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Abstract 15 

Purpose: Much is known about growth and nutrient uptake traits and ecological 16 

stoichiometry in natural systems. However, these concepts have been comparatively 17 

understudied in agricultural systems despite their potential to infer nutrient limitation and 18 

interspecific resource competition.  19 

Methods: This study established a model mixed-pasture system to assess tissue C:N and 20 

C:P stoichiometry and above ground biomass (AGB) in a grass (Phalaris aquatica) and 21 

legume (Trifolium vesiculosum) under factorial inputs of high and low nitrogen (N) and 22 
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phosphorus (P), in monoculture and mixture. Due to inherent trait diversity, we expected 23 

grass and legume growth, shoot vs root stoichiometry and N:P homeostasis to differ in 24 

response to nutrient limitation and between monoculture and mixture.  25 

Results: Grass AGB was greater with N addition and in mixture, and legume AGB was 26 

decreased by N but increased by P, more so in mixture. Nutrient limitation in grass was 27 

determined via a strong coupling of growth with shoot stoichiometry, by which AGB 28 

decreased and C:N increased under N limitation. Legume growth was not correlated with 29 

tissue stoichiometry, but potential for growth limitation by N and P was detected via 30 

increased shoot C:N under low N and P, and C:P under low P. Legume shoot N:P was 31 

more homeostatic than grass, and grass shoot N:P homeostasis was greater in mixtures 32 

than in monocultures.  33 

Conclusions: Integrating ecological stoichiometry alongside trait-based ecology is a 34 

useful tool for predicting how fertiliser management may affect nutrient balance and 35 

species dominance in mixed pasture agroecosystems. 36 

Keywords 37 
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 39 

Introduction 40 

Plant traits determine individual requirements for nitrogen (N) and phosphorus (P), and 41 

ecological stoichiometry regulates the distribution of the elements carbon (C), N and P in 42 

ecosystems (Sterner, 2002). Therefore, understanding traits such as growth rate, and nutrient 43 

allocation between roots and shoots that influence, and are influenced by, plants’ relative N 44 

and P requirements make it possible to infer the potential effects of stoichiometric imbalances 45 
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on primary productivity and community dynamics (Meunier et al., 2014). Organisms are 46 

considered to exist on a continuum from strict homeostasis to ‘flexibility’ regarding their 47 

ability to regulate internal nutrient composition, relative to their soil (Sterner, 2002). A 48 

loosely coupled tissue:substrate stoichiometry is homeostatically strict; in contrast, tissue 49 

stoichiometry tightly coupled to that of the substrate is considered homeostatically flexible 50 

(Fig. 1). Relative stoichiometric flexibility in plants is partially attributed to their ability to 51 

allocate C, N and P towards different physiological processes and to take up elements in 52 

excess of requirements for growth (luxury consumption or nutrient conservation) (He et al., 53 

2009; Hessen et al., 2004). Given that plant growth and nutrient use traits determine their 54 

degree of N:P homeostasis, fast-growing, nutrient-acquisitive species such as grasses are 55 

usually more homeostatically ‘flexible,’ whereas slower-growing more nutrient-conservative 56 

species like legumes are likely more homeostatic (Guo et al., 2017; Poorter et al., 2014; 57 

Reich, 2014). Although much is known about how N and P addition affects primary 58 

productivity in individual crops, less is understood from a stoichiometric perspective about 59 

how plant-plant interactions and nutrient availability combine to influence stoichiometric 60 

ratios, and how this information may be used to better our understanding of agricultural 61 

nutrient limitation.  62 

 63 

In terrestrial systems, nutrient limitation is often referred to as a single or multiple nutrient 64 

constraint leading to reduction in net primary productivity (NPP) relative to potential NPP 65 

under non-limiting conditions (Bracken et al., 2015). In individual plants, diagnosis of single 66 

nutrient limitation has been determined via decreased growth rate coupled with increased 67 

C:nutrient tissue ratio (Ågren, 1988; Ågren, 2004; Droop, 1973); however, C:N:P ratios and 68 

growth relationships can differ significantly among species (Elser et al., 2003). Higher tissue 69 

N:P has been reported in slower growing species and is often accompanied by luxury 70 



4 
 

consumption of nutrients independent of a growth response (Chapin, 1980); conversely 71 

faster-growing species have a tendency to exhibit lower tissue N:P (Ryser and Lambers, 72 

