

An Explainable and Efficient Deep Learning
Framework for Video Anomaly Detection

Chongke Wu1*, Sicong Shao1, Cihan Tunc2, Pratik

Satam1, and Salim Hariri1

1NSF Center for Cloud and Autonomic Computing, The

University of Arizona, Tucson, Arizona, USA
2Department of Computer Science & Engineering, The

University of North Texas, Denton, Texas, USA

*Corresponding author: chongkewu@email.arizona.edu
Contributing authors: sicongshao@email.arizona.edu,
cihan.tunc@unt.edu, pratiksatam@email.arizona.edu,

hariri@ece.arizona.edu

Abstract

Deep learning-based video anomaly detection methods have drawn
significant attention in the past few years due to their superior
performance. However, almost all the leading methods for video
anomaly detection rely on large-scale training datasets with long
training times. As a result, many real-world video analysis tasks are
still not applicable for fast deployment. On the other hand, the
leading methods cannot provide interpretability due to the
uninterpretable feature representations hiding the decision-making
process when anomaly detection models are considered as a black
box. However, the interpretability for anomaly detection is crucial
since the corresponding response to the anomalies in the video is
determined by their severity and nature. To tackle these problems,
this paper proposes an efficient deep learning framework for video
anomaly detection and provides explanations. The proposed
framework uses pre-trained deep models to extract high-level
concept and context features for training denoising autoencoder

(DAE), requiring little training time (i.e., within 10 seconds on
UCSD Pedestrian datasets) while achieving comparable detection
performance to the leading methods. Furthermore, this framework
presents the first video anomaly detection use of combing
autoencoder and SHapley Additive exPlanations (SHAP) for model
interpretability. The framework can explain each anomaly detection
result in surveillance videos. In the experiments, we evaluate the
proposed framework's effectiveness and efficiency while also
explaining anomalies behind the autoencoder’s prediction. On the
USCD Pedestrian datasets, the DAE achieved 85.9% AUC with a
training time of 5 seconds on the USCD Ped1 and 92.4% AUC with
a training time of 2.9 seconds on the UCSD Ped2.

Keywords: Security, video surveillance, anomaly video analysis,
abnormal event detection, deep features, context mining,
interpretability

1 Introduction
Security cameras are becoming widely used and powered with
networking technologies, improved surveillance capabilities, and
advancements in storage systems. It has been observed that the
installation of surveillance cameras significantly reduces the crime rate.
For example, the total crime in downtown Baltimore (Maryland, USA)
reduced about a quarter in four months after installing the surveillance
camera. Similarly, violent crime declined about 20% in Chicago (USA)
[1]. Besides the public security field, surveillance cameras are also
applied on business operations, health care, smart home applications,
etc. The industry research HIS Markit reported that there existed
approximately 770 million security cameras worldwide in 2019, and
the total number of security cameras will increase to 1 billion before
2022 [54]. However, storing and manually evaluating a large amount
of data from many surveillance cameras are no longer practical, which
started the discussions and studies in anomaly detection in surveillance.
Moreover, the detection using opaque models, such as the deep
learning models, lacks explanations of how the model decides the
results. Therefore, the interpretability of anomaly detection in the
video has become a main challenge in the surveillance system. In this
paper, the anomaly is defined as the abnormal behavior and event in
the surveillance videos. The objective of explainable video anomaly
detection is to autonomously detect an anomalous event in the video
recording with supportive explanations (i.e., not only giving the result

of if an anomaly occurs but also explaining why it is considered as an
anomaly – current studies mainly focus on just detection without
sufficient explanation).

 Powered by the huge performance improvement of deep learning
methods, many autoencoder-based video anomaly detection
approaches have been studied in the last few years. For example,
Appearance and Motion DeepNet (AMDN) [17] trained deep
convolutional neural networks for processing the input raw RGB (Red,
Green, Blue) image and the optical flow map. Two-Stream Variational
AutoEncoder (VAE) [16] improves the detection accuracy by adapting
the VAE. (Spatio-Temporal Adversarial Network) STAN [19] detects
the anomaly by using the Generative Adversarial Network (GAN). For
explaining the anomaly detection results, currently, many methods rely
on highlighting the suspicious region without further description. For
instance, the University of California San Diego (UCSD) Ped1 and
Ped2 datasets provide pixel-level anomaly localization as the dataset.
Some methods [12, 16, 17, 37, 38] not only show the frame-level
anomaly detection but also shows the pixel-level anomaly detection
result.

However, current approaches have faced a number of challenges.
First, many deep-learning-based approaches need to train models
using large-scale datasets [7] and require large model complexity [11].
For example, STAN has 17 convolutional layers [19]. However, they
pay little attention to model complexity reduction. Hence, these
methods may lead to high overhead, long training time, and therefore
impede the development and slow the deployment. The high model
complexity also requires careful parameter tuning [8, 9]. Second,
many real-world video anomaly detection tasks are still suffering from
insufficient training data (i.e., anomaly detection requires enough
training data to represent regular patterns). As a result, it is hard to
reach the claimed performance on the benchmark dataset for the
complex models when applying them in many real tasks. Third, the
deep learning model is mostly treated as a “black-box” whose
decision-making process is hard to interpret. In video anomaly
detection, this problem is reflected in the insufficient explanation for
the anomaly detection results. The pixel-level anomaly detection can
be used to interpret the anomalies. Yet, the detection performance is
much lower when using them to explain the anomaly detection result
than the frame-level results. For example, AMDN [17] achieves a
frame-level AUC (area under the receiver operating characteristic
curve) 92.1% on the Ped 1 dataset, but it only has pixel-level AUC

67.2%; Lu et al. [38] achieve frame-level AUC 91.8% and pixel-level
AUC 63.8% on Ped1 dataset. Also, pixel-level anomalies usually
propose higher computation workload requirements to the hardware
because of the patch-based testing scheme. In Two-Stream VAE [16],
the running time of pixel-level anomaly detection is 50~100 times
slower than the frame-level. Furthermore, the anomaly localization
only reflects the abnormal spatial relationship in the same image. The
localization is less explainable when presenting the temporal
anomalies such as a sequence of unusual activities, the combination of
objects, and the crowd activities, where the contextual features could
be more explainable with the self-explaining descriptive feature.
Therefore, it is imperative to provide a deep learning framework with
a lightweight model, workable with a small training dataset, and
explainable for the anomaly detection results.

Inspired by the recent studies showing that SHapely Additive
exPlanations (SHAP) are capable of interpreting model prediction [47],
we propose a novel deep learning framework that uses high-level
features from existing pre-trained CNN models to train the anomaly
detection model and combine SHAP and autoencoder to explain the
anomaly alerts. This leads to a significant complexity reduction in our
anomaly detection model without losing its model interpretability.
Further, we integrate contextual features in our video analysis by
exploring the inter-object relationship and further improving detection
accuracy and performance. In video analysis, context is used to define
the semantics (meaning) of the observed motion and interactions
between humans and objects [2]. Hence, we combine the features
derived from pre-trained Convolutional Neural Networks (CNNs)
(such as object position category in background segmentation, multi-
object tracking, and object classification) to obtain the context
information. To our knowledge, this is the first work using SHAP of
autoencoders to explain video anomaly alerts. Our contextual mining
provides high-level features as the autoencoder input for SHAP
interpretation. The integration of SHAP to video anomaly detection
provides a more transparent and interpretable decision-making process
for video anomaly detection.

