to

efficiently subtract the stellar light from the image.

Direct imaging has been successfully employed to characterize large, intrinsically

bright planets and protoplanetary and debris disks at wide angular separations from their

host stars, typically corresponding to several AU (Bowler, 2016). To extend this tech-

nique to the domain of Earth-like planets will require major technological developments,

and two technologies are being actively pursued to accomplish this with next-generation

space telescopes (Crill and Siegler, 2017). The first is coronagraphy, in which a small

occulting mask is placed within the optical path of the telescope to obscure the star’s light

while allowing the planet’s light to pass - see Figure 1.4. This would permit observa-

tions of planets that are brighter than the coronagraph’s limiting contrast ratio and that lie

within a set range of angular distances from the host star, bounded by the inner and outer

working angles (IWA and OWA, respectively). Both IWA and OWA are proportional to

the telescope’s diffraction-limited resolution (λ/D), so a larger telescope can image plan-

ets on shorter orbits or around more distant stars. Coronographic imaging of exo-Earths

can only succeed if the wavefront of incident light is nearly perfectly flat, but in reality

it will be distorted by imperfections in the telescope optics. A coronagraphic space tele-

scope would therefore make use of adaptive optics - a technique originally developed

to mitigate atmospheric distortion for ground-based telescopes - to correct the wavefront

of light before passing it on to the instrument. To achieve the requisite near-perfect im-

age quality for exo-Earth imaging demands exceptional thermal and pointing stability,

thus driving up the spacecraft complexity and cost. Furthermore, the coronagraph can

only operate over a limited wavelength range, so the full spectrum of the planet cannot

be observed simultaneously and must be reconstructed from consecutive observations of

narrower bandpasses (The LUVOIR Team, 2019).

The second technique to mitigate the host star’s light uses a starshade, a spacecraft

that flies separately to block the star light from ever reaching the telescope’s mirror (Cash,

2006). The starshade likewise has an inner working angle determined by its physical ex-

tent, but there is no outer limit to its operating range. This technique conveys a few other
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advantages over a coronagraph: for example, it allows the telescope to observe a much

larger wavelength range simultaneously and requires comparatively looser constraints on

the telescope’s image quality. Those tight requirements are transferred to the starshade

itself, which must launch in a compact configuration to fit in the rocket fairing, then un-

furl to a diameter of tens of meters. The shape of the starshade is precisely designed to

counter diffraction effects, and it must unfurl into this shape with very high accuracy.

Furthermore, the necessary size of the starshade grows with the telescope’s mirror diame-

ter, making this approach less feasible with larger telescopes. Finally, the starshade must

physically move from target to target, often by a distances of thousands of kilometers,

and the total number of maneuvers it can perform is limited by fuel consumption. Due to

this limitation, a telescope that makes use of a starshade might still possess a coronagraph

with which to conduct a preliminary survey to determine which targets are worth the fuel

expense and the optimal order in which to observe them (e.g., Gaudi et al., 2020).

In general, space-based direct imaging will be optimized for the study of planets in the

habitable zones of nearby Sun-like stars, as the habitable zones around smaller or more

distant stars typically lie within the inner working angle of the starshade or coronagraph.

A directly-imaged planet’s spectrum can be used to determine its atmospheric composi-

tion and preliminary surface properties (see Figure 1.5), while time-intensive multi-epoch

observations can constrain its precise orbital parameters by measuring the planet’s Kep-

lerian motion. However, direct imaging cannot directly determine a planet’s size or mass.

As can be seen in Equation 1.3, the planet’s observed brightness at a given orbital phase

depends on both its size and reflectivity, which are difficult to separate through imaging

observations alone. Therefore, whether a planet is an “exo-Earth candidate” as defined in

Section 1.3.2 is not trivial to determine via direct imaging, but in Chapter 3, I demonstrate

how a Bayesian classification scheme informed by Kepler statistics can greatly assist in

solving this problem.

NASA has funded in-depth concept studies for two next-generation space telescopes

that would directly image habitable worlds. The Large UV/Optical/Infrared Surveyor

(LUVOIR; The LUVOIR Team, 2019) would have a segmented primary mirror up to 15

meters in diameter and would image planets using a coronagraphic imager with three
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separate channels covering ultraviolet, optical, and near-infrared bandpasses. The smaller

Habitable Exoplanet Observatory (HabEx; Gaudi et al., 2020) would have a monolithic

4-meter diameter mirror and would image planets using a separate starshade in addition

to a multiple-channel coronagraphic imager. Of the two, LUVOIR would observe an

overall larger sample of planets, due to its better resolution and light-collecting area, but

the requisite size and complexity of the spacecraft is likely to entail a considerable cost.

The HabEx concept aims for a simpler spacecraft, but the cost and complexity of the

starshade itself could overshadow that advantage. The number of exo-Earth candidates

detectable by a coronagraphic space telescope scales with mirror diameter approximately

as D1.8 (Stark et al., 2014), as increasing the diameter decreases the IWA, allowing the

telescope to probe habitable zones around more distant stars. However, the construction

of even a 15-meter space telescope with the image quality required for direct imaging

remains a formidable task, so the predicted detection yield of the LUVOIR telescope (∼
700 planets including ∼ 54 exo-Earth candidates, assuming η⊕ = 24%) likely represents

the maximum number of planets that can be observed through direct imaging within the

next few decades.

1.4.2 Transit spectroscopy from space

Transit spectroscopy is an extension of the transit technique used by Kepler to discover

and measure the sizes of transiting exoplanets. In it, the star is observed with a spectro-

graph during the transit event such that the transit depth can be measured as a function

of wavelength (known as the transit spectrum; see Figure 1.6). As a small portion of the

host star’s light is filtered through the planet’s atmosphere, the transit spectrum traces the

wavelength-dependent optical depth of the atmosphere due to scattering and absorption

effects, and from it one can retrieve the abundance of atmospheric species that produce

them. To first order, the fraction of stellar light blocked by the planet’s atmosphere above

the continuum (or “white-light”) transit depth due to the planet’s radius is equal to the

fraction of the stellar disk occulted by one atmospheric scale height:

∆δ ∼ (Rp/R∗)2(h/Rp) (1.4)
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Figure 1.6: Simulated transit spectrum for an exo-Earth orbiting a nearby mid-M dwarf
as observed with the Nautilus Space Observatory, from Apai et al. (2019). This spectrum
represents the combined result of ten separate transit observations over the course of a
year - however, it does not account for the impact of cloud cover which could reduce the
strength of absorption features by a factor of several.

where h is the atmospheric scale height and Rp and R∗ are the planet and stellar radii

(e.g., Winn, 2010). The actual value of ∆δ as a function of wavelength depends on the

wavelength-dependent opacity of the atmosphere, and high-altitude clouds can serve to

greatly dilute ∆δ as they set a higher white-light depth.

To date, transit spectroscopy has been the most widely applied technique for study-

ing exoplanet atmospheres - mostly those of short-period gas giants whose large sizes,

frequent transits, and hot inflated atmospheres make them ideal candidates for this tech-

nique. The success of transit spectroscopy can be attributed in part to its low technologi-

cal threshold, as it requires only a moderate resolution spectrograph and a telescope with

sufficient light-collecting area. As such, the Hubble Space Telescope has been used to

characterize dozens of planetary atmospheres despite not being designed with this goal in

mind (e.g., Sing et al., 2016). However, while Hubble has been used to conduct prelim-

inary atmospheric characterizations of planets in the habitable zone (de Wit et al., 2018;

Benneke et al., 2019), a thorough search for biomarkers remains out of its reach due pri-

marily to its limited collecting area. Even telescopes capable of transit spectroscopy cur-
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rently planned to launch in the future, such as the James Webb Space Telescope (JWST),

will at best succeed at characterizing only a small number of habitable worlds (Lustig-

Yaeger et al., 2019b). In order to search for life on transiting planets, dedicated space

telescopes with large light-collecting areas must be devised.

Since its measurement precision is limited by its target’s brightness, transit spec-

troscopy scales especially well with the observatory’s light-collecting area. To first order,

a four-fold increase in area enables a two-fold increase in the distance from the Sun to

which habitable planets can be characterized, and therefore an eight-fold increase in the

achievable sample size (which is proportional to the volume probed). Furthermore, obser-

vations across multiple telescopes or consecutive transit events can be digitally combined

to effectively increase the light-collecting power. Transit spectroscopy is optimized for

planets that orbit stars less massive than the Sun, in part because the atmospheric signal

(Equation 1.4) is ∼ 100× larger due to the smaller stellar radius, and in part because

planets in their habitable zones have shorter orbital periods, transiting multiple times per

month as opposed to once per year. This bias toward low-mass stars is favorable since, as

discussed in Section 3.3.2, η⊕ is likely much higher for these systems.

However, transit spectroscopy faces two major astrophysical obstacles that each could

jeopardize its usefulness for characterizing habitable worlds. First, it is difficult to dis-

tinguish spectral signatures due to the planet’s atmosphere from those produced by active

regions (cool sunspots and hot faculae) on the star itself. This effect has already been ob-

served in transit spectra of Earth-sized planets (Zhang et al., 2018), and could overwhelm

the signal produced by biomarkers in the atmospheres of habitable worlds orbiting low-

mass stars (Rackham et al., 2018). Second, high-altitude clouds and hazes in a planet’s

atmosphere can obscure molecular and atomic absorption, an effect also observed in tran-

sit spectra of gas giants (e.g., Kreidberg et al., 2014). While planets around low-mass

stars are better targets for transit spectroscopy, such planets are likely to be tidally-locked

to their host stars, leading to permanent day and night sides (Barnes et al., 2016). Gen-

eral circulation models have predicted clouds to exist in greater abundance and at higher

altitudes above these planets compared to Earth due to more efficient convection in the

dayside atmosphere (e.g., Komacek and Abbot, 2019). This would greatly reduce the
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strength of absorption features produced by species below the clouds (e.g., Fauchez et al.,

2019). In Chapter 6, I find that the impact of clouds predicted by such models could lead

to an order of magnitude decline in the number of potentially habitable worlds accessible

through transit spectroscopy, although this impact may be lessened if the cloud covering

fraction is lesser for some planets or even during subsequent observations of individual

planets.

If these obstacles can be overcome, its favorable scaling with light-collecting area

means that space-based transit spectroscopy is likely the only technique capable of char-

acterizing the atmospheres of hundreds of exo-Earth candidates within the next few

decades. As with direct imaging, multiple concepts have been developed for space tele-

scopes that could characterize habitable planets in this way. LUVOIR would possess

the light-collecting area to study potentially ∼ 10 transiting Earth-like planets around the

nearest low-mass stars, thus complementing its direct imaging survey of Sun-like stars

(The LUVOIR Team, 2019). To exceed this sample size will require a much greater light-

collecting area, but the cost of space telescopes scales formidably with mirror diameter

(Stahl, 2019). The Nautilus concept (Apai et al., 2019) aims to circumvent this cost bar-

rier by leveraging a large (∼8.5 m diameter), lightweight multi-order diffractive element,

or MODE lens (Milster et al., 2020). This lens would enable a lighter telescope with

a simpler optical path and an order of magnitude greater tolerance to optical misalign-

ment than a comparably-sized mirror. Furthermore, the telescope would be designed to

be replicable at an affordable cost, enabling the production of dozens of identical units

whose combined light-collecting area would match that of a single 50-meter diameter

telescope. In an optimistic scenario, such an array could probe the atmospheres of as

many as one thousand exo-Earth candidates (Apai et al., 2019).

1.4.3 Ground-based observatories

The coming decade will see the commissioning of optical/infrared telescopes with pri-

mary mirrors wider than twenty meters in diameter, collectively referred to as extremely

large telescopes (ELTs). ELTs currently planned or under construction include the Gi-

ant Magellan Telescope (GMT; Johns et al., 2012), European Extremely Large Telescope



37

(E-ELT; Gilmozzi and Spyromilio, 2007), and Thirty Meter Telescope (TMT; Sanders,

2014). In the past, the image resolution of ground-based telescopes has been funda-

mentally limited by atmospheric distortion. This problem has been greatly reduced by

advances in adaptive optics technology over the past decade (Close, 2016), meaning that

upcoming ELTs equipped with high-contrast imagers will have even finer image resolu-

tion than planned direct imaging telescopes such as LUVOIR, allowing them to observe

planets at narrower separations from their stars. On the other hand, they are unlikely to

achieve the same level of thermal and mechanical stability as a space telescope, leading

to a higher planet-star contrast limit. This pair of circumstances makes them ideal for ob-

serving temperate terrestrial planets orbiting nearby low-mass stars, where the habitable

zone is closer in and thus ξ is much larger (Equation 1.3). First steps have already been

taken in this direction, as the Very Large Telescope (VLT) in Chile was recently used to

search for temperate worlds in the Alpha Centauri system, demonstrating sensitivity to

sub-Neptune-sized planets within the habitable zone (Wagner et al., 2021).

With their formidable light-collecting areas, ELTs could prove useful for transit spec-

troscopy of habitable planets as well. Ground-based telescopes are now routinely used to

produce high-quality transit spectra of gas giants; my work in Chapter 4 demonstrates one

such study. However, ground-based transit spectroscopy of the atmospheres of habitable

worlds will be inhibited by the fact that the molecules of greatest interest - for exam-

ple, H2O and O2 - also produce overlapping absorption features in Earth’s atmosphere.

Fortunately, recent studies have shown that high-resolution spectroscopy can potentially

counter this problem. Since a transiting planet’s orbital parameters are measurable, the

Doppler shift of its absorption lines can be calculated, and this information can be used to

distinguish those lines from Earth’s in a high-resolution spectrum. This technique could

be applied to detect features such as O2 in the atmospheres of transiting exo-Earth candi-

dates using ground-based ELTs (Snellen et al., 2013).
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1.5 Thesis motivation and outline

The discoveries of Kepler have set the stage for the first systematic search for habitable

planets and life beyond the solar system, and it is likely that at least one space-based

observatory that can conduct this search will begin development within the near future.

This exciting possibility raises, in turn, important questions about how to proceed with the

effort. First: how can we translate limited data about a planet’s basic properties and rudi-

mentary atmospheric composition into meaningful constraints on the planet’s habitability

and the possible presence of life? Second: given limited resources, which observing tech-

niques and which specific observatory concepts are most likely to yield the maximum

science return? And finally: how can we combine observations of individual planets to

form a more complete picture of what makes planets habitable and what factors give rise

to life?

In this thesis, I propose strategies for answering these questions based on exoplanet

statistics and probabilistic reasoning. First, I demonstrate how Bayesian techniques based

on Kepler statistics can be used to more confidently constrain the habitability of planets

for which limited information is available. In Chapter 2, I apply this approach to deter-

mine the likely composition of Proxima Centauri b, while in Chapter 3, I show how a

similar technique could be used to optimize the survey strategy of space telescopes de-

signed to directly image habitable planets. In Chapter 4, I present my analysis of the tran-

sit spectrum of the hot Jupiter WASP-4b, in which I use a Bayesian approach to quantify

evidence for stellar contamination in the spectrum. Similar techniques may be necessary

to properly characterize habitable exoplanets through transit spectroscopy in the future.

In Chapter 5, I show that by leveraging a statistical approach to exoplanet characteriza-

tion, future space observatories could study how habitable planets evolve over time in

comparison with Earth. In Chapter 6, I expand upon this concept by developing a general

framework to evaluate the ability of future space observatories to test similar hypotheses

about the formation and evolution of habitable worlds. Finally, in Chapter 7, I summarize

my key findings and their implications for the development of new technologies to search

for life beyond the solar system.
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CHAPTER 2

Probabilistic Constraints on the Mass and Composition of Proxima b

This chapter has been published as Bixel and Apai (2017) and is reproduced here with

permission.

Abstract

Recent studies regarding the habitability, observability, and possible orbital evolution

of the indirectly detected exoplanet Proxima b have mostly assumed a planet with M∼ 1.3

M⊕, a rocky composition, and an Earth-like atmosphere or none at all. In order to assess

these assumptions, we use previous studies of the radii, masses, and compositions of

super-Earth exoplanets to probabilistically constrain the mass and radius of Proxima b,

assuming an isotropic inclination probability distribution. We find it is ∼ 90% likely that

the planet’s density is consistent with a rocky composition; conversely, it is at least 10%

likely that the planet has a significant amount of ice or an H/He envelope. If the planet

does have a rocky composition, then we find expectation values and 95% confidence

intervals of 〈M〉rocky = 1.63+1.66
−0.72 M⊕ for its mass and 〈R〉rocky = 1.07+0.38

−0.31 R⊕ for its radius.
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2.1 Introduction

The recent radial velocity detection of a planet in the habitable zone of the nearby M

dwarf Proxima Centauri (hereafter ’Proxima b’ and ’Proxima’) (Anglada-Escudé et al.,

2016) has spurred over a dozen theoretical papers speculating on the planet’s atmosphere

(e.g., Brugger et al., 2016; Goldblatt, 2016), habitability (e.g., Ribas et al., 2016; Turbet

et al., 2016), and orbital and formation histories (e.g., Barnes et al., 2016; Coleman et al.,

2017) as well as prospects for a direct detection or atmospheric characterization (e.g.,

Lovis et al., 2017; Luger et al., 2017). As Proxima is the nearest neighbor to the solar

system, it has been suggested as a target for future space missions, including those hoping

to characterize its atmosphere and search for life (e.g., Belikov et al., 2015; Schwieterman

et al., 2016).

In many of these studies, authors have assumed a rocky planet with a thin atmosphere

or no atmosphere at all, and some have assumed a mass near or equal to the projected

mass of M sin(i) = 1.27+0.20
−0.17 M⊕, but little has been done to assign a degree of certainty to

these assumptions. Most notably, previous studies have revealed two distinct populations

of exoplanets with super-Earth radii: ‘rocky’ planets composed almost entirely of rock,

iron, and silicates with at most a thin atmosphere, and ‘sub-Neptune’ planets which must

contain a significant amount of ice or a H/He envelope (e.g., Rogers, 2015; Weiss and

Marcy, 2014). If there is a significant probability that Proxima b is of the latter compo-

sition, then this should be taken into account when assessing its potential habitability or

observability.

In this letter, we generate posterior distributions for the mass of Proxima b using

Monte Carlo simulations of exoplanets with an isotropic distribution of inclinations,

where the radii, masses, and compositions of the simulated planets are constrained by

results from combined transit and radial velocity measurements of previously detected

exoplanets. By comparing the posterior mass distribution to the composition of planets as

a function of mass, we determine the likelihood that Proxima b is, in fact, a rocky world

with a thin (if any) atmosphere.
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2.2 Prior assumptions

Radial velocity and transit studies of exoplanets have yielded mass and radius measure-

ments for a statistically significant number of targets, thereby enabling the study of how

the occurrence and composition of exoplanets varies with planet radii, orbital periods,

and host star type. In this section, we review previous results, which we will use to place

stronger constraints on the mass and composition of Proxima b.

2.2.1 sin(i) distribution

It can be shown (e.g., Ho and Turner, 2011) that the probability distribution of sin(i)

corresponding to an isotropic inclination distribution is

P(sin(i)) = sin(i)/
√

1 − sin2(i) (2.1)

Since this distribution peaks at sin(i) = 1, the mass distribution of an RV-detected

planet - assuming no prior constraints on the mass - peaks at the minimum mass M0.

In their models of the possible orbital histories of Proxima b, Barnes et al. (2016) find

that galactic tides could have inflated the eccentricity of the host star’s (at the time uncon-

firmed) orbit around the α Cen binary, leading to encounters within a few hundred AU and

the possible disruption of Proxima’s planetary system. If so, this could affect the likely

inclination of the planet in a non-isotropic way. However, Kervella et al. (2017) have

presented radial velocity measurements showing that Proxima is gravitationally bound to

the α Cen system with an orbital period of 550,000 years, an eccentricity of ∼ 0.5, and a

periapsis distance of 4,200 AU. At this distance, the ratio of Proxima’s gravitational field

to that of α Cen at the planet’s orbit (∼ 0.05 AU) is greater than 108; unless Proxima’s

orbit was significantly more eccentric in the past, it seems unlikely that α Cen would have

disrupted the system.

2.2.2 Occurrence rates for M dwarfs

Mulders et al. (2015b) provide up-to-date occurrence rates of planets around M dwarf

stars from the Kepler mission. The sample is limited to 2 < P < 50 days, over which they
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find the occurrence rates to be mostly independent of the period. The binned rates and a

regression curve, as well as their uncertainties, are presented in Figure 2.1.

Kepler statistics for M dwarfs remain incomplete below 1 R⊕, but complete statis-

tics for earlier-type stars suggest a flat distribution for 0.7 < R < 1 R⊕ (Mulders et al.,

2015b). Since mass-radius relationships typically find a strong dependence of mass on

radius (M ∝ R3−4) (e.g. Weiss and Marcy, 2014; Wolfgang et al., 2016), we assume a

priori that Proxima b (M & 1.3 M⊕) is larger than 0.7 R⊕. Therefore, for this letter we

adopt the regression curve fitted to the binned data, but set the occurrence rates to be flat

for R < 1 R⊕.

2.2.3 Compositions

Multiple works (e.g. Weiss and Marcy, 2014; Rogers, 2015) have determined the exis-

tence of two distinct populations of exoplanets smaller than Neptune (R . 4 R⊕): a small

radius population with densities consistent with an entirely iron and silicate composition

(hereafter ‘rocky’), and a large radius population with lower density planets that must

have significant amounts of ice or a thick H/He atmosphere (hereafter ‘sub-Neptunes’).

Rogers (2015) studies the abundance of planets of each composition as a function of

radius. They define fα(R) as the likelihood that a planet of radius R is dense enough to

be consistent with a rocky composition, and determine fα for a sample of planets with

known masses and radii. They suggest fitting the data with a two-parameter linear model:

fα (RP,Rthresh,∆R)

=


1 RP < Rthresh −

1
2∆R

0.5 +
Rthresh − RP

∆R
|RP − Rthresh|< 1

2∆R

0 RP > Rthresh +
1
2∆R

(2.2)

They find a step function to best describe the data, with ∆R fixed at zero and Rthresh ≈
1.5 R⊕. For the purposes of this letter, we prefer this fit, but will also vary Rthresh and ∆R

to see how they affect our results.
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Occurrence Rates for M Dwarf Planets
(with 2 < P < 50 days)

Mass-Radius Relationships for R < 4 R⊕

Figure 2.1: Top: Occurrence rates from Mulders et al. (2015b), fitted by a regression
curve. We adjust the rates below 1 R⊕ (dotted) to be flat, since the sample is incomplete
in this range. Bottom: Mass-radius relationships for the rocky (blue) and sub-Neptune
(red) populations. The plotted relationships are from Wolfgang et al. (2016) (solid) and
Weiss and Marcy (2014) (dashed).
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We stress that a planet for which fα = 1 is only sufficiently dense to be rocky; we still

cannot necessarily exclude an ice or volatile component. Here, we will assume that all

planets for which fα = 1 follow the low-radius M-R relationships given in the following

section, which were empirically fitted without prior knowledge of the planets’ compo-

sitions. For simplicity, we refer to these as ‘rocky’ planets, and the other population as

‘sub-Neptunes’, but we will revisit this distinction later on.

Since Proxima b is in the habitable zone, it receives an amount of stellar flux compa-

rable to that received by Earth, so we should bear in mind the possibility that the volatile

envelope of a sub-Neptune could be lost due to photoevaporation. Owen and Mohanty

(2016) model rocky planets with thick H/He envelopes in the habitable zones of M dwarfs,

finding that planets with M > 0.8 M⊕ maintain their envelopes over Gyr timescales and

are therefore uninhabitable. The 2σ lower limit on the minimum mass of Proxima b is

0.93 M⊕, so it is unlikely that any H/He envelope on the planet would evaporate under

this rule. However, we note that this study focuses on planets with a primarily rocky

composition, so it may not be directly applicable to habitable zone sub-Neptunes.

Additionally, Zahnle and Catling (2013) empirically define boundaries for atmo-

spheric evaporation as a function of stellar heating, escape velocity, and atmospheric

composition. In particular, a planet receiving an Earth-like flux must have an escape

velocity above ∼ 8 km/s in order to maintain an H2 atmosphere for 5 Gyr. We will revisit

this requirement in Section 2.4.2.

2.2.4 Mass-radius relationships

Empirically derived relationships between exoplanet masses and radii rely on radial veloc-

ity (RV) or transit-timing variation (TTV) measurements of transiting exoplanet masses.

Weiss and Marcy (2014) fit a mass-radius (hereafter M-R) relationship to a sample of

65 transiting exoplanets, in which they find evidence for the two populations discussed

in Section 2.2.3. Through least-squares regression, they find the densities of the rocky

planets to increase linearly with planet radius:

ρP = 2.43 + 3.39
(

RP

RE

)
g cm−3 (2.3)
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while the RV-measured masses of sub-Neptunes increase nearly linearly with planet ra-

dius:
MP

M⊕
= 4.87

(
RP

RE

)0.63

(2.4)

Wolfgang et al. (2016) use an expanded version of this data set to fit power law M-R

relationships using a more statistically robust Bayesian method. For the rocky planets,

they find
MP

M⊕
= 1.4

(
RP

RE

)2.3

(2.5)

and for the sub-Neptunes with RV-measured masses,

MP

M⊕
= 2.7

(
RP

RE

)1.3

(2.6)

Due to the larger sample size and more robust fitting procedure, we adopt Equations

2.5 and 2.6 as our preferred M-R relationships, but for completeness we consider the

Weiss and Marcy (2014) relationships as well. We find that the choice of M-R relation-

ships has a minimal impact on our final results. Both sets of relationships are plotted in

Figure 2.1.

It is important to note that the above relationships for sub-Neptunes exclude masses

measured by TTV, since TTV masses have been found to be systematically lower than

RV masses. This could indicate a selection bias or systematic error in the method used,

but since Proxima b was detected through RV measurements, we believe it is proper to

exclude the TTV masses either way.

It is also clear that there is a significant spread in the masses of the observed planets.

Wolfgang et al. (2016) suggest a spread of ±1.9 M⊕ for the sub-Neptune planets, which

we adopt for our simulations. For rocky planets, the spread is noticeably smaller. There

are too few planets to constrain this spread, but it should most likely increase with mass,

so we arbitrarily define the spread to be 30% of the calculated mass.
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2.3 Method

2.3.1 Simulated sample

The fitted occurrence rates and their uncertainties ( f ±d f ) are given in even bins in log-

space. We use them to generate a random sample of radii, where the number of radii in

each bin (r0) is selected from a normal distribution with mean value f (r0) and standard

deviation d f (r0). We find that the results converge for 1,000 samples of the occurrence

rates, with each sample containing ∼ 106 radii.

To each radius, we assign a composition (‘rocky’ or ‘sub-Neptune’) based on the

model of Rogers (2015) (Equation 2.2), with Rthresh = 1.5 R⊕ and ∆R = 0. We then assign

a mass to each radius and composition from a Gaussian distribution with mean value

M(R) - calculated using our chosen M-R relationships (Equations 2.5 and 2.6) - and a

standard deviation dM that represents the spread. We choose a spread proportional to

the calculated mass for rocky planets (dM = 0.3×M(R)), but a constant spread for sub-

Neptunes (dM = 1.9 M⊕). We also reject negative masses, which could in principle bias

the assigned masses towards higher-than-average values - however, we find that only a

negligible number of masses are rejected.

Finally, we assign a line-of-sight inclination parameter sin(i) to each planet, drawn

from the isotropic probability distribution discussed in Section 2.2.1.

2.3.2 Prior and posterior probability distributions

The prior mass and radius distributions, P(M) and P(R), can be derived directly from the

simulated sample. Factoring in the projected minimum mass M0, the posterior distribu-

tions P(M|M0) and P(R|M0) can be calculated from Bayes’ formula:

P(X |M0) =
P(M0|X)P(X)

P(M0)
(2.7)

where X represents mass or radius. Since M0 is known, P(M0) is just a normalizing

constant. Taking M0 = 1.27+0.20
−0.17 M⊕ as the projected mass of Proxima b and the upper

limit σM0 = 0.20 M⊕ as its standard deviation, we calculate for each simulated planet

Pi(M0|X) = exp
(
−(M0 − Mi sini(i))2/2σ2

M0

)
(2.8)
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Then P(M0|M) and P(M0|R) are the average values of Pi(M0|X) for each bin in mass or

radius. The prior and posterior distributions are calculated for each sample of 106 planets,

and the final results are taken to be the mean result of 1,000 samples.

2.3.3 Posterior compositional probability

The prior probability that a planet in a given mass bin is rocky is equal to the number

of simulated rocky planets in that bin divided by the total number of planets in the same

bin. Since we want to know the likelihood that Proxima b belongs to the ‘rocky’ popu-

lation, we multiply this prior composition probability distribution by the posterior mass

distribution from the previous section and integrate over all masses.

2.4 Results

2.4.1 Mass distributions

The prior and posterior mass probability distributions for Proxima b are plotted in Fig-

ure 2.2. The shaded regions demonstrate the relative contributions of the populations at

each mass. The prior distribution is valid for RV-detected planets around M dwarfs with

intermediate periods (2 < P < 50 days) and radii (0.7 < R < 4 R⊕), while the posterior

distribution can be taken as the mass probability distribution for Proxima b.

For reference, we include the posterior distribution given no prior constraints on the

mass; that is, the distribution resulting from an isotropic sin(i) distribution and the mea-

sured M0 with its uncertainty. We find that this nearly matches our result, since both

P(sin(i)) and P(M) are bottom-heavy.

Figure 2.3 shows the cumulative probability that M < X for both of the considered

M-R relationships (Section 2.2.4) as well as for the case of no prior mass distribution. We

find that there is little difference between the results for each M-R relationship.

2.4.2 Escape velocity

In order to verify that sub-Neptune planets can maintain H2 envelopes in the habitable

zone, we compare the escape velocities of our simulated sub-Neptunes to the ∼ 8 km/s
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Prior mass distribution

Posterior mass distribution

Figure 2.2: Prior (top) and posterior (bottom) mass distributions for the simulated sample.
The blue and red shaded regions represent contributions due to rocky and sub-Neptune
planets, respectively. The dash-dotted line is the posterior distribution assuming a flat
prior distribution. The binning is 0.01 M⊕.
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Cumulative mass probability distribution

Figure 2.3: The cumulative mass probability distribution for our simulated posterior mass
distribution (solid) and assuming a flat prior P(M) (dashdot). The dotted lines intersect
68% and 95% confidence upper limits on the mass.

cutoff for H2 atmospheric escape (assuming an Earth-like stellar flux) defined by Zahnle

and Catling (2013). In both the prior and posterior distributions of escape velocities, we

find that fewer than 1% of the sub-Neptunes have escape velocities below this threshold,

with most having ve & 15 km/s. Therefore, we do not believe that Proxima b will be

subject to significant atmospheric loss if it has a sub-Neptune composition.

2.4.3 Composition

Table 2.1 lists the sets of parameters for which we run the simulation, including the mass

spread dM for each composition and the central value (Rthresh) and width (∆R, if nonzero)

of the transition region defined by Equation 2.2. The following results for each case are

given: the probability Procky that Proxima b belongs to the ‘rocky’ category of planets, i.e.

that its density is consistent with a fully iron and silicate composition, and the expectation

values 〈M〉rocky and 〈R〉rocky of the mass and radius under the assumption that it belongs to

this population.

Case A is most consistent with the previous work we have cited, so we take it as our
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primary result. In this case, there is a ∼ 90% probability that Proxima b belongs to the

‘rocky’ population, with an ∼ 10% likelihood that it belongs to the ‘sub-Neptune’ popu-

lation. In the case that it is rocky, the expectation values (and 95% confidence intervals)

for the mass and radius are 〈M〉rocky = 1.63+1.66
−0.72 M⊕ and 〈R〉rocky = 1.07+0.38

−0.31 R⊕.

We investigate the effect of increasing (Case B) and decreasing (Case C) the mass

spread for each composition, which results in lower and higher values of Procky, respec-

tively. This results from low-radius (R ∼ 1.5 R⊕), low-mass sub-Neptunes; when dM is

large, they can lie significantly below the M-R relation with masses between 1 and 2 M⊕,

so that they are indistinguishable from the rocky planets in the mass domain.

In Cases D and E, we determine the effect of raising or lowering the threshold radius

Rthresh at which the rocky and sub-Neptune populations are split. A 0.2 R⊕ offset in either

direction, which encompasses most of the values suggested in the literature, results in

a ∼ 5% to 8% shift in Procky, where higher threshold radii allow for more rocky planets

and therefore a higher probability of a rocky composition. Furthermore, allowing for a

non-zero width ∆R to the cutoff region allows sub-Neptunes to exist with lower radii and

masses, thereby decreasing Procky.

In all cases, we find Procky to be between 80% and 95% using the Wolfgang et al.

(2016) M-R relationship, and we find similar values using the Weiss and Marcy (2014)

relationship (e.g. Procky = 90.7% for Case A), so this result does not vary substantially

over the range of reasonable values for the input parameters.

2.5 Conclusions

By considering occurrence rates from the Kepler mission and empirically derived M-R re-

lationships, we derive a posterior probability distribution for the actual mass of Proxima b.

If the planet has a rocky composition, i.e. if it obeys the low-radius M-R relationship of

Wolfgang et al. (2016), then the expectation values of the mass and radius (with 95%

confidence intervals) are 〈M〉rocky = 1.63+1.66
−0.72 M⊕ and 〈R〉rocky = 1.07+0.38

−0.31 R⊕.

In all of our simulations, we find a probability of 80% to 95% that Proxima b belongs

to the ‘rocky’ population of planets defined in Section 2.2.3. In our ‘best guess’ scenario
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(Case A), this probability is 90%. Critically, we note that we have assumed all planets

with fα = 1 (according to the Rogers (2015) criterion) are rocky planets, while in reality

their density is only consistent with such a composition. With this in mind, it is safest to

say that there is at least a 10% chance that Proxima b has a sub-Neptune composition. If

it is a sub-Neptune, then its surface gravity is high enough that it could maintain a thick

hydrogen atmosphere.

For future theoretical work involving the habitability and detectability of Proxima b,

we advise caution regarding assumptions made about its mass or composition; if Prox-

ima b does possess a thick H/He envelope, then it is likely not habitable in the traditional

sense. Even if the mass could be further constrained, sub-Neptunes have been measured

with masses as low as ∼ 1 M⊕, so the composition cannot be conclusively inferred from

the mass alone. Nevertheless, the rocky composition originally asserted by Anglada-

Escudé et al. (2016) remains the most likely possibility.
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Table 2.1. Monte-Carlo Simulation Parameters and Results

Case Parameters Results

dM (rocky) dM (sub-Neptune) Rthresh ∆R Procky 〈M〉rocky 〈R〉rocky

Case A 0.3×M 1.9 M⊕ 1.5 R⊕ - 89.9% 1.63+1.66
−0.72 M⊕ 1.07+0.38

−0.31 R⊕
Case B 0.6×M 3.8 M⊕ 1.5 R⊕ - 84.6% 1.65+1.95

−0.73 M⊕ 1.03+0.42
−0.36 R⊕

Case C 0.1×M 0.7 M⊕ 1.5 R⊕ - 93.6% 1.65+1.52
−0.73 M⊕ 1.06+0.36

−0.24 R⊕

Case D 0.3×M 1.9 M⊕ 1.7 R⊕ - 94.6% 1.71+2.13
−0.79 M⊕ 1.10+0.50

−0.33 R⊕

Case E 0.3×M 1.9 M⊕ 1.3 R⊕ - 81.6% 1.52+1.15
−0.62 M⊕ 1.02+0.26

−0.27 R⊕

Case F 0.3×M 1.9 M⊕ 1.5 R⊕ 1.2 R⊕ 84.8% 1.64+1.99
−0.73 M⊕ 1.06+0.53

−0.30 R⊕

Case G 0.6×M 3.8 M⊕ 1.5 R⊕ 1.2 R⊕ 81.1% 1.65+2.13
−0.75 M⊕ 1.02+0.63

−0.36 R⊕

Note. — The resulting values of Procky, 〈M〉rocky, and 〈R〉rocky for different mass spreads dM and composi-

tional parameters Rthresh and ∆R. The expectation values are reported with 95% confidence intervals.



53

CHAPTER 3

Identifying Exo-Earth Candidates in Direct Imaging Data through Bayesian

Classification

This chapter has been published as Bixel and Apai (2020a) and is reproduced here with

permission.

Abstract

Future space telescopes may be able to directly image ∼10 – 100 planets with sizes

and orbits consistent with habitable surface conditions (“exo-Earth candidates” or EECs),

but observers will face difficulty in distinguishing these from the potentially hundreds of

non-habitable “false positives” that will also be detected. To maximize the efficiency of

follow-up observations, a prioritization scheme must be developed to determine which

planets are most likely to be EECs. In this paper, we present a Bayesian method for es-

timating the likelihood that any directly imaged extrasolar planet is a true exo-Earth can-

didate by interpreting the planet’s apparent magnitude and separation in light of existing

exoplanet statistics. As a specific application of this general framework, we use published

estimates of the discovery yield of future space-based direct imaging mission concepts to

conduct “mock surveys” in which we compute the likelihood that each detected planet

is an EEC. We find that it will be difficult to determine which planets are EECs with

> 50% confidence using single-band photometry immediately upon their detection. The

best way to reduce this ambiguity would be to constrain the planet’s orbit by revisiting the

system multiple times or through a radial velocity precursor survey. Astrometric or radial

velocity constraints on the planet’s mass would offer a lesser benefit. Finally, we show

that a Bayesian approach to prioritizing targets would improve the follow-up efficiency

of a direct imaging survey versus a blind approach using the same data. For example, the

prioritized approach could reduce the amount of integration time required for the spectral

detection (or rejection) of water absorption in most EECs by a factor of two.
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3.1 Introduction

One of the primary science goals driving the development of new space telescopes is the

detection and characterization of Earth-like planets around nearby stars. Spectroscopy of

the planets’ reflected light spectra would reveal whether they are potentially habitable –

i.e., liquid water could exist on their surfaces. The presence of biosignature gasses such

as O2, O3, and CH4 could be interpreted as evidence for life beyond the Earth (e.g., Seager

et al., 2016; Fujii et al., 2018), although this interpretation would not be straightforward

as many of these gasses can be produced abiotically (e.g., Catling et al., 2018; Meadows

et al., 2018b).

Recently, final study reports have been published for two space telescope design con-

cepts with a primary science goal of directly imaging and spectroscopically characterizing

Earth-like planets around nearby stars. These are the Habitable Exoplanet Observatory

(HabEx, Gaudi et al., 2020) and the Large UV/Optical/Infrared Surveyor (LUVOIR, The

LUVOIR Team, 2019, hereafter L19). Following Stark et al. (2014), both reports provide

estimates for the expected yield of planets across a range of sizes and insolations. The

HabEx report predicts the detection and characterization of 12+18
−8 approximately Earth-

sized planets in the habitable zone with a 4-meter aperture, while the LUVOIR report

predicts 51+75
−33 with the 15-meter aperture “LUVOIR-A” design. These design concepts

have been thoroughly investigated, and it is likely that the design of any future direct

imaging space telescope would enable it to detect comparable numbers of potentially

habitable planets with moderate S/N photometry.