1995), with a biomass stoichiometry more tightly coupled to substrate N:P (Mendoza et al., 73 

2016a). In cropping systems, it is common to cultivate slow-growing species like legumes, 74 

which have higher requirements for P, alongside faster-growing, more N-demanding species 75 

such as grasses (Graham and Vance, 2003; Haynes, 1980). This complementary planting is 76 

successful partly because legumes use P to enable biological nitrogen fixation (BNF) (Evers, 77 

1982; Mendoza et al., 2016a) which can facilitate the growth of grasses and improve forage 78 

quality (Peoples et al., 2015). Moreover, co-planting can up-regulate BNF and improve 79 

legume yield (Ledgard et al., 1992; Nyfeler et al., 2011).  80 

 81 

To deal with fluctuations in nutrient availability, higher plants have developed a strategy of 82 

allocating carbon and nutrients to different organ systems to reflect changing resource 83 

requirements (Enquist and Niklas, 2002). Termed ‘biomass partitioning’, the strategy is 84 

usually aimed at acquiring the most limiting resource (Chapin, 1991). Plant growth depends 85 

on a functional balance between the transport of photosynthate carbon from shoots to roots, 86 

and nutrients (including N and P) from roots to shoots (Thornley, 1991). Stoichiometric 87 

control over biomass partitioning is important to understand in agricultural systems as 88 

differential allocation of nutrients between roots and shoots can be species dependent 89 

(Warembourg et al., 2003), decoupled from growth (Gleeson and Tilman, 1994; Hilbert, 90 

1990) and can affect the return of nutrients to the soil (Amato et al., 1984; Johnson et al., 91 

2007). As plant traits drive the relative requirements of N and P among plant functional 92 

groups (Elser et al., 2003), and nutrient limitation and community interactions jointly 93 

influence nutrient uptake and primary productivity (Ågren, 2008; Ågren, 1988; Ågren, 2004), 94 

differential root:shoot biomass and nutrient partitioning among species within functionally 95 
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diverse plant communities can be an indicator of nutrient competition (Ashton et al., 2010; 96 

Nasto et al., 2017; Warembourg et al., 2003). 97 

 98 

Although C:N and C:P stoichiometry has been used to determine optimal N:P supply ratios 99 

for individual pasture species (Agnusdei et al., 2010; Duru and Ducrocq, 1996), 100 

comparatively little is known about the stoichiometry of nutrient limitation in mixed pastures 101 

under different N:P supply ratios. To better understand these dynamics, our study established 102 

a common pasture grass and a legume species in a controlled glasshouse study under factorial 103 

combinations of low (L) and high (H) inputs of N and P and examined growth and tissue 104 

stoichiometry in roots and shoots to identify nutrient limitation and potential for nutrient 105 

competition in mixed pastures. We combined a conceptual understanding of plant growth and 106 

nutrient use traits with ecological stoichiometry to establish our predictive framework. We 107 

hypothesised that: 108 

 109 

1) The faster-growing, more nutrient-acquisitive grass would be more homeostatically 110 

flexible, with AGB responding positively to N addition and cultivation with a legume.   111 

2) The grass would allocate nitrogen to shoots to maximise growth, and therefore N 112 

limitation in grass may be determined via increases to shoot C:N ratios and reductions 113 

in AGB. Competition for N would decrease between grass monoculture and mixture, 114 

but competition for P may increase (Fig. 2).  115 

3) The slower-growing, more homeostatic legume would be positively influenced by P 116 

addition owing to the latter’s role in biological nitrogen fixation (BNF), and by 117 

cultivation with grass via up-regulation of BNF. Therefore, competition for P in 118 

legume would increase between monoculture and mixture (Fig 2).  119 
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4) The legume is likely to maintain a more homeostatic shoot N:P, whereas root C:N and 120 