The remainder of this paper is organized as follows. In Section II,
we discuss the related research on exploring contextual information in
video anomaly detection and interpreting video anomaly detection
results. In Section III, we describe our anomaly surveillance system
architecture, the anomaly detection model, as well as the video
anomaly explanation approach. In Section IV, we present the

experimental results of our video anomaly analysis. Finally, we
conclude this paper in Section V.

2 Related work
In this section, we first introduce the current research and application
of video anomaly detection. Then, we discuss the interpretability of
video anomaly detection and the approach of deep learning model
interpretation. Finally, we show the related fundamental work to
generate meaningful contextual features.

Traditional video anomaly detection methods proposed non-deep
learning models using low-level features, such as probability model
with dynamic textures [12] or optical flow [13], Social Force model
with grid particle on image [14], and Gaussian Mixture model with
compact feature set [15]. Here optical flow is the motion of objects
between consecutive frames and the grid particle is the anchor point
for tracking the motion. These features are hard to explain since they
do not contain the descriptive information of anomalous events. In
recent years, deep learning-based approaches have gained popularity
due to their excellent performance on model accuracy. The deep
learning methods introduce CNNs for feature extraction and
autoencoder for anomaly detection [16, 17, 18]. Based on the CNN
and autoencoder, applying Generative Adversary nets (GAN) achieves
state-of-art performance with 97.4% AUC for the UCSD Ped1 dataset
[19, 20], while GAN is notoriously computationally intensive. These
deep learning methods focus more on detection accuracy but suffer
from the insufficient explanation of the model decision due to the
“black-box” nature of the deep learning network. They only provide
the suspicious region of the anomaly but missing further explanation.
In real-world tasks, such as city surveillance, companies like Hikvision
embedded anomaly detection capabilities in their video surveillance
products, providing capabilities to detect abnormal behavior like
sudden running or wandering [64]. Their solution also includes face
recognition for blacklist alarms (e.g., trigger alert when detecting a
fugitive face). However, they use simple anomaly detection logic and
cannot handle complex scenarios such that if an event is abnormal but
has not been listed on the blacklist, then this event will never be alerted.
The interpretation of the detected event is only decided by the user-
defined blacklist [64].

In video anomaly explanation, most deep-learning methods explain
anomalies by displaying error maps (i.e., the distance map between

reconstrued input and original input). Zhao et al. [43] display the
reconstruction error map while highlighting the anomaly regions with
rectangles. Nguyen et al. [6] show the error map of optical flow and
the anomalous regions has deeper color. Xu et al. [17] use both image
and optical flow maps as the input, then compute the error map by
pixel-level fusing. Instead of using the error map. Some other methods
use explainable features to explain video anomalies. Mahadevan et al.
[12] locate the anomaly regions with the discriminant saliency criteria
[44] and provides the spatial abnormality map by computing the
saliency at each location. Zhu et al. [2] propose a structural model to
learn the patterns of the inter-relationship between activity classes.
Scene graph consists of object nodes and the relationship between
nodes and has better interpretability and reasoning capability. Chen et
al. [45] propose an interpretable video anomaly detection approach by
using scene graphs as input. The anomaly detection approach in [45]
is also more transparent than the deep learning model since it consists
of multiclass SVM and multinominal Naïve Bayes. Those methods
provide interpretability but performance is relatively low since there is
not a methodology to adapt the deep learning method while
maintaining interpretability. Our approach achieves a comparable
performance of the state-of-the-art method while keeping the
interpretability by integrating SHAP.

SHAP is a unified explanation method to interpret model prediction
and it has been widely used on model-agnostic prediction
interpretation, especially on the deep learning model interpretation.
Bulathwela et al. use SHAP to explain the model prediction of video
lecture engagement [39]. Zhou et al. explain the model prediction of
factors affecting injury severity by using SHAP [40]. Kristjanpoller et
al. interpret the model prediction of evaluating the quarantine policy
for COVID-19 by using SHAP plots [41]. The method proposed by
Antwarg et al. [42] is the first work to use SHAP to explain
autoencoder for anomaly detection. The method attributes the
anomaly detection to the input feature SHAP value. It verifies the
effectiveness of the method with four datasets and expert evaluation.

SHAP for autoencoder proposed by Antwarg et al. [42] provides us
a perspective to convert existed deep video anomaly detection
algorithm for improving the interpretability. Since SHAP for
autoencoder explains the model output by spotlighting the important
input features, the understandable features should be considered first.
The input features can be classified as low-level features and high-

level features [2] by the content of semantic information. For example,
the RGB value and Optical flow are low-level features since the user
cannot get meaningful information from those values; as a comparison,
the object label and annotation are the high-level features. The high-
level features provide semantically meaningful activities, though they
could have a higher error rate in classification tasks. With the
development of the convolutional neural net (CNN)-based computer
vision applications, the accuracy of image classification, object
detection, and image tracking has achieved better performance
compared to the traditional methods like the post-processing method
proposed by Gao et al [3, 4]. This fact inspires many researchers to use
CNNs to extract features [5, 6]. Using high-level features for anomaly
detection can reduce model complexity and improve anomaly alert
interpretability [45]. Contextual features are semantically meaningful
features that can be mined from other high-level features. It captures
relationships among the basic event such as the semantic relationships
between action, activities, human pose, social role, etc. Wang and Ji
propose event recognition methods by contextual features [10]. Zhang
et al. use the semantic context information, such as motion pattern and
path, to improve abnormal event detection in traffic scenes where an
abnormal event is defined as vehicles breaking the traffic rules by
considering the trajectories [21]. Pasini et al. present a semantic
anomaly detection method to detect anomalies and provides an
interpretable explanation [22]. They construct the semantic vector
from the textual labels obtained from the pre-trained image labeling
software.

To reduce the training workload and improve the model
performance, many deep learning approaches integrate the pre-trained
models. Computer vision tasks with meaningful output (object
detection, object tracking, background segmentation, etc) are wildly
using pre-trained models. For object detection, He et al introduced
ResNet [27] in 2015 and the model was extremely successful by
winning the first price of several object detection tasks including
ILSCRC 2015 (with 3.57 % top-5 error rate) and COCO 2015 (with
48.4% mean average precision). It has been wildly used as the pre-
trained model and can be found in the machine learning platform
TensorFlow and Pytorch. For background segmentation, Kirilov et al.
propose Panoptic Feature Pyramid Networks (PFPN) [23] to solve the
panoptic segmentation task (unifying instance segmentation and
semantic segmentation). This model and its variant show great
segmentation performance and have been used as the pre-trained

models in tomography diagnose [55], real-time object detection [56],
person detection [57], etc. Although ResNet and PFPN are popular
when used as the pre-trained models, to our best knowledge, our work
is the first video anomaly detection approach that uses them directly as
pre-trained models without further fine-tune training process.