However, these dozens of “exo-Earth candidates” would be detected amidst hundreds

of planets with atmospheric compositions or equilibrium temperatures not conducive to

Earth-like life, including planets outside of the habitable zone, large mini-Neptunes with

thick H/He envelopes, or Mars-sized planets that have been stripped of their atmospheres.

These non-habitable planets often demonstrate the same observable parameters (e.g., ap-

parent magnitude and separation) as the exo-Earth candidates, but are far more common

and may therefore cause a significant number of false positive detections. We demonstrate

this problem in Figure 3.1. In fact, Guimond and Cowan (2018) show that separation- and
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contrast-based selection criteria could suffer from a false discovery rate as high as 77%

given just the detection data in a single band, or 47% if prior constraints on the orbit are

available.

While the “false positive” planets would be interesting to characterize in their own

right, spectroscopy across the full wavelength range could take weeks for the faintest tar-

gets, diverting time and resources from higher priority targets. To separate the potentially

habitable and non-habitable planets, a survey could use multi-epoch broadband photome-

try to characterize their orbits and spectroscopic observations of H2O absorption features

to confirm the presence of water vapor in habitable zone targets. However, even within

the habitable zone, there exist many planets that are too small or large to be habitable,

and the identification of water absorption features will require a significant investment of

time (Kawashima and Rugheimer, 2019). Additionally, warmer planets within the run-

away greenhouse limit could exhibit water absorption features. In order to maximize the

efficiency of an exo-Earth imaging mission, it is necessary to develop a method for iden-

tifying those planets that are most likely to be Earth analogs using the limited data that

will be available upon detection.

We have previously advocated for a Bayesian approach to assessing the potential hab-

itability of newly detected exoplanets (Apai et al., 2018a). The Bayesian approach allows

one to probabilistically constrain the properties of the planet by leveraging knowledge

from exoplanet statistics on planet radii, masses, and orbital properties. It also allows one

to fold in predictions from theoretical models of planet formation and evolution as prior

knowledge. As an example, in Bixel and Apai (2017) we used the Monte Carlo method

to infer the likely composition of Proxima Cen b (Anglada-Escudé et al., 2016) in light

of well-established statistical priors and the limited data available about the system. We

found that it is ∼ 90% likely that the planet is small and rocky as opposed to a “mini-

Neptune”. In this paper, we extend this approach to assess the likelihood that a directly

imaged planet has an appropriate composition and orbit to be potentially habitable.

In Section 3.2 we review our Bayesian framework and give an example of how it can

be applied to characterize directly imaged planets. In Section 3.3 we discuss the prior

assumptions upon which our framework is based, and how they might be improved in
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the coming decade. Using the planet yield estimates provided in LUVOIR final report

as a baseline estimate for the yield of a hypothetical direct imaging mission, in Section

3.4 we conduct mock surveys where we detect each target and estimate the apparent

likelihood that it has a potentially habitable composition and orbit. In Section 3.5 we

discuss the results of these surveys, including what types of non-habitable planets would

be mistaken for potentially habitable planets, and which additional data could help to

resolve this ambiguity. Finally, we show that our approach to target prioritization could

greatly enhance the efficiency of follow-up observations after all of the planets have been

detected.

3.2 A Bayesian Framework for Classifying Directly Imaged Planets

3.2.1 Monte Carlo method

Here we review the Monte Carlo method for Bayesian inference. This method allows an

observer to constrain the unobservable properties of a planet based on limited precision

measurements of its observable data values by assuming some understanding of the prior

distribution of intrinsic properties and their relationship to the observable data values.

Suppose planets can be described by some set of intrinsic properties θ and some

resulting set of observable data values x that can be calculated from θ. Given a prior

probability distribution for the values of θ, P(θ), then the probability distribution for θ

given x can be calculated using Bayes’ equation:

P(θ|x) =
P(x|θ)P(θ)∫
θ

P(x|θ)P(θ)

The left term is commonly referred to as the posterior distribution of θ, and P(x|θ) as the

likelihood function.

For most astrophysical applications there is no analytical solution to this equation, so

it must be solved numerically. Under the Monte Carlo method, we use the prior probabil-

ity distribution P(θ) to simulate a set of properties θsim, then calculate the simulated data

values xsim directly. Next, we accept or reject this simulated planet based on the value

of its likelihood function for some observed set of data values xobs. Assuming the data
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False positives for exo-Earth candidate detections

False positive False positive False positive

False positive

100 mas

Data False positive

False positive False positive EEC

Size:
Orbit:

too small
too close

Earth-sized
in habitable zone

too large
too far

Figure 3.1: To illustrate the degeneracies that affect the interpretation of direct imaging
data, we simulate the detection of a planet orbiting a Solar-type star at 15 parsecs (center
panel), as well as several planets of varying sizes, orbits, and albedos that have a similar
projected separation and magnitude (surrounding panels). It is not clear whether this data
point represents a true exo-Earth candidate, or one of many potential false positives. The
color and size of each circle represents the planet’s potential radius; only green points are
approximately Earth-sized (∼ 0.8 − 1.6R⊕). The color of the potential orbit represents its
insolation; only green orbits are in the habitable zone. An ‘x’ marks the planet’s closest
approach to the observer.
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values are drawn from independent, normal probability distributions with standard devi-

ations (measurement uncertainties) σobs, the likelihood function is that of a multivariate

Gaussian:

P(x|θ) =
m∏

i=1

exp((xobs,i − xsim,i)
2/2σobs

2
,i)

If only an upper limit is available for a component of xobs (e.g., magnitude), then the

prior sample is first pruned of simulated members exceeding that limit.

This procedure is repeated in parallel for a large number of planets until a statistically

sufficient number are accepted. The result of the likelihood-based selection is a sample

of planets whose properties θsim are distributed according to the posterior distribution. In

other words, a histogram of the accepted values of θsim represents the probability distri-

bution for θobs, the properties of the observed planet.
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Table 3.1. List of Prior Assumptions Used to Build our Sample in Case 1

Parameter Description of prior Reference

Radius and period Kepler occurrence rates Mulders et al. (2018)

Class “sub-terrestrial”, “terrestrial”, or “ice giant” based on radius,

following Figure 3.4

Fulton et al. (2017); Zahnle

and Catling (2017)

Mass Empirical mass-radius relationship with intrinsic spread Wolfgang et al. (2016)

Habitable zone boundaries Planet mass-dependent LWHZ models (runaway and maxi-

mum greenhouse limits)

Kopparapu et al. (2014)

Albedo Uniform from 0.2 to 0.7

Eccentricity Beta distribution (α = 0.867, β = 3.03) Kipping (2013b)

ω, Ω, M † Uniform from 0 to 2π

cos(i) Uniform from -1 to 1

Exo-Earth Candidates (EECs) “terrestrial” class planets in the LWHZ

Note. — References are given for each assumption. The additional cases in Table 3.2 may modify these assumptions to reflect

new prior knowledge or data.
†Argument of pericenter; longitude of the ascending node; mean anomaly



60

3.2.2 Constructing the prior sample

We use the priors in Table 3.1 to construct the prior sample according to the algorithm

visualized in Figure 3.2, and we discuss the prior assumptions in detail in Section 3.3. We

consider several cases governing the amount of data available to the observer - these are

listed in Table 3.2.

Before we simulate the properties of the directly imaged planet, we first consider

the properties of its host star, which the observer will only know with finite precision.

We represent this measurement uncertainty by drawing a unique stellar radius and mass

for each system from normal distributions with σ = 3% and 7%. We assume nearly

exact measurements of the distance and luminosity of the host star, and we discuss these

assumptions in Section 3.3.1.

We generate the radius and period of the planet using Kepler occurrence rates as a

prior probability distribution, then use the radius to classify the planet as too small (“sub-

terrestrial”), too large (“ice giant”), or of the proper size to maintain a habitable atmo-

sphere against stellar irradiation (“terrestrial”). This requires us to extrapolate to planets

smaller (R . 0.5R⊕) or with longer periods (P & 100 days) than those readily available in

the Kepler sample, as we discuss in Section 3.3.2. We calculate the mass from an empir-

ical mass-radius relationship, where we assume some intrinsic variance due to stochastic

planet formation histories and differences between the host stars of the planets on which

these relationships are based. We draw eccentricities from a beta distribution and the

remaining orbital elements are assumed to be isotropically distributed.

The liquid water habitable zone (hereafter LWHZ) is the range of orbital separations

over which a broadly Earth-like planet could feasibly host liquid water on its surface.

Kopparapu et al. (2014) find the zone’s boundaries to be a function of the planet’s mass

and the star’s effective temperature, hence we cannot infer a planet’s membership to the

LWHZ based solely on its insolation. We calculate the LWHZ boundaries and determine

whether the planet lies in the runaway greenhouse, temperate, or maximum greenhouse

regimes, interpolating between the discrete planet masses modeled by Kopparapu et al.

(2014) (0.1, 1.0, and 5.0 M⊕), and taking the minimum or maximum mass values for
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Table 3.2. Different Cases Under Which we Conduct our Mock Surveys

Case Description

1 Each planet has a monochromatic geometric albedo drawn uniformly from

0.2 to 0.7. The planet’s monochromatic magnitude and separation angle are

observed in a single epoch with a signal-to-noise ratio of 7 and centroid pre-

cision σc = 3.8 mas.

2 Prior radial velocity (RV) observations provide constraints of ±10% on the

period,±5 cm/s on the radial velocity semi-amplitude, and±30◦ on the mean

anomaly, in addition to the data from Case 1.

3 Simultaneous observations of a debris disk provide a ±1◦ constraint on the

inclination and longitude of the ascending node of the orbital plane. The

planet’s orbital elements may be further offset from these by ±0.2 in Ω and

cos(i).

4 Multiple epochs of direct imaging data permit constraints of ±15◦ on the

phase angle, ±10% on the semi-major axis, and ±0.05 on the eccentricity..

5 Case 4 with an additional ±0.1µas constraint on the semi-amplitude of the

star’s motion due to the planet.

6 We assume prior knowledge about the albedo distribution of small planets.

Each planet’s spectral albedo is determined by its class and location with

respect to the habitable zone. Random monochromatic and polychromatic

offsets are also introduced. The planet’s magnitude in three bands and sep-

aration angle are observed in a single epoch with a wavelength-integrated

signal-to-noise ratio of 7.

7 Combination of Cases 5 and 6: three-band photometry is available along with

constraints on the planet’s orbit and the star’s astrometric motion from multi-

epoch observations.

Note. — Each case represents different combinations of data that the observer might

have.
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Simulating the prior sample of planets

Priors Properties

Isotropic priors

Habitable zone
boundaries

Class

Period

Mass

Host star properties

Magnitude(s)

Observables

Uniform prior

Radius-based
classification

Mass-radius
relationship

LWHZ model

Occurrence rates

Beta prior Eccentricity

cos(i), Ω, ω, θ

Geometric albedo

Spectral characterization

Is it an exo-Earth
candidate (EEC)?
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Cases 5 & 7

Radius
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Figure 3.2: Flowchart illustrating our algorithm for simulating the prior sample of planets
under Case 1. The red boxes represent the intrinsic planet properties that we simulate,
and the red arrows indicate how they are used in the calculation of other properties. The
blue boxes represent the priors that we use to simulate the properties, and the green boxes
are the observable values that can be compared to the data.
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planets outside of this range. For planets with non-circular orbits we use the mean flux

approximation to determine whether they are in the habitable zone, which Bolmont et al.

(2016) find to be valid for planets with low or moderate eccentricities receiving Earth-like

insolations.

Finally, we assign a geometric albedo to each planet using one of two methods for

each of the cases in Table 3.2. In Cases 1-5, we assign a monochromatic albedo from a

broad uniform prior with no dependence on the planet’s class or orbital parameters. In

Cases 6 and 7, we generate a spectrum for each planet by mapping it to a solar system

analog with a comparable size and orbit. These two cases allow us to test the usefulness

of color information for identifying potential exo-Earths. We dedicate more considerable

discussion to the geometric albedos in Section 3.3.6.

3.2.3 Calculating the observable data values

Once the full assortment of planet properties has been simulated, we can proceed to cal-

culate the observable data values to compare against those of a newly detected planet.

3.2.3.1 Apparent separation

The angular separation vector has two components, and can be calculated from the orbital

elements and the distance to the system d. We adopt the same reference frame and no-

tation as Murray and Correia (2010)1, where i = 90◦ is an “edge-on” inclination and the

observer is at z =∞, so the angular separation components orthogonal to the line of sight

are:

sx = (r/d)[cos(Ω)cos(ω + f ) − sin(Ω) sin(ω + f )cos(i)]

sy = (r/d)[sin(Ω)cos(ω + f ) + cos(Ω) sin(ω + f )cos(i)]

In most cases, the position angle has no meaningfully defined zero point, so for sim-

plicity we calculate only the net separation |s| =
√

s2
x + s2

y . The exception is Case 4, where

1Figure 4 and Equations 53 & 54
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the coeval detection of a debris disk is used to constrain the orbital plane of the planet;

therefore the position angle is meaningfully defined, and we compute sx and sy separately.

3.2.3.2 Apparent magnitude(s)

Following Madhusudhan and Burrows (2012)2, we model the planet as a Lambertian

sphere, in which case the planet-to-star contrast ratio when observed at orbital phase α is:

L(λ)
L∗(λ)

= Ag

(
RP

a

)2[sin(α) + (π −α)cos(α)
π

]
The phase angle is α = Cos−1[sin(ω + f ) sin(i)]. We draw the geometric albedo from

a prior distribution, and allow slightly super-Lambertian values (Ag > 2/3) as these are

observed in some wavelength ranges in the solar system.

3.2.3.3 Radial velocity and astrometric semi-amplitudes and periods

The semi-amplitude of the star’s periodic radial velocity variation, assuming no other

perturbers and MP�M∗, is:

K = (8.95cm/s)
(MP/M⊕) sin(i)

(M∗/M�)1/2(a/AU)1/2(1 − e2)1/2

The semi-amplitude of the star’s astrometric motion is:

θ = (3.00µas)
(MP/M⊕)
(M∗/M�)

(a/AU)
(d/pc)

In both cases the period of the stellar motion (and therefore the planet’s orbit) is also

measurable. However the astrometric mass measurement requires that the system be ob-

served for multiple epochs, in which case the planet’s orbital period can be derived from

its apparent motion about the host star.

2Figure 1 and Equations 4 & 33
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3.2.4 Calculating the posterior probability distributions

We generate a posterior sample of simulated planets following the scheme in Section

3.2.1, where θsim are the simulated properties from Section 3.2.2, xsim are the simulated

data values from Section 3.2.3, and xobs are the data values for the observed planet. This

allows us to calculate a posterior probability distribution for each component of θobs, the

physical properties of the observed planet. Based on just the planet’s apparent separation

and magnitude, we are therefore able to place informative constraints on its semi-major

axis, radius, and mass.

The posterior probability in which we are most interested is the probability that the

planet is potentially habitable - i.e., a “terrestrial”-class planet (0.8 . RP . 1.6) within

the LWHZ. We designate these planets as “exo-Earth candidates” (EECs), following the

terminology of The LUVOIR Team (2019) and Gaudi et al. (2020), albeit including a

slightly different range of sizes. Planets outside of this range we designate as “false

positives”, with the false positive probability being the likelihood that the observed planet

- as judged based solely on its observed data values - is a false positive instead of an EEC.

3.2.5 Example: an exo-Earth candidate around a Solar twin

As a demonstration of our method, we use the procedure in Section 3.2.2 to generate

an Earth-sized planet in the center of the LWHZ of a Solar-type star at 15 parsecs - an

ideal exo-Earth candidate. We simulate the detection of this planet by assuming a S/N

= 7 measurement of its monochromatic magnitude, and a ±3.8 mas measurement of its

centroid.

Acting as the observer - who has no prior knowledge about the planet’s true size and

orbit - we use the procedure outlined above to estimate the likelihood that that the planet

is an exo-Earth candidate based on its observed magnitude and separation. The results

of our analysis are summarized in Figure 3.3. We can confidently say that the planet is

at least 1 AU from its star, and is unlikely to be farther than 3 AU - however, we cannot

constrain its orbit to the habitable zone with certainty. We can also tell that the planet is

almost certainly larger than 0.5R⊕ and smaller than 3R⊕ - but this range includes planets
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Figure 3.3: We simulate the detection of an “ideal” exo-Earth candidate from 15 pc.
(Left) The separation- and magnitude- phase space populated by a host of simulated EECs
(green) and non-EECs (red). The data point with uncertainties is marked in black. (Mid-
dle/right) Posterior distributions for the planet’s semi-major axis and radius, taking into
account Kepler statistics and other priors. The true values are marked with dashed lines;
this planet appears to the observer to have a wider orbit than it actually does.

that are too small (sub-terrestrial) or too large (sub-Neptune) to be EECs.

Most notably, we determine that it is only 31% likely that this planet is an EEC, as

the majority of simulated planets that have a similar separation and magnitude are not

habitable. In this specific example, even though the planet appears 70% likely to have a

size consistent with habitability, it also appears 60% likely to orbit beyond the maximum

greenhouse limit. This example shows that while it will be difficult to discriminate be-

tween true EECs and false positives given just the data available on detection, it will still

be possible to place meaningful probabilistic constraints on the planet’s properties.

3.3 Prior assumptions

In this section, we discuss our priors in more detail by reviewing the relevant literature

and discussing how they may be improved upon by future observations and modeling

efforts.
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3.3.1 Stellar properties

It is likely that much effort will be dedicated to characterizing the stellar targets of a

direct imaging mission in advance of its launch. Still, the stellar properties will only be

constrained with finite precision - potentially several percent - so it is important that our

prior sample includes host stars spanning the range defined by the relevant uncertainties.

Gaia DR2 (Gaia Collaboration, 2018) has already provided high precision (10 − 100

µas) parallax measurements for nearby F-M spectral type stars, so we treat this uncer-

tainty as negligible. Optical/IR interferometry has allowed for the measurement of stellar

radii to∼ 3% for targets at∼ 10−100 pc (e.g. Ligi et al., 2016). Masses are more difficult

to measure, so stellar atmosphere models are often used - as an example, Sharma et al.

(2018) constrain model-dependent masses for more than 10,000 stars using high resolu-

tion spectroscopy, with a median precision of 7%. Following these examples, we draw

the radius and mass of the host star from normal distributions with widths of 3% and 7%,

respectively.

3.3.2 Radius and period

Kepler allowed for the precise calculation of planet occurrence for planets with periods

shorter than 100 days. Mulders et al. (2018) find that the Kepler occurrence rates are

well-described by independent broken power laws in both radius and period:

dNpl

d logPd logR
∝ fR(R) fP(P)

where

fP(P) = (P/Pbreak)aP (P < Pbreak)

= (P/Pbreak)bP (P ≥ Pbreak)

fR(R) = (R/Rbreak)aR (R < Rbreak)

= (R/Rbreak)bR (R ≥ Rbreak)
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The best-fit parameters for this model are (Pbreak,aP,bP) = (12,1.5,0.3) and

(Rbreak,aR,bR) = (3.3,−0.5,−6). The number of planets per system, Npl, is found to be

∼ 5. Multiplicity will be an important factor for direct imaging surveys, as it could con-

fuse the interpretation of the data or allow for simultaneous follow-up observations of

multiple planets - but the topic is outside of the scope of this work. Here, we treat each

detected planet independently, and normalize the above power laws so that Npl = 1.

To properly simulate the abundance of planets in the habitable zone of F, G, and K

spectral type stars - as well as smaller or cooler planets that might be mistaken for them -

requires us to extrapolate Kepler occurrence rates beyond the range of parameters within

which they are well-understood (R & 0.5R⊕, P . 100 days). This extrapolation could be

problematic; for example, the results of Chen and Rogers (2016) suggest that planets on

wider orbits can maintain thick volatile envelopes better against hydrodynamical escape,

so we might find an over-abundance of large planets on wide orbits. We can gain some

insight by studying the dependence of planet radii on insolation around low-mass stars,

but these results cannot necessarily be extrapolated to Solar-mass regimes.

Furthermore, while Kepler was generally not sensitive to planets smaller than 0.5 R⊕,

it is likely that some such planets will be found by direct imaging missions and could

masquerade as exo-Earth candidates. It is therefore necessary that we extrapolate the

power law of Mulders et al. (2018) down to 0.1 R⊕ to ensure that the potentially large

number of Mercury-sized objects are represented in our simulations. However, since our

cutoff for exo-Earth candidates is R≈ 0.8R⊕, planets smaller than 0.5 R⊕ are less likely to

be mistaken for EECs, so this extrapolation should not substantially influence our results.

3.3.3 Planet classes

We employ a radius-based classification scheme to separate potentially habitable planets

from those that are too small or too large to be habitable. This classification is moti-

vated by two physical considerations affecting whether a planet can maintain a habitable

atmosphere against irradiation over several Gyr.

Empirical evidence suggests a change in planet compositions between 1.5 − 2R⊕.

Multiple authors find evidence for a split in planet densities in this range, with planets
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larger than ∼ 1.5R⊕ mostly having densities much lower than the Earth’s (e.g., Weiss

and Marcy, 2014; Rogers, 2015; Chen and Kipping, 2017). Fulton et al. (2017) find a

relative lack of Kepler planets with R∼ 1.75R⊕ compared to smaller or larger radii; this

“photoevaporation valley” was predicted by several authors who show that smaller plan-

ets would lose thick envelopes due to hydrodynamic escape (e.g., Owen and Wu, 2013).

We interpret both results as evidence that planets larger than ∼ 1.4 − 1.7R⊕ have compo-

sitions more comparable to Neptune than the Earth, and are therefore not habitable in the

traditional sense.

Very small planets will also have trouble maintaining even small and dense atmo-

spheres against Earth-like insolations. Zahnle and Catling (2017) find that a simple power

law relationship between a body’s escape velocity and its effective insolation (I∝ v4
esc) can

predict whether planets in the solar system (and some exoplanets) have atmospheres. Ac-

cording to this relation, a planet with the same insolation and density as the Earth would

need to be larger than 0.8R⊕ to maintain a habitable atmosphere. However, we note that

the Earth lies towards the inner edge of the LWHZ as calculated by Kopparapu et al.

(2014); it is possible that smaller planets could maintain Earth-like atmospheres further

out.

Taking both of these considerations into account, we assign one of three classes to

each planet based on its radius: “sub-terrestrial” planets that are too small to be habitable,

“terrestrial” planets that could have Earth-like atmospheres, and “ice giant” planets that

are too large. There is likely some overlap between these categories; for example, planets

slightly larger than 1.4 R⊕ or smaller than 0.8 R⊕ might still have an Earth-like atmo-

sphere. To simulate this overlap we probabilistically assign each planet’s class from its

radius using the probabilities in Figure 3.4. The “terrestrial” class includes all planets with

0.8 < R < 1.4 R⊕ and a fraction of planets with 0.5 < R < 0.8 R⊕ or 1.4 < R < 1.7 R⊕.

3.3.4 Mass

To calculate each planet’s mass, we rely on the empirical mass-radius relationships of

Wolfgang et al. (2016)3 (hereafter W16), which are calculated for smaller (< 1.6R⊕) and
3Equation 2 and Table 1
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Figure 3.4: Our probabilistic scheme for classifying planets based on their radii. “Sub-
terrestrial” planets are so small that they will lose their atmospheres to thermal escape
under LWHZ levels of irradiation. “Ice giants” are so massive that they will form and
maintain thick volatile envelopes. Only the “terrestrial” planets are neither too small nor
too large to maintain a habitable atmosphere against irradiation.

larger (< 4R⊕) planets, reflecting the bimodal split in planet compositions. They do not

treat mass as a deterministic function of radius, but rather model a distribution of masses

for each radius to capture the intrinsic variability in planet compositions.

We draw planet masses from truncated normal distributions defined by mean µ and

variance σ2, with minimum values of 0.01 µ and maximum values of Mpure Fe - the mass

of a pure iron composition as defined in W16. The parameters of the distributions are:

µ,σ =


2.7M⊕ (R/R⊕)1.3 , 1.9M⊕ (R≥ 1.6R⊕)

1.4M⊕ (R/R⊕)2.3 , 0.3µ (0.8 < R < 1.6R⊕)

1.0M⊕ (R/R⊕)3.0 , 0.3µ (R≤ 0.8R⊕)

These are the values of µ and σ fitted by W16, with a few caveats:

1. Their data did not allow the authors to determine σM for the smaller planets; here,

we arbitrarily choose σ = 0.3µ (i.e., a 30% spread in density).

2. Only a few uncertain data points and upper limits were available for planets with

R < 0.8R⊕, so we instead assume approximately Earth-like densities.
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3. The large radius relationship was fitted for all planets with R < 4R⊕, not just the

ice giants; however, most of the precise data points nevertheless had R > 1.6R⊕.

4. We model a few planets as large as 10R⊕, but this mass-radius relationship is likely

not valid beyond 4R⊕; indeed, it underestimates the mass of Jupiter (∼ 11 R⊕)

by a factor of five. Ultimately, the overlap in masses and magnitudes between

Earth-sized and Jupiter-sized planets is negligible when considering potential false

positives for exo-Earth candidate detections.

Finally, we expect that the empirical mass-radius relationship will be improved upon

in coming years by the discovery of transiting rocky planets around low-mass stars by

TESS (Ricker et al., 2014), precision radius measurements from CHEOPS (Broeg et al.,

2013), and mass measurements through TTV or RV. By the time an exo-Earth direct

imaging mission begins, observers should have a better understanding of the relationship

between a planet’s size, composition, and mass with which to interpret radial velocity or

astrometric mass measurements.

3.3.5 Eccentricity

Planets in the solar system tend to have eccentricities smaller than 0.1, but multiple au-

thors find evidence for a wider distribution of exoplanet eccentricities in both transit

(Kane et al., 2012) and radial velocity data (Kipping, 2013b). Kipping (2013b) deter-

mine that the eccentricity distribution of several radial velocity detected exoplanets is

well-described by a beta function, with α = 0.867 and β = 3.03 - in which case > 50% of

planets have e > 0.1.

Eccentricity will have the effect of confusing the determination of a planet’s orbit from

a single epoch of imaging data, as a wider range of eccentric orbits could be consistent

with the observed separation. Furthermore, planets which orbit near the inner or outer

edge of the LWHZ may spend a fraction of their orbit outside of the zone. To determine

which of these planets are EECs we use the mean flux approximation - assuming that a

planet is habitable if the average insolation of its orbit is the same as a circular orbit in

the habitable zone; Bolmont et al. (2016) find this to be an adequate approximation for
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planets with low or modest eccentricities receiving a mean flux equal to the Earth’s, while

highly eccentric planets tend to freeze out. However, it is possible that this approximation

is not valid for eccentric planets receiving a lower mean flux.

We use the beta distribution of Kipping (2013b) to draw planet eccentricities and

compute the projected separation accordingly, though we truncate the distribution beyond

e > 0.8 (0.5% of planets) due to the additional computing time required to solve Kepler’s

equation for highly eccentric orbits.

We note that multi-planet systems such as our own tend to have more circularized or-

bits (Van Eylen and Albrecht, 2015). In principle, if a planet is detected with a companion

then it is a priori less likely to have an eccentric orbit, and it should be easier to determine

whether the planet is an EEC. In the scope of this paper, however, we treat all planets as

the only member of their system.

3.3.6 Albedo

We consider two different prescriptions for simulating the geometric albedo: in Cases 1-5

we assume a monochromatic albedo drawn from a broad uniform distribution, while in

Cases 6 and 7 we assume a spectral albedo model that depends on the planet’s class and

position with respect to the LWHZ.

Constraining the actual distribution of planet surface and atmospheric properties is

one of the goals of future imaging missions, so it might seem backwards to interpret

these observations by assuming the underlying distribution of geometric albedos as a

prior. Nevertheless, such an assumption is necessary in order to infer a planet’s size from

photometric data.

A uniform prior represents a conservative approach to the problem. We note that most

planets in the solar system have geometric albedos ranging from 0.2 to 0.7 across the UV

to NIR wavelength range, with the exception of Mercury’s very low albedo. Therefore for

most cases we draw a monochromatic geometric albedo for each planet uniformly from

0.2 to 0.7.

However, the proposed designs of direct imaging missions allow for the simultaneous

observations of a planet in 2-3 photometric bands, in which case color information would
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be available with no additional overhead. An efficient characterization strategy would

make use of this color information to discriminate between EECs and their false posi-

tives, but to do so the observer must assume some prior knowledge about the diversity of

planetary atmospheres and surfaces. As an example, we assume that all planets approxi-

mately reflect one of four solar system analogs - Earth, Venus, Mars, or Neptune - based

on their radius-based classification and orbit as described in Table 3.3.

We accessed model spectra through the Virtual Planetary Laboratory4 for the Earth

(Robinson et al., 2011, scaled from quadrature), Venus dayside, and Mars (no publica-

tions listed). For Neptune we use the planet’s observed geometric albedo as provided by

Madden and Kaltenegger (2018) from 450-2500 nm, and set Ag = 0.6 from 300-450 nm

(e.g., Mallama et al., 2017).

To simulate both model uncertainty and physical diversity among these solar system

analogs, we allow the spectral albedos to vary by ±0.1 monochromatically and ±0.05

in each photometric bandpass. Additionally, we enforce a lower limit of 0.001 - to en-

sure that none of our planets are perfect blackbodies - and an upper limit of 0.7, slightly

more than the upper limit for the geometric albedo of a Lambertian sphere. The range of

spectral models for each category of planet is demonstrated in Figure 3.5.

Finally, we consider the bandpasses in which the planets are observed. For reference,

LUVOIR’s proposed coronagraphic instrument would be able to observe simultaneously

in 10% bandpasses of each of its three channels (L19). We choose wavelength ranges

near the centers of each channel: 335-390 nm, 715-830 nm, and 1390-1610 nm.

It is likely that a wide variety of terrestrial planets exist; indeed, all four of the terres-

trial planets in the solar system are distinct in surface reflectance and atmospheric absorp-

tion. Both of the ice giants, however, have similar albedo distributions. This suggests that

some understanding of the albedo distribution of ice giant analogues can be attained dur-

ing the coming decade. Modeling efforts to understand the composition and appearance

of sub-Neptune type planets are already underway (e.g., Hu et al., 2015). New observato-

ries such as JWST, WFIRST, and ELTs could provide observational tests of these models

- the first through eclipse and transit spectroscopy of warm and hot Neptunes, and the

4http://depts.washington.edu/naivpl/content/vpl-spectral-explorer



74

Table 3.3. List of the Solar System Analogs Used to Simulate Each Planet’s Spectrum

Under Cases 6 and 7

Class Location Assumed model

terrestrial in LWHZ Earth

sub-terrestrial anywhere Mars

terrestrial exterior to LWHZ Mars

terrestrial interior to LWHZ Venus

ice giant anywhere Neptune

Note. — The assumed model for the planet’s spec-

trum depends on its class/size and location with respect

to the liquid water habitable zone, as defined by the run-

away and maximum greenhouse limits.

latter two through direct imaging of ice giants at wide separations.

3.4 Mock surveys: methodology

The LUVOIR team has released a final report (L19) that include estimates for the number

of planets that LUVOIR could detect as a function of planet radius, insolation, and host

spectral type. In this section, we produce a candidate sample based on these estimates,

characterize each planet therein, and report on the efficiency of each strategy outlined

in Table 3.2 for properly identifying exo-Earth candidates. While we rely on the yield

estimates and stellar targets of L19 for our mock survey, we use these only as baseline

estimates for the yield of a generic, hypothetical direct imaging survey; we do not attempt

to reproduce the results of the report or to assess the mission design.
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Figure 3.5: (Top) The set of base models that we use to simulate geometric albedos under
Cases 6 and 7 only, according to the scheme in Table 3.3. (Bottom) The actual range
of simulated spectra for each type of planet as observed in three photometric bandpass
(with wavelength offsets for visibility). We apply moderate differences to each planet’s
spectrum to simulate the underlying physical diversity, but broad differences between the
four groups can still be seen.
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3.4.1 Generating the candidate list

To properly generate a list of planets that could be detected by a coronagraphic imaging

mission requires a careful treatment of the instrument design, survey strategy, and addi-

tional sources of noise (e.g., dust) that is outside of the scope of this work. L19 have

performed such an analysis (following the methodology laid out by Stark et al. (2014)) so

we use their results to generate our candidate list5.

We acquired one of the simulated samples of host stars upon which the LUVOIR-A

yield estimates are based, including masses, luminosities, and distances for 287 stars (C.

Stark, private correspondence). To assign a radius to each star we use a simple scaling

relation (Hansen et al., 2004):

(R∗/R�) = (M∗/M�)0.8

While this simulated list will not be the final target list of LUVOIR-A, it generally

represents the diversity of host star properties that such a survey would encounter. Next,

we use the method outlined in Section 3.2.2 to generate a large sample of planets around

these stars, and draw from that sample at random until the yield estimates for LUVOIR-A

have been satisfied for each bin in spectral type, planet size, and insolation.

To ensure that the planets we simulate are detectable, we also enforce the same sepa-

ration and brightness limits as L19. Namely, we only include targets that are brighter than

a planet-to-star contrast ratio of 2.5× 10−11 and that are detected between 24–440 mas -

approximately the working angles of the proposed LUVOIR-A coronagraph at 500 nm.

The yield estimates of the LUVOIR-A architecture project the discovery of ∼ 450

planets, ∼ 50 of which would be exo-Earth candidates. For our purposes, the actual

number of planets is not relevant - only their relative abundance by size, distance, host

spectral type, etc. - so we improve the accuracy of our results by inflating the yield

estimates unilaterally by a factor of fifty.

5see Figures 3.1 & 3.13 and Tables 8.7 for details on the target list, yield estimates, and instrument

parameters
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3.4.2 Survey cases

We run our mock surveys under seven cases representing the different data that could

available to the observer. A brief description of each can be found in Table 3.2.

3.4.2.1 Case 1: Detection data only

Under Case 1, the planet’s existence is entirely unknown before its direct imaging detec-

tion, and the observer only measures its apparent separation and monochromatic magni-

tude. Following L19, we assume a signal-to-noise ratio of 7. If photon noise is dominant,

the uncertainty on the planet’s centroid position is described by:

σc =
FWHM

SNR

Assuming an effective wavelength of 500 nm, then σc = 3.8, 1.9, and 1.0 mas for the 4-

meter HabEx and 8- or 15-meter LUVOIR architectures. This uncertainty will be further

affected by the pointing stability of the telescope during observations and the wavelengths

at which the planet is observed; to be conservative, we choose σc = 3.8 mas. Finally, we

simulate the planet’s detection by re-drawing its magnitude and apparent separation from

normal distributions with widths defined by these uncertainties.

3.4.2.2 Case 2: Additional radial velocity detection

It has been emphasized that a radial velocity search for nearby Earth twins would be an

important precursor to a space-based direct imaging mission (Dressing et al., 2019), but

the detection of Earth analogs around Solar twins is beyond the reach of current instru-

mentation. Doing so would require a significant investment of time on major observing

resources and new methods to correct for systematic sources of noise such as stellar jitter

(Plavchan et al., 2015).

To investigate the potential benefits of a precursor radial velocity search for interpret-

ing planet detections, in Case 2 we simulate the direct imaging detection of a planet (Case

1) along with a measurement of its orbital parameters and radial velocity semi-amplitude.
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We set a baseline uncertainty of 5 cm/s on the measurement of the radial velocity semi-

amplitude K - this value is chosen to be smaller than the value for an Earth twin (∼ 10

cm/s), but not negligible in comparison. Additionally we allow a conservative 10% un-

certainty on the measurement of the orbital period, and a loose ±30◦ constraint on the

planet’s mean anomaly.

Several planets - including small planets in the LWHZ that could masquerade as exo-

Earths candidates - will have K < 5 cm/s. In these cases we assume the planet is unde-

tected, so no constraints on its orbit are available. An upper limit of 10 cm/s is enforced

so that the non-detection also carries useful information about the planet’s size.

3.4.2.3 Case 3: Constraining the orbital plane using debris disks measurements

It is expected that several nearby systems contain exozodiacal dust disks near their habit-

able zones (Ertel et al., 2018). This dust may be a significant source of background and

confusion noise for future direct imaging surveys and could be a key driver of aperture

size, with larger apertures collecting less background light within their resolution element

(Roberge et al., 2012). However, these disks could also carry useful information about

the orientation of the system that could help to establish a newly detected planet’s orbit,

and would require no additional resources to observe.

Observations of larger protoplanetary disks have yielded tight (better than 1◦) con-

straints on the disk inclination and orientation (e.g., HL Tau, ALMA Partnership et al.,

2015). While the orientation of exozodiacal disks may be harder to constrain if they are

faint or exceed the outer working angle of the coronagraph - and while not all systems

may have substantial disks at all - we here consider the “optimistic” case where every

system has a disk, and the orientation parameters (cos(i) and Ω) can be constrained to

±1%.

In principle, if the orientation of the debris disk can be tightly constrained and the

planet shares exactly its orbital plane with a circular orbit, then a single precise mea-

surement of the planet’s apparent separation could be sufficient to determine its phase

and semi-major axis. However, the orbital inclinations of solar system planets deviate by

up to 5◦ from the Solar spin axis - and larger misalignments could be possible in other
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systems - while several of our simulated planets have eccentric orbits.

We can still infer some information about the planet’s orbit given the orientation of

the disk and some prior knowledge about how misaligned planetary systems tend to be. In

Case 3, we use the orientation of a contemporaneously detected disk as a prior constraint

on the mean orbital plane of the system, but allow for a difference of±0.2 between cos(i)

and the longitude of the ascending node (Ω) of the two components. We then interpret

the observations using the same data as in Case 1, but treating the two dimensions of the

separation vector separately.

3.4.2.4 Cases 4 and 5: Multiple revisits and astrometric mass measurements

Constraining the planet’s orbital parameters will require multiple revisits spaced over

the orbital period, so revisits will likely be folded into the observing strategy of future

direct imaging missions. However, even within the habitable zone there will be numerous

potential false positives for EECs, a fact that may limit the practical benefit of revisiting

every system.

Guimond and Cowan (2019) have shown that ∼ 3 revisits will be sufficient to con-

strain the orbital parameters with better than 10% precision. In Case 4 we assume that

the system has been revisited enough times for the planet’s orbital parameters to be con-

strained with comparable precision. Specifically, we assume that the semi-major axis is

measured to ±10%, the eccentricity to ±0.05, and the orbital phase to ±15◦.

An ancillary benefit of revisiting targets would be the ability to measure the star’s

astrometric motion about the system’s center of mass. Measuring the astrometric semi-

amplitude θ would allow observers to determine the planet’s mass and potentially to iden-

tify which planets are too small or large to be habitable. In Case 5 we assume that, in

addition to the constraints provided in Case 4, the observer can measure θ with a preci-

sion of±0.1 µas. This is the targeted astrometric precision of the High Definition Imager

(HDI) instrument with the LUVOIR-A aperture (L19), and approximately 1/2 of the am-

plitude induced by an Earth twin at a distance of 15 parsecs. If θ< 0.1 µas, an upper limit

of 0.2 µas is enforced instead.
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3.4.2.5 Case 6: Color measurements

Future direct imaging missions could be able to observe simultaneously in multiple band-

passes, in which case measurements of the planets’ colors would be available as soon as

they are detected. Color information could be used for preliminary planet classification;

for example, Batalha et al. (2018) predict that it will be possible to differentiate between

cloudy and cloud-free Jovian planets with reflected light imaging in three filters using

WFIRST or ELTs.