C:P may be more flexible, owing to increased P allocation towards roots to support 121 

nodule development. Potential for nutrient limitation in the legume may be detected 122 

via increases to root C:P. 123 

 124 

Materials and methods  125 

Experimental design 126 

Our experiment was conducted from the 28th of October 2018 in a greenhouse maintaining 127 

natural average temperatures of 27°C/16°C on a day/night cycle and an average day length 128 

between 07:00 – 19:00 under natural light, for 70 days (Ball et al., 2020). The 70-day growth 129 

cycle was chosen to capture the ideal temperature range for germinating and growing both 130 

species while avoiding potential for summer dormancy with increasing temperatures (Brar et 131 

al., 1991; Watson et al., 2000). We implemented four fertiliser treatments:  two levels of 132 

nitrogen (LN and HN) and phosphorus (LP and HP) addition (LNLP control, HNHP, HNLP 133 

and LNHP) on a grass (Phalaris aquatica) and a legume (Trifolium vesiculosum) species 134 

grown in monoculture and mixture. These species were chosen as Phalaris is commonly 135 

found in pasture systems globally and is commonly sown with Trifolium species (Lavergne 136 

and Molofsky, 2004, 2006; Watson et al., 2000). Therefore, we considered the species chosen 137 

to represent a ‘model’ system. 10 replicates of 12 treatments resulted in (n = 120) pots. Seeds 138 

were supplied by Heritage Seeds Australia, along with the appropriate group C rhizobial 139 

inoculant required for T. vesiculosum. The experimental design was obtained using 140 

CycDesigN (Whitaker et al., 2002) and randomized using the dae package in R (Brien, 2018; 141 

R Core Team, 2020) (Fig. S1), (Ball et al., 2020). 142 

 143 
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Growing conditions 144 

Three kg (dry weight) of pasteurized, unfertilised potting mixture (0.33 sand:0.33 clay 145 

loam:0.33 coco peat by volume) at pH 6.3 was potted into 198 mm diameter x 149 mm high 146 

(4587 cm3) pots, with drainage holes seated on a 200 mm round dish to retain water and 147 

nutrients. Eight seeds were planted in each pot, leaving two seedlings on each half of the pot 148 

after thinning (Day 16). In mixture, one half (pot) comprised grass and the other half legume. 149 

On day 16, to promote microbial activity and nodulation we added a field soil microbial wash 150 

of 1 g of field soil in 100 ml of DI water and molasses (ratio of 100:1 (ml) with the 151 

recommended amount of Group C rhizobial inoculant to obtain ~ 3,000,000 rhizobia. Plants 152 

were watered once daily, and soil water content was maintained at field capacity (22% (w/w) 153 

gravimetric water content) by watering to weight.  154 

 155 

Fertilisation  156 

Nitrogen (N) and phosphorus (P) in the forms of ammonium nitrate (NH4NO3) and a pH 6.3 157 

balanced mixture of disodium phosphate (Na2HPO4) and sodium dihydrogen phosphate 158 

(NaH2PO4) were prepared in 100ml of DI water. Nutrients were added on a dry-weight, mg  159 

kg-1 of soil basis. The low N-low P (LNLP, control) treatment nutrients (33 mg N, and 11 mg 160 

P, N:P ratio; 3:1; this translates to 30.56 kg/ha N, 10.18 kg/ha P) were added to all pots on 161 

day 16. On day 35, nutrients were added to increase the total amount of N and/or P to desired 162 

treatment levels. In total, for the high N-high P (HNHP) treatment, we added 99 mg N and 33 163 

mg P (N:P ratio 3:1); for the HNLP treatment, we added 99 mg N and 11 mg P (N:P ratio 164 

9:1); and for the LNHP treatment, (33 mg N and 33 mg P, N:P ratio; 1:1). Pots received 165 

macro- and micronutrients at the following rates (mg kg-1 dry soil): K2SO4, 75; CaCl2.2H2O, 166 

75; MgSO4.7H2O, 45; CuSO4.5H2O, 2.1; ZnSO4.7H2O, 5.4; MnSO4.H2O, 6.4; CoCl2.6H2O, 167 
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0.33; Na2MoO4.2H2O, 0.18; H3BO3, 0.3 and FeEDTA, 0.4. Plant available N and P were 168 

determined in plant-free pots as described below. Results are detailed in supplementary 169 

materials (Table S1). 170 

 171 

Final harvest 172 

On day 70, all above- and belowground shoot biomass (AGB, BGB) was harvested and soil 173 

samples collected to determine total AGB, shoot and root nutrient concentrations and soil 174 

nutrients (N and P). AGB was determined by separating the plants between the two sides of 175 

the pot above- and belowground, washing the soil from the roots and cutting at root crown 176 

level to separate above and belowground biomass. Biomass was dried at 70°C and weighed; 177 

the reported AGB is the total weight of the two individual plants from each side of the pot (n 178 