3 PROPOSED METHOD
3.1 Framework Design and Proposed Method
Most of the existing deep learning studies for video anomaly detection
require a large volume of normal video stream training data, resulting
in high model complexity and a long training time [8]. Also, the
explanation process for detection is difficult since there are no
semantic features that can be easily interpreted. Most of them only
provide the abnormal event localization, which cannot reflect the
temporal causal or the unusual human-object relationship [6]. To
address these limitations, we propose an explainable and efficient deep
learning framework for video anomaly detection. This framework uses
pre-trained models with meaningful outputs for visualization and
interpretability and captures the required features related to abnormal
events. Our proposed architecture is shown in Fig. 1, where our system
is divided into three layers: Hardware, processing, and application
layers.

We consider the hardware layer as a set of distributed cameras and
related drivers, which will transfer raw video streams into the system.
The camera selection, position, and orientation decide the overall
monitoring area and provide the associated coordination of the region
of interest. For example, if the user needs to monitor the car plates,
then the high-resolution camera will be selected. However, these
problems of camera orientation and focus areas are not the main focus
of this work. The camera operation-related tasks like camera hand-off
and data fusion are handled in the processing layer. In the processing
layer, the raw video data are preprocessed and made appropriate
representation based on the deep learning model selection, further
required by the surveillance task. The surveillance task in the
processing layer may vary depending on the application layer's
explanation requirement and the task definition. For example, the main

focus in a supermarket is preventing shoplifting, whereas, in a train
station, we may use multi-object tracking to provide crowd statistics.
Then, the outputs of the selected surveillance tasks are combined and
sent to the application layer for anomaly detection and explanation.
The application layer provides the user interface of the surveillance
system where it includes the functionalities like video visualization
and camera control. The user can provide more information for the
anomaly behavior based on the defined rules. For instance, in the
traffic system, there must be rules that govern the movement of
vehicles; for example, when the traffic light color is red, the car should
stop. The rules can be implemented as relationships between traffic
light colors and vehicles in the object classification task [67]. The high-
level features will be fed into the anomaly detection module to
generate alerts to the user whenever an abnormal event is detected.
Furthermore, the sensor tasking module in the application layer
receives commands from the user to control the behavior of the
cameras, like turning and zooming in/out to receive more detailed
information on the region of interest.

To illustrate the deep learning framework for video anomaly
detection shown in Fig. 1, we select the outdoor surveillance task.
Compared to the indoor surveillance task [59], the outdoor
surveillance task is more complex, with more objects to be analyzed,
a larger region to monitor, and more variations in the background
(parking lot, avenue, playground, etc.). To address the outdoor
surveillance task with the proposed deep learning framework, we
present a novel explainable video anomaly detection method
(summarized in Fig. 2). This method processes the contextual features

Fig. 1 Design of the proposed deep learning framework for video anomaly
detection. The hardware layer provides the raw data stream to the middle layer. The
processing layer embedded with pretrained Deep Learning model generates the
explainable high-level features to the application layer. In the application layer, the
high-level features are visualized. It generates the contextual features based on the
definition of the anomaly behavior.

Application layer

Visualization
and Explanation

Anomaly
detection

Hardware layer

Sensor Selection and Tasking

Processing layer

Model Selection

Context
Mining

Ex
pl

ai
na

bl
e

H
ig

h-
le

ve
l f

ea
tu

re
s

Anomalies Definition

Event Alert

Anomalies Explanation

Task definition

Data preprocessing
and representation

Point

Spatial Map

Trajectory

Time series

…

Deep Learning
Model Selection

CNN

RNN

LSTM

Transformer

…

Surveillance Task

Object
Detection

Object
Tracking

Face
Detection

Background
Segmentation

…

(such as human location and background categories relationship)
directly from the pre-trained model outputs. For our case of crowd
surveillance, we choose pre-trained models for background
segmentation, object tracking, and object classification. By learning
features from pre-trained model output, we focus our research effort
on only developing the anomaly detection method to study the
individual frames, reducing the complexity of the anomaly detection
model. We also propose an algorithm to explain the video anomaly
detection results of abnormal behaviors and events by integrating
SHAP for autoencoder [42]: 1) The proper representation of anomalies
in videos. For example, a keyframe containing the most anomalous
activity information can be selected as the anomaly representation. 2)
Explanation of the decision-making of the anomaly detection. To
address these problems, our anomaly explanation utilizes video
summarization and generates interpretations of the abnormal
keyframes with SHAP for autoencoder.

3.2 Video Anomaly Detection
We denote a video as Θ = {𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛}, where 𝜃𝜃𝑖𝑖 represents the
𝑖𝑖𝑡𝑡ℎ video frame and 𝑖𝑖 = 1, 2, … ,𝑛𝑛. The problem of frame-level video
anomaly detection can be defined as follows.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖 = ℱ(𝜃𝜃𝑖𝑖) (1)

where ℱ denotes the prediction function and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖 represents the
prediction score of the video frame. Conventional deep learning-based
video anomaly detection methods get ℱ through learning end-to-end
deep model [8]. More specifically, the models use the input video
frame to directly get 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖. However, deep model training in an end-
to-end fashion lacks interpretability and needs a long training time. To
attain accurate, explainable, and efficient results, we extract high-level
features from pre-trained models when designing ℱ. Generally, video
analysis tasks need to perform image segment, object identification,
and tracking. Besides, context mining is often used for video analysis.
With this kind of data, we can predict and interpret a video frame
comprehensively. Hence, we design a function ℱ that firstly uses pre-
trained CNN models to obtain the high-level concept and context
features based on background segmentation, object classification,
multi-object tracking, and semantic context information, and then,
uses DAE with temporal denoising process to predict the video frame
base on these features. The features are also used by DAE to explain
anomalies through SHAP and video summary. According to the above

consideration, an explainable and efficient deep learning framework is
proposed. The architecture of the proposed framework for video
anomaly detection is shown in Fig. 2.