However, color information is only useful for inferring the planet’s properties if we

make a prior assumption about the spectral albedos of extrasolar planets. Some obser-

vational constraints are currently available through eclipse observations of close-in giant

planets, but for smaller planets we can only rely on planets in the solar system and theoret-

ical models of the surfaces and atmospheres of known transiting and RV-detected planets.

It is therefore worthwhile to determine what effect an approximate prior understanding of

spectral albedos would have on the interpretation of direct imaging data.

In Case 6 we simulate planets with spectral albedos reflective of (though not identical

to) solar system analogues; our detailed assumptions are described in Section 3.3.6. Each

planet is observed in a 10% bandpass at the center of three wavelength channels, with

a signal-to-noise ratio weighted by the square root of the bandpass-integrated flux (i.e.,

photon noise). The signal to noise integrated across all three bandpasses is 7, as in Case

1. If S/N < 2 in a given bandpass (typically in the UV or infrared), then a 2σ upper limit

is enforced instead.

3.4.2.6 Case 7: Maximum information

In the final case we consider all of the information that a larger telescope would be able

to acquire on a target after several revisits. These include measurements of the orbital

parameters and astrometric semi-amplitude as well as brightness measurements in three

bands. We assume the same measurement precision and sensitivity limits as in Cases 4

and 5, and we interpret the color information following the method of Case 6.
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3.4.3 Classifying the targets

Once we have constructed a sample of targets and simulated their detection, we classify

them using the inference framework described in Section 3.2. This yields for each planet

the likelihood, according to the observer, that the planet is an EEC or a false positive. In

Figure 3.6 we plot the likelihood that the planet is an EEC for each simulated EEC in the

sample. Since the observer does not know a priori that these planets are EECs, we see

that they cannot make a confident identification upon the planets’ initial detections, but

given additional data or multiple revisits they can identify several EECs with confidence.

We can break down the false positive probability by size and orbit, determining for

each observed EEC the inferred likelihood that it is, for example, a sub-Neptune on an

orbit exterior to the habitable zone. In Figure 3.7 we plot this probability for each combi-

nation of class and orbit averaged over the sample of observed EECs. This plot illuminates

the key sources of ambiguity in classifying EECs. For example, we see that it is difficult

to distinguish between an EEC and a sub-terrestrial planet with a temperate orbit, or a

planet that has the proper size but lies just interior or exterior to the habitable zone.

3.5 Mock surveys: results

3.5.1 Which planets are “false positives”?

Figure 3.7 demonstrates that true EECs share the observable parameter space with a wide

range of planets both within and outside of the LWHZ. These can be broadly separated

into: (i) planets that are too small or large to be habitable, but are yet in the habitable

zone, (ii) planets that are of the proper size to be habitable, but are not in the habitable

zone and (iii) planets that are both of the wrong size and not in the habitable zone. Each

of these categories are approximately equal in their potential to masquerade as EECs.

As we demonstrate in Figure 3.6, the observer will typically be unable to distinguish

between true EECs and their many potential false positives given just the data necessary

for the planet’s detection. Even when a planet that is in fact an EEC is detected, the

observer will only be able to make this determination with < 50% confidence.
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How confidently can we identify exo-Earth candidates in mock
observations?
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Figure 3.6: We simulate the detection of ∼ 2500 EECs around nearby stars, then infer
their properties from the mock data under each of the cases in Table 3.2. Above we plot
the probability - as inferred by an uninformed observer - that each detected planet is an
EEC, as well as the average value (dashed line). In the ideal case, this value would be
100% for all EEC targets, but typically it is smaller because of the limited data available
to the observer. With additional data (Cases 2–7), the observer can be more confident that
the detected planet is an EEC.
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What kinds of planets could be mistaken for exo-Earth candidates?
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Figure 3.7: We simulate the detection of ∼ 2500 EECs around nearby stars, then infer
their properties from the mock data under each of the cases in Table 3.2. Above we
plot the sample-averaged probability - as inferred by an uninformed observer - that the
planet is instead a false positive with a non-habitable class or orbit. Additional data will
suppress the false positive probability - for example, fitting the orbit with finite precision
will reduce the likelihood that the planet is outside of the habitable zone.
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3.5.2 Do constraints on the orbit help to identify EECs?

Since most of the “false positives” are planets outside of the habitable zone, it stands to

reason that measurements that constrain the planet’s orbit would be useful for identifying

EECs. Indeed, if the planet can be independently detected through RV, and its period

constrained with 10% precision, then it can typically be constrained to the habitable zone

with > 80% confidence. However, approximately 25% of EECs remain below our 5 cm/s

detection limit, in which case the orbit cannot be established.

Observing the planet multiple times over an orbital period will help to rule out planets

outside of the habitable zone with similar confidence, assuming 10% uncertainties on

the orbital parameters. Nevertheless, even if a planet can be constrained to the habitable

zone, it may yet be too large or small to be habitable. In general, constraints on the orbit

and phase will only allow the observer to distinguish EECs from temperate sub-terrestrial

planets or ice giants with ∼ 50% confidence.

3.5.3 Do constraints on the mass help to identify EECs?

We find that measurements of the astrometric semi-amplitude θ, when combined with

magnitude measurements, can modestly increase the observer’s ability to identify EECs.

For example, our average confidence for identifying EECs given multiple revisits to deter-

mine the orbit (Case 4) improves by about 18% if we include an astrometric measurement

or upper limit on the planet’s mass (Case 5), and several individual EECs can be identi-

fied with very high confidence. These could be the highest priority targets for deeper

spectroscopic follow-up.

Under Case 2, if both the measured period and radial velocity semi-amplitude K are

used to constrain the planet’s properties then EECs can be identified with an average

confidence of 52%. If the measured value of K is ignored, however, then this confidence

drops to 40%. In other words, the measurement of the planet’s mass affords an extra 12%

confidence that the planet is an EEC.

Constraining the orbit generally reduces the potential for false positives more than

constraining the mass, in part because constraints on the planet’s size are available based
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Does color information help to identify exo-Earth candidates?
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Figure 3.8: We test whether low-to-moderate S/N color measurements would help to
identify EECs, assuming that all planets look approximately like a solar system analog
depending on their class and orbit (Table 3.3 and Figure 3.5). Plotted is the typical in-
ferred probability that the EEC is actually a false positive with a Neptune, Venus, or
Mars-type surface and atmosphere. Without color information (left) it is difficult to dis-
tinguish Earth analogs from smaller or cooler Mars-like planets, or larger Neptune-like
planets. With color information (right), the slope of the optical spectrum provides a useful
discriminant between the Earth and Mars, but does little to reduce the ambiguity due to
larger Neptunes.

on its brightness alone. On the other hand, the relationship between radius, mass, and

composition is more well-understood than the prior distribution of planet albedos (which

almost certainly is not uniform). An inference about the planet’s composition made from

its mass could be more reliable than one made from its apparent magnitude.

3.5.4 Do color measurements help to identify EECs?

In Figure 3.8 we plot the average inferred probability that an EEC is similar to the Earth,

Neptune, Venus, or Mars for Cases 1 (no color) and 6 (color). We find that color infor-

mation is useful for distinguishing between spectra with positive versus negative slopes

between the UV and visible channels. Specifically, adding a color measurement allows

the observer to distinguish between Earth and Martian analogs particularly well - if small

planets in the habitable zone tend to look like Mars, color information will be a valuable

discriminant. According to Figure 3.6, observing the color and constraining the planet’s

orbit could allow the observer to identify most EECs with > 80% confidence.

We choose solar system planets as our templates as they cover a relatively broad range

of insolations and planet sizes, and with the exception of very hot exoplanets they remain
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Figure 3.9: We plot a set of simulated Earth, Neptune, Venus, and Mars analogs in color-
color space - each planet’s spectrum is modified from the solar system model to simulate
physical diversity. We also plot data points from Krissansen-Totton et al. (2016) (Figure
2) who calculate these color ratios for a large diversity of solar system bodies, materials,
and exoplanet models. While we consider fewer base models than these authors, our
simulated planets cover a similar range in color space.
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the only planets for which albedo measurements are presently available. In our set of

models shown in Figure 3.5, the Earth stands out due to its modest scattering slope in

the optical versus a much stronger feature in Neptune’s spectrum, or opposite features

for Venus and Mars. Yet a habitable planet does not need to look like the Earth, and

indeed there is evidence that during the Archean the Earth had a substantially redder

appearance due to organic haze particles (e.g., Arney et al., 2016, 2017). Similarly, the

solar system provides no examples of an Earth-sized planet beyond the habitable zone.

Here we assume such worlds have a Martian appearance, but this is likely inaccurate for

icy worlds or planets with dense atmospheres.

We compare our range of simulated spectra to the models of Krissansen-Totton et al.

(2016), who compute optimal photometric bandpasses to distinguish between several dif-

ferent examples of potential exoplanet reflectance spectra. Their optimized bandpasses

are 431-531 nm ("blue"), 569-693 nm ("green"), and 770-894 nm ("red") - different than

those used in this work. In Figure 3.9 we place our models on a color-color plot similar

to Figure 2 in the cited work, along with a subset of the models considered therein. We

find that our solar system analogs with simulated physical diversity cover a comparable

range in color space, so we believe that we adequately represent a diversity of planet

appearances even though our range of base models is limited.

We stress that this result is sensitive both to our prior assumptions and to the band-

passes in which we choose to observe our targets. More work must be done to understand

the potential diversity of terrestrial planets and to determine which photometric band-

passes are optimal for distinguishing them from EECs (e.g., Krissansen-Totton et al.,

2016). In Section 3.5.9 we discuss how observational constraints on the albedos of poten-

tial false positives could be derived within the coming decade. These new discoveries can

then be folded into our Bayesian framework, and the results of Case 6 suggest that doing

so could allow for the confident distinction between false positives and true EECs on the

basis of color information.
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3.5.5 Can a debris disk be used to constrain the orbital plane?

We find that measuring the orientation of the debris disk provides relatively little informa-

tion about the planet’s orbit. Specifically, we are on average only ∼ 5% more confident

that the observed EECs lie within the habitable zone when we have measured the orien-

tation of the disk. The benefits are slightly greater in cases where the system is observed

from a “pole-on” orientation (|cos(i)|> 0.5), in which case the uncertainty in the centroid

measurement translates to a smaller uncertainty in the semi-major axis versus the “edge-

on” cases (|cos(i)|< 0.5). Nevertheless, unless the centroid precision is much better than

3.8 mas and the observed systems are at least as well-aligned as the planets in the solar

system, measuring the disk orientation will generally not allow an observer to constrain

the orbit without revisits.

3.5.6 Can EECs be identified given maximal photometric information?

In Case 7 we assume that the observer has revisited the system multiple times to constrain

the orbit with three-band photometry and has additionally measured (or placed upper

limits on) the astrometric motion of the star due to the planet. This is the most information

that could be obtained for the typical system without substantial follow-up or precursor

observations, and we find that it would allow the observer to confidently identify most

EECs, with an average confidence of 87%. This suggests a promising roadmap toward

selecting targets for follow-up, but as in Case 6 this result is dependent on the observer’s

prior assumptions about exoplanet reflectance spectra.

3.5.7 Would Bayesian prioritization improve follow-up efficiency?

A practical way to frame our results is in terms of follow-up efficiency. A logical next

step after detecting a directly imaged planet (and optionally constraining its orbit) would

be to search for water absorption in a narrow part of the spectrum to further test its habit-

ability. However, unless a strategy is employed for prioritizing or pruning the target list,

a significant amount of time will be spent “following-up” non-habitable planets. Indeed,

Kawashima and Rugheimer (2019) have shown that 3-10 hours may be required to confi-
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Efficiently surveying planets for spectroscopic H2O absorption
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Figure 3.10: The efficiency of different post-detection follow-up strategies (e.g., to search
for water absorption), quantified as the percentage of all targets that must be followed up
before a given percentage of EECs have been covered; the ordinate is proportional to the
amount of time required for follow-up. The gray line represents ideal survey efficiency,
where no false positives are re-observed. The colored lines represent strategies that make
use of the detection data only (blue) or multiple revisits to establish the orbit (red). The
dashed lines are non-prioritized (blind) approaches that first remove very bright or widely-
separated planets, or planets whose orbits are constrained to be outside of the LWHZ.
The solid lines are prioritized approaches in which we observe the planets that are most
likely to be EECs first. The upper axis estimates the amount of time required to search
each planet’s atmosphere for water absorption, assuming 25 hours of integration time per
target.

dently detect H2O absorption in an exo-Earth atmosphere from 5 parsecs using a 10-meter

telescope. For the typical target observed by the 15-meter LUVOIR-A from 15 parsecs,

approximately ∼ 25 hours may be required.

Our inference framework allows us to prioritize targets based on the likelihood that

they are, in fact, exo-Earth candidates. After probabilistically classifying each observed

target - including both EECs and non-EECs - we prioritize them by the probability that

they are true EECs and submit them for follow-up observations with the most likely can-

didates first. In Figure 3.10 we summarize the efficiency of this prioritization strategy for
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Cases 1 (initial detection only) and 4 (multiple revisits).

We compare our Bayesian approach to two non-prioritized follow-up strategies: first,

removing all targets whose projected separations are wider than the maximum greenhouse

limit, and second, removing all targets that are found to be outside of the habitable zone

after multiple revisits. In both of these cases we also remove targets with a contrast ratio

brighter than 10−8. These separation- and magnitude-based cuts exclude . 6% of bright or

eccentric EECs but several larger or cooler false positives. The remaining targets are then

followed-up blindly. Finally, we plot a line representing a perfectly efficient follow-up

strategy with no false positives.

We find that prioritizing the targets using our Bayesian framework allows us to re-

observe them with a much greater efficiency - using the same data - than a blind approach.

In fact, a prioritized approach using just the detection data is initially as efficient as taking

a blind approach after each planet’s orbit has been characterized. We can discuss these

efficiency gains in terms of integration time. Assuming 450 targets have been discovered

in the initial census and 25 hours of integration time are required to search each planet

for water, the results in Figure 3.10 suggest that probabilistic target prioritization could

reduce the required amount of integration time to follow-up 50% of EECs by 28 days

(if the orbits have been precisely constrained) to 95 days (if only the detection data are

available). Since this prioritization scheme does not require additional data on the system,

it could be naturally folded into the survey strategy of any direct imaging mission.

3.5.8 Is the Bayesian approach always appropriate?

In principle, a Bayesian prioritization scheme should always be superior to a blind follow-

up strategy because it leverages additional information about exoplanet demographics. In

practice, this prior knowledge is always incomplete and potentially inaccurate, which

could make Bayesian prioritization risky in the sense that it might fall prey to unexpected

types of false positives. For example, to produce planets for our mock surveys we use the

yield estimates of L19, which include more sophisticated treatments of the mission design

and a different estimation and extrapolation of Kepler occurrence rates - but then we use

our own algorithm to probabilistically classify each planet. Therefore, the prior assump-
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tions we make when characterizing these simulated planets are not exactly representative

of their true parent distribution, which makes our prioritization less efficient.

Indeed, we see in Figure 3.10 that if the planets’ orbits are known, then the blind

approach to prioritizing targets is more efficient than the Bayesian prioritized approach

for the last ∼ 5% of EECs. However we argue that this is realistic - the observer’s prior

assumptions will always differ from reality to a degree - and we note that our approach is

still efficient despite this mismatch. For this reason we believe Bayesian prioritization will

yield overall better results, but observers might prefer a blind approach for low priority

targets.

3.5.9 What priors can be improved in the coming decades?

The accuracy of our probabilistic classification depends on the extent and accuracy of

existing knowledge of exoplanet statistics. Considering the state of the field ∼ 20 years

ago, it is reasonable to assume that an observer using this method to interpret observa-

tions ∼ 20 years from now will base their judgment on better prior assumptions than are

currently available. Here we speculate on ways in which the prior inputs to our method

could be refined in the coming decades.

3.5.9.1 What is the largest potentially habitable planet?

In our work we assume that planets larger than ∼ 1.6R⊕ will form and maintain volatile

envelopes over Gyr timescales, thereby resembling “mini-Neptunes” more than “super-

Earths”. The most compelling evidence for this comes from density measurements for a

limited sample of small planets (Weiss and Marcy, 2014; Rogers, 2015; Chen and Kip-

ping, 2017) and the gap in Kepler radius occurrence rates near ∼ 1.7R⊕ (Owen and Wu,

2013; Fulton et al., 2017), but the exact value of this transition radius and its dependence

on parameters such as insolation and spectral type requires further research (e.g., Fulton

and Petigura, 2018; MacDonald, 2019; Martinez et al., 2019). In the near future, TESS

(Ricker et al., 2014) will detect hundreds of small planets orbiting bright stars (Sullivan

et al., 2015; Bouma et al., 2017; Barclay et al., 2018; Ballard, 2019). In combination with
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precise radii measurements by CHEOPS (Broeg et al., 2013) and ground-based radial ve-

locity measurements, these discoveries will enhance the sample of 1 − 2R⊕ planets with

measured densities. Later on, PLATO (ESA, 2017) will detect several hundred planets

smaller than 2R⊕ on orbits as wide as the Earth’s, providing statistics for planet radii over

a broader range of insolations than Kepler. Models of atmospheric evolution can be used

to combine these lines of evidence into a more comprehensive understanding of which

planets should have non-habitable volatile envelopes (e.g., Owen and Wu, 2013; Lopez

and Fortney, 2014; Gupta and Schlichting, 2019).

3.5.9.2 What is the period distribution for planets on wide orbits?

This work relies on extrapolation from Kepler occurrence rates for shorter period planets,

but ice giants in the habitable zone and beyond could be a significant source of false posi-

tives for EEC detection. WFIRST could detect hundreds of wide-orbit planets through its

microlensing survey, some with masses lower than the Earth (Barry et al., 2011; Penny

et al., 2019). PLATO will also detect a number of transiting planets on orbits as wide as

the Earth’s (ESA, 2017). Even if these data do not fully probe the relevant range of planet

radii and periods, they may provide enough points for interpolation to accurately predict

the occurrence of terrestrial planets and ice giants within the habitable zone and beyond.

3.5.9.3 What do the spectra of false positives look like?

Our assumed distribution of planet albedos is the least well-vetted prior assumption in

this work, but in Cases 6 and 7 we show that prior knowledge of planet albedos could

greatly enhance survey efficiency. The most promising avenue for constraining planet

albedos in the next decade is through direct imaging of super-Earths and sub-Neptunes

in the habitable zone and on wider orbits with ELTs and WFIRST (e.g., Kasper et al.,

2010; Traub et al., 2016; Savransky and Garrett, 2016; Artigau et al., 2018; Weinberger

et al., 2018; Akeson et al., 2019). These observations would be valuable for determining

the optimum wavelength ranges for discriminating between ice giants and other types of

planets.
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Several authors have shown that post-runaway atmospheres like Venus’ could develop

on extrasolar planets comparable in size to the Earth within the inner edge of the habit-

able zone, which itself depends on the spectral type of the host star and planetary fac-

tors such as mass, rotation rate, and ocean coverage (e.g., Kopparapu et al., 2013, 2014;

Yang et al., 2014; Kodama et al., 2018). Transit spectroscopy with JWST could reveal

the atmospheric composition of a small number of terrestrial planets within the runaway

greenhouse limit of low-mass stars (Lustig-Yaeger et al., 2019b). While not directly mea-

suring the albedo, these observations could reveal whether Venus analogs are common,

and modeling efforts could reconstruct their likely appearance in reflected light.

3.5.9.4 Testing priors against new data

Finally, it will be possible for observers to validate their priors during the course of the

direct imaging survey. As a simple example, if more faint planets are discovered than

predicted under the assumed priors, then it is likely that either the occurrence rates under-

predict at small radii or there are more low-albedo planets than are present in the solar

system. This information could then be forwarded into a probabilistic analysis of which

planets are most likely to be Earth-like before substantial time is committed for follow-up

observations.

3.6 Conclusions

We have developed a Bayesian framework with which to infer the properties of a di-

rectly imaged planet on the basis of limited photometric data, with the primary goal of

identifying exo-Earth candidates for deeper spectroscopic follow-up. This framework is

dependent on a multitude of priors drawn from observed exoplanet statistics and a few

theoretical models. We use it to characterize the ability of future direct imaging missions

to identify potentially habitable planets upon their initial detection using only photome-

try. We determine the key ambiguities involved in this determination and explore potential

solutions, such as constraining the orbit through multiple revisits.

Assuming a uniform prior on a monochromatic albedo, we have found that the detec-
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tion data alone is not sufficient to determine whether the planet has a potentially habitable

size or orbit. In the best cases, a few exo-Earth candidates could be identified with∼ 50%

confidence, but the average EEC would only be identified with ∼ 25% confidence. This

translates to a potential false discovery rate of ∼ 75%, consistent with previous results

(Guimond and Cowan, 2018).

Constraints on the planet’s orbit could be achieved through a precursor RV survey or

by revisiting the system multiple times. This would allow the observer to constrain the

planet to the habitable zone with confidence, but would not eliminate the problem of false

positives posed by very small or large planets in the habitable zone. A mass measurement

could be somewhat useful for ruling these false positives out, but would by no means be

definitive. By revisiting a system multiple times to establish its orbit and measuring the

mass astrometrically, an observer could still only distinguish EECs from false positives

with a typical confidence of∼ 65% - but could also identify several individual EECs with

high confidence (>90%).

The use of color information to discriminate between EECs and false positives could

dramatically reduce these ambiguities, but requires that prior assumptions be made about

the possible appearance of planets (e.g., as a function of their size and insolation). While

current data and models do not allow such prior assumptions, in principle this could

change over the next decade. In our example, we find that by revisiting a planet to es-

tablish its orbit and measuring its brightness in three bands, the strong majority of EECs

could be identified with confidence.

Even though we are not always able to confidently identify EECs using our method,

we show that a target prioritization strategy that leverages a Bayesian approach will be

more efficient than a non-probabilistic approach with the same data. Such an approach

could reduce the time required for preliminary spectroscopic follow-up by a factor of two.

Our confidence in these results is dependent on our confidence in the priors we have

chosen to use, and some of these - such as the radius and semi-major axis distribution of

temperate planets around G dwarfs - are based on extrapolation. Many could be improved

in the coming decade - such as the relationship between planet radius, mass, and bulk

composition through transit and radial velocity observations and advances in planet for-
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mation theory, or the reflected spectra of hot and cold sub-Neptunes with JWST, WFIRST,

and ELTs. Near-term efforts to improve our prior knowledge will enable future observers

to more efficiently survey nearby systems in search of potentially habitable worlds.
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CHAPTER 4

ACCESS: Ground-based Optical Transmission Spectroscopy of the Hot Jupiter

WASP-4b

This chapter has been published as Bixel et al. (2019) and is reproduced here with per-

mission.

Abstract

We present an optical transmission spectrum of the atmosphere of WASP-4b obtained

through observations of four transits with Magellan/IMACS. Using a Bayesian approach

to atmospheric retrieval, we find no evidence for scattering or absorption features in our

transit spectrum. Our models include a component to model the transit light source effect

(spectral contamination from unocculted spots on the stellar photosphere), which we show

can have a marked impact on the observed transmission spectrum for reasonable spot

covering fractions (< 5%); this is the first such analysis for WASP-4b. We are also able

to fit for the size and temperature contrast of spots observed during the second and third

transits, finding evidence for both small, cool and large, warm spot-like features on the

photosphere. Finally, we compare our results to those published by Huitson et al. (2017)

using Gemini/GMOS and May et al. (2018) using IMACS, and find that our data are in

agreement.
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4.1 Introduction

WASP-4b is a 1.4RJ hot Jupiter orbiting a G7V star with a period of 1.34 d, equilibrium

temperature of ∼ 1700 K, and transit depth (Rp/Rs)2 = 2.4% (Wilson et al., 2008). It

has been observed in transit over three dozen times, offering strong constraints on its

orbit (Hoyer et al., 2013), the spot activity and relative rotation of its host star (Sanchis-

Ojeda et al., 2011), and also placing upper limits on its transit timing variation amplitude

(Nikolov et al., 2012).

Beerer et al. (2011) used Spitzer to observe the planet’s secondary eclipse and place

constraints on the temperature profile of its atmosphere, and they conclude that the ev-

idence is consistent with either a weak temperature inversion or none at all. However,

even stronger detections of thermal inversions using Spitzer have later been called into

question (e.g., HD 209458b, Diamond-Lowe et al., 2014). The evidence for an inversion

therefore remains marginal, leaving us with little insight about the composition of the

planet’s upper atmosphere.

Given the tight constraints on its transit depth and orbital properties, WASP-4b is a

natural target for spectroscopic transit observations. Transit spectroscopy can be used to

constrain the composition and structure of the planet’s upper atmosphere and test for the

presence of clouds, scattering hazes, and atomic or molecular absorbers (e.g., Seager and

Sasselov, 2000; Brown, 2001; Hubbard et al., 2001). These observations also offer insight

into the stellar photosphere, i.e., through the measurement of star spot temperatures within

the transit chord (e.g., Pont et al., 2008; Sing et al., 2011; Béky et al., 2014). However,

signals from the photosphere can be degenerate with those from the planet’s atmosphere,

leading to contrasting interpretations of planetary and stellar origins for features in optical

transmission spectra (e.g., Pont et al., 2013; McCullough et al., 2014). It is therefore

critical to demonstrate methods for accounting for this degeneracy as the field moves

toward smaller targets and increasingly precise observations (e.g., Rackham et al., 2018).

Transit spectroscopy of WASP-4b has been attempted with HST/WFC3 (Ranjan et al.,

2014), but was unsuccessful due to detector saturation. A Gemini/GMOS optical trans-

mission spectrum of WASP-4b has been published by Huitson et al. (2017), who mea-
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sure a nearly uniform opacity from 440-940 nm, suggesting the presence of high-altitude

clouds and a possible sodium absorption feature. More recently, May et al. (2018) have

published a transmission spectrum using Magellan/IMACS, and have similarly found no

evidence for spectral features.

As part of the Arizona-CfA-Católica-Carnegie Exoplanet Spectroscopy Survey (AC-

CESS, Rackham et al., 2017), we have observed four transits of WASP-4b with Magel-

lan/IMACS. We have previously demonstrated the use of this instrument for transit spec-

troscopy using our custom data reduction pipeline (Jordán et al., 2013; Rackham et al.,

2017; Espinoza et al., 2019). In this paper, we present an optical transmission spectrum

from 450-900 nm. We interpret our results using a Bayesian retrieval code introduced in

Espinoza et al. (2019) and find no evidence for scattering or absorption features. We also

fit for the size and temperature of photosphere features occulted during the second and

third transits, and derive corrections for their effects on the transit spectrum. Finally, we

compare our findings with those of Huitson et al. (2017) and May et al. (2018).

4.2 Observations

We conducted spectroscopic observations of WASP-4 on the nights of 24 September 2013,

17 October 2013, 14 August 2015, and 26 September 2015 (hereafter Transits 1–4) using

the Inamori-Magellan Areal Camera & Spectrograph (IMACS, Dressler et al., 2011) on

the 6.5m Magellan-Baade telescope at Las Campanas Observatory in Chile. We observed

using multi-slit masks in the f/2 mode with 2x2 binning (0.4"/px). Observations of HeN-

eAr and quartz calibration lamps before and after the observations allowed for wavelength

calibration and flat-field correction. The key parameters of our observations are listed in

Table 4.1.

4.2.1 24 September 2013, 17 October 2013, and 14 August 2015

On the first three nights we used a setup consisting of a 400–1000 nm spectroscopic filter,

a 300 lines/mm grism with a blaze angle of 17.5 degrees, and 10" wide by 20" long

spectral slits for the target and reference stars. Twelve reference stars were observed,
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although only one was used in the final data reduction for reasons discussed in Section

4.3.3. Most of the stellar spectra were dispersed across two chips. While the lunar sky

background was minimal on the first and third nights, it was substantial during the second,

and we take this into account in our data reduction pipeline. Finally, the observations on

24 September 2013 (Transit 1) did not commence until shortly after ingress, so we were

only able to observe a partial transit.

4.2.2 26 September 2015

Our instrument setup for the fourth observation was modified from the previous three.

We used a 570–980 nm order-blocking filter for the purpose of eliminating higher-order

interference towards red wavelengths, 10" wide by 10" long slits, and a 150 lines/mm

grism with a blaze angle of 18.8 degrees. This setup allowed for more tightly dispersed

spectra that fall on a single chip, thereby reducing detector-to-detector variations in the

spectra and avoiding chip gaps. The moon was in full phase and separated from the target

by 40 degrees, contributing significantly to the ambient sky background, which we again

account for in our data reduction pipeline.
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Table 4.1. Instrument Setup and Transit Model Characteristics for Each Observation

Transit Date (start of night) Filter Grism (l/mm) Airmass Rp/Rs (white light) Scatter / Photon noise

1 24 September 2013 Spectroscopic f/2 300 < 1.3 0.1528+0.0012
−0.0011 4.9

2 17 October 2013 . . . . . . < 1.1 0.1537+0.0008
−0.0007 7.8

3 14 August 2015 . . . . . . < 1.7 0.1544+0.0002
−0.0002 2.9

4 26 September 2015 WBP 5694-9819 150 < 1.2 0.1565+0.0004
−0.0005 6.2

Note. — All four observations made use of the IMACS f/2 camera with multi-slit masks. The ratio in column 7 factors in

the brightness of the target and single reference star, but not the sky background.
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4.3 Data reduction

We reduce the raw data using our custom Python-based pipeline, which has been used

for similar observations of WASP-6b (Jordán et al., 2013), GJ 1214b (Rackham et al.,

2017), and WASP-19b (Espinoza et al., 2019). In the following paragraphs, we give a

brief overview of the pipeline functions. A more detailed review can be found in Jordán

et al. (2013) and Rackham et al. (2017); the only more recent addition to the pipeline is

the correction for the non-uniform sky background described in Section 4.3.1.

We use quartz lamp images taken with the same configuration as the science images

to apply a flat-field correction, and we calculate the bias offset from the overscan region

of each chip. We use full-frame flats taken without a mask or grism to identify bad

pixels, and we identify cosmic rays on the stellar spectra using a 3σ threshold at each row

along the direction of spectral dispersion. To trace the stellar spectra, we calculate the

centroid in each row along the dispersion direction and fit a second-order polynomial to

the centroid values. For Transits 1 and 2, we assume the background is uniform in the

spatial direction, measure it using the outermost 14 px in each row along the dispersion

direction, and subtract. For Transits 3 and 4, the background is not spatially uniform, so

we subtract it using the method outlined in Section 4.3.1. Finally, to extract the spectra

we use the optimal extraction algorithm outlined by Marsh (1989), which involves fitting

a third-order polynomial to the spectral profile at each row along the dispersion direction,

then using that profile to weight each pixel when summing the flux.

We use HeNeAr arc lamp exposures taken before and after the transit observations

to calculate the wavelength solutions for each star, which convert the pixel coordinates

along the dispersion direction to wavelength values. We manually identify prominent

emission lines and use a sixth-order polynomial to fit the wavelength solution; given the

large number of lines used, the danger of over-fitting is minimal. The marked lines are

iteratively rejected based on their residuals to the fit until the residuals are below ∼ 0.05

Å.

Our spectra drift in the dispersion direction over the course of the night, resulting

in frame-to-frame offsets in the wavelength solution. To solve this, we cross-correlate
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the first spectrum of a star with each of the subsequent spectra to determine the shift in

wavelength, then fit a third-order polynomial to this shift as a function of time and use it

to correct the wavelength solution in each frame.

The output of the pipeline is a set of reduced wavelength-binned and integrated

(“white”) light curves for the target and reference stars.

4.3.1 Non-uniform sky background

In some of our IMACS data sets for this and other ACCESS targets, we have noticed

that spatially uniform sources of light inherit a non-uniform profile in the spatial direction

once the mask and dispersive element are in place. This effect also widens the spectra

of point sources. We have attributed this to internal scattering within the instrument, and

have found that it is more common in newer images: of the four data sets for WASP-4,

only Transits 3 and 4 are affected. We measure the extent of the effect using our flat

field images, finding that the profile of spatially uniform light peaks at the slit center and

appears∼ 10% fainter at the slit edges. Unless we account for this, we will underestimate

the sky background when we extract the stellar spectra.

For the two affected data sets, we use quartz lamp exposures taken at the beginning

of the night to model the scattered light profile. The peaked profiles are not consistent

with common symmetrical functions (e.g., Gaussian), nor are they well-described by a

classical high-order polynomial, because high-order polynomials commonly fail at the

edges of their fitted intervals (an effect known as Runge’s phenomenon). Instead, we use

Chebyshev polynomials, which are not as susceptible to this effect, and find that sixth-

order polynomials are sufficient to match the data.

The polynomials are fitted independently for every row along the dispersion direction

of every slit in the flat field images. Then, in each science image we fit the amplitudes of

the polynomials using the background level in the outermost 14 px in each row along the

dispersion direction (8 px for Transit 4 due to shorter slits). Finally, we subtract the fitted

polynomial from each row.
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4.3.2 Flat field correction

Applying the flat-field correction for Transits 1, 3, or 4 does not significantly change

our binned light curves, or the transit spectra that we derive in Section 4.4. However,

applying the correction for Transit 2 introduces ∼ 2%-level, non-linear time-dependent

trends into out-of-transit baseline flux of the binned light curves blueward of 530 nm.

These trends remain even when normalizing by the reference star as discussed in the

following. Therefore, for consistency, we choose not to apply the flat-field correction to

any of our data sets.

4.3.3 Reference star selection

The shape of the target’s light curve is complicated by instrumental and atmospheric

effects, such as changes in airmass or transparency. To calibrate out these effects, we

simultaneously observed 12 reference stars of comparable optical apparent magnitudes

and color ratios using multi-slit masks. Of these, two spectra reached the saturation limit

of the detector and were not usable.

We use our highest quality data set (Transit 3) to determine which of the ten remaining

reference stars to use in our light curve analysis. Our primary consideration is the shape of

the out-of-transit baseline for the target light curve when normalized by each star. Eight

of the stars leave residual long-term trends at the∼ 1% level. Two stars leave trends at the

∼ 0.1% level, and they happen to be the only two stars occupying the same pair of detector

chips as the target. The point-to-point scatters of the baseline points for the two resulting

light curves are 0.4 and 0.6 mmag, which are both smaller than the scatters for the eight

light curves with larger long-term trends; we therefore further restrict our set of potential

reference stars to these two. We perform a similar analysis of the two remaining stars

using our three other data sets, and discover that one of the two stars reliably produces a

flat baseline, while the other star introduces trends at the ∼ 0.5 − 1% level. Therefore, we

discard this star as well.

We are left with a single reference star, 2MASS J23341836-4204509, that reliably

produces a flat out-of-transit baseline with a low point-to-point scatter in all of our data
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sets. We note that this reference star was also used in a similar analysis by Huitson et al.

(2017). The spectral type of the reference star has not been previously published, but

using parallax measurements from Gaia DR2 (Gaia Collaboration, 2018) we calculate

that it is intrinsically brighter than the target by ∼ 80% from 400 - 1000 nm. While this

wavelength range does not capture all of the emitted light, it does cover the emission peak

for late F and all G stars. Using a simple L∗∝M3.5
∗ scaling relation, and assuming that our

wavelength range covers most of the emitted light, this suggests that the reference star is

∼ 20% more massive than the G7V, 0.85 M� target (Gillon et al., 2009), consistent with

an early G or late F dwarf.

4.3.4 Effects of atmospheric dispersion

Magellan-Baade is equipped with an atmospheric dispersion compensator (ADC), which

corrects for the effects of differential atmospheric refraction as the airmass of our target

changes over the course of the night. If left uncorrected, differential refraction would

affect our stellar wavelength solutions in a non-linear manner, “stretching” or “shrinking”

the spectra over the course of the night. We test the accuracy of the ADC correction by

measuring the distance in calibrated wavelength space between Na and Hα in the target

and reference spectra as a function of time, which we calculate to vary by no more than 1

Å over the course of the night. Furthermore, the difference between the measured distance

for the target and reference stellar spectra changes by no more than 0.5 Å, and less than

0.1 Å on nights with higher quality data. Since the long-term change in this measurement

is much lower than the frame-to-frame scatter (up to 5 Å), we reason that any effect on

the measured transit depth will be negligible.

4.3.5 Observing efficiency

During Transits 1 and 2, we opted for longer, low-noise readout modes and short exposure

times to avoid detector non-linearity. As a result, we spent only ∼ 20% of our time

gathering light. By comparison, we achieved an efficiency of ∼ 70% and ∼ 50% during

Transits 3 and 4, respectively, as we chose the fastest readout mode and took longer
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exposures. The difference in read noise between the fastest (5.6 e-) and slowest (2.8 e-)

modes is negligible compared to the Poisson noise (>100 e-), and as we show in Section

4.3.8, the detector is sufficiently linear for our purposes provided the pixel values remain

near or below half-well.

Based on this experience, we advise that observers prioritize longer exposure times

with fast readouts for transit spectroscopy with IMACS.

4.3.6 Sky background

Transits 2 and 4 suffer from high sky background values due to the target’s proximity

to the full-phase moon. The effects can be measured by comparing the scatter of the

residuals in Figure 4.2. Scaled for exposure time, the magnitudes of the scatter for Transits

1 and 3 agree to within 15%, while the scatter of Transit 2 is ∼ 50% larger. The scatter

of Transit 4 is similarly ∼ 50% larger, although Transit 4 was observed in a redder filter

with less sky contamination.

4.3.7 Slit losses

We consider whether slit losses may have been significant during our observations. For

Transits 1-3, the slits were 10" wide and 20" long, while for Transit 4 the slits were

10" wide and 10" long. We perform a least-squares fit of a Moffat profile to the point

spread function of a bright but unsaturated star in each of the field acquisition images,

then integrate to determine how much light would lie outside of the slit if placed over the

star. For every night, the fraction of light lost is more than an order of magnitude lower

than the Poisson noise.

4.3.8 Detector linearity

We observed Transits 3 and 4 with longer integration times to reduce the relative readout

overhead and improve our signal-to-noise ratios. However, this increased the maximum

pixel values of the target spectrum from ∼ 15,000 to ∼ 30,000 ADU, nearly half of

the full well value (∼ 65,000 ADU). This raises the question of whether the detector’s
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response could have become non-linear (i.e. the gain was not uniform over the range of

pixel values), which could bias the mean-subtracted transit spectra which we extract later

in Section 4.4.

In principle, non-linearity should not be an issue for measuring the relatively small

changes in transit depth from bin to bin, as the gain should not be expected to change

over the small range of changing values. However, the pixel values at the peak of the

target spectrum varied by up 15% from frame to frame and 40% over the course of each

night, due mostly to seeing variations that changed the point spread function. Therefore it

is worthwhile to determine the threshold beyond which non-linearity could significantly

affect our results.