= 240) (Table S2). We have reported BGB in the supplementary materials (Table S3) 179 

however we do not discuss total BGB as part of the results as we were unable to separate total 180 

root biomass at the pot level by species, and the plants became root-bound towards the end of 181 

the experiment. Root nutrient concentrations were obtained from attached root samples to 182 

ensure species-level separation. All plants were viable for harvest, except two half pot 183 

replicates in the grass only LNLP control treatment which did not survive.  184 

 185 

Soil and shoot nutrient analyses  186 

Soil extractable N was determined by shaking 40 ml of 2 M potassium chloride (KCl) 187 

solution with 4.0 g soil (< 2 mm) at 170 rpm for 1 hour and then filtering through a 2.5 µm 188 

ashless filter (Grade 42, Whatman PLC, Kent, U.K). Extractable P was determined by mixing 189 

4 g soil in 40 ml of 0.5 M NaHCO3 and shaking for 16 hours (Olsen, 1954). Soil extracts 190 

were stored at -20 °C until colorimetric analysis in a discrete analyser (AQ2, SEAL 191 
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Analytical, Ltd., Milwaukee, WI USA and EPA135 method). For total carbon (C) and N 192 

shoot and root nutrients, a subsample (~3 g) of biomass from each plant was finely ground 193 

and homogenised with an MM 400 mixer mill (Retsch, GmbH, Haan, Germany) and an 194 

approximately 5 mg subsample was taken for combustion analysis using an Elementar Vario 195 

El Cube Carbon/Nitrogen analyser (Elementar Analysersysteme GmbH, Langenselbold, 196 

Germany). Phosphorus concentration of tissue samples was obtained after digesting ~ 55 mg 197 

of plant material in concentrated H2SO4 and H2O2 in a microwave digester, and colorimetric 198 

analysis after an ammonium molybdate reaction (Crous et al., 2015). Measurement error was 199 

suspected in two replicates for total C, N and P; one in the HNLP legume monoculture and 200 

one in the LNHP grass monoculture. These were removed from the analysis.  201 

 202 

Statistical analysis of growth and tissue nutrient ratios 203 

To compare AGB and tissue nutrient ratios between treatments a linear mixed-model analysis 204 

was performed using “ASReml-R” (Butler et al., 2009) and “asremlPlus”(Brien, 2019) 205 

packages within R (R Core Team, 2020). The tissue nutrient ratios were natural log 206 

transformed. The linear mixed model included terms for the treatment differences, spatial 207 

effects, and residual error variation. It was of the following form: 208 

𝐲𝐲 = 𝐗𝐗t𝛕𝛕 + 𝐗𝐗s𝛃𝛃 + 𝐙𝐙𝐙𝐙 + 𝐞𝐞 209 

where 𝐲𝐲 is the response vector of values for the trait being analysed;  is the vector of fixed 210 

treatment effects; 𝛃𝛃 is the vector of fixed spatial effects; 𝐙𝐙 is the vector of random effects; 211 

and 𝐞𝐞 is the vector of residual effects. 𝐗𝐗t,  𝐗𝐗s and 𝐙𝐙 are the design matrices corresponding to 212 

𝛕𝛕, 𝛃𝛃 and 𝐙𝐙 respectively. The fixed-effect vector 𝛕𝛕 was partitioned as 𝛕𝛕⊤ = �𝜇𝜇  𝛕𝛕Sp⊤  𝛕𝛕G⊤ 𝛕𝛕L⊤�, 213 

where 𝜇𝜇 is the overall mean; 𝛕𝛕Sp⊤  incorporates the two species main effects; 𝛕𝛕G⊤ contains 214 

parameters for the 3 main effects, the 3 two-factor interactions and the three-factor interaction 215 
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of the factors cultivation type, nitrogen and phosphorus for the grass (G) species; and 𝛕𝛕L⊤ 216 

contains the same parameters for the legume (L) species. The fixed-effect vector 𝛃𝛃 was 217 

partitioned as 𝛃𝛃⊤ = [ 𝛃𝛃R⊤ 𝛃𝛃Si⊤  𝛃𝛃H⊤ ], where the 𝛃𝛃 subvectors correspond to the effects of 218 

replicates (R), greenhouse sides (Si, east or west) and pot halves (H, east or west) that capture 219 

systematic spatial variation within the greenhouse. The random-effects vector 𝐙𝐙 was 220 