3.2.1 Feature Extraction
There exist many possible causes of abnormal events, such as
abnormal object appearance, abnormal motion, and abnormal object
location. We use pre-trained models such as background segmentation,
object classification, and multi-object tracking to extract the anomalies
in a video. To build the background segmentation feature, we consider
the Panoptic Feature Pyramid Network (PFPN) [23]. As discussed in
Section II, PFPN provides instance segmentation and background
segmentation and has proved to be a stable solution by being wildly
used as a pre-trained model on many other fields [55, 56, 57]. We run
this CNN-based model on the Detectron2 platform (The Facebook AI
Research software system) [24]. It provides state-of-art detection and
segmentation algorithms and a large set of baseline results and pre-
trained models. PFPN solves the unified task of instance segmentation
and semantic segmentation (for stuff classes: amorphous background
regions, e.g., rivers, wall). The model is pre-trained on the COCO
train2017 dataset and validated on COCO val2017 [25]. COCO
dataset is a large-scale object detection dataset and proving over
330,000 images and 1.5 million object instances. The large volume of
training data provides better accuracy and generalization for the pre-
trained model. This model has an inference speed of 0.067 seconds per
image and masks average precision (AP) of 38.5 on COCO val2017
with GPU V100. The speed allows us to have near-real-time (up to 15
FPS) visualization of the background segmentation results. We only

Fig. 1 The architecture of the proposed explainable anomaly detection framework.
In the upper part, the CNN pretrained models generate the high-level features from
the video stream and feed it into the denoising autoencoder with anomaly temporal
denoising. In the lower part, the video anomaly explanation consists of keyframe
selection, SHAP for auto-encoder, and the sorted explainable features.

𝑳𝑳𝑀𝑀×𝑵 = 𝐹𝐹𝑏𝑏𝑔𝑔 (𝑇𝑇)

𝒑𝒑𝑖𝑖 , 𝒔𝒔𝑖𝑖 ,𝒗𝒗𝑖𝑖 = 𝐹𝐹𝑆𝑆𝑡𝑡 (𝑖𝑖,𝑇𝑇)

𝑪𝑪𝐾𝐾 = 𝐹𝐹𝑆𝑆𝑑 (𝑇𝑇)

High-Level Features

𝑅𝑅𝑠𝑠𝑝𝑝𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑙 𝐹𝐹𝑏𝑏𝑔𝑔 ,𝐹𝐹𝑆𝑆𝑡𝑡
𝑅𝑅𝑡𝑡𝑒𝑒𝑎𝑎𝑝𝑝𝑆𝑆𝑆𝑆𝑎𝑎𝑙 𝐹𝐹𝑆𝑆𝑡𝑡
𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆𝑢𝑝𝑝 𝐹𝐹𝑆𝑆𝑡𝑡

Contextual Features

Pre-trained Models Denoising
Auto-Encoder

Anomaly
Alert

(a) PFPN

(b) JDE

(c) R101

Anomaly temporal denoising
Original Video

Sorted Explainable FeaturesFrame Sampling Clustering

Abnormal Keyframe selection

Select Abnormal Frame
SHAP for Auto-Encoder

Model
+.1

+.1

-0.3

+0.4

Explana�on

select semantic segmentation for background segmentation. The
output can be written as

𝑳𝑳𝑀𝑀𝑏𝑏×𝑁𝑁𝑏𝑏×𝐶𝐶𝑏𝑏 = 𝐹𝐹𝑏𝑏𝑏𝑏(𝑇𝑇) (2)

where for the input image at time 𝑇𝑇, the PFPN model 𝐹𝐹𝑏𝑏𝑏𝑏 outputs a
matrix with 𝐶𝐶𝑏𝑏 classified background labels as well as height 𝑀𝑀𝑏𝑏 and
width 𝑁𝑁𝑏𝑏 information. Here we note that this model can be trained on
different datasets to improve the segmentation result. For the video
anomaly detection task, the background segmentation will only update
their results when the vision content changes (e.g., the changing of the
ambient light, turning the camera direction, switching the camera). We
did not directly utilize the matrix output of background segmentation
into the anomaly detection model. Instead, we perform a contextual
feature extraction method to process the output and then convert it to
a scalar output.

Considering most outdoor activities involving pedestrian
movement, we use the Joint Detection and Embedding (JDE) model
[26] to get the pedestrian detection and tracking feature. JDE is a
variant of real-time object detection YOLOv3 (you only look once,
version 3) [58] for real-time multi-object tracking. The JDE model is
pre-trained on the MOT-16 training set. The model inference speed is
around 38 FPS with the input frame size 576 × 320 pixels on an
Nvidia Titan Xp GPU. The output is person tracking results, which can
be written as:

𝒑𝒑𝑐𝑐̂, 𝒔𝒔𝑐𝑐̂,𝒗𝒗𝑐𝑐̂ = 𝐹𝐹𝑜𝑜𝑡𝑡(�̂�𝑆,𝑇𝑇) (3)

where 𝒑𝒑𝑐𝑐̂, 𝒔𝒔𝑐𝑐̂,𝒗𝒗𝑐𝑐̂ represent the box coordinates, size (width and
height), and the velocity of the person with ID �̂�𝑆. Given an image at
time 𝑇𝑇 as the input of the multiple objects tracking model 𝐹𝐹𝑜𝑜𝑡𝑡, we will
obtain the above outputs for each person. The tracking feature could
provide statistical information for each person (trajectories and
average speed). We will use these features as the crowd activity
analysis in the context mining module.

For the appearance feature, we consider the model ResNet-101
(R101) [27] implemented on the Detectron2 platform. As we
mentioned in Section II, ResNet is one of the most successful object
detection architectures and has been integrated into many official
machine learning platforms, such as TensorFlow and Pytorch. We
choose ResNet as the object detection backbone of our deep learning
framework by considering its extensive usage and outstanding

performance. It has been pre-trained on the COCO train2017 dataset.
The output includes 80 object categories. The R101 model is a CNN-
based model that is 101 layers deep. The pre-trained model has an
inference speed of 0.051 seconds per image and the box AP of 42.0 on
COCO val2017 with GPU V100. The output of the R101 model is
written as

𝑪𝑪𝐾𝐾𝑜𝑜𝑜𝑜 = 𝐹𝐹𝑜𝑜𝑜𝑜(𝑇𝑇) (4)

where the output is a vector with a length equal to the output categories
number 𝐾𝐾𝑜𝑜𝑜𝑜. When given the frame input at time 𝑇𝑇, the R101 model
𝐹𝐹𝑜𝑜𝑜𝑜(𝑇𝑇) will produce category outputs as a vector. We directly use this
vector as an input for the anomaly detection model. We note here the
object classification model is crucial to the performance of the video
anomaly detection since many abnormal frames are followed by the
appearance of the unseen object. We choose the COCO dataset to
make it the baseline for the context mining comparison.

3.2.2 Context Mining
Even though pre-trained models provide useful features, we still need
inter-relationship information between objects. Hence, we process
contextual features to improve anomaly detection performance. For
that, we classified the extracted contexts as spatial context, temporal
context, and group context. The contextual features can reflect prior
knowledge from the user who evaluates the pre-trained models'
visualization results. If the visualization shows the pre-trained model
result is wrong, then the related erroneous context should be adjusted
or removed. For example, the user can add a weapon appearance into
a blacklist to trigger an alert when a weapon shows up in the video
frame. By allowing users to add self-defined contextual features, the
searching space for anomaly events can be significantly reduced.