To do so, we modify the raw data for Transit 3 to reflect a 0.1% or 1% linear increase

in the gain over the range of 0-35,000 ADU. We then reduce the modified data and extract

the mean-subtracted transit spectra for both gain prescriptions, which we plot alongside

the original spectrum in Figure 4.1. We find an average effect of 0.07σ per bin for a 0.1%

increase in gain, and 0.23σ per bin for a 1% increase.

So long as the detector is linear to 0.1% from zero to half-well, non-linear effects

should have a negligible impact on our results. Even in the case of 1% non-linearity, the

effect is� 1σ except in a few bins. We are therefore confident that our results are robust

to realistic levels of non-linearity, and we advise that future observers target a similar

range of peak pixel values (∼ 35,000 ADU) so as to optimally balance observational

efficiency and detector linearity.

4.4 Light curve modeling

We model our integrated and spectroscopic light curves using the analytic models in-

troduced by Mandel and Agol (2002), and marginalize over the parameter space with a

Markov-Chain Monte Carlo (MCMC) algorithm previously detailed in Rackham et al.

(2017). As in previous works, we fit for the limb-darkening coefficients in order to ac-

count for any biases that might arise due to our imperfect knowledge of the intensity

profile of the photosphere (Espinoza and Jordán, 2015). As WASP-4b has been studied
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Figure 4.1: The mean-subtracted transit spectrum of Transit 3 with different gain mod-
ifications. We calculate and apply a gain enhancement to each pixel in the raw data,
assuming the gain increases linearly by 0%, 0.1%, or 1% from 0-35,000 ADU. Provided
the detector is linear to < 1% over this range, the mean-subtracted transit spectrum is
largely unaffected.
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extensively through photometric observations, we hold the orbital parameters fixed to the

mean values in Table 4.2.

The fitted parameters for the transit model include the planet-to-star radius ratio

(Rp/Rs), two parameters for a quadratic limb-darkening law, which are sampled accord-

ing to the method detailed in Kipping (2013a), and the mid-transit time. The baseline

flux is modeled as a second-order polynomial; this decision is discussed in more detail in

Section 4.4.4.

We use the likelihood function of Carter and Winn (2009), Equation 41, in which the

noise in the light curve is parameterized by two free noise parameters, σw and σr. σw

describes the amplitude of uncorrelated (“white”) sources of noise (e.g. photon noise),

while σr describes the amplitude of the correlated (“red”) noise, which is modeled as a

superposition of time-localized oscillating signals known as wavelets. The power spectral

density of the red noise is modeled as S( f )∝ 1/ f γ; following the authors’ example, we set

γ = 1. We calculate the wavelet functions and likelihoods using our own Python module1.

We first fit a model to the white light curve of each transit to determine the mid-transit

time, then fit each binned light curve independently with the mid-transit time fixed. The

fitted white light curves for each night are shown in Figure 4.2, and the fitted binned light

curves are presented in Appendix Figures A.1 through A.4.

Note that two of the transits exhibit spot-crossing features that have been excluded

from the fit. To determine which data points to exclude, we first conservatively remove

data near the spot and fit a model to the white light curve, then fit a one-dimensional

Gaussian model to the shape of the spot in the residuals, and finally exclude only those

data points that lie within two standard deviations of the fitted mean. For a more detailed

analysis of these spot features, see Section 4.5.

The primary output of our fitting routine is a transmission spectrum for 19 indepen-

dently fitted continuum bins, each approximately 20 nm in width, and three narrower

bins centered on possible absorption features, including Na D, Hα, and the K I doublet

(767/770 nm). We select the bin width to be as small as possible while maintaining

signal-to-noise ratios of at least a few hundred in each bin and data set. We attempt to

1https://github.com/nespinoza/flicker-noise

https://github.com/nespinoza/flicker-noise
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keep the bin sizes consistent across the spectrum, but some bins have been adjusted to

accommodate the three narrow bins and two chip gaps. The spectra for each transit are

presented in Figure 4.3, covering wavelengths from 450–900 nm in the first three nights,

and 570–900 nm for the fourth night. We have no data from 790-805 nm and 835-850 nm

as these correspond to the location of the detector chip gaps in the target and reference

star spectra.

4.4.1 Combining data from separate nights

The average values of Rp/Rs in the spectrum of Transits 1-3 agree to within 1.5σ, but

Transit 4 disagrees at the ∼ 5σ level. This mirrors the deviation in the fitted orbital

parameters for Transit 4 discussed in Section 4.4.3, and the causes are likely the same.

Regardless of the reason for this disagreement, we are primarily interested in the

change in Rp/Rs with wavelength. We subtract the weighted mean Rp/Rs from the in-

dividual spectra for Transits 2-4, then calculate the average values of ∆Rp/Rs in each

bin, weighted by the uncertainties for each night. The combined transmission spectrum

is presented in Figure 4.4.

Due to the large uncertainties and incomplete baseline coverage for Transit 1, we do

not include its spectrum in the combined result; see Section 4.4.6. We also correct the

spectrum of Transit 3 for known stellar contamination before incorporating it into the

combined spectrum, as detailed in Section 4.4.7.

4.4.2 Excluded bins

Two of the fitted bins have been excluded from our primary figures and results: the 450-

470 nm bin of Transit 2, and the 875-900 nm bin of Transit 4. The values for both bins

deviate by > 3σ from the average value of their respective spectra, and both bins are at the

low S/N ends of the stellar spectrum. For reference, these bins are included in Appendix

Figures A.2 and A.4 and Table A.1.

The 450-470 nm bin of Transit 2 lies ∼ 3σ below the average value of the spectrum;

we can think of no astrophysical explanation for this effect. Furthermore, the likelihood
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Table 4.2. Relevant Previously Measured Properties of WASP-4 and Its Companion,

With 1σ Uncertainties

Parameter Value Reference

WASP-4

Rs (R�) 0.873+0.036
−0.027 Gillon et al. (2009)

Ms (M�) 0.85+0.11
−0.07 . . .

[Fe/H] −0.03+0.09
−0.09 . . .

log(g) (cgs) 4.487+0.019
−0.015 . . .

Ts (K) 5540+55
−55 Maxted et al. (2011)

WASP-4b

P (d) 1.33823204 Hoyer et al. (2013)

Rp/Rs 0.15445+0.00025
−0.00025 . . .

i (deg) 88.52+0.39
−0.26 . . .

a/Rs 5.463+0.025
−0.020 . . .

e ≈ 0 Beerer et al. (2011)

Rp (RJ) 1.395+0.022
−0.022 Hoyer et al. (2013)

Mp (MJ) 1.237+0.021
−0.021 Winn et al. (2009)

of a statistical 3σ outlier across all of our 82 bins is ∼ 0.3%. Most likely, our polynomial

model is inadequate to describe the low S/N systematic trends in this bin.

The 875-900 nm bin of Transit 4 lies ∼ 4σ above the weighted mean. While this

wavelength range does correspond with water absorption, such an offset is not observed

in the other spectra. Furthermore, the value of this bin depends strongly on whether a

linear or quadratic polynomial is used to model the statistics, as discussed in Section

4.4.4. Again, it seems most likely that our systematics model is inadequate for this low

S/N bin.
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4.4.3 Fitting orbital parameters

We also use our MCMC code to simultaneously fit for the transit depth, the inclination

(i) and the semi-major axis (a/Rs), while keeping the eccentricity and period fixed. The

results of these fits are listed in Table 4.3. The parameters from Transits 1-3 are generally

consistent with those measured by Hoyer et al. (2013), although the values from the partial

Transit 1 are poorly constrained.

The parameters from Transit 4 deviate 2 − 3σ from the previously measured values.

It is not clear why this is the case. Stellar variability may be a partial contributor; as

discussed in Section 4.6.2, WASP-4 is variable at the 6 mmag level, and this can lead to

changes in the apparent transit depth. The deviation may also be related to losses due to

the shorter slits employed during Transit 4, as discussed in Section 4.3.7.

Due to this this large deviation, we also try fitting the spectrum of Transit 4 by fixing

the inclination and semi-major axis to the fitted values, rather than those in the literature.

The result is only a � 1σ change in the binned values for ∆Rp/Rs, so we believe the

spectrum for this night is robust despite the disagreement in the orbital parameters. For

consistency with the other data sets, we keep the parameters fixed to the literature values

in the remaining sections.

4.4.4 Systematics model

We find that the trends that remain in the target light curves after dividing by the reference

star light curves correlate with airmass, which tends to reach its minimum near the center

of the transit. Nevertheless, no physically motivated (e.g., exponential) function of air-

mass is able to describe this trend better than a simple second-order polynomial in time,

so we opt to use time-dependent polynomials to characterize our long-term systematics.

The long-term trends in many of our binned light curves cannot be adequately de-

scribed by a linear polynomial in time, so we use a quadratic polynomial instead. In

principle, any degeneracy between the transit depth and the polynomial value should be

incorporated into our MCMC uncertainties. To measure the impact of the model choice

on our results, we apply both linear and quadratic systematics models and compare the
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Figure 4.2: White light curves with transit models and residuals (1σ values marked). Two
of the light curves featured spot-crossing events (blue) that are not included in the fit. The
long-term trend is modeled by a second-order polynomial.
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Figure 4.3: Transmission spectra from each night, with no corrections or offsets applied.
The dashed lines and shaded regions represent weighted average values with ±1σ uncer-
tainties. The wavelengths of potential atomic features are highlighted.
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Table 4.3. Fitted Orbital Parameters When Modeling the Planet Radius, Inclination,

and Semimajor Axis Jointly

Rp/Rs a/Rs i (deg)

Hoyer+13 0.15445+0.00025
−0.00025 5.463+0.025

−0.020 88.52+0.39
−0.26

Transit 1 0.15386+0.00135
−0.00174 5.386+0.088

−0.157 89.33+0.47
−0.73

Transit 2 0.15617+0.00164
−0.00167 5.439+0.070

−0.092 87.90+1.24
−0.85

Transit 3 0.15388+0.00045
−0.00047 5.473+0.021

−0.038 88.94+0.53
−0.52

Transit 4 0.15654+0.00067
−0.00065 5.520+0.026

−0.030 89.46+0.37
−0.60

Note. — For comparison we include the values de-

rived by Hoyer et al. (2013).

values of ∆Rp/Rs for each.

For Transits 1-3, the average absolute change in ∆Rp/Rs between the linear and

quadratic models is approximately 0.5σ per bin, and no larger than 1.6σ in any bin. For

Transit 4 the average change is approximately 1.5σ per bin, but the reddest bin (which

has the lowest S/N) changes at the 3σ level. Due to this large inconsistency between

systematics models, we exclude the reddest bin from our results.

Some authors use the residuals to their white light curve models to calibrate out com-

mon (i.e., wavelength-independent) systematics from each bin (e.g., Sing et al., 2013;

Nikolov et al., 2015; Huitson et al., 2017). In our case we find that such a correction

is unwarranted. By eye, it is not apparent that our binned light curves share any com-

mon systematics (see Figures A.1-A.4 in the Appendix). Furthermore, when we apply

the common mode correction, we find that the impact on the resulting transit spectra is

negligible compared to the uncertainties.
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Figure 4.4: Combined transmission spectrum from Transits 2-4, with the weighted aver-
age value subtracted from each night. Narrow bins centered on potential atomic features
are highlighted, and the remaining (continuum) bins are black. The spectrum of Transit
3 is corrected for the effect of an occulted spot as described in Section 4.4.7 before it is
incorporated into the combined result. Transit 1 is excluded due to poor phase coverage.

4.4.5 Red noise

As discussed in Section 4.4, we fit a parameter σr to characterize the level of correlated

(“red”) noise in our data. While the ratios in Table 4.1 suggest a large amount of system-

atic noise, this does not necessarily imply correlated noise; the systematic noise may still

be captured by the white noise parameter.

To assess the level of red noise in our data, we construct Lomb-Scargle periodograms

of the residuals to each binned light curve model, then use bootstrap resampling to cal-

culate the false alarm probability (FAP; e.g., VanderPlas, 2018) for signals with periods

between the exposure times and the duration of our observations. Figure 4.5 shows an

example periodogram for one of the bins of Transit 3. We find that only 6 out of 82

binned light curves possess signals with FAP < 10%, and only 2 have FAP < 1%. This

suggests that there are few strong periodic signals in our light curves. Nevertheless, we



116

80 120 250 104

Period (s)
0.0

0.1

0.2

Po
we

r

1% FAP

10% FAP

Figure 4.5: Lomb-Scargle periodogram of the residuals to the light curve model for the
610-630 nm bin of Transit 3. The lack of strong signals demonstrates that this light curve
does not have strong periodic correlated noise across this range of frequencies.

conservatively choose to apply the red noise parameterization, which results in a ∼ 15%

increase in our uncertainties.

4.4.6 Effects of incomplete phase coverage

The light curves of Transits 1-3 all suffer from a partial lack of phase coverage, due ei-

ther to poor weather, observing window constraints, or spot-crossing events that must be

masked in the model fit. In principle, our MCMC approach to fitting the model should

adequately incorporate this lack of information into the uncertainties on Rp/Rs. How-

ever, it is worthwhile to estimate the extent to which this missing information inflates our

uncertainties.

The full light curve of Transit 4 allows us to investigate the effects of poor phase

coverage in the previous three transits. Specifically, we remove data points from the

binned light curves of Transit 4 to mimic the phase coverage of Transits 1-3, then fit for

the transit depth and calculate the resulting increase in the uncertainties on the binned

values of Rp/Rs. Our results are summarized as follows:
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• Mock Transit 1: We remove the pre-ingress baseline and most of the first half of the

transit. This results in a 150% increase in uncertainties, as well as a 4.5σ decrease

in the wavelength-averaged radius. The ∆Rp/Rs values change at the > 1σ level,

and the change appears to be wavelength dependent, introducing a slope on the

order of ∼ 1σ from blue to red.

• Mock Transit 2: We remove the points near mid-transit that correspond to a spot-

crossing event. This results in a 50% increase in uncertainties, and a 0.5σ decrease

in the average radius. The ∆Rp/Rs values change at the . 0.2σ level.

• Mock Transit 3: First, we remove most of the post-egress baseline, which results in

a 50% increase in uncertainties with no considerable change in the average radius,

and . 0.5σ changes in ∆Rp/Rs. Next, we exclude only those points that correspond

to the spot crossing event in Transit 3, finding effects of similar magnitude. Remov-

ing both portions of the light curve, however, does not increase the uncertainties any

further.

The results for Transit 1 lead to concerns over whether the lack of a pre-ingress base-

line could introduce a bias into the shape of our transit spectrum. Furthermore, the large

uncertainties mean that this transit contributes little to the combined spectrum. We there-

fore opt to exclude the spectrum of Transit 1 from the combined result.

Meanwhile, the results for Transits 2 and 3 suggest that little bias has been introduced

into the transit spectrum due to the lack of phase coverage in each, while the uncertainties

on ∆Rp/Rs should be larger by ∼ 50% than they would be given full phase coverage.

4.4.7 Correcting for occulted spots

The light curves of Transits 2 and 3 feature prominent spot occultation features that we

exclude from the light curve model fit. While doing so allows us to fit the apparent transit

depth without simultaneously modeling the spot, it does not eliminate the impact of the

occulted spot on the resulting transit spectrum. Since the spot is cooler than the rest of the

photosphere, it breaks the transit model’s assumption that the photosphere is azimuthally
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symmetric and amplifies the fitted transit depth in a wavelength-dependent manner (e.g.,

Deming et al., 2013). In previous works we have referred to this as the transit light source

effect (TLSE); here we derive an approximate correction (ignoring limb-darkening) for

the TLSE due to a single spot.

Assuming the photosphere to have specific flux Fλ,phot and radius Rs, the spot to have

specific flux Fλ,spot and radius Rspot, and the planet to have apparent radius Rp and true

radius Rp,0, then the observed relative transit depth will be(
Rp

Rs

)2

=
Fλ,photR2

p,0

Fλ,phot(R2
s − R2

spot) + Fλ,spotR2
spot

(4.1)

By re-arranging this equation, we derive a corrective factor for the transit depth2:

ελ ≡
(

Rp

Rp,0

)2

=

[
1 −

(
1 −

Fλ,spot

Fλ,phot

)(
Rspot

Rs

)2
]−1

(4.2)

Later, in Section 4.5, we find the feature in Transit 3 to be best described by a model of

a single spot with radius Rspot/Rs = 0.27+0.03
−0.02 and a temperature contrast of Ts −Tspot = 100±

5 K. While this feature could in principle be due to a mixture of occulted spots and faculae,

our data are insufficient to constrain more complex models, so we use the parameters of

the single spot model for the purposes of correcting for the TLSE in this spectrum. We

interpolate a PHOENIX (Husser et al., 2013) stellar photosphere model grid onto the

values in Table 4.2 to compute Fλ,phot and Fλ,spot at their respective temperatures, then

calculate ελ from Equation 4.2.

In Figure 4.6 we plot ε1/2, which is the corrective factor for the planet radius, as well as

the original and corrected spectra for Transit 3. The magnitude of the correction from 450

to 900 nm is approximately equal to the binned uncertainty. The corrective factor is listed

in Table A.1, binned to match our final spectrum. This corrective factor is not applied

to the spectrum of Transit 3 in Figure 4.3, but is applied before creating the combined

spectrum in Figure 4.4.

We do not derive a similar correction for Transit 2 because it is unclear (see Section

4.5) whether this feature is best modeled by a small or large spot, and the slope introduced

2See also Equation 1 of McCullough et al. (2014), Equation 2 of Rackham et al. (2018).
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Figure 4.6: (Top) The spectrum of Transit 3 before (blue) and after (orange) correcting
for the large occulted spot. Both spectra have been mean-subtracted. The black error bar
demonstrates the mean binned uncertainty, while the individual error bars are excluded
for visibility. (Bottom) The radius contamination factor due to the spot, binned to 1 nm.
The black squares are binned to match the spectrum above.

by the large spot model is six times steeper across the wavelength range than that of the

small spot. Furthermore, the large spot model would only introduce a ∼ 0.3σ increase in

the measured radius from the reddest to bluest bins.

Finally, it is worth noting that this effect is just as prominent for spots outside of the

transit chord. Equation 4.2 can be further generalized by replacing (Rspot/Rs)2 with Fhet,

the areal spot covering fraction of the photosphere, and using an average spot temperature

to compute Fλ,spot.

4.5 Starspots

In Figure 4.2 we have identified spot-crossing features in the light curves of Transits 2

and 3, and we exclude these data points from our analysis of the transmission spectrum.

Such features are common in transit light curves, and have previously been found in tran-
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sit observations of WASP-4b (Sanchis-Ojeda et al., 2011). The shape, central time, and

magnitude of the feature carry information about the size, position, and contrast (or effec-

tive temperature) of the occulted spot, which are otherwise difficult to constrain. Transit

spectroscopy allows us to measure the spot contrast at multiple wavelengths, permitting

a more precise measurement of the spot’s effective temperature than is available from

wavelength-integrated light curves.

The measurement of spot properties is worthwhile for a variety of reasons. In the con-

text of this paper, knowing the properties of an occulted spot allows us to correct for its

effect on the spectrum of the transit during which it is observed. More generally, obser-

vations of multiple spots across an extended period of time permit a better understanding

of the makeup of the photospheres of other stars.

4.5.1 Spot modeling

We use SPOTROD (Béky et al., 2014) to produce light curves of transits with one or

two spot-crossing events. In addition to the usual transit parameters, SPOTROD mod-

els the position and radius (in units of stellar radii) as well as the average spot-to-stellar

flux contrast for each spot. We employ PyMultiNest (Buchner et al., 2014) to sample

the parameter space and to calculate the Bayesian log-evidences ln(Z) through which we

can compare the different models, as discussed in Section 4.6.1. This MultiNest imple-

mentation3 of SPOTROD has also been used to study spots observed during transits of

WASP-19b (Espinoza et al., 2019).

We use a second-order polynomial to detrend the white light curve from each night,

then fit the combined spot and star model. We limit the uniform prior on spot size to

Rspot/Rs < 0.08 or 0 < Rspot/Rs < 1 to probe for small and large spots. Using the effective

temperature in Table 4.2 as a prior, the code then constructs and fits models for the flux

contrast as a function of wavelength.

The optimal model parameters for each spot feature are presented in Table 4.4. The

precision of the Transit 2 data only permits us to fit the spot feature and spectrum in a

single, white-light bin. For this night, we find that our data are consistent with one- and
3https://github.com/nespinoza/spotnest

https://github.com/nespinoza/spotnest
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two-spot solutions, as well as large and small spots. We opt for the simpler single-spot

models and present the fit for both a single large and single cool spot. The data for Transit

3 favor a single large spot versus multiple or smaller spots (∆ ln(Z) > 2). For this transit

we are able to fit the spot spectrum to the same bins as our transmission spectrum, as

shown in Figure 4.7.

The large spot model for Transit 3 seems inconsistent with smaller individual spots

observed on the Sun; nevertheless, such wide features have been observed in transits

before (e.g., Espinoza et al., 2019). While our evidences do not favor a two-spot model,

it is possible that the large, low-contrast spot is in fact a more complex active region

consisting of multiple spots and/or faculae, as has been observed on the Sun. Regardless

of the actual structure of the feature, its average contrast is well-described by a single spot

with Ts − Tspot = 100 K, and we choose this model to calculate the correction in Section

4.4.7.
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Figure 4.7: Best-fit model for the occulted spot in the light curve of Transit 3. The data
are best described by a single large, warm spot with a radius of 0.27Rs and a temperature
contrast of 100 K.
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Table 4.4. Best-fit Parameters for the Spot-crossing Events in the Light Curves of

Transits 2 and 3

Rspot/Rs fspot/ fs Ts − Tspot (K) Tspot (K)

Transit 2a 0.05+0.01
−0.01 0.49+0.20

−0.28 880±360 4670±360

Transit 2b 0.15+0.11
−0.07 0.79+0.11

−0.18 410±280 5140±280

Transit 3 0.27+0.03
−0.02 0.91+0.01

−0.01 100±5 5442±50

Note. — The data for Transit 2 are consistent with both a

small (2a) and large spot (2b). Median and 1σ confidence inter-

vals are reported.

4.5.2 Spot sizes and temperatures

Later, in Section 4.6, we assume a spot temperature in order to model the effects of

unocculted spots on the transit spectrum. The temperature we assume reflects small,

cool spots resembling those on the Sun, but the results for Transit 3 in Table 4.4 appear

to suggest the existence of large, warm features on the photosphere of WASP-4. In short,

we do not believe that the spots discovered in our transit light curves are necessarily

representative of the spots present elsewhere in the photosphere or below our detection

threshold. We offer these arguments as justification:

1. Sanchis-Ojeda et al. (2011) find evidence for a persistent small spot in multi-

ple transit observations of WASP-4b. In this case, they find a spot with radius

Rspot/Rs ≈ 0.05 and temperature contrast Ts − Tspot ≈ 600 K, suggesting that more

Sun-like spots do exist on WASP-4.

2. Cool spots have previously been discovered through Doppler imaging of active G

and K dwarfs (e.g., O’Neal et al., 1998, 2004; Strassmeier, 2009). However, this
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method of spot detection is subject to biases regarding spot size and temperature.

3. The feature occulted during Transit 3 may indeed have a more complex structure

consisting of cool spots and hot faculae that the precision of our data does not allow

us to resolve.

4. While the precise radius and temperature of the spot observed during Transit 2

are largely unconstrained, we can say with at least 1σ confidence that the spot is

smaller and cooler than the feature observed during Transit 3. Therefore, even our

data suggest that small spots may be present in the photosphere of WASP-4.

It is nevertheless possible that the distribution of spot sizes on WASP-4 favors larger

and hot spots, in which case the spectral contamination signal would be less severe. How-

ever, our use of the contamination model is not meant to accurately account for the actual

surface heterogeneity, but rather to demonstrate that this aspect should not be ignored in

determining the planet’s transmission spectrum.

4.6 Atmospheric retrieval

To interpret the combined transmission spectrum in Figure 4.4, we employ a Bayesian

atmospheric retrieval code based on PyMultiNest that has previously been used to study

WASP-19b (Espinoza et al., 2019). Following Bétrémieux and Swain (2017) and Heng

and Kitzmann (2017), our atmosphere model includes two regions: an optically thick

base region (which could also be interpreted as a cloud layer) with radius (Rp/Rs)0 and

reference pressure P0, and an isothermal optically thin region above with temperature T .

The components of the optically thin region may include either or both of (i) a set of

atomic and molecular species and (ii) a scattering haze defined by a cross-section power

law σ = aσ0
(
λ/λ0

)γ , where σ0 = 5.31×10−27 cm2 is the Rayleigh scattering cross-section

of H2 at the reference wavelength λ0 = 350 nm (MacDonald and Madhusudhan, 2017),

and a is a dimensionless enhancement factor. We constrain γ to be between 0 (uniform

opacity) and −4 (Rayleigh scattering), which should span the range of physical scattering

processes.
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As we have previously argued in Rackham et al. (2017, 2018), it is important that anal-

yses of transmission spectra account for the transit light source effect (TLSE) that can be

introduced by heterogeneous features (spots and faculae) on the stellar surface. We incor-

porate a three-parameter model for the stellar photosphere into our retrieval code, fitting

this model simultaneously with that of the planet’s atmosphere. Section 4.6.2 discusses

this model in more detail.

The parameters and priors for each component of the model are listed in Table 4.5.

We consider eight models for the atmosphere, including all possible combinations of a

cloud deck, a scattering haze, and Na and/or K absorption signals. Each of these is fitted

independently or alongside a photosphere model (+1 free parameter, Fhet) for a total of

sixteen models.

4.6.1 Model comparison

To compare between our models, we compute their relative Bayes factors. A thorough

introduction to the use of Bayes factors in astronomy is given by Trotta (2008), and their

use in transit spectroscopy is well-established (e.g., Benneke and Seager, 2013). Here,

we provide a brief overview.

Given a model M with parameters θ, the optimal values of θ to describe data values x

are those that maximize Bayes’ equation:

P(θ|x,M) =
P(x|θ,M)P(θ|M)

P(x|M)

where P(x|θ,M) is the likelihood function and P(θ|M) is the prior distribution of θ. Most

Bayesian model fitting algorithms seek to maximize the likelihood function, but the max-

imum likelihoods of two different models cannot be directly compared.

To compare two models, we first compute their Bayesian evidences, defined as:

ZM ≡
∫

P(x|θ,M)P(θ|M)dθ

The evidence for a model is high if the data are well-described by a large region of the

prior parameter space. The Bayes factor between two models is defined as the ratio of

their evidences:
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ln(B)≡ ln(Z2) − ln(Z1)

In general, model 2 is weakly favored over model 1 if 0 < ln(B) < 2, and strongly

favored if ln(B) > 5. If ln(B) < 0 then model 2 is disfavored to model 1. Complex

models will be favored over simpler models only if the evidence justifies the additional

parameters. However, a preference towards simpler models does not necessarily mean

that the complex models are incorrect, but rather that they are not justified by the data at

hand.

Our retrieval algorithm computes the Bayesian evidence parameter for each of the

fitted models. In the following sections, we cite the Bayes factor ln(B) for each model

with respect to the model for a uniform opacity atmosphere with no contamination from

the photosphere (i.e., a flat line). In general, we find that the more complex models have

ln(B) < 0, meaning that they are disfavored versus a flat line.
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Table 4.5. Parameters for Our Combined Photosphere and Atmosphere Models

Model component Parameter Units Description Prior distribution

Base (Rp/Rs)0 - Radius corresponding to the top of the cloud layer or τ � 1 Uniform(0.1,0.2)

P0
† bar Reference pressure at (Rp/Rs)0 Log-uniform(10−6,106)

T † K Average temperature of the optically-thin region Uniform(1000,2400)

Atomic features X - Mixing ratio of species X Log-uniform(10−30,1)

Haze a - Amplitude of the haze cross-section power law Log-uniform(10−20,1010)

γ - Index of the haze cross-section power law Uniform(-4,0)

Stellar photosphere Tocc K Average temperature of the transit chord‡ Fixed(5540)

Thet K Average temperature of the heterogeneous surface features Fixed(4200)

Fhet - Fraction of the unocculted photosphere covered by spots Uniform(0,1)

Note. — Not all parameters are incorporated in all models; rather, Bayesian log-evidences are used to compare separate models.

†The temperature and reference pressure are not modeled in the case of a uniform opacity atmosphere.

‡This excludes any occulted features that can be identified in the light curve.
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4.6.2 Stellar heterogeneity

Assessing the level of TLSE contamination is critical to correctly interpreting high-

precision transmission spectra of transiting exoplanets (Apai et al., 2018b). This is par-

ticularly important for investigating features that could have a planetary or stellar origin,

such the He 10,833 Å line (Spake et al., 2018) or the Na and K alkali lines (Cauley et al.,

2018). We have previously demonstrated this effect in the spectrum of GJ 1214b (Rack-

ham et al., 2017), which has a featureless near-IR spectrum but a visible spectrum that

is apparently offset below the near-IR transit depths. In this study, we found that for

reasonable assumptions about the star’s activity, the planetary transmission spectrum of

GJ 1214b can be shown to be flat in the visible as well. We also detect the signature of

stellar activity in one of our Magellan/IMACS transit data sets for WASP-19b (Espinoza

et al., 2019).

WASP-4 is of slightly later spectral type than the Sun, and multiple spot-crossing

events have been observed during previous transit observations of WASP-4b (Sanchis-

Ojeda et al., 2011) as well as in two of our data sets. To assess the photometric vari-

ability, we retrieve four years of photometric monitoring data from the ASAS-SN online

database4 (Shappee et al., 2014; Kochanek et al., 2017). We remove outliers with a 5σ cut

and create a Lomb-Scargle periodogram to search for periodic signals between 1 and 100

days, calculating the false alarm probability as in Section 4.4.5. As shown in Figure 4.9,

we find the largest peak at 22.4 days, and while the significance of the detection is only

moderate, it corresponds well with the rotational period of 22.2 days that Sanchis-Ojeda

et al. (2011) measure from consecutive spot-crossing events. This is to be expected if

the photometric variability is dominated by the rotation of spots and faculae in and out

of view. Modeling the variability as a sine curve and assuming a period of 22.4 days,

we perform a least-squares fit to the phase folded data to find a peak-to-trough variabil-

ity amplitude of ∼ 6 mmag (0.6%). These results suggest that the surface of WASP-4

is moderately heterogeneous, so any analysis of the transmission spectrum of WASP-4b

that ignores stellar contamination may be overly optimistic. Furthermore, since the spot

4https://asas-sn.osu.edu/

https://asas-sn.osu.edu/
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Figure 4.8: A subset of fitted models for the observed transmission spectrum of WASP-4b;
four separate models for the planetary atmosphere are presented alone (left) or combined
with a model for the heterogeneous stellar photosphere (right). The atmosphere mod-
els, described in more detail in Section 4.6, include (top) a uniform opacity atmosphere,
(middle) a cloud deck and Na absorption feature, a cloud deck and K absorption feature,
and (bottom) a cloud deck and scattering haze. The shaded region represents the 95%
confidence interval around the mean model fit. Bayes factors are given for each model
relative to the flat line model (upper left). A constant offset of +0.1545 has been added to
the combined spectrum.
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Figure 4.9: (Left) Lomb-Scargle periodogram for the V -band magnitude of WASP-4 from
ASAS-SN photometry. The largest peak, marked with a blue line, corresponds to the
previously measured rotation period, marked with a black dotted line. The horizontal lines
denote the false alarm probability calculated through the bootstrapping method. (Right)
Fitted model for the phase-folded light curve, assuming a period of 22.4 days. The data
are binned for visibility.

covering fraction can not be determined from the variability alone (Rackham et al., 2018),

the photosphere heterogeneity should be modeled alongside the atmosphere.

In the retrieval code described above, we characterize the heterogeneity with three

parameters: Tocc, the effective temperature of the transit chord, Thet , the mean effective

temperature of the heterogeneous features, and Fhet , the fraction of the unocculted photo-

sphere that is covered in spots. We then compute the effect on the observed transit depth

following Section 4.4.7 and Equation 4.2, but replacing the area ratio (Rspot/Rs)2 with a

covering fraction Fhet .

We test more complex parameterizations that include multiple types of unocculted

heterogeneities (e.g., Zhang et al., 2018), but determine from the evidences that they are

not warranted by the data.

Given the quality of our data, we find it necessary to fix some parameters of the

heterogeneity model to reasonable values. In Table 4.5 we fix the spot temperature to

match typical spots on the Sun (e.g., Solanki, 2003, and references therein), and the transit

chord temperature to the measured effective temperature of the photosphere.

Fhet is allowed to vary over all possible values, and serves as a simple measure of the

level of stellar contamination in the transmission spectrum. However, we note that Fhet



130

represents an enhancement over the effect of the large occulted spot in Transit 3, which

has already been corrected for in Section 4.4.7.

4.6.3 Retrieval results

In Figure 4.8 we present four of our atmosphere models with and without photosphere

contamination. In Table 4.6 we list the Bayes factors for all sixteen of the models tested.

4.6.3.1 Favored models

The evidences favor a uniform opacity model for the atmosphere, with other atmosphere

models being disfavored by ln(B) = −1 to -2. Even when the haze is included, the am-

plitude a of the haze opacity is small; the posterior distributions do not converge well

enough from the log-uniform prior to offer a meaningful upper limit, but the mode of the

distribution for a lies between 10−18 and 10−12, which is lower than in the prior distribu-

tion.

Atmosphere models including Na and/or K are disfavored versus uniform opacity

models by ln(B) = −1 to -2. Even though the narrow K bin is elevated above the continuum

by ∼ 1σ, ultimately the presence of potassium is not warranted by the data. We note that

we cannot place upper limits on the abundances of Na or K, as these are degenerate with

the reference pressure.

The models that include a heterogeneous photosphere are strongly disfavored by

ln(B) = −5 to -6 versus their counterparts with a homogeneous photosphere. While it is

quite likely that Fhet > 0, the spectrum alone does not reveal evidence for it beyond what

we have already corrected for in Section 4.4.7. The effect of even a low spot covering

fraction (< 3%) is apparent in Figure 4.8, and is degenerate with the effect of a scat-

tering haze. For this reason, we recommend the joint modeling of the photosphere and

atmosphere in future analyses of optical transmission spectra, and the use of Bayesian

evidences or likelihood parameters for model selection (see also Pinhas et al., 2018).
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4.6.3.2 Constraints on spot covering fraction

The parameters in the clear and hazy atmosphere models do not converge enough from

their priors to offer meaningful constraints. However, in the special case of a uniform

opacity atmosphere with stellar contamination, we can place a 95% upper limit on the

spot covering fraction, Fhet < 3.4%. We caution that this is under the assumption of 4200

K spots and does not factor in the likely diversity of spot and faculae temperatures on

the stellar surface. Instead, it should be taken as a limit on the net spectral effect of

contamination.

4.6.4 Correcting vs. fitting the contamination in Transit 3

In Section 4.4.7 we detail a method for correcting the contamination due to the cool

feature that was occulted by the planet during Transit 3. In this retrieval, however, we also

include a varying parameter Fhet and fixed parameter Thet to characterize the heterogeneity

of the photosphere. We offer the following argument to justify our decision to visit the

heterogeneity twice.

First, while the detailed structure of the occulted feature from Transit 3 is unclear, it

is well-described by a circular spot model with a constant temperature, and this is the

same model that we use to correct for its contamination. By excluding this correction, we

would not be leveraging all of the available information from our light curve. However,

Fhet must still be non-zero to describe the remaining unocculted features.

Second, we demonstrate that this correction is accounted for during the atmospheric

retrieval. As a test, we fit the model of a uniform opacity atmosphere with a heterogeneous

photosphere (Figure 4.8, top-right), this time fixing Thet = 5442 K to match the tempera-

ture of the occulted feature. When we fit the uncorrected combined spectrum, we find that

the median of the posterior distribution for Fhet is larger than for the corrected combined

spectrum. The difference is consistent with a single spot of size Rspot/Rs ≈ 0.22. Simi-

larly, when the retrieval is applied to the corrected and uncorrected spectra from Transit

3 only, the difference in the median value of Fhet is consistent with a single spot of size

Rspot/Rs ≈ 0.33. Both of these are similar to the spot size assumed in the correction,
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Table 4.6. Bayes Factors for the Full Suite of Atmosphere Models

Model ln(B)A ln(B)A+P

uniform opacity 0.0 -3.5

clouds + Na -1.8 -5.7

clouds + K -0.8 -5.0

clouds + Na,K -1.0 -5.4

clouds + haze -1.5 -5.4

clouds + haze + Na -1.9 -6.2

clouds + haze + K -1.9 -5.4

clouds + haze + Na,K -1.9 -6.2

Note. — The two columns repre-

sent atmosphere-only (A) and combined

atmosphere-photosphere (A+P) models. ln(B)

is calculated relative to the flat line model;

since ln(B) < 0 for the more complex models,

they are all disfavored versus a flat line. Some

of these model fits are shown in Figure 4.8.
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Rspot/Rs = 0.27+0.03
−0.02. This indicates that the effect of the correction is carried forward into

the retrieval; we are not over-correcting for the effect of the spot.

4.7 Comparison to published results

4.7.1 Gemini/GMOS

Huitson et al. (2017) (hereafter H17) have previously published an optical transmission

spectrum of WASP-4b from four combined transit observations with Gemini/GMOS, and

find that their data favor a uniform opacity model. In this section, we assess the agreement

of their results with our data from IMACS. In Figure 4.10 we compare the red and blue

GMOS spectra with the combined spectrum from this work, and find that the slopes of

our spectra are generally in agreement.

4.7.1.1 Absorption features

The H17 data reveal tentative evidence for Na absorption at 589 nm. Our data reveal no

evidence for such a feature, but we concede that the quality of our data in the blue is not

sufficient to definitively rule out an atomic feature of small optical depth.

H17 exclude bins in their spectra that are coincident with terrestrial telluric O2 absorp-

tion, finding that their correction for differential atmospheric refraction was not reliable

in this wavelength range. Magellan is equipped with an ADC so our data do not require

this correction (see Section 4.3.4). As a result, we are able to test for a K I feature in the

same region, and find little evidence as discussed in Section 4.6.

4.7.2 Magellan/IMACS

May et al. (2018) (hereafter M18) used Magellan/IMACS to study this target with the

same grism as we used for Transits 1-3, and they also find no evidence for features in the

transit spectrum. Figure 4.10 demonstrates that our results are in agreement.
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4.7.2.1 Lack of a spot crossing event

The transit observed by M18 occurred on 19 August 2015, approximately 5.4 days after

our Transit 3, though their light curves show no evidence for a large occulted photosphere

feature. This is not unexpected: the planet’s period is prograde and nearly equatorial,

and the stellar rotation period is ∼ 22.2 days (Triaud et al., 2010; Sanchis-Ojeda et al.,

2011). This implies that the feature observed during Transit 3, which was occulted in the

second half of the transit, would have rotated ∼ 90 degrees and off the projected stellar

disk within the period of time between the transits.