partitioned as [𝐙𝐙R:M𝐙𝐙R:M:P] where 𝐙𝐙R:M is the vector of main-unit (M) random effects within 221 

each replicate (R) and 𝐙𝐙R:M:P is the vector of random effects for pots (P) within each main-222 

unit (M). The residuals 𝐞𝐞 were assumed to be normally distributed with their variance 223 

allowed to vary with both species and nitrogen. For each trait, residual likelihood ratio tests 224 

with 𝛼𝛼 = 0.05 were used to determine whether the variance model can be simplified by 225 

removal of the nitrogen level variance difference and/or species variance difference. The 226 

model was modified to reflect the results of these tests and residual-versus-fitted values plots 227 

and normal probability plots confirmed that model assumptions were met. Wald F-tests at 228 

𝛼𝛼 = 0.05 were conducted for the fixed effects within each species to determine a model for 229 

describing how cultivation type, nitrogen and phosphorus affect the response for each 230 

species. Testing began with the three-factor interaction for a species and, only if it was not 231 

significant, proceeded to test the two-factor interactions; the main effects were only tested if 232 

that factor had not occurred in a significant interaction. Estimated marginal means were 233 

calculated, along with least significant differences for (𝛼𝛼 = 0.05) [LSD(5%)]; they were back 234 

transformed from the logs for the tissue nutrient ratios.  235 

  236 

Calculation of C:nutrient ratio and growth relationships 237 

The ‘lm’ function from Base R (R Core Team, 2020) was used to determine the relationship 238 

between tissue C:nutrient values and AGB (g) by species and cultivation type. Predictor and 239 
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response variables were natural log transformed, and all model assumptions of residual 240 

normality and homoscedasticity were met.  241 

 242 

Calculations of relative N:P homeostasis 243 

Homeostatic coefficients (H) were calculated from the inverse slope of the line of log-tissue 244 

N:P as a response of log-substrate N:P (HN:P) (Sterner, 2002). Higher values of H can indicate 245 

that tissue N:P is more loosely coupled with substrate N:P (homeostatic), and lower values 246 

indicate that tissue N:P is more tightly coupled with substrate N:P (flexible) (Ågren, 2008; 247 

Ågren, 2004; Elser and Urabe, 1999). We tested for significant differences in the degree of 248 

homeostasis between species, cultivation type and biomass components using a Fisher’s r 249 

correlation to z-score transformation (Wilcox and Muska, 2002). The correlation coefficient 250 

values (r values) were transformed into Fishers Z-scores using equation 1.  251 

 252 

z =  0.5[ln(1 + r) –  ln(1 − r)]       (1) 253 

 254 

Then, the z scores were compared and analysed for statistical significance accounting for the 255 

individual group means and standard deviations and by examining the observed z-statistic 256 

(equation 2). At α = 0.05, our reported z-statistics were determined significant at ± 1.96.  257 

 258 

Zobserved =  (𝑧𝑧1 –  𝑧𝑧2) / √[(1 / 𝑛𝑛1 –  3)  +  (1 / 𝑛𝑛2 –  3)]   (2)  259 
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Results 260 

 261 

Aboveground biomass responses to cultivation and nutrient addition  262 

In grass, AGB was increased by an interaction between N treatment and cultivation type 263 

(p<0.001; Fig 3a). Under high N in mixture, grass biomass was ~35% greater than when 264 

grown in monoculture. The means and standard errors for the observed AGB data are shown 265 

in Table S2. 266 

 267 

Legume AGB was increased individually by P treatment (p<0.001; Fig 3a) and by an 268 

interaction between cultivation type and N treatment (p<0.05; Fig 3a). Legume biomass was 269 

~50% greater under P fertilization for both cultivations. In monoculture, N had no effect on 270 

legume AGB, but, in mixtures, legume AGB was 36% greater under low N for low P and 271 

25% greater under low N for high P. The best performing combination was legume in 272 

mixture with low N and high P. 273 

 274 

Relationships between biomass responses and biomass C:N stoichiometry 275 

The means and standard errors for the observed shoot C:N and C:P data are in Table S4. In 276 

grass, there was a significant relationship between shoot C:N and AGB (p<0.001), where 277 

shoot C:N was inversely related to biomass. The slopes differed between monoculture (r = -278 