Features that capture the relative spatial relationships among
persons or objects of interest are defined as spatial context. We denote
the mining spatial relationship process between different pre-trained
models result as 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠. The spatial relationship including the intra-
spatial relationship and the inter-spatial relationship. The intra-spatial
relationship represents the inclusion result 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝐶𝐶 of regional
classifications 𝑳𝑳 with height 𝑀𝑀𝑏𝑏 and width 𝑁𝑁𝑏𝑏 and the 𝑛𝑛𝑜𝑜𝑡𝑡 object
detection/tracking results with coordinates 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛𝑜𝑜𝑡𝑡 . The
inter-spatial relationship consists of the adjacent object combinations.
One type of spatial anomaly is a certain type of object that is not

allowed to appear in a certain type of region. For instance, “trucks are
not allowed to drive on the sidewalk”. In our case, we use the
following formula to represent the spatial relationship between object
tracking and background segmentation:

𝑶𝑶𝐶𝐶𝑏𝑏⋅𝐶𝐶𝑡𝑡 = 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠�𝐹𝐹𝑏𝑏𝑏𝑏,𝐹𝐹𝑜𝑜𝑡𝑡� (5)

where the output represents the regional relationship between 𝐶𝐶𝑏𝑏 types
region and 𝐶𝐶𝑡𝑡 types of tracking objects. The 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠�𝐹𝐹𝑏𝑏𝑏𝑏,𝐹𝐹𝑜𝑜𝑡𝑡�
denotes considering the intra-spatial relationship 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 between
models 𝐹𝐹𝑏𝑏𝑏𝑏 and 𝐹𝐹𝑜𝑜𝑡𝑡. Some approaches learned trajectories in training
data to determine feasible areas, which means that regions without
moving objects will be treated as prohibited regions. For example,
Zhao et al. predict car trajectory and label the moving car on the Traffic
dataset [43]. This kind of mapping has two major shortages. Firstly, it
needs to collect enough trajectories in training data to cover the
feasible region, which is hard, especially when the monitoring area is
large. Secondly, the location will degenerate when the camera position
or orientation is adjusted. By using the spatial relationship between
tracking objects and the background type, the above shortages will be
overcome since we do not consider the absolute coordinates but the
categorized relationship.

Features that capture the relative temporal relationships among the
temporal attribute of persons or objects of interest are defined as
temporal context. We denote the mining temporal relationship process
among the pre-trained models result with timestamps as 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑜𝑜𝑡𝑡𝑠𝑠𝑠𝑠.
The temporal context is widely used in the activity recognition task
since the current action could imply the next action. For example, “get
off the car” is likely to have “closed-door” behavior followed. In our
case, we could consider the speed history of each person then update
the Overspeed sign:

𝑺𝑺𝑇𝑇𝑡𝑡𝑡𝑡𝑠𝑠 = 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑜𝑜𝑡𝑡𝑠𝑠𝑠𝑠(𝐹𝐹𝑜𝑜𝑡𝑡) (6)

where 𝑺𝑺𝑇𝑇𝑡𝑡𝑡𝑡𝑠𝑠 is the frame-level Overspeed sign in the time range 𝑇𝑇.
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑜𝑜𝑡𝑡𝑠𝑠𝑠𝑠(𝐹𝐹𝑜𝑜𝑡𝑡) denotes the relative relationship 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑜𝑜𝑡𝑡𝑠𝑠𝑠𝑠 among
the results of object tracking output 𝐹𝐹𝑜𝑜𝑡𝑡 . This feature smooths the
speed measurement of the object tracking output. In frame-level
anomaly detection, the object speed in each frame is not a reliable
feature since many movement speeds are periodic (walking, running,
riding a bicycle with changing direction, etc.). In this case, we consider

the maximal average speed for each person and find the corresponding
appearance in each frame.

Finally, we consider mining the group context 𝑅𝑅𝑏𝑏𝑡𝑡𝑜𝑜𝑔𝑔𝑠𝑠(𝐹𝐹𝑜𝑜𝑡𝑡)
(frame-level crowd activity statistic) from object tracking features. It
includes the min, max, and median value of the coordinates, and speed.
We also use the sum of residuals in the least-squares solution of
coordinates and speeds to measure the crowd sparsity. When all
persons move in the same direction, then the sum of residuals will
equal zero since the moving direction falls into line (each residual is
zero).

3.2.3 Anomaly Detection Method
For anomaly detection, we are mainly focusing on the behavior
analysis of pedestrians by applying denoising autoencoder (DAE),
which is a variant of the basic autoencoder (AE) [28]. DAE is trained
through reconstructing a clean input x by a corrupted input x� , where
x� = x + 𝑠𝑠 ∙ t, 𝑠𝑠 is the noise factor, and t is the noise data distribution.
In a basic one-layer DAE, the forward propagation for a basic AE with
one hidden layer is:

h = 𝒬𝒬�𝑊𝑊(1)x� + b1� (7)

y = 𝒬𝒬�𝑊𝑊(2)h + b2� (8)

where h is the vector of the hidden layer unit activities, y is the
reconstruction feature vector in the output layer, 𝒬𝒬 is an activation
function, 𝑊𝑊(1) is the weight matrix between the input layer and the
hidden layer, 𝑊𝑊(2) is the weight matrix between the hidden layer and
output layer, and 𝑏𝑏1 and 𝑏𝑏2 are the offset vectors. A basic DAE is
learned by minimizing the loss function 𝐿𝐿(x,𝑦𝑦). Deep DAE can be
achieved by using multiple hidden layers that can learn the
complicated distribution by given samples due to its multiple feature
representation spaces [29]. The backpropagation algorithm [30] is
used to train DAE. Our DAE uses the sigmoid activation function for
each hidden layer and identity function for the output layer.

One important aspect of our version of DAE is that we use batch
normalization (BN) that enables performance improvement and more
stable training of DAE [31]. BN uses the mean and variance of batches
of training data to perform batch normalization. As a single unit in
DAE, its output is given by:

𝑦𝑦𝑁𝑁𝑁𝑁(𝑥𝑥′: 𝑤𝑤′, 𝑏𝑏′) = 𝑔𝑔(𝑥𝑥′𝑤𝑤′ + 𝑏𝑏′) (9)

where 𝑤𝑤′ is the learned weight, 𝑏𝑏′ is the learned bias, and 𝑥𝑥′ is the
input. After applying BN, its output is given by:

 𝑦𝑦𝐵𝐵𝑁𝑁(𝑥𝑥′: 𝑤𝑤′, 𝛾𝛾,𝛽𝛽) = 𝑔𝑔 �
𝑥𝑥′𝑤𝑤′ − 𝜇𝜇(𝑥𝑥′𝑤𝑤′)

𝜎𝜎(𝑥𝑥′𝑤𝑤′) 𝛾𝛾 + 𝛽𝛽� (10)

where 𝑥𝑥′ is a batch training data that can compute the mean 𝜇𝜇 and the
standard deviation 𝜎𝜎. In the test phase, the parameters 𝛾𝛾 and 𝛽𝛽 learned
by the original model parameters are used to represent the ranges of
inputs to 𝑔𝑔.

