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Abstract. In adaptive management of rangelands, monitoring is the vital link that connects management
actions with on-the-ground changes. Traditional field monitoring methods can provide detailed informa-
tion for assessing the health of rangelands, but cost often limits monitoring locations to a few key areas or
random plots. Remotely sensed imagery, and drone-based imagery in particular, can observe larger areas
than field methods while retaining high enough spatial resolution to estimate many rangeland indicators
of interest. However, the geographic extent of drone imagery products is often limited to a few hectares
(for resolution ≤1 cm) due to image collection and processing constraints. Overcoming these limitations
would allow for more extensive observations and more frequent monitoring. We developed a workflow to
increase the extent and speed of acquiring, processing, and analyzing drone imagery for repeated monitor-
ing of two common indicators of interest to rangeland managers: vegetation cover and vegetation heights.
By incorporating a suite of existing technologies in drones (real-time kinematic GPS), data processing (au-
tomation with Python scripts, high performance computing), and cloud-based analysis (Google Earth
Engine), we greatly increased the efficiency of collecting, analyzing, and interpreting high volumes of
drone imagery for rangeland monitoring. End-to-end, our workflow took 30 d, while a workflow without
these innovations was estimated to require 141 d to complete. The technology around drones and image
analysis is rapidly advancing which is making high volume workflows easier to implement. Larger quanti-
ties of monitoring data will significantly improve our understanding of the impact management actions
have on land processes and ecosystem traits.

Key words: cloud computing; high performance computing; monitor; real-time kinematic (RTK); unmanned aerial
systems.
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INTRODUCTION

The rangeland manager’s challenge is the exten-
sive management across a heterogeneous land-
scape under an uncertain climate. With so much

uncertainty, rangeland managers typically opt for
an adaptive management approach, particularly
in the public domain rangelands that dominate
the western USA. Adaptive management is not
simply trial and error, but according to the

 v www.esajournals.org 1 July 2021 v Volume 12(7) v Article e03649

https://orcid.org/0000-0002-0731-3048
https://orcid.org/0000-0002-0731-3048
https://orcid.org/0000-0002-0731-3048
info:doi/10.1002/ecs2.3649
info:doi/10.1002/ecs2.3649
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.3649&domain=pdf&date_stamp=2021-07-05


Department of Interior (Williams et al. 2009:1):
“An adaptive approach involves exploring alter-
native ways to meet management objectives, pre-
dicting the outcomes of alternatives based on the
current state of knowledge, implementing one or
more of these alternatives, monitoring to learn
about the impacts of management actions, and
then using the results to update knowledge and
adjust management actions.” Unfortunately, bud-
getary and institutional constraints have long lim-
ited public land monitoring, as noted by
Fernandez-Gimenez et al. (2005). Sayre et al.
(2013:86) state that “monitoring is a critical com-
ponent of adaptive management but often weak
or missing in practice.” The premise of this paper
is that expanded monitoring is a prerequisite for
improved rangeland management.

Traditional field monitoring methods (e.g.,
transects or quadrats) can provide detailed infor-
mation for assessing the health of rangelands.
Cost, however, often limits monitoring locations
to a few key areas or random plots that observe a
small fraction of the land they are intended to
represent (West 2003, Booth and Cox 2011, Toevs
et al. 2011). Remotely sensed imagery enables a
broader view of the land and potentially a more
representative sample. Drone-based imagery, in
particular, can observe larger areas than field
methods while retaining high enough spatial res-
olution to estimate many rangeland indicators of
interest. These indicators include vegetation
cover (Hardin et al. 2007, Breckenridge et al.
2011, Laliberte and Rango 2011, Baena et al.
2017), vegetation heights (Cunliffe et al. 2016,
Jensen and Mathews 2016, Olsoy et al. 2018, Gil-
lan et al. 2020), biomass (Cunliffe et al. 2016,
Michez et al. 2019), forage utilization (Gillan
et al. 2019), and soil erosion (d’Oleire-Oltmanns
et al. 2012, Gillan et al. 2017).