4.7.3 Combined analysis

We combine the data from H17 and M18 with our own by subtracting the weighted mean

from each spectrum, then repeat the retrieval analysis of Section 4.6. Table 4.7 displays

the Bayes factor relative to a flat line for each for the 2x8 models. As before, we find that

most atmosphere models are disfavored versus a uniform opacity model by ln(B) = −1 to

−2, but models including Na are slightly less disfavored than in Table 4.6. This indicates

that there is more evidence for Na absorption in the combined data set than in ours alone,

but still not enough to justify its inclusion.

Models that include the photosphere are disfavored by ln(B) ∼ −5.5. In the case of a

uniform opacity atmosphere, the 95% upper limit on the spot covering fraction is Fhet <

1.8%, which is smaller than the value we report in Section 4.6.3.2. However, we caution

that the red and blue GMOS spectra were observed during separate transits, which may

mask the slope introduced by TLSE contamination.

4.8 Featureless Atmosphere

Our transit spectra, in combination with the spectra by H17 and M18, suggest that WASP-

4b displays a mostly featureless (uniform opacity) spectrum without a strong optical spec-

tral slope or alkaline absorption (Na I or K I lines). Although more observations will be

required to place tighter constraints on the optical spectrum to verify this, in the following

we will explore what a uniform opacity spectrum would suggest for WASP-4b.
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Figure 4.10: A comparison of our combined transmission spectrum to the spectrum of
(top) Huitson et al. (2017) (Table 4) as observed with Gemini/GMOS and (bottom) May
et al. (2018) (Table 5) as observed with IMACS. The wavelengths of potential atomic
features are highlighted. The weighted mean is subtracted from each of the three data
sets.
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Table 4.7. Bayes Factors for the Full Suite of Atmosphere Models, Including Data

from Other Analyses

Model ln(B)A ln(B)A+P

uniform opacity 0.0 -3.8

clouds + Na -0.2 -5.5

clouds + K -1.3 -5.7

clouds + Na,K -0.7 -4.9

clouds + haze -1.7 -6.4

clouds + haze + Na -1.2 -6.0

clouds + haze + K -1.6 -6.3

clouds + haze + Na,K -1.6 -5.9

.

Note. — Includes data from our analysis as

well as H17 and M18. Column definitions are

similar to Table 4.6
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Cloud-free, broadly solar-composition atmospheres are predicted to display strong

absorption at visible wavelengths by alkali metal atoms (Na I or K I doublets, Seager

et al. 2000; Sudarsky et al. 2000; Seager and Sasselov 2000). These prominent (deep

and broad) features have been observed in the spectra of multiple transiting hot Jupiters

(e.g., Charbonneau et al., 2002). The depths of the truncated alkali features are often

used as proxy for the atmospheric pressures probed (e.g., Sing et al., 2015). The emerg-

ing evidence argues that transit sightlines are often limited by cloud decks, which then

lead to truncated alkali line cores or, for very low-pressure particles, even the absence of

detectable alkali absorption.

Another marked deviation from a flat (featureless, zero-slope) visible spectrum would

arise in a clear atmosphere from Rayleigh scattering of the starlight by molecules or very

small particles. Rayleigh scattering is more efficient at smaller wavelengths, resulting in

apparently larger planet diameters (i.e., a lower pressure level τ = 1 surface) at shorter

wavelengths (e.g., Pont et al., 2008). The actual wavelength-dependence of the Rayleigh-

scattering in a given transiting exoplanet atmosphere will depend on the particle size

distribution in its upper atmosphere and can vary by orders of magnitude (e.g., Heng

and Kitzmann 2017). However, visual-wavelength slopes in transiting exoplanets may

also be introduced by the transit light source effect described in Section 4.4.7; given this

consideration, the simultaneous presence of visual slopes and alkali line absorption are

considered to be the most robust indicators of clear (particle-free) upper atmospheres.

Therefore, with multiple transit spectra suggesting the lack of alkali absorption and

the lack of a strong visual slope for WASP-4b, it is important to consider the possibil-

ity that WASP-4b’s upper atmosphere is not clear but contains particles at high-altitude.

Given this strong possibility, in the following we explore the possible nature of these

particles and the mechanisms that may inject particles into the upper atmosphere. Based

on Spitzer/IRAC eclipse (dayside emission) measurements in the [3.6] and [4.6] filters,

Beerer et al. (2011) found that the best-fit blackbody temperature of WASP-4b’s dayside

is 1,700 K. This temperature is close to the radiative equilibrium estimate of 1,650 K

(assuming zero albedo) and significantly lower than 2,000 K, the temperature that would

correspond to a zero-albedo, dayside-emission-only case.
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The dayside temperatures of WASP-4b are hot enough to vaporize less refractory

grains and – in a smaller fraction of the hemisphere centered on the sub-stellar point

– it is likely hot enough to vaporize metal-oxide and silicate grains. Cloud formation

through the evaporation and condensation of refractory grains is common and relatively

well-studied in non-irradiated brown dwarfs (e.g., Apai et al., 2013; Buenzli et al., 2014;

Metchev et al., 2015) and directly imaged exoplanets (Biller et al., 2015; Zhou et al., 2016)

of similar temperatures. Equilibrium condensation models coupled to global circulation

models show that refractory species (e.g., CaTiO3, MgSiO3, MnS, Na2S) will also form

clouds in the upper atmospheres (typically 10–100 mbar) of hot Jupiters (e.g., Parmentier

et al., 2016; Showman et al., 2009; Kataria et al., 2016). Therefore, our observations

suggesting the lack of evidence for a clear atmosphere are fully consistent with the general

expectations set by observations and models of brown dwarf and hot Jupiter atmospheres

of similar temperatures.

4.9 Conclusions

We have extracted a combined optical transmission spectrum from three transit observa-

tions of WASP-4b using Magellan/IMACS, and use a MultiNest-based retrieval code to

test different atmospheric models for the data. We find that a uniform opacity model for

the atmosphere is weakly favored over alternatives with hazes, Na, and/or K. In particular,

no meaningful evidence for potassium is found despite the elevated radius in the narrow

bin centered on the K doublet. Our results, in addition with those of Huitson et al. (2017)

and May et al. (2018), suggest that no strong signals exist in the optical transit spectrum.

Nevertheless, higher quality data may yet reveal evidence for scattering or atomic absorp-

tion; for example, Huitson et al. (2017) find inconclusive evidence for Na absorption.

We are also able to fit the size and contrast of the star spots occulted by the planet

during Transits 2 and 3. Assuming a single spot model, the quality of the data from

Transit 3 allows us to tightly constrain the spot size and contrast, which suggest a spot

that is much larger and warmer than is typical for spots on the Sun. More complex models

that include several spots and faculae could be consistent with the data as well, but are not
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justified by the evidences. We use this spot model to correct for the wavelength-dependent

effect on the transmission spectrum from Transit 3 before averaging the individual nights’

spectra.

Further space-based or larger aperture ground-based observations should be con-

ducted to search for low amplitude signatures of scattering or absorption. However, we

note that the presence and strength of a scattering haze is particularly degenerate with the

presence of spots and faculae on the star. Since WASP-4 is known to be variable, the

stellar photosphere and planet atmosphere should be modeled simultaneously in future

analyses of this planet’s transmission spectrum.
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CHAPTER 5

Testing Earth-like Atmospheric Evolution on Exo-Earths through Oxygen Absorption:

Required Sample Sizes and the Advantage of Age-based Target Selection

This chapter has been published as Bixel and Apai (2020b) and is reproduced here with

permission.

Abstract

Life has had a dramatic impact on the composition of Earth’s atmosphere over time,

which suggests that statistical studies of other inhabited planets’ atmospheres could re-

veal how they co-evolve with life. While many evolutionary pathways are possible for

inhabited worlds, a possible starting hypothesis is that most of them evolve similarly to

Earth, which we propose could lead to a positive “age-oxygen correlation” between the

ages of inhabited planets and the fraction that have oxygen-rich atmospheres. We demon-

strate that next-generation space observatories currently under consideration could test

this hypothesis, but only if the stellar age distribution of the target sample is carefully

considered. We explore three possible parameterizations of the age-oxygen correlation,

finding that they yield similar results. Finally, we examine how abiotic oxygen sources

could affect the results, and discuss how measuring the age-dependence of oxygen could

shed light on whether it is a reliable biosignature. Future efforts can expand upon this

groundwork by incorporating detailed models of the redox balance of terrestrial planets

and its dependence on stellar and planetary properties.
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5.1 Introduction

The coming decades promise exciting developments in the search for life beyond Earth,

with multiple groups proposing the construction of novel space observatories that could

discover and characterize several potentially Earth-like planets orbiting nearby stars (e.g.,

Gaudi et al., 2020; The LUVOIR Team, 2019; Apai et al., 2019; Meixner et al., 2019;

Staguhn et al., 2019). By discovering biosignature molecules in these planets’ atmo-

spheres (e.g., Schwieterman et al., 2018), such observatories would enable the first con-

straints on the frequency of life in the universe and comparative studies of the properties

of inhabited worlds.

Molecular oxygen (O2), and its photochemical byproduct ozone (O3), have been dis-

cussed as promising biosignatures for such missions, as O2 has a short lifetime in the

Earth’s atmosphere and is replenished almost entirely by photosynthetic life (e.g., Owen,

1980; Des Marais et al., 2002). O2 would make for an even stronger biosignature if it were

found in the presence of reduced gasses (such as methane) that would quickly eliminate it

in the absence of a strong oxygen source (e.g., Lovelock, 1965; Meadows et al., 2018b).

Oxygenic photosynthesis makes use of carbon dioxide, water, and light, which have been

accessible on Earth throughout its history - suggesting that many extraterrestrial ecosys-

tems may have converged on the same mechanism (e.g., Meadows, 2017).

However, the presence of oxygen in Earth’s atmosphere has evolved over time, with

the planet having an anoxic atmosphere for approximately the first half of its history.

During the Hadean and Archean eras, the abundance of O2 was no more than 10−6 times

its present atmospheric level (PAL) (Zahnle et al., 2006; Catling and Zahnle, 2020). Then,

during the “Great Oxidation Event” (hereafter GOE) circa 2.4-2.1 Gya, the concentration

of O2 dramatically increased to between 10−4 to 10−1 PAL, and would later increase again

(circa 600 Mya) to reach its modern abundance (Lyons et al., 2014).

The precise causes and timing of the GOE are a matter of ongoing research - for a

thorough review, see Lyons et al. (2014). While the evolutionary development of oxygenic

photosynthesis was a prerequisite for the GOE to occur, the two were not necessarily

coeval; in fact, the evidence suggests a delay - perhaps hundreds of Myr long - between
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the appearance of the first organisms to produce oxygen and its eventual accumulation

in the atmosphere (e.g., Brocks et al., 1999; Anbar et al., 2007; Kendall et al., 2010;

Kurzweil et al., 2013; Planavsky et al., 2014). Regardless of its causes, the GOE counts

among the most dramatic changes to Earth’s atmosphere in geological history, and was

dependent on the existence of life. Since Earth’s atmosphere was anoxic for about half

of its history, some authors have considered how pre-GOE Earth analogs might appear

in reflected or transmitted light, and how the presence of life on such worlds could be

inferred in the absence of oxygen (e.g., Pilcher, 2003; Domagal-Goldman et al., 2011;

Seager et al., 2013; Arney et al., 2016, 2018; Krissansen-Totton et al., 2018).

To date, most studies of oxygen and other potential biosignatures have focused on how

life could affect individual planets. However, due to the challenging nature of characteriz-

ing terrestrial planets, future space telescopes may provide only limited information about

the atmospheres and fundamental parameters (e.g. bulk composition) of many individual

planets. Even still, important information will be enclosed in the overall population of

planets studied, and trends between their properties can be tested against the predictions

of models for terrestrial planet evolution (e.g., Bean et al., 2017; Checlair et al., 2019). In

such cases, sample sizes will be a limiting factor on the complexity of models that can be

tested.

Since Earth’s biosphere and atmosphere have co-evolved over time, the exciting pos-

sibility exists that by studying several inhabited planets spanning a range of ages, we

could test for shared trends in the co-evolution of their atmospheres and biospheres, un-

covering common patterns that govern the evolution of life in the universe. For example,

if future space missions are able to detect the presence of O2 or O3 in the atmospheres of

several potentially habitable worlds, this would allow them to constrain the frequency of

oxygen-bearing planets as a function of age. We propose that this measurement could be

used to test whether the atmospheric evolution of other inhabited worlds resembles that

of Earth (i.e. the null hypothesis). By this, we mean that they start with anoxic atmo-

spheres that eventually become oxygen-rich - although the time required for oxygenation

will likely vary between planets (Catling et al., 2005). If they evolve like Earth, then the

fraction of inhabited planets with oxygenated atmospheres should increase with age, with
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older planets being more likely to have undergone a GOE-like event. If such a trend were

discovered, it would strongly suggest that Earth-like atmospheric evolution is typical for

inhabited planets, and would by extension strengthen the case for O2 as a biosignature, as

we can think of no plausible abiotic explanation for this trend.

In this paper, we estimate how many potentially habitable planets a future telescopic

biosignature survey must characterize to detect a positive “age-oxygen correlation” – and

thus test whether Earth’s atmospheric evolution is typical. We present our results as a

function of the actual occurrence rate of life on potentially habitable worlds, and inves-

tigate the optimal target stellar age distribution for testing our hypothesis. Finally, we

estimate the noise that would be introduced by strong abiotic sources for O2, and discuss

how a statistical sample of planets with oxygenated atmospheres could be used to verify

O2 as a biosignature.

This study does not attempt to model in detail the many possible factors affecting the

rate at which inhabited planets acquire oxygen, which we discuss qualitatively in Section

5.4.2. Rather, we use Earth’s evolutionary history as the practical template for an initial

estimate of the sample size required to begin studying their oxygen evolution. Our results

should be interpreted with this caveat in mind, and we encourage future studies to build

off our approach by incorporating the effects of diverse planetary parameters on the redox

balance of other habitable worlds.

5.2 Methods

Here, we consider only potentially habitable planets or “exo-Earth candidates” (EECs).

We use these terms interchangeably to refer to planets that are comparable in size to

Earth and have orbits within the liquid water habitable zone, and that therefore could sus-

tain habitable surface conditions (e.g., Kasting et al., 1993; Kopparapu et al., 2013, 2014).

Note, however, that our results are agnostic to the exact range of sizes and orbits consid-

ered to be potentially habitable, except when we compare them to the predicted discovery

yields for future space-based biosignature surveys. For the reasons argued above, we also

assume that inhabited planets demonstrate a positive correlation between their ages and
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the fraction that have oxygen in their atmospheres, which we hereafter refer to as the

“age-oxygen correlation”.

Our basic methodology is as follows: we generate a number N EECs with randomly

assigned ages t, a fraction flife of which are assumed inhabited. We then assume that some

age-dependent fraction fO2(t) of inhabited planets have undergone a GOE-like event and

therefore have detectable amounts of O2 or O3 in their atmospheres. Assuming that a

future space-based survey has discovered and spectroscopically characterized the entire

sample, we apply a statistical test to calculate the confidence with which the age-oxygen

correlation could be discovered as a function of the number of planets observed. Finally,

we average the results of this test across 104 random samples1 for each cell in a two-

dimensional grid of values for N and flife.2

5.2.1 Fraction of inhabited planets with O2

We consider three functions to describe the fraction fO2(t) of inhabited planets that have

detectable O2 or O3 in their atmospheres as a function of their age t (or, approximately,

the age of their host star). We consider the stellar ages to be determined precisely, and

discuss the feasibility of this assumption in Section 5.4.6.

The functions, plotted in Figure 5.1, are as follows: in the first case, fO2(t) increases

exponentially over an e-folding timescale of 3.2 Gyr, so that the typical planet reaches its

GOE at the same epoch as Earth’s (t ∼ 2.2 Gyr). In the second case, all planets evolve

identically, encountering their GOEs at the same point in time as Earth did. The third case

assumes the same functional form as the first, but with a longer timescale of 10 Gyr - in

this case, most planets encounter their GOEs much later than Earth did. We discuss the

motivation behind these functional forms in Section 5.4.5.

Finally, in each case we only distinguish between oxygenated and anoxic atmo-

spheres; the mixing ratio of O2 is not modelled. Generally speaking, the presence or

absence of O2 will be much easier to determine than its precise mixing ratio. Further-

1In some samples none of the planets have O2, so the p-value is undefined and we discard it. This

generally only occurs for low values of N and flife and does not significantly impact our results.
2The code used to generate the grid of p-values and Figures 5.1-5.3 can be found here.

https://www.github.com/abixel/age-O2-correlation/
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more, while O2 may not be directly detectable for planets with only a small biogenic

abundance – analogous to Earth during the Proterozoic era – its presence might still be

inferred through that of its strongly absorbing byproduct O3 (e.g., Angel et al., 1986; Des

Marais et al., 2002; Segura et al., 2003; Reinhard et al., 2017).

5.2.2 Abiotic O2

Several authors have suggested scenarios in which a rocky planet in or near the habitable

zone could attain a detectable amount of O2 through abiotic sources, generating a “false

positive” biosignature. A review of several of these scenarios and the means by which they

can be distinguished from biological sources can be found in Meadows et al. (2018b).

Generally speaking, abiotic oxygen is produced by the splitting of H2O or CO2 and

the subsequent escape of hydrogen to space. Water vapor can be split either in the up-

per atmosphere due to UV-driven photolysis (e.g., Wordsworth and Pierrehumbert, 2014;

Luger and Barnes, 2015; Meadows et al., 2018a; Wordsworth et al., 2018) or on the sur-

face through a photocatalytic reaction involving titanium dioxide (Narita et al., 2015).

The photolysis of carbon dioxide can lead to a buildup of abiotic O2, which is exac-

erbated in the radiative environment of low-mass stars, or when the outgassing flux of

reducing species (namely H2 and CH4) is much lower than on Earth (Hu et al., 2012;

Domagal-Goldman et al., 2014; Tian et al., 2014; Gao et al., 2015; Harman et al., 2015;

Hu et al., 2020).

More optimistically, other models show that the lightning-driven recombination of CO

and O (Harman et al., 2018) as well as volcanic outgassing at rates comparable to Earth’s

(e.g., Hu et al., 2012; James and Hu, 2018) could each counter O2 buildup from abiotic

sources. Further research into such preventative factors may alleviate concerns about the

reliability of this biosignature.

Some of these proposed abiotic sources of O2 could, in principle, be present on both

inhabited and non-inhabited planets, and would mask the age-oxygen correlation by im-

buing planets with O2 from a young age. To investigate this, we allow for some age-

independent fraction of EECs to have abiotic oxygen sources, regardless of whether or

not they have life. For most of the results presented below we set this parameter to zero
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so that there are no planets with abiotic O2, but we investigate their impact in Section

5.3.3.

5.2.3 Stellar age distribution

Recent studies have found that while the star formation history of the Milky Way disk has

varied measurably, it is to first order uniform in age, with the oldest disk stars forming

∼ 10 Gya (e.g., Snaith et al., 2015; Fantin et al., 2019; Mor et al., 2019). Assuming ho-

mogeneous star formation throughout the disk, the age distribution of nearby stars should

resemble this history, excepting a small deficit of old, massive stars with main-sequence

lifetimes shorter than 10 Gyr. We therefore assume a uniform stellar and planet age dis-

tribution from 0 – 10 Gyr for most of our results.

However, it may be more efficient to prioritize observing only young and old stars, so

as to maximize the difference in fO2(t) for the models in Figure 5.1. This is especially

important for surveys limited by available telescope time, where the target list must nec-

essarily be pruned. Likewise, excluding young or old stars from any survey could inhibit

the detectability of the age-oxygen correlation. To examine these considerations, we also

simulate samples consisting of different combinations of young (0–2 Gyr), intermediate

(2–7 Gyr) and old (7–10 Gyr) age ranges. We discuss the impact of the age distribution

in Section 5.3.2.

5.2.4 Correlation test

To determine whether the age-oxygen correlation can be confidently identified in our sim-

ulated samples, we apply two statistical tests, each implemented using SciPy (Virtanen

et al., 2020). The first is the Mann-Whitney U test (Mann and Whitney, 1947), which is

applied to measurements of a variable (i.e., age) from two independent populations (i.e.,

oxygenated and anoxic planets), to determine whether the age distribution of one popu-

lation is stochastically greater than the other. Unlike the similar and more widely used

Student’s t-test, the Mann-Whitney test does not assume the two age distributions to be

of normal shape and equal variance, and compares the samples through their mean ranks
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rather than through their sample means. We also apply Spearman’s rank correlation test

(e.g., Wall and Jenkins, 2003), which is usually applied to detect non-linear, monotonic

correlations between two variables. The two variables can be continuous (i.e., age) or

discrete (i.e., whether the planet has O2).

We use the Mann-Whitney test to calculate most of our results, as we believe its un-

derlying assumptions most accurately match our data, but we also compare its efficiency

to that of Spearman’s test in Section 5.3.4. Each of the tests reports a p-value representing

the probability that age and oxygen are not apparently correlated, with values p < 0.05

corresponding to a significant (95% likely) correlation. Finally, since we are testing a

directional hypothesis (that age and oxygen are positively correlated), we calculate one-

tailed p-values.
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Figure 5.1: (In color, left axis) Three functions that we assume to describe fO2(t), the
fraction of inhabited planets that have a detectable amount of oxygen as a function of age
t. In the first two cases (green and red), the typical inhabited planet undergoes a GOE
at the same epoch as Earth’s (tH ∼ 2.2 Gyr). (In gray, right axis) We plot an estimate of
Earth’s historical O2 abundance versus the present atmospheric level (PAL), adapted from
Reinhard et al. (2017). Note that estimates for pO2 when Earth was younger than∼ 4 Gyr
range by up to two orders of magnitude.
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Figure 5.2: The number of EECs as a function of flife that must be characterized to con-
fidently (p = 0.05) detect a correlation between their ages and the fraction with O2 or O3

in their atmospheres. Results are plotted for each of the cases detailed in Figure 5.1 and
a target sample with a uniform distribution of ages between 0 – 10 Gyr. The dashed lines
indicate “pessimistic” and “optimistic” cases for the frequency of inhabited worlds among
EECs. On the right, we include estimates for the EEC detection yield of a few possible
future observatories reviewed in Section 5.4.1. Note, however, that these estimates were
calculated using different methods, and the occurrence rates used to determine them may
have been overestimated (Pascucci et al., 2019).

5.3 Results

5.3.1 How many planets must be observed to detect a correlation?

The contour plots in Figure 5.2 delineate the number of planets - as a function of flife -

that must be characterized to detect the age-oxygen correlation with high confidence (p <

0.05). The shaded area marks the region of the parameter space in which the proposed

age-oxygen correlation could be identified. Each coloured contour corresponds to one of

the cases in Figure 5.1 – except where otherwise stated, we consider “Earth is typical” as

our baseline case.
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Figure 5.3: We re-calculate the number of EECs that must be characterized to detect the
age-oxygen correlation in the “Earth is typical” case, but under different conditions than
assumed in Figure 5.2. For comparison, we re-plot the baseline result in Figure 5.2 as
a solid line in each panel. (a) We modify the age distribution of the target sample by
including only young (0–2 Gyr) and old (7–10 Gyr) planets (dashed) or by excluding
young planets (dotted). (b) We assume that 10% (dashed) or 50% (dotted) of EECs have
some abiotically-produced O2. This fraction includes inhabited and non-inhabited planets
alike. (c) We re-calculate the results using Spearman’s rank correlation test (dashed) and
Student’s t-test (dotted) to determine the detection significance. (d) We plot contours for
a less (p = 0.1; dashed) or more (p = 0.01; dotted) confident detection of the age-oxygen
correlation.
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For the baseline case, we find that a sample of∼ 20 EECs would be sufficient to detect

the age-oxygen correlation if life is present on 80% of such worlds. In a more pessimistic

case where life exists on only 10% of these planets, then ∼ 300 characterizations are

required. If life is present on fewer than 2% of EECs, then the sample size required

exceeds one thousand.

5.3.2 What is the optimal age distribution of target stars for this experiment?

To maximize the science yield of missions capable of detecting biosignatures, it may be

prudent to prioritize their targets based on age. In Figure 5.3(a) we investigate the impact

of different age-based target selection strategies on a survey’s ability to test for an age-

oxygen correlation.

We find that by selecting targets with ages just between 0–2 and 7–10 Gyr, the to-

tal number of planets required to detect the age-oxygen correlation drops by about 35%.

Alternatively, when a survey excludes young systems, the number of planets required in-

creases by a factor of∼ 3. These results suggest that, when possible, surveys of habitable

exoplanets should not prioritize intermediate and older age planets over younger targets.

In fact, the youngest planets are the most important targets for testing our hypothesis, and

should be prioritized in surveys that are limited by observing time rather than fundamental

instrument constraints.

5.3.3 What is the impact of abiotic sources for O2?

For most of our results, we assume that all oxygen is produced by life, but in Figure 5.3(b)

we investigate the amount of noise introduced if some age-independent fraction of EECs

have abiotic O2 sources. We find the impact on the required sample size to be modest

to considerable. If abiotic O2 exists on about 10% of EECs, then the required sample

size must increase by 25-100% depending on flife. In the pessimistic case that half of

EECs have abiotic O2 and life is rare, the required sample size increases by an order of

magnitude.
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5.3.4 What is the most efficient test for detecting the age-oxygen correlation?

In Figure 5.3(c) we compare results using each of the statistical tests reviewed in Section

5.2.4, as well as the more commonly-used Student’s t-test (which is not strictly applicable

to our case as it assumes normal age distributions). Generally speaking, the three tests

yield similar results. While Student’s and Spearman’s tests are slightly more sensitive to

the correlation for high values of flife, the assumptions of the Mann-Whitney test most

accurately match our data set, which consists of two non-normal age distributions (for

oxygenated and anoxic atmospheres) with unequal variances.

While we have chosen p = 0.05 (i.e., a 5% probability that age and oxygen are un-

correlated) as our threshold for a confident detection of a positive correlation, a lower or

higher confidence level detection may be achieved through characterizing fewer or more

EECs. In Figure 5.3(d) we calculate the number of targets required to detect the age-

oxygen correlation with low confidence (p < 0.1) or very high confidence (p < 0.01).

These contours demonstrate that while a confident detection may be out of reach for a

given sample size if life is rare, preliminary evidence can still be acquired to motivate a

more in-depth survey.

5.4 Discussion

5.4.1 Future observatories could test the proposed age-oxygen correlation

Current observatories lack the capability to detect oxygen or ozone absorption in the at-

mospheres of terrestrial exoplanets. However, multiple ambitious space mission concepts

that have been proposed in the literature could perform this characterization for statisti-

cally meaningful numbers of planets. Here, we identify several such concepts and com-

pare their likely sample sizes (where available) to the requirements we predict in Figure

5.2.

Two observatories would use coronagraphic instruments to directly image potential

exo-Earths orbiting nearby FGK stars. The Large UV/Optical/IR Surveyor (LUVOIR,

The LUVOIR Team, 2019) would feature an 8- to 15-meter diameter segmented primary

mirror, while the Habitable Exoplanet Observatory (HabEx, Gaudi et al., 2020) would
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make use of a 4-meter monolithic mirror. HabEx would also launch with a starshade,

which would maneuever separately from the telescope to occult the targeted host star

and enable deep spectroscopic characterization of its planets. With their broad UV-to-

NIR wavelength coverage, both telescopes could probe for ozone absorption at far-UV

wavelengths as well as O2 in the visible spectrum. Employing the yield optimization

methodology first developed by Stark et al. (2014), both concept studies have reported

estimates for the number of EECs that they could detect, namely 54+61
−34 for LUVOIR and

8+9
−5 for HabEx (see also Stark et al., 2015; Stark et al., 2016; Stark et al., 2019; Kopparapu

et al., 2018). As such, LUVOIR would be able to test for the age-oxygen correlation

given flife > 50%. HabEx would likely lack the sample size required to detect it on its

own, but could contribute substantially towards building up a sufficiently large sample of

characterized EECs if complemented by ground- or space-based efforts targeting nearby

M dwarfs.

Three mission concepts would use transit and/or phase curve spectroscopy to charac-

terize potential exo-Earths. The Nautilus Space Observatory (Apai et al., 2019) would

consist of thirty-five unit space telescopes, each with an ∼8.5-meter diameter ultralight,

diffractive-refractive lens as the primary light-collecting element. Through visible-to-NIR

transit spectroscopy, the array could be used to search for oxygen or ozone in the atmo-

spheres of up to one thousand EECs. With such a sample, Nautilus could test the age-

oxygen correlation even in the pessimistic case where only 10% of EECs are inhabited.

Two other telescopes would enable mid-infrared transit and phase curve spectroscopy of

planets orbiting mid-to-late M dwarfs, including the Origins Space Telescope (∼ 26 char-

acterized EECs, Meixner et al., 2019) and the Mid-Infrared Exoplanet Climate Explorer

(Staguhn et al., 2019), and would infer the presence of oxygen through O3 absorption

between 9-10 µm. In the optimistic case, a sample of 20 − 30 planets could achieve the

requirements outlined in Figure 5.2, or it could be combined with the yield of missions

targeting FGK stars.

Space-based infrared interferometry offers another avenue towards directly imaging

exo-Earths through their thermal emission. The Large Interferometer For Exoplanets
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(LIFE) project3 aims to coherently combine light from four ∼ 2.8-meter mirrors in order

to detect and characterize nearby exo-Earths in the 5–25 µm wavelength range. LIFE

would characterize the atmospheres of ∼ 45 EECs orbiting nearby GKM stars, and with

such a sample could detect the age-oxygen correlation for flife > 25% (Kammerer and

Quanz, 2018; Quanz et al., 2018).

A note of caution: the yield estimates above have been adapted directly from literature

references, and may not be directly comparable as they were calculated using different

techniques. All of them rely on estimates of η⊕ (the number of potentially habitable

planets per star) extrapolated from Kepler data, but recent work by Pascucci et al. (2019)

suggests that such estimates are exaggerated by a factor of 4–8×, as the Kepler radius

distribution of short-period planets is heavily impacted by atmospheric loss. Nevertheless,

the numbers cited suggest that testing for the age-oxygen correlation may be an achievable

science goal for some of these missions.

In summary, we conclude that future space missions that are being designed to detect

oxygen in the atmospheres of individual planets could use the same capabilities to test the

null hypothesis that the Earth’s atmospheric evolution is typical for an inhabited world.

To achieve this science goal, the stellar age distribution of the target sample should be

carefully considered: when it is necessary to prioritize targets, surveys are encouraged to

favor young stars to maximize their sensitivity to changes in atmospheric oxygen content

during the first few billion years.

5.4.2 Impact of planet and stellar properties

In our analysis we assume that the amount of time required for a planet to reach a GOE-

like transition is random, but typically between 1−10 Gyr. In reality, this timescale will be

dependent on each planet’s properties. In order for a GOE-like event to occur, a planet’s

biological oxygen source must grow large enough and/or its oxygen sinks must become

minimal enough that the former overwhelms the latter. Here we address ways in which

these sources and sinks might vary across different types of habitable worlds.

3https://www.life-space-mission.com/

https://www.life-space-mission.com/
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Catling et al. (2005) coin the term “oxygenation time” to refer to the time required

for a planet to acquire enough atmospheric O2 to support complex life, and they argue

that a planet’s size, composition, and the presence or absence of continents could affect

this timescale in diverse ways. For example, larger planets, or planets with more reducing

initial compositions, will have a greater inventory of reducing matter to exhaust. The in-

terior heat flux could be higher on planets larger than Earth, or for tidally-heated planets

on close-in orbits around low-mass stars (Driscoll and Barnes, 2015), which would affect

outgassing rates. Continents play a role in both removing oxygen from the atmosphere

(through outgassing and rock weathering) and replenishing it (through the burial of or-

ganic matter), but on a planet without continents these processes would be diminished

(Lunine, 2013).

The escape of hydrogen from Earth’s atmosphere into space acts to oxidize the planet,

an effect that may have triggered the GOE since hydrogen escape from early Earth’s

atmosphere was likely much faster than at present (Catling et al., 2001; Claire et al., 2006;

Zahnle et al., 2013, 2019). On Earth, the hydrogen escape rate is limited by its diffusion

rate into the exosphere (Hunten and Donahue, 1976). The diffusion length decreases with

surface gravity, which ranges from ∼ 0.3 – 2.5 g on rocky exoplanets (e.g., Neil and

Rogers, 2020), so diffusion-limited escape should be more efficient on larger planets -

but at the same time the maximum escape rate of hydrogen from the exosphere will be

throttled due to increased gravitational potential (Catling et al., 2005). In total, we might

expect a non-monotonic relationship between hydrogen escape and planet size that could

accelerate or inhibit the oxygenation of the atmospheres of other inhabited worlds.

Since the advent of oxygenic photosynthesis is presumed a prerequisite for global

oxygenation, the rate at which evolutionary changes occur in the biosphere could also

limit the oxygenation timescale. Several authors have investigated factors affecting the

pace of biological evolution on planets hosted by low-mass stars, with some suggesting

that prebiotic chemistry could be inhibited by a deficit of ultraviolet radiation (Buccino

et al., 2007; Ranjan et al., 2017; Rimmer et al., 2018), and others proposing that complex

life could take longer to subsequently evolve (Haqq-Misra and Kopparapu, 2018; Haqq-

Misra, 2019). Biogenic oxygen levels may be substantially lower around low-mass stars,
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as they emit less of the visible-wavelength radiation that drives oxygenic photosynthesis

on Earth (e.g., Kiang et al., 2007; Gale and Wandel, 2016; Lehmer et al., 2018; Mullan

and Bais, 2018; Ritchie et al., 2018; Lingam and Loeb, 2018, 2019). The net effect of

these factors could be to substantially delay or entirely prevent the oxygenation of the

atmosphere for habitable planets orbiting low-mass stars.

A planet’s size, bulk composition, and its host star’s spectral type can often be con-

strained through observation, so it is conceivable that one could control for their effects

- but this would necessitate a larger sample. It may be possible to detect continents by

measuring a planet’s photometric variability through extensive direct imaging observa-

tions (e.g. Ford et al., 2001; Cowan et al., 2009; Cowan and Fujii, 2018; Farr et al., 2018;

Lustig-Yaeger et al., 2018; Fan et al., 2019; Aizawa et al., 2020), but likely only for a

limited number of optimal targets.

In total, we expect that the diversity of planet compositions and environments will re-

sult in a corresponding diversity of oxygenation timescales, but overall the age-oxygen

correlation should remain as long as some planets were oxygenated within their first

several Gyr. Our analysis accommodates this diversity by simulating planets with such

timescales ranging from ∼ 1 – 10 Gyr, but if the typical timescale is in fact very short

(< 1 Gyr) or long (> 10 Gyr), then a larger sample size will likely be required to detect

the correlation. Further detailed theoretical treatments of the variation of oxygen sources

and sinks across a realistic range of planetary properties will be valuable for evaluating

the assumptions made in Figure 5.1.

5.4.3 Verifying O2 as a potential biosignature

We propose that a potential future discovery of a positive age-oxygen correlation would

serve as additional evidence for life on oxygen-bearing planets, even if concerns about

false positives cannot be ruled out through contextual evidence for individual planets in

the sample (e.g., Meadows et al., 2018b). While multiple mechanisms have been pro-

posed for the abiotic generation of O2, none so far have been shown to produce a positive

correlation of O2 content with age. On the other hand, such a correlation does reflect

the history of biogenic oxygen in Earth’s atmosphere, so if discovered it would suggest a
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similar (i.e. biological) history for other worlds. Nevertheless, like all proposed biosigna-

tures, the discovery of an age-oxygen correlation would need to be rigorously scrutinized

to ensure that no plausible abiotic evolutionary scenarios could produce it.

On the other hand, if enough planets with oxygenated atmospheres are detected that

a positive age-oxygen correlation can be ruled out over Gyr timescales, this would imply

that most planets that already have oxygen acquired it before ∼ 1 Gyr. An explanation

would be required for why Earth took substantially longer to become oxygenated than

most oxygen-rich planets. Such an explanation may be found through modeling the ef-

fects of planet and stellar properties on redox balance as discussed in Section 5.4.2, or

perhaps through an argument about anthropic bias (i.e., if complex and intelligent life is

more likely to evolve on planets with late GOEs, then our planet is more likely to have

had a late GOE).

5.4.4 Complicating factors for detecting O2 or O3

We assume that O2 or at least O3 will be detectable for every post-GOE planet, but com-

plicating factors could make this assumption optimistic. Clouds and hazes can mask

absorption by low-altitude gasses, an issue that is expected to affect both direct imag-

ing and transit observations of rocky planets (e.g., Arney et al., 2017; Rugheimer and

Kaltenegger, 2018; Wang et al., 2018; Kawashima and Rugheimer, 2019; Lustig-Yaeger

et al., 2019b). For transit spectroscopy, it could prove difficult to disentangle the spectral

features of the atmosphere from those of the stellar photosphere (Apai et al., 2018b). This

may inhibit the detection of biosignatures on planets around M dwarfs (Rackham et al.,

2018; Zhang et al., 2018; Iyer and Line, 2020), but would be a less prominent issue for

FGK stars (Rackham et al., 2019b). Detailed spectral modeling of the photosphere may

also help to resolve this degeneracy (Pinhas et al., 2018; Rackham et al., 2019a; Wakeford

et al., 2019; Iyer and Line, 2020).

We again emphasize that even in cases where O2 is difficult to observe (e.g., due to

clouds), strong O3 absorption may still be visible. Generally, while these complicating

factors may have the effect of increasing the sample size required to detect the age-oxygen

correlation, they in principle should not inhibit it.
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5.4.5 Assumed correlations

In our analysis we consider three functions to describe the fraction of inhabited planets

with oxygenated atmospheres. The first and third functions have the following exponen-

tial form:

fO2(t) = 1 − exp(−t/τ )

This is appropriate if we assume that every inhabited planet has an equally small prob-

ability to undergo a GOE during each consecutive interval of time during its history. If

Earth is a typical example, then this probability is ∼ 3% per 100 Myr. This case seems

appropriate if the timing of the GOE is set by changes in the biosphere, as several ran-

dom and independent evolutionary steps must occur before oxygenic photosynthesis can

become a dominant form of metabolism.

In the second case we assume a step function:

fO2(t) =

1 t ≥ 2.2 Gyr

0 t < 2.2 Gyr
(5.1)

Under this case, every planet is an exact Earth analog and undergoes a GOE at the same

age as did Earth. While this is unlikely to actually be correct, a step function would be

the most easily detectable correlation, so our results for this case reflect a lower limit on

the required sample sizes.

Despite the difference between the functional forms of the first/third and second cases,

the sample sizes that must be observed to test them typically agree to within a factor of

two, suggesting that our results are relatively consistent across these cases.

5.4.6 Prospects for determining stellar ages

For simplicity, we assume that each planet’s age (which is approximately the age of its

host star) is known with high precision, but this is not a true assumption for most known

exoplanets today.

It is plausible that precise (< 1 Gyr) age constraints could be achieved through as-

teroseismology, as demonstrated for several Kepler/K2 planet hosts (e.g., Mathur et al.,
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2012; Chaplin et al., 2014; Silva Aguirre et al., 2015; Creevey et al., 2017; Kayhan et al.,

2019; Lund et al., 2019). With the same method, the PLATO mission could allow for 10%

precision age measurements of hundreds of bright solar-type stars (Rauer et al., 2014).