Our DAE architecture is shown in Fig. 3. The number of units in the
input is determined by the input feature space. To reconstruct
observations, the output layer also has the same number of nodes in
the input layer. We add three fully connected hidden layers into DAE
to form deep DAE. The layer nodes numbers are 50, 30, and 50,
respectively (this configuration set provided the best results based on
our experiments). The code layer (The middle layer with the 30 nodes)
stores the compressed representation space for the input features.
Gaussian distribution noise matrix is added into the input vector. Our
version of DAE learns the parameters using Adam gradient-based
optimization algorithm [32] with mini-batch training to minimize the

Fig. 2 The architecture of DAE for video anomaly detection.

Input
Layer

Encoder Decoder
Code

Output
Layer

Large reconstruction error

Uncorrupted
Test sample

Add
noise

Corrupted
Test sample

Cannot be
reconstructed

Abnormal Sample

Input
Layer

Encoder DecoderCode

Output
Layer

Uncorrupted
Training data

Add
noise

Corrupted
Training data

Training
data

As close as possible
One-Class Learning

mean squared error (MSE) used as the reconstruction error. After
completing the training phase with denoising Gaussian noise, our
DAE can detect the anomaly. An observation that belongs to normal
or abnormal is determined by reconstruction error. During the test
phase, an observation is normal if it has a low reconstruction error
while it is abnormal if its reconstruction error is large.

3.2.4 Temporal Denoising
The frame-level output anomaly scores are determined by the
reconstruction error between feature input and autoencoder feature
output. In our pre-trained-CNN method, feature values are easily
affected by the false alerts of the pre-trained model, such as the
misclassification of the object detection results. The outlier value in the
anomaly score curve is more likely introduced by the false alert of the
pre-trained model input. To remedy this problem, we present the post-
temporal denoising scheme after the autoencoder output based on the
assumption that the consecutive frames have similar feature
distribution.

Compared with other smoothing functions (such as Triangular filtering
and average smoothing), the Savitzky–Golay filter (S-G filter) could
better preserve the area, position, and width of the peak. Hence, in our
temporal-denoising process, the reconstruction errors of a series of
frames 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛 is filtered by the Savitzky–Golay filter[46]:

�̂�𝑒𝑗𝑗 =
1

𝑁𝑁𝑛𝑛𝑜𝑜𝑡𝑡𝑡𝑡
� 𝛼𝛼�𝑖𝑖𝑒𝑒𝑗𝑗+𝑖𝑖

𝑖𝑖=𝑤𝑤𝑠𝑠

𝑖𝑖=−𝑤𝑤𝑠𝑠

(11)

where 𝑁𝑁𝑛𝑛𝑜𝑜𝑡𝑡𝑡𝑡 is the normalizing factor, 𝛼𝛼�𝑖𝑖 is the convolution
coefficient determined by the polynomial degree, 𝑤𝑤𝑠𝑠 is the window
size. Note here the window size and the polynomial degree of the S-G
filter are decided by the pre-trained model accuracy. If the false-alert
rate of the pre-trained model is higher, the required smoothness
decided by 𝛼𝛼�𝑖𝑖 and 𝑤𝑤𝑠𝑠 can be increased accordingly.

3.3 Video Anomaly Explanation
To increase the interpretability of our video anomaly detection method,
we propose a video anomaly explanation method by using SHAP (see
the lower part of Fig 2). We first introduce the background of our
method, including SHAP, and using SHAP to explain the autoencoder.

Then, we demonstrate how our method integrates SHAP and
autoencoder to explain the anomaly detection results.

3.3.1 SHAP (SHapely Additive exPlanations)
With the rapid growth of deep learning research, the accuracy of the
method has been significantly improved. However, there is also an
urgent need for a more transparent model to explain the model
decision-making. In some applications that emphasize interpretability,
researchers prefer to use a simple model like the linear model to predict
even its accuracy is lower than other complex models. For explaining
the prediction results of black-box models, many methods have been
proposed to interpret the model output, such as DeepLIFT [52] and
LIME [66]. To generalize those related methods, Lundberg and Lee
propose SHAP (SHapely Additive exPlanations) as a unified approach
to interpret model prediction [47].

An explanation model 𝑔𝑔𝑡𝑡𝑒𝑒 can be expressed as:

𝑔𝑔𝑡𝑡𝑒𝑒(𝑧𝑧′) = 𝜙𝜙0 + �𝜙𝜙𝑖𝑖𝑧𝑧𝑖𝑖′
𝑀𝑀𝑖𝑖𝑖𝑖

𝑖𝑖=1

(12)

where 𝑧𝑧′ is the simplified binary input vector with length 𝑀𝑀𝑖𝑖𝑛𝑛 and
value 0 or 1. The original input 𝑥𝑥𝑓𝑓 can be mapped from the simplified
input 𝑥𝑥𝑠𝑠 = ℎ𝑒𝑒𝑠𝑠(𝑥𝑥𝑠𝑠′) and 𝑔𝑔𝑡𝑡𝑒𝑒(𝑧𝑧′) ≈ 𝑓𝑓𝑡𝑡𝑒𝑒(ℎ𝑒𝑒𝑠𝑠(𝑧𝑧′). Once we found the
result of the explanation model, the weight 𝜙𝜙�𝑖𝑖 explains the importance
of the input feature 𝑧𝑧𝑖𝑖′. 𝜙𝜙𝑖𝑖 can be calculated from game theory results,
where the 𝜙𝜙𝑖𝑖 is known as Shapely value.

The weighting kernel 𝜋𝜋𝑒𝑒𝑠𝑠 can be used to approximate the Shapely
value [47], which are given by:

𝜋𝜋𝑒𝑒𝑠𝑠(𝑧𝑧′) =
𝑀𝑀𝑖𝑖𝑛𝑛 − 1

(𝑀𝑀𝑖𝑖𝑛𝑛 𝑆𝑆ℎ𝑆𝑆𝑆𝑆𝑠𝑠𝑒𝑒 |𝑧𝑧′|)|𝑧𝑧′|(𝑀𝑀𝑖𝑖𝑛𝑛 − |𝑧𝑧′|)
(13)

where |𝑧𝑧′| is the length of non-zero elements. The loss function ℒ for
optimization is defined as:

ℒ�𝑓𝑓𝑡𝑡𝑒𝑒,𝑔𝑔𝑡𝑡𝑒𝑒,𝜋𝜋𝑒𝑒𝑠𝑠� = � �𝑓𝑓𝑡𝑡𝑒𝑒 �ℎ𝑒𝑒𝑠𝑠
−1(𝑧𝑧′)� − 𝑔𝑔𝑡𝑡𝑒𝑒(𝑧𝑧′)�

2
𝜋𝜋𝑒𝑒𝑠𝑠(𝑧𝑧′)

𝑧𝑧′∈𝑍𝑍

(14)

By minimizing the loss function ℒ over the training dataset 𝑍𝑍, the
approximation of Shapely value can be calculated:

𝜉𝜉 = 𝑎𝑎𝑆𝑆𝑔𝑔𝑎𝑎𝑖𝑖𝑛𝑛
𝑏𝑏𝑒𝑒𝑒𝑒∈𝐺𝐺

�ℒ,𝑔𝑔𝑡𝑡𝑒𝑒,𝜋𝜋𝑒𝑒𝑠𝑠� + Ω(𝑔𝑔𝑡𝑡𝑒𝑒) (15)

where Ω is the penalty term of 𝑔𝑔𝑡𝑡𝑒𝑒 complexity.