At present, leveraging small drones, off-the-
shelf sensors, and structure-from-motion pho-
togrammetry (SfM-MVS) is a low-cost workflow
capable of meeting several rangeland monitoring
needs. However, challenges remain to deploy
this technology at larger operational scales. The
geographic extent of drone imagery products is
often limited to a few hectares (for spatial resolu-
tion ≤1 cm) due to image collection and process-
ing constraints. Additionally, sharing data and
reporting out monitoring results to collaborators
and stakeholders can be limited by large file sizes

and the complexity of web development. Over-
coming these limitations would move us closer
to realizing the potential value of drone-based
monitoring, which is (1) broader extent observa-
tions; (2) better measurement of some indicators;
and (3) permanent visual records. Scaling the
production and interpretation of drone imagery
will be essential to support adaptive manage-
ment on individual allotments as well as to inte-
grate with national-scale monitoring programs
such as the Bureau of Land Management’s
Assessment, Inventory, and Monitoring (AIM)
strategy and the Natural Resource Conservation
Service’s National Resource Inventory (NRI).
Our objective was to develop a workflow to

increase the extent and speed of acquiring, pro-
cessing, and analyzing drone imagery for
repeated monitoring of two common rangeland
indicators: vegetation cover and vegetation
heights. We compared the total number of work-
days to execute our innovative workflow with
the time required to complete a more conven-
tional workflow. We then demonstrate sharing
and visualization of the imagery products and
results using free or open-source web tools. We
focused on the workflow and did not directly
assess the accuracy of indicator values compared
with field methods. The workflow described here
is an initial phase of a larger research project
investigating the use of drone imagery for map-
ping ecological states (Steele et al. 2012).

METHODS

Study area
We conducted this research at Santa Rita

Experimental Range (SRER) in southern Arizona
(31°48036″ N, 110°50051″ W; Fig. 1). The range,
established in 1902, is a 21,000-ha Sonoran Desert
grassland that has been significantly invaded by
velvet mesquite (Prosopis velutina). SRER is a liv-
ing laboratory for studying dryland ecology and
sustainable livestock production. The range has
over 200 permanent long-term transects intended
to capture vegetation dynamics across multi-
decadal time spans (McClaran et al. 2002; cals.a
rizona.edu/srer). In the upper elevations of the
range (1050–1300 m mean sea level; Major Land
Resource Area 41-3), we selected a subset of 100
transects for this study. The long-term transect
locations are not randomized and thus do not
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Fig. 1. (A) This project occurred at Santa Rita Experimental Range (SRER) in southern Arizona. (B) We col-
lected aerial imagery using a DJI Phantom 4 RTK with portable base station. (C) We collected imagery at 53 flight
plots covering a total of 193 ha in May 2019 and repeated in September 2019. The drone was launched near sur-
veyed benchmarks (shown as red points).
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represent an unbiased sample of the study area.
It was not our intent to extrapolate results to
monitor all of SRER. Instead, the legacy transect
locations provided a large sample size from
which to demonstrate our workflow.

Image acquisition
We collected drone imagery covering the 100

transects in May 2019 (dry season) and repeated
the acquisition in September 2019 (monsoon sea-
son). We used a DJI Phantom 4 RTK quadcopter
specifically because it possessed a real-time kine-
matic global navigation satellite system (RTK
GNSS). RTK GNSS on drones is not a new tech-
nology, but it is now more accessible due to its
integration in off-the-shelf aircraft at reduced
cost. The Phantom 4 RTK in 2019 cost ~$8,000
and came paired with a portable GNSS base sta-
tion and tripod (D-RTK 2).

Real-time kinematic is a technology that pin-
points the 3D coordinates of the camera for each
image taken from the moving drone. It can be
accurate within a few centimeters, which is more
precise than a typical global positioning system
(GPS) receiver is. RTK GNSS is a differential cor-
rection system where the aircraft is in constant
communication with a nearby portable base sta-
tion with known coordinates (i.e., placed over a
surveyed benchmark). When an image is taken,
the location of the drone (and more specifically
the camera), as estimated from the onboard GPS,
is compared with and corrected by a signal from
the base station. The improved location coordi-
nates (i.e., latitude, longitude, elevation) are then
recorded as metadata on the exchangeable image
format (EXIF) header of each image.