However, asteroseismic pulsations have so far proved difficult to detect in low-mass

stars despite extensive efforts (Baran et al., 2011b,a; Krzesinski et al., 2012; Baran et al.,

2013; Rodríguez-López et al., 2015; Rodríguez et al., 2016; Berdiñas et al., 2017). For

now, age estimates for low-mass stars rely on various spectroscopic and photometric re-

lations. For example, Burgasser and Mamajek (2017) combine several diagnostics to

determine the age of TRAPPIST-1, a well-studied ultra-cool dwarf known to host mul-

tiple potentially habitable planets (Gillon et al., 2017). Despite a thorough analysis, the

authors are only able to constrain the age of the system with a 1σ precision of ±2.2 Gyr,

demonstrating that securing sub-Gyr age constraints for low-mass stars is not feasible

using existing techniques.

Provided systematic errors are minimal, age uncertainties could be factored into a

statistical correlation test. Doing so, however, would likely increase the required sample

size if the uncertainty is much larger than the age range over which the correlation is

expected (& 1 Gyr). It is therefore important that advances be made over the next two

decades in the measurement of stellar ages, particularly for low-mass stars.

5.4.7 Luminosity evolution for low-mass stars

A potential source of uncertainty comes from the luminosity evolution of the host star,

and therefore the evolution of its habitable zone. Habitable zone planets around low-

mass stars are the best targets for characterization through transit spectroscopy because

they produce larger relative transit depths, are more likely to transit, and transit more

often than Earth twins around Sun-like stars. However, their host stars’ habitable zones

contract significantly during the pre-main sequence phase, which can last for hundreds

of Myr. Planets towards the inner edge may have regained their habitability only after

the star reached the main sequence, or may have lost it permanently (e.g. Ramirez and

Kaltenegger, 2014; Tian and Ida, 2015; Luger and Barnes, 2015; Barnes et al., 2016).

To account for this caveat, more detailed future studies could estimate and subtract the
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amount of time for which the planet was outside of the habitable zone from its age before

performing a correlation test. In contrast, planets that have been rendered permanently

uninhabitable by the pre-main sequence star represent a reduction in flife, and are therefore

already factored into our analysis.

5.5 Conclusions

Motivated by a new generation of space missions concepts that aim to search for atmo-

spheric biosignatures across statistically meaningful samples of planets, we explore how

constraints on the presence of atmospheric O2 or O3 as a function of age could be used to

study how inhabited planets and life co-evolve, and to test the robustness of oxygen as a

biosignature. A possible starting hypothesis for the evolution of inhabited planets is that

their atmospheres evolve in a similar manner to Earth’s. We show that this null hypothesis

predicts a strong, positive age-oxygen correlation among such worlds. The presence of

such a trend, if detected by future observatories, could serve as additional evidence for

life.

We show that by detecting or rejecting the presence of O2 – or its byproduct O3 –

in a sufficiently large sample of potentially habitable planets, it will be possible to con-

firm this hypothesis using statistical correlation tests – without needing to know which

planets are inhabited. To confidently detect the age-oxygen correlation, we find that a

sample size of ∼ 20 potentially habitable planets must be observed if ∼ 80% of them are

in fact inhabited. If the inhabited fraction is only ∼ 10%, then ∼ 300 planets must be

observed, and if it is smaller than∼2% then more than one thousand planets are required.

These sample sizes are similar to those predicted for ambitious space missions proposed

to launch within the coming decades.

Our results have important implications for the target selection of future biosignature

surveys that should be considered as their missions are designed and built. Namely, sur-

veys that must down-select or prioritize their target lists should favor young and old over

intermediate-age stars, as doing so could reduce the number of planets required to de-

tect the age-oxygen correlation by about 35%. Similarly, surveys should avoid excluding
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young stars from their target lists, as this could increase the number of planets required

by a factor of ∼ 3. Such target selection strategies will require precise stellar age mea-

surements, which should be achievable for many FGK dwarfs through asteroseismology,

but are yet out of reach for low-mass stars.

These results are also sensitive to the abundance of abiotically-produced O2 in ex-

oplanet atmospheres. While Earth has no substantial non-biological oxygen sources, it

has been proposed that a small fraction of potentially habitable exoplanets could. If this

fraction exceeds ∼ 10%, then many more planets must be characterized to detect the age-

oxygen correlation.

Our study offers a promising initial analysis of the capacity of next-generation obser-

vatories to study the oxygen evolution of habitable planets. Future studies can expand

upon this groundwork by incorporating quantitative treatments of the influence of planet

size, composition, stellar environment, and other factors that may impact the proposed

age-oxygen correlation. Finally, while in-depth studies of individual planets – especially

those presenting biosignatures – will be invaluable, statistical analyses could enable a

broader understanding of life as a universal phenomenon. We encourage that this and

other statistical hypotheses be given proper consideration as new telescopes and instru-

ments are being designed to characterize the atmospheres of habitable exoplanets.
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CHAPTER 6

Bioverse: A Simulation Framework to Assess the Statistical Power of Future

Biosignature Surveys

This chapter has been published as Bixel and Apai (2021) and is reproduced here with

permission.

Abstract

Next-generation space observatories will conduct the first systematic surveys of ter-

restrial exoplanet atmospheres and search for evidence of life beyond Earth. While in-

depth observations of the nearest habitable worlds may yield enticing results, there are

fundamental questions about planetary habitability and evolution that can only be an-

swered through population-level studies of dozens to hundreds of terrestrial planets. To

determine the requirements for next-generation observatories to address these questions,

we have developed Bioverse. Bioverse combines existing knowledge of exoplanet

statistics with a survey simulation and hypothesis testing framework to determine whether

proposed space-based direct imaging and transit spectroscopy surveys will be capable of

detecting various hypothetical statistical relationships between the properties of terres-

trial exoplanets. Following a description of the code, we apply Bioverse to determine

whether an ambitious direct imaging or transit survey would be able to determine the

extent of the circumstellar habitable zone and study the evolution of Earth-like planets.

Given recent evidence that Earth-sized habitable zone planets are likely much rarer than

previously believed (Pascucci et al., 2019), we find that space missions with large search

volumes will be necessary to study the population of terrestrial and habitable worlds.

Moving forward, Bioverse provides a methodology for performing trade studies of fu-

ture observatory concepts to maximize their ability to address population-level questions,

including and beyond the specific examples explored here.
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6.1 Introduction

The field of exoplanet science stands at an exciting turning point. In the past, most exo-

planet surveys aimed only to constrain bulk properties - such as size, period, and mass.

Moving forward, several groups are developing concepts for space telescopes that would

enable the atmospheric characterization of temperate terrestrial planets. Such concepts

include the Large UV/Optical/Infrared Surveyor (LUVOIR, The LUVOIR Team, 2019),

the Habitable Exoplanet Observatory (HabEx, Gaudi et al., 2020), the Origins Space Tele-

scope (Meixner et al., 2019), the Nautilus Space Observatory (Apai et al., 2019), the Large

Interferometer for Exoplanets (LIFE, Quanz et al., 2018), and the Mid-Infrared Exoplanet

Climate Explorer (MIRECLE, Staguhn et al., 2019). By looking for biosignatures in the

atmospheres of temperate Earth-sized planets, these observatories would conduct the first

systematic search for life beyond the Solar System.

Next-generation observatories will be able to study some of the closest terrestrial ex-

oplanets in unprecedented detail, but this is only the start of their scientific capability:

observatories that can study tens to hundreds of terrestrial planets will allow for the first

statistical constraints on the atmospheric, geological, and biological properties of terres-

trial planets. Some recent works have explored statistical trends and patterns that may

only be evident at the population level. For example, habitable zone models predict pat-

terns in atmospheric CO2 and H2O abundance (Bean et al., 2017; Lehmer et al., 2020) as

well as color and albedo across a range of stellar insolations (Checlair et al., 2019). Venus

analogs may have larger apparent radii than their temperate siblings due to their thick,

post-runaway greenhouse atmospheres (Turbet et al., 2019). Earth’s geological record

suggests a possible relationship between the ages and oxygen content of Earth-like plan-

ets, assuming their atmospheres evolve similarly to Earth’s (Bixel and Apai, 2020b), and

with a large enough sample size of potentially habitable planets, next-generation surveys

could place the first constraints on the frequency of life in the universe (Checlair et al.,

2021). An understanding of population-level trends will provide context for the interpre-

tation of possible biosignatures on individual worlds and could illuminate their potential

false positive (i.e. non-biological) sources (Apai et al., 2017; Meadows et al., 2018b). To
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avoid statistical false positive scenarios, efforts must also be made to understand which

distinct mechanisms could produce the same apparent trends. For example, an increase

in cloud deck altitude with insolation could masquerade as a signature of atmospheric

erosion in a sample of transiting exoplanets (Lustig-Yaeger et al., 2019a).

Recent research has identified key outstanding questions about terrestrial exoplanets,

their planetary systems, and the processes that shape them for which future observatories

might provide insights (see the SAG 15 report for an overview of several such questions

in the context of direct imaging missions, Apai et al., 2017). For example: what are

the processes that shape their atmospheric loss (e.g., Zahnle and Catling, 2017)? Is the

habitable zone wide (e.g., Kasting et al., 1993; Kopparapu et al., 2014) or narrow (e.g.,

Hart, 1979)? What is the relationship between planet size and tectonic activity (e.g.,

Valencia et al., 2007; Dorn et al., 2018)? Are habitable planets equally common around

stars of different mass and activity levels (e.g., Shields et al., 2016)? Which, if any,

of these questions could be answered with a next-generation observatory will depend

on its technical design and observing strategy. One important metric is the number of

terrestrial habitable zone planets that it could realistically detect, but only a subset of

these will be habitable, and even inhabited worlds may vary substantially from Earth in

their atmospheric composition and evolutionary history. Furthermore, deep spectroscopic

characterization of individual planets will be time-consuming, so strategic choices must

be made as to which planets to characterize and at what wavelengths. For these reasons,

analyses based solely on the detection yield predictions of future space mission concepts

will provide an optimistic assessment of their statistical power.

To enable meaningful statistical hypotheses that can be tested by future observato-

ries, we have developed Bioverse. Bioverse estimates the statistical power of next-

generation exoplanet surveys to detect and study population-level trends by simulating the

underlying planet population, survey limitations, observing biases, and statistical analyses

that a future observer would perform on a large set of observations of terrestrial planets.

After the following brief description of the code structure, we describe its three main

components in Sections 6.3 through 6.5. In Sections 6.6 and 6.7, we use Bioverse to

determine the requirements for next-generation surveys to test the habitable zone concept
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and study the evolution of Earth-like planets.

6.2 Code outline

Bioverse consists of three components, outlined in Figure 6.1. The first component

generates planetary systems with bulk properties (e.g., size and period) drawn from statis-

tical distributions, then applies theoretical models or parametric relationships to generate

secondary properties of interest (e.g., atmospheric composition). The second component

is a survey simulator that conducts observations of the simulated exoplanet population

in direct imaging or transit spectroscopy mode. The survey simulator first determines

which planets could be characterized within a finite allotted observing time, then gener-

ates a simulated data set representative of the telescope and instrument capabilities. The

third component is a Bayesian framework that uses simulated datasets to test statistical

hypotheses and estimate model parameters. By iterating through these components, we

can use Bioverse to determine the statistical power of a proposed observatory to test

different hypotheses.

Bioverse is written in Python1 and designed for flexibility, so that different statis-

tical assumptions and testable hypotheses can be implemented in the future. The specific

set of assumptions that Bioverse is currently based on are listed in Table 6.1. Given the

large number of parameters involved in Bioverse, we provide a table of abbreviations

and symbols used in the text in Appendix B.1.

1A current version of the code can be found on GitHub, while the version used in this paper is archived

on Zenodo (Bixel and Apai, 2021).

https://www.github.com/abixel/Bioverse/
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Classify planets

Create planets

Create host stars

Module 1:
Planet Generation

Module 2:
Survey Simulation

Which planets can be 
observed?

How much time is 
required per target?

Module 3:
Hypothesis Testing

Survey description

Prioritize and observe 
targets

Compute Bayesian 
evidence

Sample parameter 
posterior distributions

Define hypothesis

Apply population-level 
trends

Reject the null 
hypothesis?

Example 1: 

Habitable zone hypothesis
Example 2:

Age-oxygen correlation

Population-level Trends

Compute statistical power

Figure 6.1: A high-level outline of the Bioverse code. In this paper, we apply
Bioverse to assess the detectability of two hypothetical population-level trends (green)
with next-generation survey telescopes. These relationships are injected into the simu-
lated planet population by the first module, then tested as statistical hypotheses by the
third module.
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Table 6.1: Summary of Statistical Assumptions and Modeling Choices in Bioverse, with Associated References.

Topic Assumptions References

Host star distribution and

properties

(Imaging mode) LUVOIR-A optimized target catalog The LUVOIR Team (2019)

and C. Stark (private corre-

spondence)

(Transit mode) Stellar mass function Chabrier (2003)

Main sequence mass-radius-luminosity relations Pecaut and Mamajek (2013)

Planet occurrence rates SAG13 occurrence rates, with modifications:

- η⊕ ≈ 7.5% for G stars (down from ≈ 24%) Pascucci et al. (2019); Neil

and Rogers (2020)

- More planets around lower-mass stars Mulders et al. (2015a,b)

Exo-Earth candidates approximately Earth-sized (0.8S0.25 < R < 1.4R⊕) various (see Section 6.3.4)

within the circumstellar habitable zone K14

Observatory templates (Imaging mode) 15-meter LUVOIR-A observatory The LUVOIR Team (2019)

(Transit mode) 50-meter equivalent Nautilus Space Ob-

servatory

Apai et al. (2019a)
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Table 6.1: (continued)

Topic Assumptions References

Target prioritization Finite observing time with overheads

Observe in order of required time

Prioritize targets to reduce survey biases

Measurement noise Photon-noise limited observations with characteristic

wavelength λeff

Required exposure time scales with distance, stellar

brightness, and signal strength

Model comparison Compare alternative to null hypothesis through

Bayesian evidence Z
Significant evidence when ∆(Z) > 3

(where applicable) Frequentist comparison tests (e.g., t-

tests)
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6.3 Planet generation

The first component of Bioverse creates simulated planetary systems around host stars

in the solar neighborhood with a period and radius distribution informed by Kepler statis-

tics. Other planet properties (such as mass and geometric albedo) are derived from empiri-

cal relationships or best-guess prior distributions. Finally, the simulated planet properties

reflect the effects of hypothetical population-level trends that could be uncovered by a

future survey of terrestrial planets.

6.3.1 Stellar properties

We begin by considering which stars in the solar neighborhood would be targeted

by future biosignature surveys. Our strategy for simulating stellar systems is mass-

dependent, and therefore depends on the observing technique used by the simulated sur-

vey. Bioverse currently considers observations through coronagraphic direct imaging

(in “imaging mode”) and transit spectroscopy (in “transit mode”).

Direct imaging surveys will primarily target the habitable zones of higher-mass (FGK)

stars within the nearest 30 pc, the majority of which have already been cataloged by

space-based astrometry missions. Not all of these will be equally valid targets, due to

the combined effects of distance and background noise sources, such as zodiacal dust

(Stark et al., 2019). Sophisticated simulations for the LUVOIR mission concept (The

LUVOIR Team, 2019) have produced an optimized list of targets whose habitable zones

could feasibly be probed for Earth-like planets. In imaging mode, we use an optimized

stellar target list for the 15-meter LUVOIR-A concept as the basis for simulating nearby

planetary systems (C. Stark, private correspondence).

A survey of transiting habitable zone planets would be most sensitive to planets around

low-mass (K and M) stars, as their habitable zone planets are more likely to transit, transit

more frequently, and produce a deeper relative transit depth. However, the census of

low-mass stars is not complete out to ∼ 100 pc. Therefore, in transit mode, all stellar

masses are randomly drawn from a present-day stellar mass function (Chabrier, 2003) and

distribute them isotropically in space. We do not include any known stars or transiting
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planets in the transit mode sample; as most nearby transiting planets remain undiscovered,

this would have little effect on the overall statistical distribution of host star properties.

In both imaging and transit modes, we relate the stellar mass (M∗) to its radius, lu-

minosity, and effective temperature (R∗, L∗, T∗) by interpolating a list of these properties

as a function of spectral type (Pecaut and Mamajek, 2013). Each star is assigned an age

drawn uniformly from 0–10 Gyr, reflecting the (to first order) constant star formation rate

in the Milky Way for the past 10 Gyr (e.g., Snaith et al., 2015; Fantin et al., 2019; Mor

et al., 2019).

6.3.2 Period and radius occurrence rates

Kepler has provided excellent insights into the frequency of planets as a function of pe-

riod and size for a wide range of host stars. However, these statistics are only complete to

periods . 100 days, and as such do not reach the habitable zone of Sun-like stars. As a

result, estimates of η⊕ (the average number of habitable zone Earth-sized planets per star)

have so far been based on extrapolation and are therefore model-dependent. NASA’s Exo-

planet Program Analysis Group chartered Science Analysis Group 13 (hereafter SAG13)

to consolidate the results of several studies of Kepler occurrence rates into a single set

of estimates for community use,2 resulting in an oft-cited value of η⊕ ≈ 24% for G stars.

Here, and elsewhere in this paper, the value of η⊕ uses the habitable zone model of Koppa-

rapu et al. (2014) (hereafter K14; 0.95 – 1.67 AU for an Earth twin). We use the SAG-13

consensus occurrence rate power laws as the basis for determining the number, radii (Rp),

periods (P), semi-major axes (a), and insolations (S) of planets in each system. However,

the SAG13 metastudy was based largely on studies published before 2017, many of which

did not assess planet occurrence as a function of stellar mass. We make the following two

modifications to the SAG13 rates to reflect recent work.

First, we unilaterally decrease the number of planets per star by a factor of 3.2, such

that η⊕ ≈ 7.5% for G stars. This is in response to the findings of Pascucci et al. (2019)

that Earth-sized planets are more common at shorter orbital periods (P . 25 d) than in

the habitable zone, which they ascribe to the effects of photoevaporation. Specifically,
2see this URL as well as Kopparapu et al. (2018)

https://exoplanets.nasa.gov/exep/exopag/sag/#sag13
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Figure 6.2: (Top) The assumed number of approximately Earth-sized planets (0.7 < R <
1.5R⊕) with orbital periods shorter than 3 yr per star, as a function of stellar mass. We
modify the SAG13 estimate (black) by decreasing the overall planet count by ∼ 3× and
increasing the number of planets orbiting Kepler low-mass stars, as well as shortening
their orbital periods (gray). We conservatively assume the occurrence rates to plateau for
ultra-cool dwarfs (green). (Bottom) The corresponding value of η⊕ using the habitable
zone model of K14.
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they argue that a large fraction of Earth-sized planets on close-in orbits are the evaporated

cores of ice giants - planets that maintain their envelopes (and are therefore not Earth-

like) if they form in the habitable zone. In another analysis, Neil and Rogers (2020) find

evidence for two distinct populations of rocky planets, and as a result fewer Earth-sized

planets in the habitable zone, for which they suggest a similar explanation. The chosen

value of 7.5% is in the mid-range of values estimated by Pascucci et al. (2019) when they

exclude the planets most affected by photoevaporation.

Second, we modulate the occurrence rates as a function of spectral type following

Mulders et al. (2015a), who find that rocky planets are more common around lower-mass

stars and tend to occupy shorter orbits. Specifically, we gradually increase the number of

planets for stars less massive than the Sun and decrease their semi-major axes by inter-

polating between the scaling factors provided by Mulders et al. (2015a)3 (normalized to

1 for the typical Kepler host star). Later, Mulders et al. (2015b) found evidence that the

number of rocky planets around the typical Kepler M dwarf (M0 – M5) was ∼ 3.5× as

high as for G dwarfs, so we further increase the number of planets around M dwarfs to

reflect this result. Finally, since Kepler was not sensitive to late M dwarfs, we assume the

number of planets per star to plateau for these stars (which we believe to be a conserva-

tive extrapolation given the general trend). We note that more recent studies of M dwarf

planet occurrence rates reaffirm the finding that lower-mass stars have more Earth-sized

planets, including estimates from Kepler data (e.g., Hardegree-Ullman et al., 2019; Hsu

et al., 2020) and radial velocity detections (Tuomi et al., 2019).

The net impact of these two decisions on the number of Earth-sized planets per star,

as a function of stellar mass, is shown in Figure 6.2. Our estimate of η⊕ may seem

pessimistic when compared to higher values used in predicting the detection yield of

mission concepts (e.g., Gaudi et al., 2020; The LUVOIR Team, 2019; Meixner et al.,

2019; Apai et al., 2019), but we view it to be a realistic estimate based on the most recent

studies available. Our estimate is lower than those of Bryson et al. (2021), who avoid bias

due to photoevaporation by excluding planets at high insolation. However, their resulting

sample size is limited, and thus their confidence intervals are broad; indeed, our value of

3see Table 1 and Figure 4 therein
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η⊕ = 7.5% is within the 95% confidence interval of some of their estimates.4

In general, all existing estimates of η⊕ for G stars - including our own - are based on

extrapolation and are therefore uncertain. For example, existing data cannot rule out an

increase in terrestrial planet occurrence rates at orbital periods beyond ∼ 100 d, which

would enhance η⊕. To accommodate this uncertainty, we express our results in Sections

6.6 and 6.7 in terms of either η⊕ or the number of planets observed (which is typically

linear to η⊕). As a result, the validity of our results is not tied to any specific value for η⊕.

6.3.3 Habitable zone boundaries

The circumstellar habitable zone refers to the theoretical region around a star in which a

planet can sustain liquid surface water. Many formulations of the habitable zone exist, but

the most commonly cited estimates are based on Kasting et al. (1993) and subsequent pa-

pers that expanded on their methodology (Kopparapu et al., 2013, 2014). In Bioverse

we use the results of K14 to calculate the inner edge (ainner, corresponding to the runaway

greenhouse limit) and outer edge (aouter, corresponding to the maximum greenhouse limit)

of the habitable zone. To account for the dependence on planetary mass, we interpolate

between the three planetary masses modeled therein.

6.3.4 Classification

Following Kopparapu et al. (2018), we classify planets as “hot”, “warm”, or “cold” de-

pending on their insolation, and “rocky”, “super-Earth”, “sub-Neptune”, “sub-Jovian”,

or “Jovian” depending on their size. Approximately Earth-sized planets within the hab-

itable zone are of particular interest, as these are the most likely planets to have liquid

water and habitable surface conditions. Following recent studies of detection yield es-

timates for direct imaging missions (Kopparapu et al., 2018; Stark et al., 2019; Gaudi

et al., 2020; The LUVOIR Team, 2019), we classify as “exo-Earth candidates” (here-

after EECs) any planets with radii 0.8S0.25 < R < 1.4 and orbits within the habitable zone

boundaries calculated above. The lower limit on the size of EECs is the theoretical mini-
4see Table 6 therein



173

mum size for which a terrestrial planet can maintain an atmosphere suggested by Zahnle

and Catling (2017), while the upper limit reflects the findings of several authors that plan-

ets larger than ∼ 1.4 − 1.6R⊕ tend to resemble mini-Neptunes in composition more than

super-Earths (e.g., Weiss and Marcy, 2014; Rogers, 2015; Fulton et al., 2017).

6.3.5 Albedo and contrast ratio

Imaging measurements will be able to use a planet’s brightness as a rough proxy for its

size, but its brightness also depends on its geometric albedo, orbital phase, and semi-

major axis. The latter two of these can feasibly be constrained by revisiting the system

over several months, but it will be difficult to precisely disentangle geometric albedo and

planet size. Albedo is highly sensitive to surface and atmospheric composition and will

likely be highly variable for directly imaged exoplanets, so estimates of a planet’s size

based on brightness alone will be highly uncertain (Guimond and Cowan, 2018; Bixel

and Apai, 2020a; Carrión-González et al., 2020). To properly represent this source of

uncertainty, we assign geometric albedos (Ag) to each planet ranging uniformly from 10

– 70% (approximately the range of values encountered at visible wavelengths for solar

system planets, e.g., Madden and Kaltenegger, 2018).

Next, we compute the planet-to-star brightness contrast ratio for each planet, model-

ing them as Lambertian spheres observed at quadrature phase (Traub and Oppenheimer,

2010):

ζ =
Ag

π

(
Rp

a

)2

(6.1)

Note that the determination of a planet’s phase from imaging data is also not trivial,

requiring multiple follow-up observations to establish the orbit. Nevertheless, such ob-

servations will be a likely component of any future imaging survey in order to distinguish

temperate planets from their hotter and colder peers (Gaudi et al., 2020; The LUVOIR

Team, 2019).
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6.3.6 Surface gravity and scale height

To translate planet radii into masses, we use the probabilistic mass-radius relationship

derived by Wolfgang et al. (2016), which separates terrestrial planets and ice giants. Given

each planet’s mass and surface gravity, we then estimate the atmospheric scale height (h),

which is important for determining the relative spectroscopic signal due to atmospheric

absorption (as described in Section 6.4.3.2). We assign an atmospheric mean molecular

weight µ to each planet based on its size. For “sub-Neptune” planets and larger, we

assume H2 dominated atmospheres similar to Neptune or Uranus, with µ = 2.5mH . For

“rocky” and “super-Earth” planets, we calculate the ratio of N2 to CO2 based on their

position relative to the habitable zone as follows. For planets within ainner, we assume

CO2 dominated atmospheres similar to Venus’ (µ = 44mH). Within the habitable zone,

we adopt a positive correlation between semi-major axis and CO2 partial pressure, which

climate models predict as a result of the carbonate-silicate negative feedback mechanism

(e.g., Bean et al., 2017). Specifically, we follow the correlation derived by Lehmer et al.

(2020)5, add N2 as necessary to reach a minimum total pressure of 1 bar, and calculate the

mean molecular weight between the two species (28 < µ < 44mH). Finally, for planets

beyond aouter, we assume the CO2 to condense, leaving behind a pure N2 atmosphere

(µ = 28mH). We set the atmospheric temperature equal to the equilibrium temperature,

assuming the Bond albedo to equal the geometric albedo. However, for EECs we assume

an Earth-like atmospheric temperature due to greenhouse warming.

6.3.7 Inclination and transiting planets

Planets are assigned inclinations (i) from an isotropic distribution (i.e. a uniform distri-

bution in cos(i) from −1 to 1). From this, and assuming circular orbits, we calculate the

impact parameter on the stellar surface:

b = acos(i)/R∗ (6.2)

5We adopt the best-fit line in Figure 1 therein
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For transiting planets (with |b| < 1) we calculate the transit depth (δ = (Rp/R∗)2) and

duration:

Tdur =
R∗P
πa

√
1 − b2 (6.3)

6.3.8 Hypothetical population-level trends

The primary goal of our study is to understand which population-level trends may be

detectable with a next-generation exoplanet survey. For example, could such a survey

empirically determine the location of the habitable zone based on which planets have

H2O-rich atmospheres (Section 6.6), or study how oxygen evolves over time in the atmo-

spheres of Earth-like planets (Section 6.7)?

To enable these inquiries, we apply hypothetical population-level trends to the simu-

lated planet sample that will later be studied by simulated direct imaging and transit sur-

veys. Specifically, we determine which planets have atmospheric water vapor based on

their size and semi-major axis (following Equation 6.13), and determine which Earth-like

planets have atmospheric oxygen based on their age (following Equation 6.15). A more

detailed description of these assumed trends, and an assessment of their detectability by

future biosignature surveys, can be found in Sections 6.6 and 6.7.

6.4 Survey simulation

The second component of Bioverse translates the simulated planet population from

the previous section into a data set representing the result of a lengthy characterization

effort with a next-generation observatory. There are a few methods by which future ob-

servatories could characterize statistically-relevant samples of habitable planets, but in

Bioverse we focus on space-based direct imaging and transit spectroscopy. The data

sets produced by these next-generation surveys will be inherently biased by the observing

approach. Most notably, an imaging survey is most efficient in targeting the habitable

zones of nearby FGK stars, while a transit survey is optimized for M stars. Strategic deci-

sions also bias the data set - for example, an imaging survey must dedicate∼ 4× as much

time to study a planet at 2 AU from its star versus an Earth twin, so studying planets near
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the outer edge of the habitable zone will come at a steep cost.

6.4.1 Survey setup

As our template for a direct imaging survey we use LUVOIR (The LUVOIR Team, 2019,

hereafter L19), a proposed NASA Flagship-class mission that would use an 8–15 me-

ter segmented mirror and a multi-channel coronagraphic instrument to study terrestrial

planets around nearby stars. While the details of the LUVOIR concept have been stud-

ied in-depth, our results are based only on its high-level characteristics - specifically, we

adopt the 15-meter LUVOIR-A mirror diameter, coronagraphic inner (IWA) and outer

(OWA) working angles and noise floor, and the host star catalog used to simulate its de-

tection yield estimates (C. Stark, private correspondence). Our results should be generally

applicable to any imaging mission with a similar mirror size and coronagraph.

As our template for a transit survey, we use the Nautilus Space Observatory concept

(Apai et al. (2019a); Apai et al. (2019c)), which aims to study transiting exoplanets with

the equivalent light-collecting area of a single 50-meter diameter telescope. To achieve

this light-collecting power, Nautilus would employ an array of large telescopes with ultra-

light diffractive-refractive optical elements (Milster et al., 2020) (the launch of a single,

up to 8.5m diameter telescope has recently been proposed as a NASA Probe-class mis-

sion, Apai et al. (2019b)). To generate the potential list of transiting planets, we simulate

systems to a distance of 150 parsecs, as our simulated surveys tend not to observe targets

beyond this distance even when they are available.

Our analyses are based on a 15-meter mirror diameter imaging survey and a 50-meter

diameter (equivalent area) transit survey, because among all concepts currently under

consideration by the community, these are the ones purporting to offer the largest EEC

sample sizes for their respective techniques. It should be noted that a 15-meter imaging

survey would also be capable of characterizing nearby transiting planets as a secondary

science goal, but we do not model any dual mode surveys here.
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6.4.2 Which planets can be detected?

After simulating a catalog of nearby planetary systems, we discard any planets that cannot

be detected by a given mission architecture. In transit mode, we exclude all non-transiting

planets. In imaging mode, we exclude all planets whose maximum angular separation is

less than the IWA, or whose average angular separation is greater than the OWA, or for

which the planet-to-star contrast ratio (ζ) is below the instrument noise floor.

The remaining planets can, in principle, be detected by the survey, but to actually

detect most of them will require preliminary observations either using the same telescope

architecture or a precursor survey. A dedicated imaging mission would likely be able to

detect all of the EECs that it is capable of characterizing during preliminary observations

(Stark et al., 2019), but the vast majority of transiting planets within the nearest ∼ 100

pc remain undiscovered. Most likely, a large-aperture spectroscopic survey of hundreds

of transiting planets must be preceded by a space-based all-sky survey, similar to TESS

(Ricker et al., 2015) or PLATO (Rauer et al., 2014) but with sensitivity comparable to

Kepler. The cost and complexity of such a mission, though considerable, would likely be

much less than that of a subsequent characterization effort requiring orders of magnitude

greater light-collecting area.

6.4.3 Which planets can be characterized?

In-depth spectroscopic characterization is time-consuming, so the number of targets that

can be characterized is a function of the total time budget allotted to the characterization

effort (ttotal). Note that ttotal is not necessarily the same as the total survey lifetime (which

might be e.g. 5–10 yr). To determine which planets can be observed within ttotal, we

first determine the amount of time required to characterize each planet, including over-

heads, and prioritize targets based on both their required observing time and their relative

importance to the survey’s goals.
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6.4.3.1 Required exposure time

To determine which planets can be characterized within the time budget ttotal, we first

determine the amount of exposure time required to spectroscopically characterize a ref-

erence planet whose host star properties reflect the typical target for each survey mode.

For both observing modes, the reference planet has exactly the same bulk parameters and

receives the same incident flux as modern Earth. For direct imaging observations, its star

is a nearby solar-type star (T∗,ref = 5777 K, R∗,ref = R�, dref = 10 pc) while for transit ob-

servations it is a more distant early M dwarf (T∗,ref = 3300 K, R∗,ref = 0.315R�, dref = 50

pc). In the examples to follow, we only consider the detection or non-detection of an

absorption feature associated with a species, rather than constraints on the abundance.

We use two general circulation models (GCMs) published by Komacek and Abbot

(2019) to quantify the three-dimensional atmospheric abundance profiles of our reference

planets. Both models are water-covered planets around a Sun-like star (imaging mode) or

early M dwarf (transit mode) with the same size, mass, and insolation as Earth and 1 bar

N2/H2O atmospheres. These models include a treatment of ice and liquid cloud cover,

which is an important factor affecting the detectability of molecular features through

imaging and transit observations. Notably, because the M dwarf planet is tidally-locked,

convection on its dayside is more efficient, leading to strong, high-altitude cloud cover

and greater stratospheric H2O abundance (T. Komacek, private correspondence). Finally,

to enable the analysis in Section 6.7, we inject Earth’s modern oxygen abundance (pO2 =

20.7%) into the model atmospheres, reducing the background N2 pressure accordingly.

To simulate spectra for both models, we use the Planetary Spectrum Generator (here-

after PSG, Villanueva et al., 2018), which accepts three-dimensional atmospheric profiles

through its GlobES module6. The directly imaged planet is observed at quadrature phase,

while the transiting planet is observed with the night-side facing the observer. Both sim-

ulated spectra are shown in Figure 6.3 for atmospheres with and without cloud cover.

Next, we use PSG to compute noise estimates for each survey architecture as a function

of on-target exposure time. In imaging mode, we use the PSG template for the 15-meter

6The PSG configuration files for this study can be found in the code repository
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LUVOIR-A observatory, including the projected throughput, spectral resolution, raw con-

trast, and detector noise for the visible and near-infrared imagers, as well as 4.5 zodis of

background dust. In transit mode, we simulate observations for a 50-meter diameter aper-

ture with 60% total throughput, ignoring detector and instrument noise. To determine

whether a molecular feature can be detected, we simulate spectra with and without the

target molecule and compute the detection signal-to-noise ratio (SNR) across the absorp-

tion band in a manner similar to Lustig-Yaeger et al. (2019b)7:

SNR =
√∑

i

(∆yi/σyi)2 (6.4)

where ∆yi is the difference between the two spectra in each spectral bin and σyi is the

measurement uncertainty. Finally, we compute the exposure time required to achieve

a SNR = 5 detection of the feature for the reference planet (tref) in each survey mode,

then scale this value to determine the exposure time required for each individual planet

detected by the survey.

6.4.3.2 Exposure time scaling

We define ti as the amount of exposure time required to spectroscopically characterize a

planet at wavelength λeff. If we assume that ti depends primarily on the number of photons

collected, then we can estimate it by scaling tref (as determined using PSG) as follows:

ti

tref
= fi

(
di

dref

)2( R∗
R∗,ref

)−2( B∗,i(λeff,T∗,i)
B�(λeff,T∗,ref)

)−1

(6.5)

where fi summarizes the factors affecting the signal strength unique to each observing

mode. In imaging mode, the exposure time is inversely proportional to the planet-to-star

contrast ratio (assuming observations at quadrature phase):

f im
i =

(
ζi

ζ⊕

)−1

(6.6)

In transit mode, the transit depth signal induced by the atmosphere is (to first order) ∆δ ∼
(Rp/R∗)2(h/Rp) (Winn, 2010) and the required exposure time is inversely proportional to

7Equations 4–6 therein
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Figure 6.3: Model spectra for the reference planet in imaging (top; contrast ratio in parts-
per-trillion) and transit (bottom; transit depth in parts-per-million) mode. The spectra are
based on GCM models published by Komacek and Abbot (2019), who investigate ice and
liquid cloud cover on planets as a function of spectral type and tidal locking. We include
the effects of clouds to determine our exposure time estimates (black), while clear-sky
spectra are shown for reference (gray). Targeted absorption bands include H2O (green)
and O2 or O3 (blue).
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its square:

f tr
i =
(

hi

h⊕

)−2(Rp,i

R⊕

)−2( R∗,i
R∗,ref

)4

(6.7)

We round up ti to the next integer multiple of the planet’s transit duration, because a

transit survey would likely observe complete transits to measure the baseline. Planets

are considered to be invalid targets if the total number of required transit observations is

greater than either the number of available transits within 10 years or 103.

These scaling relations are meant to capture the main factors affecting the relative ex-

posure time required for each target so as to provide an approximate mapping between the

total amount of time dedicated to a survey and the number and distribution of targets it can

observe. Ultimately, the primary metric affecting a survey’s statistical power is usually

the number of EECs characterized, and we translate ttotal into the number of characterized

EECs so the reader can interpret our results as a function of sample size.

6.4.3.3 Overheads

In imaging mode, following L19 we increment each planet’s required exposure time by 2

hr to account for slew overheads and overheads associated with wavefront control. These

overheads end up being relatively insignificant except for the closest targets. In transit

mode, we assume 0.5 hr of slew overheads per observation, plus a total overhead equal to

the transit duration for baseline observations before and after each transit event.

6.4.3.4 Target prioritization

Given a limited time budget, it seems reasonable to prioritize observations of planets in

order of increasing ti so as to maximize the number of planets observed. However, prior-

itizing targets strictly by ti will lead to a biased sample, especially in the case of transit

surveys that are strongly biased towards the detection of close-in planets. To counter-act

these biases, we assign a weight wi to each planet, and calculate its priority as follows:

pi = wi/ti (6.8)



182

The specific choice of wi depends on the hypothesis being tested and is discussed in

Sections 6.6 and 6.7. To create the final simulated data set, we observe targets in order of

decreasing pi until some pre-determined time limit ttotal is reached.

6.4.4 Comparison between survey modes

In the following sections, we use Bioverse to evaluate the statistical potential of di-

rect imaging and transit spectroscopy surveys, but we avoid direct comparisons of their

results for the following reasons. First, the technical requirements for and limitations of

a direct imaging biosignature survey have been more thoroughly explored due to invest-

ments in the LUVOIR and HabEx mission concepts. As a result, our results for the transit

survey are likely more optimistic. Second, we do not wish to imply that a survey’s statis-

tical power is the only or most important dimension for comparison, as each architecture

enables unique capabilities that the other does not.

For the topics discussed here, the primary difference between the two surveys is the

number of EECs each can characterize. For the 15-meter imaging survey, this number is

15–20, and is volume- rather than time-limited. This estimate is consistent with that of

L19 when adjusted for our updated value of η⊕ (≈ 7.5% for G stars). For the 50-meter

(equivalent area) transit survey, this number grows with time, with e.g. 60–70 EECs being

surveyed for H2O absorption or ∼ 200 for O3 absorption given ttotal = 2 yr.