3.3.2 Using SHAP to explain Autoencoder
Autoencoder has been widely used on anomaly detection tasks [53].
However, there is little research on explaining the results of the
autoencoder. Based on the model-agnostic explanation method kernel
SHAP, Antwarg et al. propose a method to explain the anomalies
detected by autoencoder [42]. The main procedure of using SHAP to
explain the autoencoder are summarized as follows:

1) Given the trained autoencoder and input instance, the features
with top reconstruction errors are selected as the target output features.

2) For each selected high error feature, fit the SHAP explainer with
training background set, then use SHAP explainer to attribute the input
features for predicting these high error features. In this step, the target
function for SHAP to approximate is the selected feature element in
the autoencoder output.

3) The input features can be classified as contributing and offsetting
features based on whether the reconstruction error is negative and
positive. The contributing feature means this feature pushes the
predicting value away from the true value, while the offsetting feature
pushes predicting the value towards the true value.

This method inspired us to design and implement an explainable
autoencoder for video anomaly detection.

3.3.3 The proposed method for Video Anomaly
Explanation

 We propose a novel method for explaining video anomaly detection.
Our method first uses a video summary to find the representative
frames in a video with anomalies, then explains the autoencoder output
of the keyframes using SHAP. The output is the sorted features by the
importance of contributing to the anomalies in the video, which
explains the video anomaly detection decision-making process.

The algorithm calculates the explainable video features using pre-
trained models and trained denoising autoencoder to process the raw
video frames (see Algorithm 1). Usually, consecutive frames are
similar; thus, in practice, to reduce the complexity, it is widely

accepted to remove the consecutive frames when they have the
minimum amount of difference. Hence the first step of Algorithm 1 is
to uniform sample the input video in a fixed interval to eliminate the
redundant frames. In video summary, the algorithm still can
summarize the major information of the video even the FPS is lowered
to 5 [65]. Next, we get the feature set from the sampled frames using
the pre-trained models. Then, the feature set is clustered by a K-means
algorithm [48]. The nearest frame to the cluster center is the
representative frame. Finally, the frames are filtered with the
autoencoder anomaly scores since we focus on explaining the
anomalies. We then explain the filtered output keyframes.

Once we find the keyframes that we are interested in, we use
Algorithm 2 to get the most important features for each frame
contributing to the anomalies. Algorithm 2 requires the input frame
features, trained autoencoder, and the background set. The background
set is part of the samples that represent the dataset for training the
SHAP model. In our case, it consisted of the samples of the high-level
and contextual features. The reconstruction errors are first calculated
by comparing the distance between autoencoder input and output.
Then we get the top error features by sorting the reconstruction errors.

Algorithm 1: Calculate video explainable features

Input: Raw Video Frames Θ = {𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛}, Pretrained Models {M1, M2, …, ML}, trained

denoising Auto-Encoder MAE.

Output: Abnormal Keyframes with top Explainable Features 𝐹𝐹𝑤𝑤�×𝑘𝑘.

1: Uniform Sample the video frames with interval d to remove the redundant frames. Get sampled

frames: {P1, P1+d, P1+2d, ..., P1+wd} with length w = n/d .

2: Get frame feature matrix 𝐹𝐹𝑤𝑤×𝑠𝑠 from models {M1, M2, …, ML}, and extend the feature set with

Context Mining to 𝐹𝐹𝑤𝑤×𝑠𝑠 .

3: Clustering frames feature 𝐹𝐹𝑤𝑤×𝑠𝑠 into m clusters with K-means. Get the corresponding center c1,

c2, …, cm, where center ci feature value is the mean value of cluster samples.

4: for each center ci do

5: Get the Frame Sample Pk
* with the smallest Distance among i-th frames cluster k =

argminj({||ci – Pj
*||2, for j ∈ cluster i})

6: Get key frames P1
*, P2

*, …, Pm
*

.

7: for each key frame Pk
* do

8: Get output features 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑠𝑠 = MAE(Pk
*) = MAE(𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑠𝑠)

9: Calculate Anomaly Score (Mean Square Error) MSEk = 1
𝑠𝑠
∑ �𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 �

2𝑠𝑠
𝑖𝑖=1

10: if MSEk < threshold then

11: Discard this frame.

12: else

13: Get frame with top k explainable features 𝐹𝐹1×𝑘𝑘 from Algorithm 2.

14: return 𝐹𝐹𝑤𝑤�×𝑘𝑘, where 𝑤𝑤� is the length of selected abnormal key frames.

The features with a high error are considered as the significant factor
in deciding whether the instance is abnormal. For each high error
feature, we treat the autoencoder as a multi-input-single-output
function to use SHAP to explain the prediction concerning the certain
input instance. Depending on the positiveness of the reconstruction
error, the related features of the high error feature can be classified into
contributing features and offsetting features.

We sorted the feature by two different methods: the mean of SHAP
value and the mean of absolute SHAP value. Intuitively, the sum of the
SHAP value should indicate the importance of a certain feature
contributing to the anomaly decision. However, many factors can
affect the accuracy of the explainable model (such as the background
set selection, the selection of the number of error features, etc.). Some
major features have a small mean of SHAP values because the
contributing value and offsetting value from different error features are
neutralized. So we consider the feature importance from the sorted
order of the mean of SHAP value and the mean of absolute SHAP
value.

Algorithm 2: Calculate Auto-Encoder explainable features for a sample

Input: A sample input with 𝑛𝑛𝑠𝑠 features f = (𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛𝑠𝑠) that we want to explain, a trained

Auto-Encoder MAE, background samples {bg1, bg2, …, bgb} for fitting SHAP model

Output: Top k explainable features

1: Get output 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛𝑠𝑠 by predicting the input f with MAE. Get top m features with the high

reconstruction error {�𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 �,𝑤𝑤ℎ𝑒𝑒𝑆𝑆𝑒𝑒 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑠𝑠}}

2: Initialize empty SHAP Matrix 𝑀𝑀𝑆𝑆𝑀𝑀𝑛𝑛𝑠𝑠×𝑡𝑡𝑠𝑠

3: for each feature 𝑓𝑓𝑖𝑖 in top 𝑎𝑎𝑠𝑠 features do

4: Auto-Encoder predict background samples {bg1, bg2, …, bgb} on feature 𝑓𝑓𝑖𝑖: { yj = MAE

(bgj)[i], where 𝑗𝑗 = {1, 2, … , 𝑏𝑏}}

5: Fit the kernel SHAP explainer with the

 input {bg1, bg2, …, bgb} and output {y1, y2, …, yb}.