Highly accurate camera locations can replace
the use of ground control points (GCPs) to scale
and georeference imagery products such as point
clouds and orthomosaics (Rehak et al. 2013,
Hugenholtz et al. 2016, Forlani et al. 2018). Real-
time kinematic allowed us to streamline two
aspects of the workflow. First, it eliminated the
need to place and survey GCPs with either a total
station or ground-based differential GPS. It can
be quite cumbersome to survey GCPs, especially
for large flight areas that may require a dozen or
more. Second, labor was eliminated in the pho-
togrammetry processing step of identifying each
GCP in every image. Algorithms in commercial
software aimed at automatically identifying

GCPs are not always successful, especially for
oblique angle views. With RTK drones, we can
collect and create high-quality image products
over large extents, while a GCP workflow practi-
cally limits us to plot scales.
Prior to this study, SRER had only one known

surveyed benchmark. We established and sur-
veyed more benchmarks using a Trimble R10 RTK
GNSS (base station and rover). We set the Trimble
base station over the original benchmark and
roved across the range setting up new benchmark
points near all of the flight transects. Because of
some transect clustering, we needed just 39 bench-
marks to cover the 100 transects (Fig. 1). The
benchmark points were existing rebar posts that
marked the ends of long-term transects. Absolute
accuracy of the surveyed benchmarks was <1 cm
horizontal and 1–1.5 cm vertical. We used the
drone portable base station (D-RTK 2) placed over
the benchmarks to facilitate RTK location correc-
tion while the drone flew and collected images.
Through our own independent assessment, we

found the RTK drone imagery products (flown at
38 m above ground level) to have horizontal
location accuracy of 2.2 cm and vertical accuracy
of 3.4 cm. This was within ~1 cm, both horizon-
tally and vertically, of an assessment conducted
by DroneDeploy (Mulakala 2019). Our repro-
ducibility assessment yielded a horizontal preci-
sion of 3 cm and vertical precision of <1 cm for
digital surface models.
For each of the two campaigns (dry and wet

seasons), we collected 53 flight plots to cover the
100 transects, a total of 193.1 ha (Fig. 1). Tran-
sects that were very near each other (<300 m)
were often captured in a single image product.
Flight plots ranged in size from 1.6 to 7.1 ha to
meet the objectives of the ecological state map-
ping project. We collected a high density of nadir
and oblique images (~200 ha−1) in order to create
very detailed and accurate point cloud models
and downstream products such as vegetation
height models (VHMs). See Table 1 for full sen-
sor and acquisition specifications and Fig. 2 for a
chart of the entire workflow.

Image product creation
Eliminating ground control points through the

use of RTK enabled us to fully automate imagery
product creation with Python scripts. What
would take an analyst a few hours to complete
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interactively (in addition to the dense point cloud
reconstruction time) was scripted in Agisoft
Metashape 1.5.2 (www.agisoft.ru). The general
SfM-MVS workflow is well documented so it will
be abbreviated here (see Snavely et al. 2008, Wes-
toby et al. 2012, Eltner et al. 2015, Smith et al.
2015). Python scripts, running from command
line, added imagery to the project, created the
sparse point cloud, filtered poor quality points,
optimized the sparse model, then generated
dense point clouds, digital surface models, digi-
tal terrain models, and orthomosaics (see Table 2
for processing parameters). When the plot com-
pleted, it seamlessly started the next plot. Image
processing reports were later spot-checked for
quality assurance.

In addition to scripting, we used high perfor-
mance computing (HPC) to quicken image pro-
duct creation for the twenty largest flight plots
(801–1600 images each). We used the University
of Arizona HPC system called Ocelote. Each
CPU node was an Intel Haswell V3 28 core pro-
cessor with 192 GB RAM. They also had Graphi-
cal Processing Units (GPU) nodes with one
Nvidia P100 GPU, 28 cores, and 256 GB RAM.
The type and number of nodes used depended