6.5 Hypothesis testing

The third component of Bioverse assesses the information content contained within the

simulated data sets from the previous section. This assessment focuses on two primary

questions: first, how likely is it that the survey would be able to detect the effects of a

statistical trend injected into the simulated planet population (Section 6.3.8)? Second,

how precisely could the survey constrain the parameters of that trend? To answer these

questions, we rely on a standard Bayesian hypothesis testing approach.8

8For a review of Bayesian parameter estimation and model selection in astronomy, we refer the reader

to Trotta (2008).
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6.5.1 Null and alternative hypotheses

Each simulated data set can be thought of as a set of independent variables x and depen-

dent variables y. For this section (and the examples to follow), we consider x and y to

each represent measurements of a single variable, but this hypothesis testing framework

can extend to multivariate measurements as well. The hypothesis h(~θ,x) describes the re-

lationship between the x and y in terms of a set of parameters ~θ. The simplest hypothesis

is the null hypothesis, in which there is no relationship:

hnull(θ,x) = θ

The null hypothesis is compared to an alternative hypothesis, which proposes a relation-

ship between x and y, using a Bayesian parameter estimation and hypothesis testing ap-

proach.

6.5.2 Likelihood function and prior distribution

Given a hypothesis h, the likelihood function takes on one of two forms. In the case where

y is binary (e.g., the detection or non-detection of an atmospheric species), then h is the

probability that y = 1, and the likelihood function is:

L(y|~θ) =
N∏
i

[
yih(~θ,xi) + (1 − yi)(1 − h(~θ,xi))

]
(6.9)

Alternatively, if y is a continuous variable measured with normal uncertainty σy, then h

predicts the expectation value of y, and the likelihood is described by the normal distribu-

tion:

L(y|~θ) =
N∏
i

1√
2πσ2

y,i

exp

(
−

(yi − h(~θ,xi))2

2σ2
y,i

)
(6.10)

Note that in both example applications of Bioverse to follow, we consider a detection

or non-detection as our dependent variable and use the likelihood function defined by

Equation 6.9.

The parameter prior distribution is denoted by Π(~θ). Given limited prior information

about the true values of parameters ~θ, we generally assume uniform or log-uniform dis-
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tributions spanning the range of plausible values. Further justification for our choice of

prior distributions can be found in the examples to follow.

6.5.3 Parameter estimation and Bayesian evidence

For each simulated data set, we sample the posterior distribution of the hypothesis param-

eters ~θ using a Markov Chaint Monte Carlo (MCMC) algorithm, implemented by emcee

(Foreman-Mackey et al., 2013). This sampling yields measurement constraints of the pa-

rameters ~θ. We also use a nested sampling algorithm (Skilling, 2006), implemented by

dynesty (Speagle, 2020), to estimate the Bayesian evidence for the alternative hypoth-

esis:

Z = P(y|h) =
∫
L(y|~θ)Π(~θ)dθ (6.11)

To test a hypothesis, we can compare its evidence to that of the null hypothesis, finding

evidence to reject the null hypothesis when:

∆ ln(Z) = ln(Z) − ln(Znull) > 3 (6.12)

We choose ∆ ln(Z) > 3 as our threshold because it corresponds to the common p < 0.05

threshold for hypothesis testing with other frequentist tests (e.g., Student’s t-test).

It should be noted that dynesty also samples the parameter posterior distributions

- so why use emcee to do this separately? In short, nested sampling is optimized to

measure Z , while MCMC is optimized to determine the posterior distribution. While

dynesty can quickly compute the Bayesian evidence with sufficient accuracy (σln(Z) .

0.5), we find it takes significantly longer to converge to the same parameter posterior

distributions as emcee. Since we repeat each simulated survey > 100,000 times, we

find this mixed approach to be necessary to achieve both accurate evidence and parameter

estimations on a reasonable timescale.

6.5.4 Statistical power

Whether or not an individual simulated survey is able to reject the null hypothesis can

often depend on stochastic error; one simulated survey may be able to reject the null
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hypothesis where another cannot. To summarize our results, we re-run each simulated

survey several times under the same set of assumptions and calculate the fraction of

survey realizations that achieve a positive result. This metric is also known as the

statistical power, and it allows us to assess a survey’s statistical potential as a function of

both survey parameters (such as total survey duration) and as-yet unknown astrophysical

parameters (such as the frequency of habitable planets).

This concludes the description of the three primary components of Bioverse. In

the following two sections, we will demonstrate applications of Bioverse to its stated

goal of assessing the statistical power of next-generation biosignature surveys.

6.6 Example 1: Empirical determination of the habitable zone boundaries

Models of the habitable zone predict that planets with oceans can only exist within a fi-

nite - and perhaps very narrow - range of insolations. An associated prediction is that

terrestrial planets in the habitable zone with water-rich atmospheres are the most likely

candidates for ocean-bearing worlds. These models will play an important role in the

design and target prioritization of next-generation observations; for example, prelimi-

nary search strategies for future biosignature surveys often dedicate intensive follow-up

to water-bearing habitable zone planets (The LUVOIR Team, 2019), while delegating

non-habitable zone planets to a lower priority. However, models for the habitable zone

have not been tested outside of the solar system, and estimates of its location and width

have varied by factors of several over the past few decades.

Could future observatories use data acquired from preliminary observations to test the

“habitable zone hypothesis” i.e., the hypothesis that planets with water vapor should be

more abundant within a narrow and finite range of orbital separations? Further, could

these data be used to empirically determine the location and width of the habitable zone?

The practical benefit of testing the habitable zone hypothesis would be to make the sur-

vey’s target prioritization strategy more efficient and to better determine which of its
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targeted planets are most likely to be habitable. By measuring its boundaries, observers

could test the predictions of various habitable zone models, and therefore the physical

mechanisms on which they rely. Finally, empirical constraints on the width of the habit-

able zone will be important for determining the occurrence rate of habitable worlds. Here,

we use Bioverse to explore how a survey of atmospheric water vapor could be used to

test the habitable zone hypothesis.

6.6.1 Model predictions

Climate models predict a steep decline in water vapor abundance of terrestrial planets

outside of the habitable zone. Within the inner edge, an Earth-like planet may undergo a

runaway greenhouse as on Venus, leaving behind only a tenuous amount of atmospheric

water vapor. Beyond the outer edge, the oceans may freeze, and water vapor would not

accumulate except in very low pressure atmospheres that permit its sublimation.

In Bioverse we implement these predictions as follows. We assume that a fraction

f H2O
EEC of EECs are in fact habitable, meaning they bear surface water and atmospheric

water vapor. We also allow a fraction f H2O
non-EEC of non-EECs to have atmospheric water

vapor, serving as a source of noise and “false positives” for habitable planets. Then the

fraction of planets with atmospheric water vapor can be described as:

f H2O =



f H2O
EEC if ainner < a < aouter

and 0.8S0.25 < R < 1.4R⊕

f H2O
non-EEC if a < ainner or a > aouter

and R > 0.8S0.25

0 if R < 0.8S0.25

(6.13)

where the habitable zone boundaries and planet size limits are those discussed in

Sections 6.3.3 and 6.3.4.
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Figure 6.4: An example of a simulated direct imaging data set for Section 6.6. Planets
are probed for the presence of atmospheric water vapor across a broad range of orbital
separations. We assume the habitable zone (gray) to be marked by an abundance of water-
rich atmospheres. The separation aeff = a(L∗/L�)−1/2 is the solar-equivalent semi-major
axis.

6.6.2 Simulated survey

6.6.2.1 Measurements

The imaging and transit surveys perform a set of measurements outlined in Table 6.2 to

determine the size and orbital separation of each potential target. In imaging mode, the

planet’s size is not determinable without prior knowledge of the geometric albedo, so an

estimated size (Rest) that assumes Earth-like reflectivity is used as a proxy. In both modes,

the orbital separation is converted to the “effective” semi-major axis (aeff) for which the

planet would receive the same insolation around a Sun-like star.

These preliminary measurements are used to prioritize targets as discussed in the fol-

lowing section. Those targets of high enough priority are spectroscopically characterized

to determine whether their atmospheres contain H2O. The final output of each simulated

survey as a data set consisting of (aeff,H2O), where H2O = {0,1} reflects the absence or

presence of water absorption features in the planet’s spectrum. One example of a simu-

lated data set is shown in Figure 6.4.
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Table 6.2: Measurements made by the simulated surveys in Examples 1 and 2. Parameters

marked by † are calculated from other measured values.

Parameter Measurement uncertainty Description / notes

Example 1

Imaging survey

L∗ negligible Host star luminosity

ζ 15% Planet-to-star contrast

a 10% Semi-major axis

aeff
† 10% Solar-equivalent semi-major axis

Rest
† 10% Estimated radius assuming Earth-

like reflectivity

H2O Detected / not detected Presence of 1.4 µm H2O absorption

Transit survey

M∗, R∗ 5% Host star mass and radius

P negligible Orbital period

δ negligible Baseline transit depth

aeff
† 1.7% Solar-equivalent semi-major axis

R† 5% Planet radius

H2O Detected / not detected Presence of 1.4 µm and 1.9 µm H2O

absorption
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Table 6.2: (continued)

Parameter Measurement uncertainty Description / notes

Example 2

Imaging survey

t∗ 10% Age (as measured through astero-

seismology)

O2 Detected / not detected Presence of 0.7 µm O2 absorption

Transit survey

t∗ 30% Age (model-based estimate)

O3 Detected / not detected Presence of 0.6 µm O3 absorption

6.6.2.2 Target prioritization

To test the habitable zone hypothesis we must observe planets spanning a broad range of

semi-major axes, but prioritizing targets solely based on required exposure time will bias

observations towards close-in planets. Furthermore, planets much smaller or larger than

Earth are not likely to be habitable regardless of insolation, and therefore serve as a source

of noise. The counter these effects, we weight each target according to its size and orbital

separation following Figure 6.5. We tuned this prioritization based on trial and error to

achieve the following goals:

1. Prioritize observations of more probable Earth analogs (planets receiving 50–150%

of Earth’s incident flux).

2. Balance observations of widely-separated planets versus close-in planets.

3. Minimize observations of non-Earth sized planets.

In transit mode, we additionally weight each target by (a/R∗) to negate the bias due to

close-in planets being more likely to transit. The resulting distribution of observed planets

is also shown in Figure 6.5.
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Example 1: Target prioritization and distribution
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Figure 6.5: Summary of target prioritization for the simulated imaging (top) and transit
(bottom) surveys in Section 6.6. The left panel shows the relative weight assigned to each
target as a function of size and orbital separation (wi in Equation 6.8). The right panel
shows the resulting relative distribution of targets that can be probed for the presence of
water vapor within the survey duration. In the case of the imaging survey, the planet size
cannot be directly measured, so the “estimated” radius (assuming Earth-like reflectivity)
is used as a proxy. In the case of the transit survey, an additional weight is applied to
counteract the R∗/a transit probability (not shown above).
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Table 6.3. Parameter Prior Distributions for Equations 6.14 and 6.16.

Parameter Description Prior limits (log-

uniform distribution)

Example 1

ainner Inner edge of the habitable zone 0.1 – 2.0 AU

∆a Width of the habitable zone 0.01 – 10 AU

fHZ Fraction of habitable zone planets with H2O 0.001 – 1

( fnon-HZ/ fHZ) Fraction of non-habitable zone planets with

H2O (relative to fHZ)

0.001 – 1

Example 2

flife Fraction of EECs with life 0.001 – 1

t1/2 Oxygenation timescale of inhabited planets 0.1 to 100 Gyr
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Table 6.4. Predicted Signal Strengths of H2O (Example 1) and O2 or O3 (Example 2)

Absorption

Survey mode Feature Wavelength Signal strength Signal strength Time required (hr)

(without clouds) (with clouds) (with clouds)

Imaging H2O 1.4 µm 90 ppt 55 ppt 0.9

O2 0.76 µm 90 ppt 70 ppt 2.6

Transit H2O 1.4 µm 3.5 ppm 0.5 ppm 181

1.9 µm 5 ppm 0.7 ppm

O3 0.6 µm 4 ppm 2 ppm 74

Note. — Values are calculated for the representative target of each survey mode. Signal

strengths are expressed as the peak amplitude of the change in planet-to-star contrast ratio (in

parts-per-trillion) or transit depth (in parts-per-million) within the absorption band. The exposure

time required for a 5σ detection is determined using PSG, and scaled for each individual target

according to Equation 6.5. In transit mode, the signals from two bands are combined to achieve

the detection of H2O. In imaging mode, we select the feature that requires the least exposure time

to detect.
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6.6.2.3 Time budget

Following the procedure in Section 6.4.3.1, we use PSG to determine the exposure time

required for a 5σ detection of water vapor absorption through its near-infrared absorption

bands. In transit mode, we combine the SNR from the 1.4 and 1.9 µm features. In

imaging mode, we only target the 1.4 µm band, as LUVOIR will be unable to observe the

full near-infrared spectrum simultaneously, and the 1.9 µm band is harder to observe due

primarily to lower stellar flux.

In imaging mode, we find tref = 0.9 hr are necessary to probe the reference planet for

water vapor, while in transit mode we require tref = 181 hr of in-transit exposure time; the

details of these calculations are shown in Table 6.4. Next, we scale tref according to Equa-

tions 6.5 through 6.7 to determine the amount of exposure time required to characterize

each planet, then add observing overheads. We weight the targets according to Figure

6.5, calculate each target’s priority following Equation 6.8, then finally observe by order

of decreasing probability until the total time budget ttotal is reached.

The average number of EECs observed by each survey is displayed in Figures 6.6a and

6.7a as a function of either η⊕ or ttotal. While we use the number of EECs observed as our

primary metric of sample size, note that most observed targets are non-habitable. Since

the imaging survey yield quickly becomes volume-limited, we investigate the impact of

varying η⊕ for a fixed time budget ttotal = 120 d (which is sufficient to characterize > 90%

of detectable EECs). For the transit survey, we fix η⊕ = 7.5% and investigate the impact

of varying ttotal.

6.6.3 Habitable zone hypothesis

Now, let us approach the simulated data from the view of an observer who no prior knowl-

edge of Equation 6.13 using the Bayesian hypothesis testing framework outlined in Sec-

tion 6.5. The habitable zone hypothesis states that planets within the habitable zone are

more likely to have water vapor than those outside of it:

hHZ(aeff) =

 fHZ if ainner < aeff < ainner +∆a

fHZ( fnon-HZ/ fHZ) otherwise
(6.14)



194

This is a four parameter model with ~θ = [ainner,∆a, fHZ, ( fnon-HZ/ fHZ)]. The choice of pa-

rameters was driven by two factors: first, the width of the habitable zone (∆a) is relevant

for testing “rare Earth” models in which the habitable zone is very narrow. Second, we

can use simple log-uniform prior distributions for these parameters without having to filter

out parameter combinations that violate the assumptions of the habitable zone hypothesis

(e.g., fnon-HZ > fHZ).

6.6.4 Prior assumptions

K14’s model for the habitable zone, which we implement in the simulated planet pop-

ulation, assumes a carbon-silicate feedback cycle that enhances CO2 concentrations for

planets further from their host stars, and spans 0.95–1.67 AU for the Sun. While this es-

timate has strong heritage (Kasting et al., 1993; Kopparapu et al., 2013), it has also been

preceded and succeeded by more conservative or generous estimates, which we use to set

the prior distribution of values considered for ainner and ∆a.

Estimates of the inner edge range as far inward as 0.38 AU (for highly-reflective desert

worlds with a minimal greenhouse effect, Zsom et al., 2013) and we allow that the inner

edge could be as far out as 2 AU, in which case Earth would be an unusually cool outlier.

Estimates of the habitable zone width have varied as well; a classic estimate by Hart

(1979) suggests a very narrow habitable zone (∆a < 0.1 AU), which would imply that

Earth-like planets are especially rare. More recent estimates have proposed mechanisms

by which the habitable zone could extend as far as 2.4 AU (Ramirez and Kaltenegger,

2017) or even 10 AU (Pierrehumbert and Gaidos, 2011) from the Sun. Given this wide

range of estimates for ainner and ∆a, we assume broad prior distributions for both, shown

in Table 6.3.

6.6.5 Results

We repeat the simulated survey and Bayesian analysis > 10,000 times over a grid of

values for the astrophysical parameters in Equation 6.13 for both survey architectures.

With each simulated survey, we use dynesty to calculate the Bayesian evidence in favor
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Example 1: Results for 15-meter imaging survey
How many exo-Earth candidates are probed for H2O?
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Figure 6.6: Results for the imaging survey in Section 6.6. (a) The number of EECs
observed versus η⊕ (for G stars), assuming ttotal = 120 d. As our baseline case, we set
η⊕ = 7.5%. (b) The statistical power to test the habitable zone hypothesis as a function of
the astrophysical parameters in Equation 6.13.
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Figure 6.6: (cont.) (c) The minimum number of EECs that must be characterized to
achieve 80% statistical power, with the corresponding values of η⊕. (d) The posterior
probability that a planet with effective separation aeff is in the habitable zone, as estimated
by six random realizations of the survey under an optimistic case (80% of EECs are
habitable, left) and pessimistic case (20% of EECs are habitable, right). The true habitable
zone is highlighted in green, and in both cases 1% of non-habitable planets have H2O.

of the habitable zone hypothesis, and emcee to sample the posterior distributions of ainner

and ∆a. The results are summarized by Figure 6.6 and 6.7 for the simulated imaging and

transit surveys, respectively.

6.6.5.1 Imaging survey

An ambitious direct imaging survey with a 15-meter telescope could confidently detect

the habitable zone with a 3-month long observing campaign provided most EECs are hab-

itable. If habitable planets are less common, however, then more EECs must be observed.

The EEC yield of an imaging survey is typically volume-limited, so higher values of η⊕

would be required to test this hypothesis for more pessimistic astrophysical parameters.

In the best case scenario (η⊕ ≈ 40%), a 15-meter imaging mission could perform the test

if 20% of EECs are habitable, but this value for η⊕ is likely too optimistic.

If ∼ 80% of EECs are habitable, the imaging survey would be able to measure the

location of the habitable zone with sufficient accuracy to exclude some more extreme

estimates of its boundaries with reasonable confidence. In particular, it would be able to

place a confident lower bound on ∆a, rejecting some “rare Earth” models, which predict

a very narrow habitable zone (e.g., Hart, 1979).

Finally, it should be noted that imaging surveys will have access to planet brightness

and color information that could be incorporated into this analysis; for example, albedo

and photometric color may vary predictably across the habitable zone (Checlair et al.,

2019). Hypotheses that include this information could be tested with better statistical

power and parameter constraints than the one examined here.
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Example 1: Results for 50-meter (equivalent area) transit survey
How many exo-Earth candidates are probed for H2O?
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Figure 6.7: Results for the transit survey in Section 6.6. (a) The number of EECs observed
versus the observing time budget, assuming η⊕ = 7.5% for G stars and cloudy atmospheres
(solid). 4–10× as many planets could be observed if clouds were neglected (dashed), or
1.5–3× as many with clouds if assuming the higher SAG13 estimate of η⊕ = 24% (dotted).
As our baseline case, we set ttotal = 2 yr.
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Figure 6.7: (cont.) (b) The statistical power to test the habitable zone hypothesis as a
function of the astrophysical parameters in Equation 6.13. (c) The minimum number of
EECs that must be characterized to achieve 80% statistical power, with the necessary
observing time budget ttotal. (d) The posterior probability that a planet with effective
separation aeff is in the habitable zone, as estimated by six random realizations of the
survey under an optimistic case (80% of EECs are habitable, left) and pessimistic case
(20% of EECs are habitable, right). The true habitable zone is highlighted in green, and
in both cases 1% of non-habitable planets have H2O.

6.6.5.2 Transit survey

The transit survey can confidently detect the habitable zone even in the case where most

EECs are not habitable ( f H2O
EEC ≈ 25%), provided 60–70 EECs can be probed for atmo-

spheric water vapor during a 2-year characterization effort. Furthermore, the full survey

duration may not be necessary if most EECs end up to be habitable (in which case a

shorter 3–6 month survey would suffice).

The transit survey can precisely measure the inner edge of the habitable zone to within

±0.1 AU of its true location in most simulated surveys if most EECs are habitable, and

can sometimes accomplish this even if most EECs are not habitable. The width (or outer

edge) is more difficult to constrain as the transit survey only observes a handful of planets

beyond the outer edge (∼ 10). This bias has two causes: first, planets outside of the hab-

itable zone are less likely to transit, so they are typically found around more distant stars.

Second, colder planets have smaller atmospheric scale heights, and therefore weaker H2O

absorption features. Both of these effects increase the time required to characterize cold

planets, making them low priority targets.

6.6.6 Discussion

6.6.6.1 Impact of clouds

Clouds will have a major impact on the transit survey’s ability to test the habitable zone

hypothesis, as they dampen the absorption signal due to tropospheric water vapor and

therefore increase the number of transit observations required to detect it. As shown in

Figure 6.7a, this means that a much smaller number of targets can be observed within
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a fixed time budget, and many of the most distant targets become infeasible to charac-

terize as it would require the combination of decades’ worth of transit observations. A

possible mitigating strategy would be to expand the observatory’s light-collecting area.

The Nautilus Space Observatory, on which we base our transit survey results (Apai et al.,

2019), would consist of 35 identically-manufactured unit telescopes. As such, the cost

would scale linearly with light-collecting area, and doubling the number of telescopes

would reduce by nearly half the number of transit observations required to characterize

each planet.

Our cloud assumptions are based on the GCM models of Komacek and Abbot (2019),

who show that tidally locked planets around M dwarfs have much higher dayside cloud

covering fractions than Earth-like planets. If this bears true, it will likely prevent the

characterization of such planets through transit spectroscopy by JWST (Fauchez et al.,

2019; Komacek et al., 2020; Suissa et al., 2020; Pidhorodetska et al., 2020) and possibly

even larger observatories. In the pessimistic case, even a 50-meter equivalent area transit

survey may be unable to detect atmospheric water vapor for all but a handful of nearby

exo-Earths orbiting M dwarfs, so the survey must target more distant K and G dwarfs

instead. This will come at the cost of sample size, as we estimate that the increased

average distance, less frequent transits, and lower transit depths for habitable zone planets

around these stars will outweigh their higher stellar luminosity in terms of observing time

cost.

Clouds impact imaging observations as well, although they have little effect on the

results presented here. We expect cloud cover to be less prevalent for non-tidally locked

planets orbiting Sun-like stars, and highly-reflective clouds at low enough altitudes can

have a beneficial effect on imaging observations as they amplify the absorption due

to molecules in higher layers. More importantly, the imaging survey modeled here is

volume- rather than time-limited, so with or without clouds we find that the survey can

probe its entire EEC sample for water absorption within less than three months.

Our exposure time and sample size estimates for the transit survey are based on one

possible realization of cloud conditions, but cloud cover may vary greatly across targets

and observation epochs. Indeed, in the GCM models we employ, the effect of clouds
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on transmission spectra is sensitive to orbital period, spectral type, cloud particle size,

and many other parameters (Komacek et al., 2020), suggesting that the actual distribution

of cloud properties in terrestrial exoplanet atmospheres may be fairly broad. An effi-

cient transit survey could seek to identify planets with clearer atmospheres (e.g. through

scattering features in visible light) and prioritize these over cloudier targets, thereby in-

creasing the sample size.

6.6.6.2 Effect of non-habitable H2O-rich atmospheres

Naturally, the habitable zone hypothesis is easier to test if more habitable planets are

observed, and the number of EEC characterizations required to test it is approximately

proportional to the fraction of EECs that are habitable ( f H2O
EEC ). However, non-habitable

planets are far more common than habitable planets, so if even a small fraction ( f H2O
non-EEC)

of these have H2O, the statistical excess of H2O in the habitable zone will be muted.

In general, we find the statistical power to be unaffected provided that f H2O
non-EEC . 1%,

but the impact can be considerable if f H2O
non-EEC & 10%. This result seems sensible, as

approximately 10% of the total sample are EECs, so f H2O
non-EEC > 10% would imply that

H2O-rich non-habitable planets are more common than habitable planets.

Our assumption in Equation 6.13 is that all EECs with water vapor are habitable, and

the fraction of non-EECs with water vapor is mostly independent of insolation. How-

ever, if such “false positives” exist, their abundance is likely a function of insolation. For

example, consider a population of non-habitable planets whose surfaces have been desic-

cated by a runaway greenhouse effect but that still maintain thick, H2O-rich atmospheres.

Such planets should be clustered near the inner edge of the habitable zone (e.g., Turbet

et al., 2019), appearing as an extension of the habitable planet population to high inso-

lations rather than as a distinct planet population. Even planets defined as EECs may

actually be non-habitable (due to differences in initial volatile content, plate tectonics,

outgassing rates, etc.) yet still possess water vapor, making them statistically indistin-

guishable from habitable EECs. Again, the effect of these false positives will likely be

negligible provided they are much less common than habitable planets, but indicators of

planetary (non-)habitability other than H2O may be necessary to filter them out.
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Figure 6.8: An example of a simulated transit spectroscopy data set for Section 6.7. Earth-
sized planets in the habitable zone are probed for the presence of O3 (a tracer of O2),
which we assume becomes more common with age as more planets undergo global oxi-
dation events. This “age-oxygen correlation” (Equation 6.16) is represented by the grey
line, in this case where flife = 80% of observed planets are inhabited and the oxygenation
timescale is 5 Gyr. Age estimates are uncertain to ±30%.

6.7 Example 2: Evolution of Earth-like Planets

By characterizing a sufficiently-large sample of terrestrial worlds, a next-generation ob-

servatory could test hypotheses for how they evolve over time. One such hypothesis is

that inhabited planets with oxygen-producing life, like Earth, evolve towards greater oxy-

gen content over Gyr timescales due to long-term changes in global redox balance. As

we propose in Bixel and Apai (2020b) (hereafter B20), the impact on a population level

would be a positive “age-oxygen correlation”, wherein older inhabited planets are more

likely to have oxygenated atmospheres.

If inhabited planets do tend to evolve towards greater oxygen content over time, then

what is the typical timescale for this evolution? Earth underwent major oxygenation

events at 2–2.5 Gyr of age and again at ∼ 4 Gyr (Lyons et al., 2014), suggesting a ∼ 4

Gyr “oxygenation timescale” (Catling et al., 2005). These two events mark the bound-

aries between the Archean, Proterozoic, and Phanerozoic eras, and correspond to shifts in

Earth’s redox balance where the amount of oxygen being produced by life became large

enough, and/or the geological sinks for oxygen became diluted enough, that oxygen was

allowed to build up in the atmosphere. However, a great diversity of planetary factors

might affect redox balance, such as outgassing rates, the stellar radiation profile, biogenic
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Figure 6.9: Target prioritization for both surveys in Section 6.4.3, optimized to favor ob-
servations of younger and older planets to maximize the detectability of age-dependent
trends. This also reflects the age distribution of characterized targets, because the simu-
lated planet sample has a uniform age distribution.

oxygen flux, and the planet’s initial reducing matter inventory (Catling et al., 2005; Bixel

and Apai, 2020b). As a result, Earth’s oxygenation timescale could be unusually fast or

slow compared to the overall population of inhabited worlds.

A next-generation biosignature survey could not only detect the proposed age-oxygen

correlation, but also measure the typical timescale over which this evolution occurs. This

measurement could be used to test models for the geological and biological evolution of

Earth-like planets and offer insight into how Earth relates to the rest of that population.

Here, we assess the ability of direct imaging and transit surveys to study the oxygenation

history of Earth-like planets. This section follows a similar methodology to our previ-

ous analysis (B20), but expands upon it by incorporating a more thorough assessment

of planet occurrence rates, detection sensitivity, and survey strategy, and by studying a

broader range of evolutionary timescales.

6.7.1 Model predictions

We assume a fraction flife of EECs to be inhabited by life - note that this parameter absorbs

factors affecting both the planet’s habitability and the likelihood of life originating. Over

time, simulated inhabited planets transition from anoxic to oxygenated atmospheres at an

average rate described by a half life t1/2. The resulting fraction of habitable planets that
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have oxygenated atmospheres as a function of age t∗ is:

fO2(t∗) = fO3(t∗) = flife
(
1 − 0.5t∗/t1/2

)
(6.15)

Note that we assume oxygenated atmospheres to have both O2 and its photochemical

byproduct O3. We run simulations for flife ranging from 0–100% and for t1/2 ranging

from 500 Myr – 50 Gyr.

6.7.2 Simulated survey

6.7.2.1 Measurements

The measurements performed by each simulated survey are summarized in Table 6.7.

First, we measure the age (t∗) of every planet’s host star with 10% precision for the imag-

ing survey and 30% precision for the transit survey. These estimates represent the state of

the art for high- and low-mass stars, respectively. For high-mass stars, asteroseismology

has yielded highly precise age constraints for Kepler targets (e.g., Creevey et al., 2017;

Kayhan et al., 2019; Lund et al., 2019), and will likely be able to do so for most of the

O(100) stellar targets probed by an imaging mission. For low-mass stars, asteroseismol-

ogy has not been successful (e.g., Rodríguez-López et al., 2015; Rodríguez et al., 2016;

Berdiñas et al., 2017), and age determination currently relies on a synthesis of model-

based estimates. As an example, Burgasser and Mamajek (2017) use a combination of

approaches to determine the age of TRAPPIST-1 planetary system (Gillon et al., 2017)

with ∼ 30% precision.

Next, each planet is observed to constrain the presence of oxygen. For an Earth-like

planet, O2 can be detected directly through its 0.77µm absorption feature or inferred

through absorption by stratospheric ozone in the Chappuis (0.40–0.65 µm) or Hartley

(0.2–0.3 µm) bands. It should be noted that our calculations assume modern Earth O2

and O3 abundances, an assumption which we revisit in Section 6.7.6.1.

For each survey mode, we determine which of these three features would be easiest

to observe across the full range of detected EECs. In imaging mode we observe O2-

A absorption; while the Hartley band may be easier to detect for a solar-type star, it
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becomes more expensive to observe for lower-mass stars, and the Chappuis band signal is

too shallow. Ultimately this consideration is unimportant for the volume-limited imaging

survey, and it is likely that all three features will be searched for in the atmospheres

of all detected EECs. In transit mode we observe the Chappuis band, as its signal is

strong in transit observations. The Hartley band is inaccessible for the vast majority of

(predominantly M dwarf) transit survey targets, and the O2-A feature is too shallow and

narrow to detect for distant targets.

In total, the simulated surveys produce measurements of (t∗,O2) for each observed

EEC, where O2 = {0,1} indicates the detection or non-detection of either O2-A absorption

(imaging mode) or O3 Chappuis band absorption (transit mode).

6.7.2.2 Target prioritization

Unlike in the previous example, we do not prioritize targets by size or insolation except

that we assume all targets have previously been identified as EECs (perhaps with follow-

up observations to confirm the presence of H2O). This assumption is not trivial; imaging

surveys cannot easily determine a planet’s size, and the true range of planet sizes and

insolations that permit habitability are not yet known. In reality, it is likely that an ac-

tual biosignature survey will probe some planets that are not habitable for reasons yet

unknown to the observer, which will serve as a source of noise (i.e. by reducing flife).

However, we do prioritize targets by age according to Figure 6.9, with observations

of the youngest and oldest planets being preferred. This is not intended to counter any

bias in the underlying sample, as there are no factors that bias the number of planets that

can be characterized by our simulated surveys as a function of age. Rather, as we demon-

strate in B20, a survey that prioritizes younger and older planets will be more sensitive to

monotonic, age-dependent trends because of the larger contrast between those categories.

While this prioritization strategy is optimal for studying the evolution of Earth-like plan-

ets, it must be balanced versus the survey’s other goals. Notably, it de-prioritizes obser-

vations of modern Earth analogs, which may be the best planets to probe if the sole goal

is to maximize the chance of detecting O2.
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6.7.2.3 Time budget

As discussed in Section 6.7.2.1, we consider the detection of O2-A absorption in imaging

mode and O3 Chappuis band absorption in transit mode. The details of the exposure time

calculations are shown in Table 6.4. Using PSG, we determine the exposure time required

for the reference target to be tref = 2.6 hr for imaging mode and tref = 74 hr for transit mode.

6.7.3 Hypothesis and prior assumptions

Once more, we take the role of an observer intrepreting the results of each simulated

survey. Our hypothesis is that inhabited planets tend to evolve towards greater oxygen

content over time, and can be stated in similar terms as Equation 6.15:

h(t∗) = flife
(
1 − 0.5t∗/t1/2

)
(6.16)

We adopt broad, log-uniform prior distributions for flife and t1/2, shown in Table 6.3,

reflecting our significant prior uncertainty as to frequency and evolutionary timescales of

inhabited planets.

6.7.4 Correlation test

In lieu of the Bayesian evidence test used in the previous example, we employ the Mann-

Whitney test (Mann and Whitney, 1947) to determine whether t∗ correlates with the pres-

ence of oxygen, as we previously have done in B20. This model-independent test is more

sensitive for detecting the correlation than the Bayesian evidence-based approach, espe-

cially in the limit of small sample sizes. However, it does not allow for the estimation of

t1/2, for which we rely on MCMC sampling.
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Example 2: Results for 15-meter imaging survey
How many exo-Earth candidates are probed for O2?
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Figure 6.10: Results for the imaging survey in Section 6.7. (a) The number of EECs
observed versus η⊕ (for G stars), assuming ttotal = 120 d. For our baseline case, we set
η⊕ = 7.5%. (b) The statistical power to detect the age-oxygen correlation as a function of
the astrophysical parameters in Equation 6.15. (c) The minimum number of EECs that
must be characterized to achieve 80% statistical power, with the corresponding values of
η⊕.
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Example 2: Results for 50-meter (equivalent area) transit survey
How many exo-Earth candidates are probed for O3?
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Figure 6.11: Results for the transit survey in Section 6.7. (a) The number of EECs ob-
served versus the observing time budget, assuming η⊕ = 7.5% for G stars and cloudy at-
mospheres (solid). 2–4× as many planets could be observed if clouds were neglected
(dashed), or 1.5–3× as many with clouds if assuming the higher SAG13 estimate of
η⊕ = 24% (dotted). As our baseline case, we set ttotal = 730 d.
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Figure 6.11: (cont.) (b) The statistical power to detect the age-oxygen correlation as a
function of the astrophysical parameters in Equation 6.15. (c) The minimum number of
EECs that must be characterized to achieve 80% statistical power, with the necessary ob-
serving time budget ttotal. (d) Distribution of possible values for the oxygenation timescale
as measured by six random realizations of the survey under the optimistic assumption that
80% of EECs are inhabited. Results are shown for fast (0.5 Gyr, left), Earth-like (3 Gyr,
center), and slow (10 Gyr, right) evolutionary scenarios, with the truth values marked by
a blue line.

6.7.5 Results

We assess the statistical power of each survey to test the age-oxygen correlation hypoth-

esis, using the Mann-Whitney test to determine whether a positive correlation can be

detected in each simulated data set, and emcee to sample the posterior distributions of

t1/2 and flife. Our results are summarized in Figure 6.10 for the imaging survey and Figure

6.11 for the transit survey.

6.7.5.1 Imaging survey

Assuming η⊕ ≈ 7.5%, it is unlikely (though not impossible) that a direct imaging survey

will be able to detect the age-oxygen correlation with a sample of 15–20 EECs. This

is generally consistent with our analysis in B20, which suggests a statistical power of

50% for a sample size of ∼ 20 EECs only if most are inhabited. In order for an imaging

survey to be reliably capable of studying the oxygen evolution of Earth-like planets under

optimistic circumstances, a sample size of > 50 EECs is necessary, requiring either η⊕ &

20% or a smaller inner working angle than assumed here (3.5 λ/D).

6.7.5.2 Transit survey

By probing 100-150 EECs for ozone, the transit survey is able to detect the age-oxygen

correlation with high statistical power assuming life to be somewhat common ( flife &

50%) and the typical oxygenation timescale to be 1–10 Gyr. If life is very common
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( flife & 80%), high statistical power can be achieved even if the average oxygenation

timescale is as short as ∼ 500 Myr or as long as ∼ 20 Gyr.

Under the case where life is very common, the transit survey could place meaning-

ful constraints on the oxygenation timescale. As shown in Figure 6.11, the survey can

distinguish between scenarios where global oxygenation occurs very quickly (t1/2 ∼ 0.5

Gyr) or at a more Earth-like pace (∼ 3 Gyr), but it will be difficult to accurately measure

the oxygenation timescale if it is much longer than Earth’s (& 10 Gyr), since no planets

of that age exist in the sample. This is due in part to the high degeneracy between t1/2

and flife - that is, if only a few oxygenated planets are found, it may be because life is

uncommon, or because life is common but global oxygenation is very slow and has not

yet had time to occur on most inhabited worlds.

6.7.6 Discussion

6.7.6.1 Detectability of oxygen through Earth’s history

In this section we consider all oxygenated planets to have the same O2 and O3 abundance

as modern Earth. However, during the Proterozoic era (approx. 2.2 – 0.6 Gya), Earth had

a partially oxygenated atmosphere with pO2 < 1% (Lyons et al., 2014). If other inhabited

planets do evolve like Earth, this suggests that many of them may have 1–3 orders of

magnitude less O2 than modern Earth.

In our analysis, t1/2 is the typical timescale require for a planet to achieve a detectable

amount of O2 or O3. Even if Proterozoic Earth analogs are common and their oxygen is

undetectable, our results should not be affected provided that they will eventually develop

richly-oxygenated atmospheres like modern Earth’s. In this case t1/2 corresponds to the

end of the Proterozoic (∼ 4 Gyr for Earth). On the other hand, it may be that inhabited

and oxygenated planets are common but very few of them ever evolve beyond pO2 =

0.1 − 1%, in which case t1/2 corresponds to the end of the Archean (∼ 2 Gyr for Earth).

In this case, a survey aiming to detect the age-oxygen correlation would need to focus

on a smaller number of targets with much deeper observations, and would likely need

ultraviolet sensitivity to detect the deep O3 Hartley band absorption that would have been
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detectable throughout the Proterozoic (Reinhard et al., 2017). For transit spectroscopy,

ultraviolet sensitivity will be difficult to achieve in a sample of predominantly M stars,

so to detect O3 at Protorezoic-like levels will require the prioritization of G and K targets

instead. A LUVOIR-like direct imaging survey targeting G and K dwarfs may be capable

of detecting Proterozoic-like ozone levels for individual targets, but the sample size will

still be too small unless both η⊕ and flife are large (& 30%).

6.7.6.2 Abiotic oxygen sources

We only consider planets on which O2 is biologically produced - as it was in Earth’s

history - but others have considered scenarios through which an Earth-sized planet near

or within the habitable zone could acquire detectable levels of oxygen through abiotic

processes (for a review, see Meadows et al., 2018b). The oxygen in these models tends

to initially derive from H2O or CO2 dominated atmospheres shortly after the planet’s

formation and can linger in the atmosphere long enough to serve as a potential “false

positive” biosignature for next-generation observatories. In B20, by assuming the fraction

of planets with abiotically produced oxygen to be independent of age, we show that these

false positives will have a small impact on the detectability of the age-oxygen correlation

provided that they are less common than Earth-like planets with biogenic O2.

In reality, atmospheres with abiotically-produced oxygen will evolve over time. On

Earth, oxygen is continually produced in large enough quantities to overcome its substan-

tial geological sinks. On planets where oxygen is, e.g., a remnant of primordial ocean

loss, it would be depleted over time. This suggests a statistical test to determine whether

oxygen is a reliable biosignature: if the fraction of EECs with oxygen decreases with age,

this would suggest much of the oxygen to be of a primordial, abiotic origin.