0.65) and mixture (r = -0.72), (z-crit = 4.32, Fig. 4, Table S5). There were no significant 279 

relationships between growth and shoot C:N in legume. Similarly, shoot C:P, root C:N or C:P 280 

were not significantly correlated with growth in either species (Table S6). 281 
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Treatment influences on biomass C:N and C:P stoichiometry 282 

Grass shoot C:N was influenced by N fertilization and an effect of cultivation type, but the 283 

effects of the two were independent (p<0.001 for both, Fig 3b, Table S7). Under low N, 284 

grass C:N was 98% greater than under high N, and in monoculture was 32% higher than in 285 

mixture. Legume shoot C:N was affected by an interaction between N and P treatment 286 

(p<0.05, Fig 3b), where under low N and P, legume shoot C:N was at least 10% greater than 287 

all other treatments. 288 

 289 

For grass shoot C:P, there was an interaction between N and P treatment (p<0.001, Fig 3c), 290 

and an effect of cultivation type (p<0.05, Fig 3c). In both cultivations, grass shoot C:P was 291 

greatest under high N and low P and there was no significant effect of P under high N (p < 292 

0.05). Monocultures had 14% higher C:P ratios than mixtures. Legume shoot C:P ratios were 293 

influenced by P treatment (p<0.001, Fig 3c). Legume shoot C:P was highest in low P 294 

treatments. 295 

  296 

The means and standard errors for the observed root C:N and C:P data are presented in Table 297 

S8. Grass root C:N revealed a three-way interaction between cultivation type and N and P 298 

treatment (p<0.05; Fig 5a, Table S9). Under low N and P, grass root C:N was significantly 299 

higher in monocultures. The same relationship was present under high N and P. Legume root 300 

C:N was influenced by P treatment (p<0.05; Fig 5a), and by an interaction between 301 

cultivation type and P treatment (p<0.05, Fig 5a). Grass root C:P was affected by N fertiliser 302 

(p<0.05; Fig 5b, Table S8 & S9), being higher without N addition. Legume root C:P was 303 

influenced by both  N and P treatment (p<0.01, Fig 5b, Table S9); for both monoculture and 304 

mixture; under low N and high P legumes accumulated the greatest amount of P in roots, ~ 305 



14 
 

80% more than the low N and low P treatment. Under high N treatments, legumes 306 

accumulated an intermediate amount of P in roots, regardless of cultivation type.  307 

 308 

Homeostasis responses between species and cultivation type 309 

Shoot N:P homeostasis differed between grass and legume (α = 0.05, z-crit = 1.96, Fig 6, 310 

Table S5), with legume being more homeostatic (z-crit = 2.53). Grass shoot N:P was more 311 

homeostatic in mixture than monoculture (z-crit = 2.90). Root N:P homeostasis did not differ 312 

significantly between species (z-crit = 0.73), or within species between cultivation types 313 

(Table S5). Between roots and shoots when all species and cultivation types were combined, 314 

the trend was for roots to be more homeostatic than shoots (z-crit = 2.47).  315 
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Discussion  316 

 317 

Ecological stoichiometry is a useful tool to infer potential for nutrient limitation in 318 

mixed cultivations 319 

As anticipated, the faster-growing, more nutrient-acquisitive grass species responded 320 

positively to N addition, and when cultivated with a legume; the slower-growing, more 321 

nutrient-homeostatic legume species responded positively to P addition and growth in 322 

mixture. Moreover, the grass had a faster relative growth rate than the legume, and this effect 323 

was augmented in mixed cultivation (Ball et al., 2020). It is important to note that enhanced 324 

growth of grass under N addition in mixture may be attributed to a greater availability of N 325 

for two, versus four, grass plants and thus may not be due to facilitation. In order to 326 

determine whether facilitation occurred, studies of 15N isotopes would be required(Chalk and 327 

Ladha, 1999). Traits like growth rate and nutrient acquisitiveness are important indicators of 328 

potential primary productivity (Ansquer et al., 2008), as well as being valuable for comparing 329 

productivity between species, assuming that interspecific trait variation is greater than 330 

intraspecific variation (Siebenkäs et al., 2015). Arguably, these plant traits are highly plastic 331 

within species and thus may be considered unreliable for the purpose of predicting potential 332 

NPP, but we assumed that trait variation between grasses and legumes would be greater than 333 

that occurring within species. Therefore, examination of plant growth alongside resource 334 

allocation traits may be highly informative to determine nutrient limitation in mixed pastures.  335 