on the availability of HPC resources. We typi-
cally used between 10 and 15 nodes working in
parallel, each running an instance of Metashape,
which was designed with network processing in
mind. Each Metashape instance and license oper-
ated through container software Singularity (sin
gularity.lbl.gov). Containers enabled us to
package our computing environment, including
software installs and licenses, for easy deploy-
ment on the remote HPC nodes. We had to pur-
chase educational Metashape licenses for each
processing node (~$500 each). Our Metashape
instance master was located on a Linux server
while the worker nodes were provided by the
HPC (also Linux). For the 33 smaller plot areas
(278–800 images), we used a Windows desktop
machine (hereafter as the PC) with two Intel
Xeon CPUs (2.4 GHz; 16 logical processors each),
two Nvidia GeForce GTX 1080 video cards
(GPUs), and 256 GB RAM.
Using both the HPC and the PC simultane-

ously, it took approximately two weeks to pro-
duce the entire suite of imagery products (point
clouds.las, digital terrain models.tif, digital sur-
face models.tif, orthomosaics.tif) for one collec-
tion campaign, a total of 561 GB (Fig. 3). We then
generated VHMs for each plot area by subtract-
ing the digital terrain model from the digital sur-
face model on a cell-by-cell basis using the Raster
package in Rstudio. This was executed on the PC
and took approximately 4 h to complete. With a
simple shell command (see https://entwine.io/
quickstart.html), we converted all of the .las
point clouds to entwine point tile (EPT), a format
that facilitates browser-based viewing of large
point clouds. We uploaded all image products
and raw imagery to Cyverse Data Commons
(https://doi.org/10.25739/1w46-n223) for public
access and long-term storage.

Image product analysis
As large drone imagery datasets outpace desk-

top computing power, new tools are needed for
rapid analysis, visualization, and sharing. We
used the cloud-based analysis platform Google
Earth Engine (GEE; earthengine.google.com) to
derive additional value-added indicators from
the imagery products. Google Earth Engine is a
cloud-based geospatial analytics platform with
access to large computational resources and two
application programming interfaces (API),

Table 1. Hardware and image acquisition specifica-
tions for the data collection campaigns that occurred
in May 2019 and repeated in September 2019.

Category Specification

Aircraft DJI Phantom 4 RTK
Sensor 20 mpx; RGB;

Global Shutter
Aperture and shutter automatic
Image format Jpeg; ~8 mb; 8 bit
Autopilot DJI GS RTK
Acquisition pattern single grid at nadir;

double grid at 30° oblique
Image forward and side overlap 80%
Flying height 38 m above ground
Flying speed 3 m/s
Flying time/ha ~10 min
Ground sampling 1 cm
No. flight plots 53
Plot sizes 1.6–7.1 ha
Images/plot 278–1563
Images/ha ~200
Total raw imagery size 341 GB
Total image product size 561 GB
Total area imaged 193.1 ha
No. flying days 12
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JavaScript and Python. These APIs provide a
suite of raster analysis functions including sev-
eral classification algorithms (Gorelick et al.
2017). Though it was built primarily for broad-
scale satellite imagery, it is free and can also han-
dle very large drone datasets. A powerful feature
of GEE is the ability to easily share JavaScript
code and imagery assets between users, which
can make imagery analysis collaborative.

We uploaded all orthomosaics from the May
acquisition (n = 53) into GEE and then mosaicked
them together to form a single large super-mosaic
(19.3 billion pixels). We repeated these steps for
the May VHMs, September orthomosaics, and
September VHMs. We used red, green, and blue
bands, vegetation heights, and a calculated green

leaf algorithm (G�2�R�B=G�2þRþB; Lou-
haichi et al. 2001) as input features to thematically
classify the imagery with a machine learning clas-
sification tree algorithm (Breiman et al. 1984). We
identified four cover classes as a simple demon-
stration of the tool and workflow: herbaceous
vegetation, woody vegetation (including cactus),
bare-ground, and shadow. We used the polygon
digitizing tool within GEE to select training data
for each class. We generated seven training poly-
gons for each class, with each training polygon
containing hundreds of training pixels. For classi-
fication validation, we randomly selected 50 pix-
els for each class across the super-mosaic. These
pixels were visually interpreted and compared
with their assigned class.