Finally, it is plausible that both populations of oxygen-rich worlds exist in comparable

numbers: one with abiotically-produced oxygen that diminishes over time, and another

with biologically produced atmospheres that increases over time. Whether the Earth-

like age-oxygen correlation could be detected would depend on the timescales of the two

processes. For example, if most planets with abiotically produced oxygen lose it before

1 Gyr, and most planets with biogenic oxygen acquire it by 10 Gyr, then it should be
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possible to distinguish the two populations.

6.8 Summary

We have presented Bioverse, a simulation tool designed to gauge the potential of future

observatories to test statistical hypotheses about the formation and evolution of planetary

systems and habitable worlds. To achieve this, Bioverse leverages statistically realistic

simulations of nearby planetary systems, a survey simulator designed to produce data

sets representative of different observatory configurations and survey strategies, and a

hypothesis testing module to assess the information content of the data. We demonstrated

two applications of our code.

In the first example, we determined whether a future direct imaging (15-meter diam-

eter) or transit spectroscopy (50-meter equivalent diameter) survey could empirically test

the concept of a habitable zone as well as measure its location and width. With samples as

small as 15–20 EECs, we found that both surveys will be capable of testing the habitable

zone hypothesis if habitable planets are common (& 50% of EECS), and that they can

constrain the habitable zone’s width well enough to rule out very wide (e.g., 1–10 AU)

or narrow (e.g., 1–1.1 AU). A survey that can characterize 60–70 EECs for atmospheric

water vapor can test the habitable zone hypothesis even if habitable planets are less com-

mon (20–40% of EECs), but would be difficult to achieve with currently-envisioned direct

imaging observatories. Our estimates suggest that this would be feasible for a large aper-

ture transit survey, but the EEC sample size is sensitive to the impact of cloud cover (and

other factors not considered here, such as stellar contamination (Rackham et al., 2018)).

In the second example, we expanded upon the age-oxygen correlation proposed in

B20, finding that future surveys that aim to study the oxygen evolution of Earth-like plan-

ets must expect to characterize at least ∼ 50 EECs by detecting the presence of modern

Earth-like O2 or O3 absorption. With a sample size of 100-150 EECs – if most of them are

inhabited – a survey could begin to constrain the evolutionary timescale with meaningful

precision, and could determine whether the oxygenation of Earth-like planets proceeds at

an Earth-like pace (2–5 Gyr timescale) or much faster (∼ 0.5 Gyr). The ability to detect
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far-UV O3 absorption will be beneficial if Proterozoic Earth analogs are common, but

may not be necessary provided they eventually evolve to a modern Earth-like state.

The statistical power of either survey to test these hypotheses depends critically on the

number of EECs detected, but recent evidence suggests that existing estimates of η⊕ are

too high (Pascucci et al., 2019; Neil and Rogers, 2020). Assuming η⊕ = 7.5% for Sun-like

stars, we found that an ambitious 15-meter mirror diameter imaging survey would likely

detect 15–20 EECs. Such a survey may have high statistical power for studies of terrestrial

planets in general (including those outside the habitable zone), but will only be able to test

the habitable zone concept if most EECs are habitable, or if tracers of habitability other

than H2O absorption are considered. Unless η⊕ > 20%, an imaging survey will probably

not be able to study the oxygen evolution of truly Earth-like planets, though it might still

offer constraints on how common such planets are (Checlair et al., 2021).

In this paper we discussed the statistical power to test hypotheses as a function of

sample size given a single measurement for each target. Bioverse can also combine

multiple measurements for each planet that trace the same underlying physical conditions

(such as habitability), allowing surveys to achieve greater statistical sensitivity with lim-

ited sample sizes. For example, by incorporating measurements of planetary brightness

and color in addition to H2O absorption, imaging surveys may be able to test the habitable

zone concept with smaller sample sizes - provided a hypothesis exists for how these prop-

erties should vary with orbital separation (e.g., Checlair et al., 2019). Similarly, if clouds

make the detection of H2O difficult for a transit survey, then stratospheric O3 may offer

an alternative tracer of planetary habitability (provided O2 is predominantly produced by

life).

With Bioverse, we aim to enable future space-based exoplanet surveys to test hy-

potheses including and beyond the examples explored here, and to emphasize the im-

portance of population-level studies for next-generation exoplanet surveys. While target-

by-target analyses of the closest planets will be valuable, population-level studies will

reveal fundamental truths about the laws governing non-habitable, habitable, and inhab-

ited worlds.
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CHAPTER 7

Conclusion

7.1 Results

The work I have presented in this thesis focuses on the use of statistics and probabilistic

reasoning to promote a better understanding of habitable exoplanets, with a particular

emphasis on future efforts to characterize them from space. Following a brief summary

of my results in this section, I will conclude with a set of key findings to inform near-

future directions for research and technology development relevant to the search for life

beyond the solar system.

7.1.1 Bayesian constraints on planetary habitability

In Chapters 2 and 3, I demonstrated how Bayesian methods based on Kepler statistics

can be used to transform limited information about individual planets into robust prob-

abilistic constraints on their potential habitability. In Chapter 2, we explored the likely

composition of Proxima Centauri b. Folding its host spectral type and minimum mass

limit into a Bayesian analysis based on exoplanet occurrence rates and mass-radius rela-

tionships, we found that it was ∼ 90% likely to be a terrestrial world. A similar analysis

could be applied for future radial velocity detections of planets as a means of prioritizing

targets for ground-based ELTs. Meanwhile, future investigations into the relationship be-

tween planet size and composition will further our understanding of Proxima Cen b and

its analogs.

In Chapter 3, I developed and assessed a Monte Carlo approach for identifying poten-

tially habitable planets in direct imaging data. This analysis offers a solution to a known

problem for future LUVOIR- or HabEx-like missions - namely, that any potentially hab-

itable planets detected by such a telescope will be difficult to distinguish from the many

more numerous “false positives” (Guimond and Cowan, 2018). If correctly applied, this
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method could spare weeks of observing time on a flagship-class mission. Furthermore,

our assessment of the relative information content offered by different types of measure-

ments should inform instrumentation choices. For example, while mass measurements

are useful for classifying planets, they are far from definitive due to the observed vari-

ability in exoplanet densities. On the other hand, multi-band photometry can efficiently

select planets, but only if the relative colors of different types of planets can be accurately

predicted.

7.1.2 Probabilistic solutions to stellar contamination in transit spectra

In Chapter 4, I assessed the transit spectrum of the hot Jupiter WASP-4b. Our analysis

presented a featureless spectrum, consistent with previous studies of this target in the lit-

erature, and featured a more thorough treatment of stellar activity than most published

transit spectra to date. In particular, we used Bayesian model selection techniques to de-

termine whether sufficient evidence existed for stellar contamination in the transit spectra,

and also used our data to assess the size and temperature of an active region occulted by

the planet during one of our observations. This type of analysis demonstrates a path for-

ward for piecing apart the stellar and planetary components of transmission spectra, which

will be vital for future efforts probe the atmospheres of transiting habitable planets.

7.1.3 Statistical hypotheses for next-generation exoplanet observatories

In Chapters 5 and 6, I presented and developed hypotheses for statistical relationships be-

tween the properties of terrestrial exoplanets and explored how they could be tested with

next-generation space-based observatories. In Chapter 5, I forwarded a new hypothesis

for the atmospheric evolution of habitable planets based on our understanding of Earth’s

history. Namely, if other habitable worlds are truly Earth-like, they might evolve towards

greater oxygen over time, leading to a positive “age-oxygen correlation”. This hypothesis

could be tested by next-generation observatories, and if such a correlation is found, it will

confirm that Earth’s oxygen evolution is typical for a habitable world. Such a discovery

would also strongly suggest that oxygen is a reliable biosignature for other planets, as it
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is for Earth.

Finally, in Chapter 6, I presented a general framework for evaluating the statistical

potential of next-generation space missions, called Bioverse. Bioverse evaluates

both direct imaging and transit spectroscopy surveys of terrestrial planets, and incorpo-

rates estimates of the sample sizes and statistical biases inherent to each technique. We

demonstrated that future missions will be capable of detecting the presence of a habitable

zone by examining how H2O abundance as a function of insolation, but only if habit-

able planets are relatively common. Furthermore, a transit survey that searches for O3 in

the atmospheres of potentially habitable worlds may be capable not only of detecting the

“age-oxygen correlation” proposed in Chapter 5, but also measuring the timescale over

which habitable planets become oxygenated. Bioverse is generally applicable to sce-

narios beyond the two considered here, and could play a valuable role in developing the

science case of next-generation habitable exoplanet observatories.

7.2 Key findings

Toward the end of Chapter 1, I laid out important questions regarding future efforts to

characterize habitable exoplanets. Here, I will summarize my findings on how to best

answer these questions from a statistical point of view.

7.2.1 Population studies should play a crucial role in future space missions

Kepler has arguably had a greater impact on exoplanet science than any other mission to

date. This was due not to what it revealed about any individual exoplanet, but what it re-

vealed through its thousands of detections about the exoplanet population as a whole. By

the same token, I argue that statistical studies of terrestrial exoplanets will offer greater

insight into the fundamental questions in astrobiology than even the most detailed charac-

terizations of individual worlds. It is therefore critical that next-generation observatories

be evaluated on the basis of their ability to conduct these studies. This ability depends

not only on the overall predicted sample size, but the technique by which the planets are

observed and the resources required to properly characterize them. Bioverse, which
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I presented in Chapter 6, provides a rigorous and flexible framework for evaluating mis-

sions on this basis.

The development of specific and testable hypotheses is a crucial step in the scientific

method and thus in the effort to study the population of habitable exoplanets. It is there-

fore necessary that considerable effort be directed toward developing hypotheses about

how the properties of habitable exoplanets will vary over the range of parameters they

are expected to possess. For example, the hypothesis about the atmospheric evolution

of Earth-like planets that I proposed in Chapter 5 could be expanded with more detailed

models for redox evolution over a broader range of planetary and stellar parameters. En-

couragingly, a growing body of literature is concerned with forging testable predictions

for how the measurable properties of habitable planets will vary across the habitable zone

(e.g., Bean et al., 2017; Checlair et al., 2019; Lustig-Yaeger et al., 2019b; Turbet et al.,

2019; Lehmer et al., 2020). While most of these hypotheses will not be testable for

more than a decade yet, they are needed to inform fundamental spacecraft design choices

that must be cemented several years prior to launch. Additionally, hypotheses developed

before a systematic survey of habitable planets is conducted will be more robust to con-

firmation bias than those developed after the data already exist, and such safeguards are

crucial when contemplating such a groundbreaking potential discovery as the detection

of life beyond Earth.

7.2.2 Exoplanet statistics can complement targeted analyses

Just as the combined observations of several individual planets can offer insight into the

broader exoplanet population, population-level knowledge can be used to constrain the

properties of individual planets through Bayesian inference. Such constraints should play

an important role in planning follow-up observations. For example, my analysis in Chap-

ter 2 demonstrates that Proxima Cen b is quite likely to be a terrestrial planet, bolstering

the case for resource-intensive efforts to directly image it or even send spacecraft to its

system1. Similar analyses should be standard for all newly-discovered planets detected

through the radial velocity method to better understand their likelihood of habitability.
1For example, see the Breakthrough Starshot concept here.

https://breakthroughinitiatives.org/initiative/3
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Similarly, leveraging Kepler statistics to optimize the target prioritization strategy of a

direct imaging mission, as demonstrated in Chapter 3, could save weeks of follow-up ob-

serving time (and in the case of a starshade-equipped telescope, significant amounts of

fuel).

Furthermore, even in-depth observations of individual planets may be difficult to in-

terpret without statistical context. For example, while Earth’s O2 is entirely produced by

life, abiotic O2 sources may play a substantial role in the atmospheres of terrestrial exo-

planets, casting doubt on its usefulness as a biosignature. Contextual information - such

as the abundances of other species in the atmosphere - is key to understanding whether

O2 is indicative of life (Meadows et al., 2018b). As I argue in Chapter 5, determining

how oxygen evolves over time could provide an important piece to this puzzle: by ob-

serving a large enough sample of habitable planets, one could determine whether their

oxygen content evolves similarly to Earth - in which case it is likely to be biogenic as

well - or differently. Conversely, it may be the case that without statistical context, it will

be impossible to definitively detect the presence of life beyond the solar system.

Similarly, whether or not atmospheric H2O is a reliable indicator of the presence of

oceans on a terrestrial world remains undetermined. The habitable zone hypothesis pre-

dicts that planets with oceans should be more common within a finite range of planet-star

distances, and it seems likely that such planets would have H2O in their atmospheres sim-

ilar to Earth. On the other hand, a planet that has undergone a runaway greenhouse effect

will evolve through a phase where its atmosphere is rich in water vapor despite having no

oceans or potential for life - but most such planets would likely be found at higher insola-

tion than Earth. In Chapter 6, I show that by investigating how H2O abundance correlates

with planet-star distance, we can validate the habitable zone hypothesis and prove that the

presence of H2O is a reliable predictor of the presence of oceans.

Our understanding of individual planets’ atmospheres will always be limited when

observing them from interstellar distances. Statistical context provided by observations

of dozens to hundreds of other worlds will allow us to more confidently determine which

planets are habitable and which planets host life - and without this context, such determi-

nations may be difficult or impossible.
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7.2.3 Solar system science will enable testable statistical hypotheses for future exo-

planet surveys

Thus far, exploring the solar system has provided the best basis for developing testable

predictions about exoplanet habitability. State-of-the-art models for the habitable zone

depend on a complex understanding of Earth’s carbon cycle first developed through geo-

logical research (Kasting et al., 1993). The study of the atmospheres of Mars and other

solar system bodies has motivated more general predictions for the relationship between

planetary size and habitability that could be tested in the future (Zahnle and Catling,

2017). Further exploration within the solar system will allow us to better refine these

hypotheses and to develop new ones. For example, a more complete understanding of

what factors set the pace of Earth’s oxygenation will allow for more detailed predictions

of the atmospheric evolution of Earth-like planets. It has been suggested that Venus was

habitable as recently as ∼ 1 Gya (Way et al., 2016) - if this is verified by new Venus

orbiters and landers, we might predict that exoplanets analogous to Venus will undergo

an extended habitable period before becoming desiccated. This prediction could be tested

through observations of Venus analogs across a wide range of ages. Finally, the detection

anywhere in the solar system of life with no common ancestry to Earth’s would suggest a

priori that inhabited exoplanets are quite common, and that potential biosignatures such

as O2 are even more likely to have been produced by life than previously thought.

7.2.4 Direct imaging versus transit spectroscopy for statistical exoplanet science

In general, current concepts for next-generation space telescopes designed to study hab-

itable exoplanets focus on either direct imaging or transit spectroscopy as their primary

means of atmospheric characterization. The work I presented in Chapter 6 focused on the

strength of either technique for conducting statistical characterizations of the terrestrial

exoplanet population, but the resources may only exist to fully pursue one of these tech-

niques. There is as yet insufficient research to conclusively determine which technique

offers a better path toward this goal, but my work has defined key outstanding questions

that must be resolved in order to make this determination.
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Direct imaging offers a number of unique benefits, such as the ability to character-

ize the closest exoplanets to Earth (most of which do not transit their stars) or to study

seasonal and rotational variability. Perhaps most importantly, space-based direct imaging

is optimized for the study of Earth analogs whose stars are similar to our Sun. This ad-

vantage may prove crucial given recent concerns about the habitability of planets around

low-mass stars due to these stars’ tumultous pre-main sequence evolution (Barnes et al.,

2016) and enhanced flare activity (Howard et al., 2018). However, to conduct statistical

studies of habitable planets would require the characterization of at leastO(10) exo-Earth

candidates, and the recent uncertainty as to the true value of η⊕ raised by Pascucci et al.

(2019) casts doubt on whether even the ambitious 15-meter LUVOIR concept could ac-

complish this goal. This obstacle could be overcome with an even larger mirror or more

precisely designed coronagraphic imager, both of which could decrease the IWA but are

also likely to significantly inflate development costs. The true value of η⊕ is therefore the

primary source of uncertainty in determining the potential of space-based direct imaging

for statistical studies, and resolving this uncertainty should be prioritized as a short-term

goal.

The exoplanet detection yield of a transit spectroscopy survey will also depend on

η⊕ - however, the evidence shows that η⊕ is higher by a factor of ∼ 2 – 4× for low-

mass stars as for the typical Kepler target (Mulders et al., 2015b). Furthermore, this yield

is technologically determined by total light-collecting area - not aperture diameter. The

Nautilus concept exploits this fact by relying a large array of reproducible telescopes

whose cost could be expected to scale approximately linearly with light-collecting area.

These factors suggest transit spectroscopy to be a promising option for statistical studies

even if η⊕ is small (perhaps 5–10%, based on Chapter 6), but this depends on resolving

two outstanding astrophysical obstacles. First, an increasing body of research has focused

on the impact of stellar heterogeneity on transmission spectra, and its potential to induce

false signals in terrestrial planet transit spectra has already been demonstrated from space

(Zhang et al., 2018). Possible solutions include using precise stellar spectra to model

the heterogeneous composition of the photosphere (Wakeford et al., 2019), conducting
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simultaneous visible and infrared transit observations from space2, and jointly modeling

the stellar and planetary features as demonstrated in Chapter 4. The second obstacle is

the predicted impact of high-altitude clouds on absorption features due to lower-altitude

species, particularly for tidally-locked planets in the habitable zones of M dwarfs. A

recent analysis by Pidhorodetska et al. (2020) suggests that even the 15-meter LUVOIR

would be incapable of characterizing exo-Earth candidates in the TRAPPIST-1 planetary

system - despite its relative proximity to the Sun - due to predictions for severe cloud cover

on their daysides. Future research should focus on whether this cloud cover is consistent

from transit to transit, its dependence on planetary and stellar parameters, and the vertical

distribution of key species such as O2 and O3 relative to the clouds. In particular, if most

O3 exists above the clouds - as is the case on Earth - then it should be detectable even with

complete cloud cover. Observational tests to deduce cloud cover conditions for planets

orbiting the nearest low-mass stars should be prioritized, both through direct imaging

with ELTs and transit observations with space telescopes such as JWST or the Nautilus

Probe-class mission (Apai et al., 2019).

Finally, while it is natural to view direct imaging and transit spectroscopy as com-

peting priorities in the design of next-generation flagship space observatories, it is also

important to highlight their complementarity, as the planetary parameters and stellar mass

regimes they probe are often non-overlapping. Direct imaging favors planets around solar-

mass stars and can be used to study surface features and seasonal variability, while transit

spectroscopy favors planets around low-mass stars and can directly constrain their sizes.

To study how habitability depends on stellar mass will likely require the combination of

both techniques, and combining the unique parameters that each can probe will provide

statistical insights that neither is individually capable of.

7.3 Summary

The nearest potentially habitable exoplanet, Proxima Centauri b, is over four light-years

away. The most ambitious concepts for its robotic exploration, if successful, would yield

2See the Pandora SmallSat mission concept.

https://www.nasa.gov/feature/goddard/2021/pandora-mission-would-expand-nasa-s-capabilities-in-probing-alien-worlds
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only preliminary in situ data before the end of this century, and would be inapplicable to

most of the hundreds of potentially habitable worlds in the solar neighborhood. Even with

advanced telescopes and instrumentation, we will never attain as complete an understand-

ing of any terrestrial exoplanet as we have already acquired for Venus, Earth, and Mars.

Instead, the key advantage of exoplanets is that their number and diversity offer statistical

insights that the solar system cannot, and it is critical that future missions intended to

search for habitable worlds are designed with this advantage in mind.

To this end, I have demonstrated multiple examples of statistical strategies for en-

hancing our understanding of habitable exoplanets, both now and in the future using

next-generation space telescopes. By leveraging these strategies, exoplanet researchers

can begin to uncover the laws governing habitability and life in the Universe, and to

place Earth into context as one member of the broader population of potentially habitable

worlds.
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APPENDIX A

Supplementary Materials for Chapter 4

A.1 Binned light curves and posterior distributions

In Figures A.1-A.4 we present the binned light curves for Transits 1–4, along with their

fitted models and residuals. We plot the joint posterior distributions of the parameters

of the white light curve models in Figures A.5-A.8, and the same for a selection of the

retrieval models in Figure A.9.
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Figure A.1: Binned light curve fits from the night of 2013-09-24. The models in the left
panel include the linear systematics component.
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Figure A.2: Binned light curve fits from the night of 2013-10-17. The models in the
left panel include the linear systematics component. A potential spot-crossing event is
excluded from the fit.
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Figure A.3: Binned light curve fits from the night of 2015-08-14. The models in the left
panel include the linear systematics component. The spot-crossing event is excluded.
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Figure A.4: Binned light curve fits from the night of 2015-09-26. The models in the left
panel include the linear systematics component. Six of the bins are excluded for lack of
data due to the narrower filter.
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Figure A.5: Joint posterior distributions for the white light curve model for Transit 1,
including the planet-to-star radius ratio (Rp/Rs), the correlated and uncorrelated noise pa-
rameters (σr, σw), the mid-transit time (t0), three parameters for the quadratic polynomial
systematics model (a0, a1, a2), and two parameters for the quadratic limb-darkening law
(q1, q2). The light curve of this transit is incomplete, so we exclude its transit spectrum
from our combined result.
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Figure A.6: Joint posterior distributions for the white light curve model for Transit 2.
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Figure A.7: Joint posterior distributions for the white light curve model for Transit 3.
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Figure A.8: Joint posterior distributions for the white light curve model for Transit 4.
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Figure A.9: Joint posterior distributions for a subset of the atmospheric retrieval models
shown in Figure 4.8. The parameters and prior distributions are described in Table 4.5.
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Figure A.9: (cont.) (Top) Models for a uniform opacity atmosphere with (right) and
without (left) the contamination features from the photosphere. Here the posterior dis-
tributions have converged, and the degeneracy between the planet’s radius and the spot
covering fraction is apparent. (Bottom) Model for a hazy atmosphere with K absorption
and contamination from the photosphere. Some of the parameters do not converge enough
from their priors to yield meaningful constraints. In these cases, the prior distributions
are marked with a dashed line.

A.2 Tabulated transmission spectra

In Table A.1 we present the tabulated transmission spectra as well as the correction de-

rived for the effect of the occulted spot of Transit 3.
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Table A.1: Data for the combined and individual transmission spectra shown in Figures 4.3 and 4.4 with 1σ uncertainties. The

second column is the weighted mean of the mean-subtracted values from Transits 2-4, where the Transit 3 values have first been

corrected for the presence of an occulted spot. The last column is the multiplicative effect on the fitted radii for Transit 3 due to

the occulted spot, where the true radius Rp,0 = Rp/ε
1/2.

Bin (nm) ∆Rp/Rs Transit 1 Transit 2 Transit 3 Transit 4 ε1/2

450.0 - 470.0 -0.0015 ± 0.0008 0.1525 ± 0.0031 0.1430 ± 0.0028‡ 0.1531 ± 0.0008 1.0121

470.0 - 490.0 0.0004 ± 0.0007 0.1508 ± 0.0026 0.1583 ± 0.0045 0.1548 ± 0.0007 1.0113

490.0 - 510.0 -0.0015 ± 0.0007 0.1528 ± 0.0024 0.1514 ± 0.0033 0.1531 ± 0.0007 1.0116

510.0 - 530.0 -0.0007 ± 0.0008 0.1543 ± 0.0020 0.1533 ± 0.0029 0.1538 ± 0.0008 1.0118

530.0 - 550.0 0.0007 ± 0.0006 0.1547 ± 0.0018 0.1550 ± 0.0029 0.1551 ± 0.0006 1.0105

550.0 - 570.0 0.0001 ± 0.0005 0.1549 ± 0.0019 0.1530 ± 0.0021 0.1544 ± 0.0005 1.0097

570.0 - 586.8 0.0002 ± 0.0006 0.1528 ± 0.0018 0.1520 ± 0.0025 0.1551 ± 0.0007 0.1543 ± 0.0016 1.0092

586.8 - 591.8† -0.0000 ± 0.0011 0.1529 ± 0.0038 0.1532 ± 0.0046 0.1543 ± 0.0014 0.1569 ± 0.0020 1.0096

591.8 - 610.0 0.0015 ± 0.0006 0.1582 ± 0.0020 0.1574 ± 0.0021 0.1566 ± 0.0007 0.1545 ± 0.0013 1.0089

610.0 - 630.0 0.0002 ± 0.0006 0.1550 ± 0.0019 0.1552 ± 0.0023 0.1533 ± 0.0008 0.1591 ± 0.0011 1.0089

630.0 - 653.8 0.0007 ± 0.0005 0.1492 ± 0.0022 0.1547 ± 0.0020 0.1546 ± 0.0007 0.1579 ± 0.0010 1.0085

653.8 - 658.8† 0.0010 ± 0.0012 0.1524 ± 0.0040 0.1442 ± 0.0033 0.1576 ± 0.0017 0.1581 ± 0.0019 1.0076

658.8 - 680.0 -0.0008 ± 0.0006 0.1523 ± 0.0015 0.1496 ± 0.0022 0.1549 ± 0.0008 0.1546 ± 0.0010 1.0082

680.0 - 700.0 0.0005 ± 0.0006 0.1516 ± 0.0018 0.1543 ± 0.0022 0.1535 ± 0.0008 0.1585 ± 0.0008 1.0079

700.0 - 720.0 -0.0005 ± 0.0006 0.1537 ± 0.0019 0.1546 ± 0.0021 0.1539 ± 0.0008 0.1556 ± 0.0009 1.0078
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Table A.1: (continued)

Bin (nm) ∆Rp/Rs Transit 1 Transit 2 Transit 3 Transit 4 ε1/2

720.0 - 740.0 -0.0002 ± 0.0005 0.1522 ± 0.0022 0.1514 ± 0.0024 0.1537 ± 0.0006 0.1572 ± 0.0008 1.0076

740.0 - 765.0 0.0002 ± 0.0005 0.1559 ± 0.0029 0.1526 ± 0.0028 0.1525 ± 0.0007 0.1588 ± 0.0007 1.0074

765.0 - 771.0† 0.0017 ± 0.0009 0.1591 ± 0.0049 0.1577 ± 0.0045 0.1548 ± 0.0011 0.1601 ± 0.0016 1.0073

771.0 - 790.0 0.0001 ± 0.0006 0.1529 ± 0.0026 0.1571 ± 0.0031 0.1536 ± 0.0008 0.1573 ± 0.0009 1.0071

805.0 - 835.0 -0.0004 ± 0.0006 0.1475 ± 0.0020 0.1553 ± 0.0026 0.1539 ± 0.0007 0.1555 ± 0.0010 1.0070

850.0 - 875.0 -0.0014 ± 0.0007 0.1482 ± 0.0026 0.1503 ± 0.0032 0.1527 ± 0.0011 0.1556 ± 0.0010 1.0066

875.0 - 900.0 -0.0001 ± 0.0010 0.1530 ± 0.0040 0.1495 ± 0.0040 0.1539 ± 0.0010 0.1608 ± 0.0011‡ 1.0064

† Denotes bins centered on Na, Hα, and K absorption lines.

‡ These outliers are excluded from the analysis; see Section 4.4.2.
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APPENDIX B

Supplementary Materials for Chapter 6

B.1 List of symbols

Table B.1 provides definitions for abbreviations and symbols used in this paper.

Table B.1: A list of common abbreviations and symbols used in this paper.

Symbol Description

Abbreviations

EEC “exo-Earth candidate” (or “potentially hab-

itable planet”); planets in the radius range

0.8(S/S⊕)0.25 < Rp < 1.4R⊕

LUVOIR Large UV/Optical/Infrared Surveyor (The LUVOIR

Team, 2019)

SAG13 NASA’s Exoplanet Program Analysis Group Science

Analysis Group 13

PSG NASA/GSFC Planetary Spectrum Generator (Vil-

lanueva et al., 2018)

IWA, OWA Inner, outer working angles of a coronagraphic instru-

ment

MCMC Markov Chain Monte Carlo

Stellar properties

d Distance to star

M∗,R∗,L∗ Mass, radius, and luminosity

T∗ Effective temperature

t∗ Age of star and planetary system
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Table B.1: (continued)

Symbol Description

ainner, aouter Inner and outer edge of the star’s habitable zone

Planet properties

Mp,Rp,gp Mass, radius, and surface gravity

h Atmospheric scale height

P Orbital period

a Semi-major axis

aeff Semi-major axis scaled by the stellar luminosity, aeff =

a(L∗/L�)−0.5

cos(i) (Cosine of) orbital inclination

b Transit impact parameter, assuming a circular orbit

δ Planet transit depth, δ = (Rp/R∗)2

∆δ Approximate transit depth induced by planet’s atmo-

sphere, ∆δ ∼ 2(h/Rp)

ζ Planet-to-star contrast ratio

Rest Estimated planet radius assuming Earth-like reflectivity

(direct imaging only), Rest/R⊕ = (ζ/ζ⊕)0.5(a/1AU)

Simulated survey

Dtel Telescope diameter or effective diameter (based on total

light-collecting area)

λeff Effective wavelength of a spectroscopic measurement

R∗,ref, T∗,ref Radius and effective temperature of the reference star;

(R∗,ref,T∗,ref) = (5777 K, 1R�) for the imaging survey,

(3000 K, 0.15R�) for the transit survey

ti Amount of time required to characterize the i-th planet

in a sample
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Table B.1: (continued)

Symbol Description

tref Amount of time required to characterize an Earth twin

orbiting the reference star with aeff = 1 AU

ttotal Time budget allocated to characterizing planets for a

specific spectral feature (may overlap with observations

at other wavelengths)

ζ⊕ Contrast ratio of the Earth with respect to the Sun, ζ⊕ ≈
10−10

pi, wi Observing priority and relative weight assigned to each

planet, where pi = wi/ti

Hypothesis testing

x, y Independent and dependent variables in the simulated

data sets

h(~θ,x) Alternative hypothesis describing the relationship be-

tween x and y, to be compared to the null hypothesis
~θ Set of parameters that define h

L(y|~θ) Likelihood function, described by Equation 6.9 or 6.10

Π(~θ) Prior probability distribution of ~θ, described for each ex-

ample in Table 6.3

Z Bayesian evidence in favor of the null or alternative hy-

pothesis, computed by nested sampling

Habitable zone hypothesis

ainner, aouter Inner and outer edges of the habitable zone in aeff space

(i.e. for a Sun-like star)

f H2O
EEC Fraction of EECs with atmospheric water vapor (as-

sumed habitable)
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Table B.1: (continued)

Symbol Description

f H2O
non-EEC Fraction of non-EECs with atmospheric water vapor

Age-oxygen correlation

flife Fraction of EECs inhabited by life (regardless of O2 con-

tent)

t1/2 Oxygenation timescale; the time required for 50% of in-

habited planets to undergo global oxygenation
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APPENDIX C

Commissioning the Demo Observatory for Project Nautilus

C.1 Overview

Alongside my thesis research, I have been involved in developing the science case for

Project Nautilus, which aims to revolutionize the design of ultra-large space telescopes

through the use of multi-order diffractive optical element lenses (MODE lenses; Milster

et al., 2020). Project Nautilus is currently developing a 24 cm diameter prototype MODE

lens to demonstrate critical manufacturing steps necessary for scaling the technology to

larger diameters, such as the precise alignment and fixation of multiple lens segments

into a larger whole. Following its assembly, the MODE lens will undergo testing to verify

both its predicted optical performance (through optical laboratory tests) and its usefulness

for time series astrophysics (through astronomical observations). In this section, I will re-

view my progress in commissioning the demonstration observatory (“demo observatory”)

where the astronomical testing will be conducted.

C.2 Observatory design

The demo observatory is being commissioned in an 11 foot diameter dome located at

the Mount Lemmon SkyCenter north of Tucson, Arizona. Its primary components will

consist of a Paramount mount and pier, a custom-machined optical tube assembly (OTA),

an Andor camera with a deep-depletion CCD, an off-axis guider telescope, and the MODE

prototype lens. A full list of the observatory’s major components is given in Table C.1.
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Table C.1: Major Components of the Demo Observatory

Component Manufacturer

11’ dome Ash Manufacturing

Paramount ME robotic mount w/ counterweights Software Bisque

42” steel pier . . .

74” OTA Custom-made

24 cm prototype MODE lens . . .

Pier-to-floor interface plate . . .

Telescope-to-mount interface plate . . .

iKon-M camera Andor Technology

NexStar 102 SLT (guider telescope) Celestron

EOS R6 (guider camera) Canon

C.2.1 OTA and science camera

The OTA consists of a 74”x11” aluminum base, a mounting structure for the MODE lens,

and a lightweight cover to mitigate stray light. All of these components were custom-

designed and machined for the project. The main science camera is an Andor iKon-M

camera with a deep-depletion CCD. This choice of camera was motivated by two con-

siderations: first, the deep-depletion CCD maximizes detector sensitivity, and second, its

field of view at the focal plane is wide enough to allow the telescope to observe multi-

ple reference stars simultaneously alongside the primary target. This step is necessary to

remove the & 10% level trends that are often present in ground-based time-series obser-

vations of stars.

C.2.2 Mount and pier

The mount and pier are capable of supporting the ∼ 50–60 kg combined weight of the

telescope, lens, and detector, while the mount can accurately track the sky’s sidereal mo-

tion with an average accumulated error of less than one arcsecond per minute during
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Figure C.1: Drawing of the pier-to-floor interface plate, machined out of steel for rigidity.
The three-hole pattern aligns with threaded anchor bolts in the floor of the dome. Two
threaded four-hole patterns allow the pier to be offset to the north or south.

unguided observations (as validated in Section C.3.2). The setup also allows for the in-

stallation of an off-axis guide telescope, which would further improve the tracking preci-

sion. Finally, an extended counterweight shaft with up to 80 lb of weights is available for

balancing the setup.

C.2.3 Interface plates

The demo observatory setup combines multiple off-the-shelf and custom-designed com-

ponents with incompatible interfaces. To resolve this issue, I designed two metal interface

plates shown in Figures C.1 and C.2. The first interface plate attaches the pier to the an-

chor studs in the cement floor of the dome, which were previously installed for a different

telescope. The second plate interfaces the Paramount mount with the custom-machined

OTA.
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Figure C.2: Drawing of the telescope-to-mount interface plate, machined out of aluminum
to minimize weight. The six center holes align with a similar pattern on top of the mount,
while the fourteen holes on the side allow the telescope to be offset by ±3 inches along
the optical axis. The channel on the bottom is used to route power and data cables through
the mount to the detector and guide cameras.

C.2.4 Mount, camera, and dome control

The mount and cameras are controlled using TheSkyX1, a commercial observatory control

software package. The mount is connected using a serial-to-USB cable, while the science

and guider cameras can be connected using a USB extension cord wired through its base.

A small power strip is also wired through the mount to power telescope components.

The laptop can be accessed via remote desktop, allowing for remote control of the

mount and camera from elsewhere at the SkyCenter. The dome’s two-way rotation motor

is operated manually using a lever, so the rotation direction cannot currently be controlled

through a digital interface. However, the motor is powered through a network-connected

“smart plug” that can be turned on or off remotely via smartphone. By positioning the

lever appropriately, a remote observer can activate this plug to rotate the dome in a single

direction. This solution is sufficient for the planned MODE prototype tests.

1https://www.bisque.com/product/theskyx-pro/

https://www.bisque.com/product/theskyx-pro/
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Figure C.3: Image of the tripod-mounted setup used for the initial mount tests.

C.3 Testing

The demo observatory is currently undergoing testing to validate the mount’s basic per-

formance, measure its sidereal tracking error, and test its guiding capabilities. Successful

results from these tests will indicate that the setup is prepared to conduct astronomical

tests of the MODE prototype lens once it is completed.

C.3.1 Mount tracking test on tripod

I conducted an initial test of the mount’s tracking performance using a small portable

tripod. To attach the mount to the tripod, I designed an interface pattern and drilled it

into wood. Finally, I secured a 6” refractor to the mount’s interface plate to allow for

eyepiece observations. The portable setup is pictured in Figure C.3. Testing took place
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on two separate nights in a local parking lot, with power provided via portable battery. To

begin, I calibrated the mount’s pointing solution using 10–20 bright stars spaced across

the sky, then applied the polar alignment corrections calculated by the mount’s software.

The final polar alignment of the mount was accurate to within 20 arcminutes. To test the

tracking accuracy, I trained the eyepiece on a target over the eastern horizon and allowed

the mount to track it for 90 minutes. Based on the apparent motion of the target from the

center of the eyepiece, I estimated the drift rate to be ∼ 1–3 arcseconds per minute.

C.3.2 Mount tracking tests on pier

After installing the pier, mount, and interface plates into the dome, I conducted a follow-

up test at the SkyCenter to validate and improve upon the previous results. I used the

guider telescope and camera for this test, as the primary OTA was not yet installed - this

setup is shown in Figure C.4. The use of a camera rather than an eyepiece allowed for

precise measurements of stellar positions compared to the previous test, improving both

the polar alignment process and tracking error determination.

As before, I calibrated the mount using observations of several bright stars and cor-

rected the polar alignment to within 5 arcminutes accuracy. Next, I trained the telescope

on a target over the eastern horizon and allowed it to track for ∼ 70 minutes. The re-

sults of this test are shown in Figure C.5. The improved polar alignment, combined with

new tracking corrections that I activated in the mount software, reduced the drift rate to

approximately 0.3 arcseconds per minute.

This tracking error is sufficiently low to conduct stellar time series observations with

the MODE prototype lens. Nevertheless, the tracking can be further improved through

use of an off-axis guider telescope that measures the cumulative drift of a bright guide

star and sends corrective pointing offsets to the mount. Testing this mode, I found the

mount was able to stay centered on the star for several minutes with a pointing RMS error

of ∼ 1.5 arcseconds per 10-second exposure.
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Figure C.4: Image of the setup for testing the mount in its permanent dome installation.
The 4” guider telescope and camera were used to measure the mount’s tracking perfor-
mance. The blue plate on the floor is the interface plate drawn in Figure C.1.
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Figure C.5: Results of the tracking test described in Section C.3.2. The accumulated
tracking error along each detector axis is plotted as a function of time. The average total
drift rate is ∼ 0.3 arcseconds per minute.
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Figure C.6: The current setup in the demo observatory with the newly-installed OTA. The
light baffle and lens mount have been temporarily removed.
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C.3.3 Future tests

The OTA has recently been attached to the mount and basic mount capabilities been

demonstrated with the heavier load. The current setup is shown in Figure C.6. Next,

the mount’s performance must be verified again to ensure the tracking is equally capable

under increased weight. This will be the final step to validate the mount’s performance in

advance of the scientific tests. Once the MODE prototype lens has been produced, it will

be installed into the telescope along with the science camera and used to conduct multiple

observations of eclipsing binary stars and transiting hot Jupiter exoplanets. The quality of

the resulting data will be compared both to its ideal performance (i.e. as determined by

its light-collecting area) as well as data from a nearby robotic telescope that is frequently

used for similar observations. Finally, the peer-reviewed publication of these test results

(alongside laboratory results) will close out this stage of MODE lens development.
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