 336 

Grass growth is intrinsically related to C:N stoichiometry  337 

We observed grass shoot C:nutrient ratios decreasing in response to nutrient addition and 338 

when grown with a legume, and this pattern was correlated with increased AGB. Increased 339 
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concentrations of N in grass shoots coupled with higher AGB may be due to the high 340 

requirement for N in photosynthesis, as high-leaf N content has been linked to fast-growth 341 

rates (Freya and Peter, 2017; Wright et al., 2004). There is evidence to indicate species that 342 

are stronger competitors for a nutrient require less of it to grow (Elser et al., 2003; Sterner, 343 

2002), and while legumes have higher leaf N content than grasses, grasses are demonstrated 344 

to have a higher photosynthetic efficiency (Del Pozo et al., 2000). Although grasses were 345 

generally more flexible than legumes, when grown in mixture they had a more homeostatic 346 

shoot N:P (less reflective of substrate), which may provide evidence for facilitation (e.g. 347 

provision of N to grass) by the legume (Nyfeler et al., 2011; Wendling et al., 2017). This is 348 

however difficult to determine in this study without knowing the fate of applied fertilizers or 349 

biologically fixed N. Overall, with all other potentially limiting resources being equal (e.g. 350 

light, water), the ability of fast-growing, nutrient acquisitive species such as grasses to 351 

convert nutrients into biomass is likely to result in grass-dominated pasture systems (Haling 352 

et al., 2013). 353 

 354 

Fertilisation in mixtures may lead to progressive N limitation in grasses despite their 355 

competitiveness 356 

It is well-understood that grasses are primarily limited by N, and secondarily by P (Craine 357 

and Jackson, 2010), while legumes have higher requirements for P owing to its role in BNF 358 

(Heichel and Henjum, 1991). Therefore, P-only fertilisation in pasture mixtures may lead to 359 

progressive N limitation in grass (Agnusdei et al., 2010; Haynes, 1980), while N fertilisation 360 

can reduce the efficacy of symbiotic relationships (Mendoza et al., 2016a; Schomberg and 361 

Weaver, 1992). Growth limitation in our LNHP grass monoculture was relaxed by cultivation 362 

with legume, and shoot C:N ratios also decreased, indicating a reduced level of N limitation 363 

in mixtures. Further, the highest grass root C:N occurred in the LNLP grass monoculture, and 364 



17 
 

the lowest values in the LNLP mixture while, in the same LNLP mixture, legume root C:N 365 

concurrently increased (indicating limitation). It may be simple to suggest that cultivation 366 

with legume improved the ‘competitiveness’ of grasses, but in fact it may be that the two 367 

grass plants experienced less intraspecific competition for the soil available N than if the 368 

same amount of nutrient was available in monoculture with four grass plants given that 369 

legume plants have less demand for soil-derived N. Without the ability to trace the source and 370 

fate of nitrogen in this experiment, the conclusion that a facilitation effect occurred should be 371 

drawn with caution. There was no evidence of shoot or root P depletion in grass, and while P 372 

is generally demonstrated to favour legumes, N addition does not always favour grasses 373 

(Mendoza et al., 2016a). Here, N addition consistently favoured the grass, which increased 374 

the potential for P competition with the legume; this was further evidenced by decreased 375 

shoot C:P ratios in grasses grown in mixture. Increased grass competitiveness can occur if 376 

grass-legume mixtures are fertilized with both N and P (Mendoza et al., 2016b), possibly 377 

because N fertilization compromises BNF to a larger degree than P enhances it (Mendoza et 378 

al., 2016a). Further, P fertilisation may decrease colonisation of arbuscular mycorrhizal fungi 379 

(AMF) which can negatively affect nutrient acquisition for both species (Graham, 2000). 380 

Reduced plant-soil feedbacks in mixtures are more likely to negatively affect legumes 381 

because they rely more heavily on assimilating nutrients via symbiotic associations than 382 

nutrients supplied via mineral fertilisers (Nyfeler et al., 2009). 383 

 384 

Legume root stoichiometry indicates potential for progressive nutrient limitation 385 

under low N and P conditions 386 

Legume C:nutrient ratios in shoots and roots were not directly correlated with growth, 387 

suggest a more homeostatic nutrient acquisition strategy (Guo et al., 2017; Minden and 388 