Fig. 2. Workflow for data collection, processing, and sharing. Abbreviations are DSMs, digital surface models;
DTMs, digital terrain models; VHMs, vegetation height models; EPT, entwine point tile. Items with an asterisk
have available code.
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For comparison with a conventional workflow,
we classified the drone imagery using ArcGIS
Pro 2.5 (esri.com) installed on the PC. We used
the same input features and basic training proce-
dures as our GEE workflow. Instead of merging
all the orthomosaics into a super-mosaic (as we
did in GEE), we used Model Builder to automate
the sequential classification of each orthomosaic
using the Random Trees algorithm. We enabled
parallel processing to use all available CPUs for
faster classification.

Visualization and sharing
For sharing monitoring results and image pro-

duct visualization on the web, we chose two plat-
forms. We developed a public facing web-app
directly in GEE that enables users to view the
orthomosaics, VHMs, classified maps, and see
summaries of the vegetation cover and vegetation

heights (https://bit.ly/srer-drone-2019). The web-
site was developed with JavaScript and is served
through Google Cloud. Additionally, we devel-
oped a mapping application using Leaflet, an
open-source JavaScript library (https://doi.org/10.
25739/1w46-n223). Users are able to explore a
map of all the flight plots at SRER. Clicking on
individual plots invites users to view high-
resolution versions of the orthomosaics and 3D
point clouds directly in their web browser. The
orthomosaics are displayed in Eox Cog Explorer
(https://geotiffjs.github.io). The point clouds are
viewable using Potree (entwine.potree.io), a free
open-source web graphics library that renders
point clouds directly in your web browser using
the EPT format.

RESULTS AND DISCUSSION

By incorporating a suite of existing technolo-
gies in drones (RTK GNSS), data processing (au-
tomation with Python scripts, HPC), and cloud-
based analysis (Google Earth Engine), we
increased the efficiency of collecting, analyzing,
and interpreting high volumes of drone imagery
for rangeland monitoring. End-to-end, our work-
flow took 30 d, while a workflow without these
innovations was estimated to require 141 d to
complete (Table 3).
Real-time kinematic saved us considerable

time in the image collection step (Table 3). With a
GCP workflow, small plots would require 5–8
GCPs, and larger plots could require 10–20 GCPs
to achieve accuracies comparable to the RTK
results (James et al. 2017, Sanz-Ablanedo et al.
2018). A conservative estimate would be 300
GCPs for all of the flight plots, which could take
upwards of 30 workdays to install and survey.
Our RTK workflow, for comparison, required
just 3 d to survey 39 benchmarks at existing
stakes. Placing and collecting GCP targets before
and after the flights would add an additional
~30 min to each plot. This could push the total
number of flying days from 12 (with RTK) to 16.
Our RTK workflow eliminated the manual labor
of identifying GCPs during the image processing
step, which could take hours per plot. We esti-
mated a savings of 20 workdays by eliminating
manual GCP identification.
Other potentially more efficient options for

image product referencing exist. For example,

Table 2. Structure-from-motion photogrammetry pro-
cessing parameter settings using Agisoft Metashape
1.5.2.

Parameter Setting

Photo alignment Quality: medium
Geometric self-calibration: yes
Generic pre-selection: yes
Reference pre-selection: yes
Adaptive camera model fitting: yes
Key point limit: 50,000
Tie point limit: 0

Camera accuracy (m) Long: 0.010; lat:0.009; alt: 0.021
Tie point accuracy (pix) 0.3
Poor quality point
removal (using
gradual selection)

Reconstruction uncertainty: >13
Projection accuracy: >10
Reprojection error: >0.25

Camera optimization Adaptive fitting: yes
Dense point cloud Quality: high

Filtering: mild
Point filtering for DTM Select ground points by

color: r255, g220, b178
Classify ground points
Max angle: 3.0°
Max distance: 0.09 cm
Cell size: 4 m

DSM and DTM
generation

Point cloud: dense cloud
Interpolation: enabled

Orthomosaic
generation

Blending mode: mosaic
Fill holes: yes
Surface: sparse point cloud DEM
Images used: nadir only
Spatial resolution: 1 cm
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cellular tower virtual reference systems can send
correction signals to flying drones using tablets
or smartphone devices as an intermediary. These
correction networks could eliminate our need to
use portable base stations and surveyed bench-
marks. In Southern Arizona, a private company

provides the correction signal as a service, but
we decided against this option because strong
cellular reception was not reliable everywhere in
the study area. As cellular coverage expands,
even across rural rangelands, virtual reference
systems will become increasingly viable for

Fig. 3. Imagery products created from drone imagery, including (A) Dense point cloud; (B) True-color Ortho-
mosaic; (C) Digital surface model; (D) Digital terrain model; and (E) Vegetation height model.
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drone image product referencing. Alternatively,
the drone and portable base station workflow
used in this project could be executed without
surveying benchmarks. In remote areas where
high-precision surveying is not practical or the
equipment is not available, drone image prod-
ucts can be corrected to have high relative accu-
racy. In this case, the image products are
correctly scaled but may be shifted horizontally
or vertically from a true absolute position (see
Gillan et al. 2020).

The HPC was 14–24× faster than the PC at
dense point cloud reconstruction, depending on
the number of HPC nodes and the total number
of images in the Metashape project. Plots with
larger numbers of images required much greater
(non-linear increases) processing time and
showed the most speed gains through the HPC.
For example, a plot with 900 images that took
24 h to process on the PC was completed in 1.6 h
on the HPC. A 1500 image plot that took 120 h to
process on the PC was completed in 5 h on the
HPC. By using the HPC on the twenty largest
plots, we saved ~45 d of image processing. Addi-
tionally, scripting increased the speed of process-
ing the plots on the PC by processing 24 h per
day including starting jobs in the middle of the
night. This probably saved ~15 d.

In the near future, computational power will
not be a hindrance to high volume drone data.
For example, recent software updates to Agisoft
Metashape (v. 1.6.2; St. Petersburg, Russia) have
significantly increased the speed of image pro-
cessing on PC and HPCs. We can now expect the
processing time to be 3–8× faster than described
in this paper. High performance computing is
becoming increasingly available through many
universities with easier-to-use interfaces (Settlage
et al. 2019). Alternatively, image processing can
be outsourced (via the web) to commercial enti-
ties including DroneDeploy (dronedeploy.com),
Pix4D (pix4d.com), and Delair (delair.aero).

Classifying all drone orthomosaics in GEE was
essentially instant. Near-instant feedback
allowed us to quickly assess classification results
and adjust training data for higher accuracy (see
Appendix S1: Tables S1 and S2 for confusion
matrices). In comparison, it took ~3 h to classify
53 orthomosaics using ArcGIS Pro on the PC.
Google Earth Engine worked well for classify-

ing the imagery and is currently the most mature
tool for quickly analyzing large quantities of
drone imagery. However, limitations of the plat-
form include data storage limits and
upload/download speeds to and from GEE.
Additionally, it has limited functionality to con-
duct every analysis we might want for rangeland
monitoring (e.g., 3D point cloud analysis; land-
scape metrics). A greater variety of analysis
options exist in ArcGIS Pro, but they may be less
accessible to users due to cost. Fortunately, there
is an enormous and growing variety of image
analysis tools available across open platforms
such as R, Python, and QGIS. Many have the
capability to maximize local computing
resources and distribute processing tasks to HPC
clusters (see parallel processing options for R
[https://cran.r-project.org/web/views/HighPerf
ormanceComputing.html] and Python [https://
wiki.python.org/moin/ParallelProcessing]). The
availability of high throughput analysis tools will
soon not be a constraint. Instead, the challenge
will be to identify workflow “best practices” for
estimating a suite of rangeland indicators and
selecting the best mix of tools that are cost-
effective and repeatable (Gillan et al. 2020).
Leaflet paired with Eox COG Explorer and

Potree provided an easy-to-build web map for
visualizing the point cloud and orthomosaic
products (Fig. 4; https://doi.org/10.25739/1w46-
n223). The Potree viewer has basic analysis tools
(distance, volume, profile). The GEE app enabled
us to share the classified maps, VHMs, and
graphed summaries of vegetation cover and

Table 3. Number of workdays to collect, process, and analyze drone imagery collected in May 2019.