Kleyer, 2014; Yu et al., 2011), and demonstrating the importance of considering interspecific 389 
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variation in nutrient use and allocation traits when assessing nutrient limitation. Legume 390 

shoot C:N ratios are often conserved despite fertilisation with N or P, or cultivation with 391 

grass (Bingcheng et al., 2018; Castellanos et al., 2018). However, in the present study, 392 

legume root stoichiometry did respond to N and P status, likely because legumes allocate 393 

more nutrients to roots to support nodule development, especially in nutrient-poor conditions 394 

(Vardien et al., 2016). In the control (LNLP) treatment, legume root C:N was significantly 395 

higher in mixture, while grass root C:N was lowest in the same treatment, indicating that 396 

some N depletion in the legume may have been occurring -  despite their AGB remaining 397 

unaffected. Increases to legume root C:P ratios in N and P limited mixtures suggests that over 398 

time, progressive P depletion may occur in the legume. This could be due to grasses relying 399 

more strongly on the legume N source, or, because initial grass uptake of soil available N and 400 

associated growth can increase legumes’ reliance on BNF over time, increasing their P 401 

requirement (Mendoza et al., 2016b). 402 

 403 

Conclusions - Understanding plant-trait variation from an ecological stoichiometry 404 

perspective can inform pasture nutrient dynamics 405 

Despite the usefulness of ecological stoichiometry in explaining nutrient limitation and 406 

competition potential in mixed pastures, it has been relatively underapplied in agricultural 407 

systems. Further, previous studies using ecological stoichiometry to demonstrate trait 408 

variation have not statistically tested their homeostatic coefficients making comparisons 409 

among studies challenging. This study, while limited in its broader applicability to field 410 

systems given it was undertaken in controlled, glasshouse conditions allowed detection of 411 

differences between the tested species’ growth and nutrient uptake traits and potential 412 

mechanisms of  inter- and intraspecific nutrient competition. Considering plant trait variation 413 

in the context of stoichiometric homeostasis is useful to tease out potential for nutrient 414 
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competition in mixed communities containing species with significantly different functional 415 

traits. These results must be interpreted cautiously to infer species-level dynamics; follow-up 416 

studies should include testing stoichiometric theory in agricultural field-based trials, using 417 

multiple planting densities and nutrient applications and, to deepen mechanistic 418 

understanding, include isotopically labelled fertilizers. 419 
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 606 

Figure 1: Stoichiometric theory in the experimental context. The coupling of N:P ratios between tissues and 607 

substrate ranges from no relationship (_____________) to flexibility (1:1 relationship; - - - - - - ). The degree of 608 

homeostatic regulation is often determined using the inverse of the slope (1/slope) and is reported relatively, 609 

with larger numbers indicating stricter homeostasis (Sterner, 2002). Grasses are likely more homeostatically 610 

flexible species, and legumes more homeostatically strict.  611 
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 612 

 613 

Figure 2: Experimental design indicating a) conceptual plant traits (left and right pots) and hypothesised trait 614 

response changes between monoculture and mixture (middle pot), b) variations to nutrient competition between 615 

cultivation types. 616 

  617 
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 618 

Figure 3: Model estimated marginal means (± half-Least Square Differences [5%]) for the aboveground 619 

traits a) Above ground biomass (AGB, g per half-pot) b) shoot C:N ratio c) shoot C:P ratio for grass and 620 
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legume in monocultures (mono) and mixtures (mix). Non-overlapping error bars indicate significant 621 

differences at α = 0.05. 622 

 623 

 624 

Figure 4: The relationships between shoot C:N and aboveground biomass (g) in grass. Monoculture (green) 625 

and mixture (orange). High N treatments = circles, Low N treatments = triangles.  626 

 627 
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 628 

Figure 5: Model estimated marginal means (± half-Least Square Differences [5%]) for the belowground 629 

traits a) root C:N ratio c) root C:P ratio for grass and legume in monocultures (mono) and mixtures 630 

(mix). Non-overlapping error bars indicate significant differences at α = 0.05. 631 

  632 
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 633 

Figure 6: Shoot N:P homeostasis (mass basis) between species. Slope of the relationship for legume is closer 634 

to zero (with a higher HN:P coefficient), indicating tissue N:P is more loosely coupled with substrate N:P (more 635 

homeostatic). Lower HN:P  coefficient of grass indicates that N:P homeostasis is more flexible.  636 
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