Workflow
Survey GCPs or
benchmarks

Collect
imagery Identify GCPs

Image
processing

Orthomosaic
classification Total

Conventional (estimate) 30 16 20 75 0.35 141.35
Innovative 3 12 0 15 0 30

 v www.esajournals.org 9 July 2021 v Volume 12(7) v Article e03649

METHODS, TOOLS, AND TECHNOLOGIES GILLAN ETAL.

http://dronedeploy.com
http://pix4d.com
http://delair.aero
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://wiki.python.org/moin/ParallelProcessing
https://wiki.python.org/moin/ParallelProcessing
https://doi.org/10.25739/1w46-n223
https://doi.org/10.25739/1w46-n223


Fig. 4. (A) We created an open-source Leaflet map to enable collaborators to view imagery products through a
web browser (https://doi.org/10.25739/1w46-n223). (B) High-resolution orthomosaics can be viewed with Eox
COG Explorer. (C) Point clouds can be viewed with a Potree viewer.
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heights (Fig. 5; https://bit.ly/srer-drone-2019).
Both of these sharing options eliminated the need
for collaborators to download large files or install
3rd party software on their local machines.

Implications
High volume drone imagery will enable us to

move beyond proofs of concept and other small-
scale research demonstrations to data quantities

Fig. 5. We developed Google Earth Engine web-app showing classified maps, vegetation height models, and
indicator summaries for vegetation cover and heights. https://bit.ly/srer-drone-2019.

 v www.esajournals.org 11 July 2021 v Volume 12(7) v Article e03649

METHODS, TOOLS, AND TECHNOLOGIES GILLAN ETAL.

https://bit.ly/srer-drone-2019
https://bit.ly/srer-drone-2019


that significantly improve our understanding of
land processes. In an adaptive management
framework, this means expanding monitoring
beyond the confines of plots and transects to pro-
vide a more representative sample of vegetation
characteristics across rangelands. A more repre-
sentative sample could increase the statistical
power to detect indicator change by either
increasing the sample size (i.e., collecting ima-
gery at more locations than transects) or by
expanding the observational area of each transect
to reduce variance between samples (Sundt
2002). Our drone imagery covered 193 ha during
the dry and wet seasons each representing 1.3%
of MLRA 41-3 at SRER. For comparison, the 100
permanent field transects (with length of 30.48 m
and width of 0.3 m) observes a total of 0.09 ha
which is only 0.00006% of MLRA 41-3 at SRER.

The economies of scale provided by high vol-
ume drone imagery could be an appealing dataset
to supplement field data collected for national-
scale monitoring programs such as BLM AIM and
NRI (Gillan et al. 2020). Though it has limited abil-
ity to distinguish grass and forb species, drone
imagery can expand generalized estimates of veg-
etation cover, provide a more robust measure of
vegetation heights, and enable the development
of landscape metrics not measurable from the
ground. Additionally, drone imagery estimates of
vegetation cover can be upscaled to satellite ima-
gery to cover vast landscapes (Elkind et al. 2019).

All of the technologies described in this paper
are available to most range practitioners in the
USA. Though there are some current barriers
related to cost (drone equipment and software
licenses), cyber infrastructure, and technical exper-
tise, these barriers are dissolving. Drone technol-
ogy and image processing software are advancing
and becoming cheaper. High performance comput-
ing, though still housed primarily at universities
and government agencies, is becoming more com-
mon and available to outside users (via web por-
tals). Remote sensing specialists or data scientists
should carry out our innovative workflow but the
results and imagery products can easily be shared
with less technical collaborators and stakeholders.

CONCLUSION

We demonstrated a workflow to increase the
efficiency of collecting, processing, and analyzing

large volumes of drone imagery for rangeland
monitoring applications. Our innovative work-
flow saved an estimated 111 workdays com-
pared with a conventional approach. These cost
savings make more practical a rich stream of
monitoring data from which to link ecosystem
traits with management actions. The technologi-
cal barriers surrounding the use of drone ima-
gery are quickly dissolving which will foster
wider adoption by those who study and manage
public rangelands.
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