6: Calculate the SHAP value 𝑆𝑆𝑀𝑀1, 𝑆𝑆𝑀𝑀2, …, 𝑆𝑆𝑀𝑀𝑛𝑛𝑠𝑠 for sample input f = (𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛𝑠𝑠)

7: for each shape value SPj do

8: if 𝑓𝑓𝑖𝑖 > 𝑓𝑓𝑖𝑖 then

9: A positive SHAP value SPj is offsetting anomaly. SPj = -SPj .
10: 𝑀𝑀𝑆𝑆𝑀𝑀𝑛𝑛𝑠𝑠×𝑡𝑡𝑠𝑠[: , 𝑖𝑖] = [𝑆𝑆𝑀𝑀1, 𝑆𝑆𝑀𝑀2, …, 𝑆𝑆𝑀𝑀𝑛𝑛𝑠𝑠]

T

11: Get SHAP Matrix 𝑀𝑀𝑆𝑆𝑀𝑀𝑛𝑛𝑠𝑠×𝑡𝑡𝑠𝑠

12: Get top k1 features from feature error set {𝑀𝑀𝑗𝑗 = ∑ 𝑀𝑀𝑆𝑆𝑀𝑀[𝑗𝑗, 𝑖𝑖]𝑡𝑡𝑠𝑠
𝑖𝑖=1 , for j = {1, … , n}}

13: Get top k2 features from absolute feature error set {𝑀𝑀𝑗𝑗
′ = ∑ |𝑀𝑀𝑆𝑆𝑀𝑀[𝑗𝑗, 𝑖𝑖]|𝑡𝑡𝑠𝑠

𝑖𝑖=1 , for j =

{1, … , ns}}

14: return top k1 features, top k2 features

Finally, the important features of each key abnormal frame are
summarized as the explanation of the anomalies in a video. We present
the workflow of video anomaly explanation in Fig. 4. In shorts, our
proposed method can be summarized as follows. First, select
keyframes by uniform sampling the raw video and clustering the rest
frames by high-level features. Then, select anomalous keyframe by the
anomaly score and explain the keyframe with SHAP for the
autoencoder method. Finally, sort the most important features by
SHAP value, and use them to explain the anomalous event in the video.

4 EXPERIMENTAL RESULTS AND
EVALUATION

4.1 Dataset
One of the most common outdoor activities is the movement of
pedestrians. To evaluate our proposed method for outdoor activities

Fig. 4 The workflow of video anomaly explanation.

Video
Input

Uniform Sampling

Clustering frames with high-level features
into 𝑛𝑛 clusters with center 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛

Get Explainable features from Pretrained
Model and Context Mining

For each cluster center𝐶𝐶𝑖𝑖 , select the nearest frame

Calculate Anomaly Score (1
𝑙

𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖
2𝑙

𝑖𝑖=1 , MSE) of
Key Frames from De-noising Auto-Encoder

Keyframes

For each
keyframe

Discard

Get top 𝑘 Features 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑘 with high Reconstruction
Error 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 of the Abnormal Key Frame

Abnormal Keyframe

predicting the top 𝑘 features using Auto Encoder

Get the top 𝑎𝑎 supporting features
𝑓𝑓𝑠𝑠

(1), 𝑓𝑓𝑠𝑠
(2), … , 𝑓𝑓𝑠𝑠

(𝑎𝑎) by sorting
SHAP value

Get supporting feature 𝑓𝑓𝑠𝑠 SHAP Value for
predicting the top 𝑘 feature

Output: Sorted explainable
features of abnormal key

frames in a video

Anomaly Score >
threshold?

surveillance, we show the anomaly detection result on the UCSD Ped1
and Ped 2 datasets [12]. The UCSD datasets provide video of people
on pedestrian walkways at the University of California San Diego. As
a popular video anomaly detection public dataset, it has been wildly
used as the evaluation of video anomaly detection algorithm. The Ped1
dataset has 34 training videos and 36 testing videos. Each video
consists of 200 frames with 238 × 158 pixels at 30 FPS. The Ped2
dataset has 16 training videos and 12 testing videos. The video frame
number of the Ped2 dataset ranges from 120 to 180 frames with
360 × 240 pixels. The training video only includes pedestrians. Both
Ped1 and Ped2 provide completed frame-level abnormal labels and
partial pixel-level abnormal labels. In this experiment, we only
consider the frame-level samples since our work mainly considering
the contextual features. The abnormal event includes unexpected
entities (bicycle, skateboard, motorcycle, etc.), irregular trajectory
(deviate from the major moving direction), and entering the
prohibitive region (walking on the grass).

4.2 Experiment Setup
We get high-level features from the pre-trained models. The details are
demonstrated in Section III. The inference of the pre-trained model is
running on the Google Colaboratory [33] server.

The DAE is implemented on Tensorflow and Keras. We use the
Adam optimizer and the MSE loss function to optimize the model. The
epoch of training for Ped1 and Ped2 was set to 25 and 28, respectively.
The batch size was set to 120. In the experiments, we set the noise
factor as {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} and choose
the better result. The training and test evaluation of the anomaly
detection models are running on a computer with the 64-bit Windows
10 Operating System and equipped with 16 GB DDR4 RAM and an
Intel Core i7-9750H CPU running at 2.60 GHz.

4.3 Visualization
To understand the outputs of context mining, we visualize the

results of the embedded computer vision task on both datasets. Fig. 5

and Fig. 6 present examples of the visualization results on both training
datasets. For each figure, the images in the first row show the
background segmentation results. In the implementation, the user is

Fig. 5 Visualization of the embedded task result from Ped1 training dataset. From
1st to 4th row is the background segmentation, pedestrian tracking, object
classification, origin frames, respectively. Note: the first row is using the same
image since the background segmentation should keep constant when the camera is
fixed.

Fig. 6 Visualization of the embedded task result from the Ped2 training dataset.
From 1st to 4th row is the background segmentation, pedestrian tracking, object
classification, origin frames, respectively. The first row uses the selective fixed
results.

supposed to select the frames with clear segmentations since their
segmentation results are not affected by the ambient light. Only when
the camera position is adjusted, the background segmentation should
be updated. The images in the second row show the multiple object
tracking results. The model assigns a unique ID to each pedestrian. By
calculating the difference between the frames, we can get the
movement of each person. In the images of the third row, we present
the object classification result used as baseline features of our video
anomaly detection model, and the accuracy determines the lower
bound of our model performance since most anomaly event comes
from the occurrence of abnormal objects. When the embedded pre-
trained model results are visualized, the user can evaluate the quality
of the outputs and decide the principle of formulating contextual
features. For instance, if the background segmentation results are
unqualified (obvious boundary mismatch or misclassification in pre-
trained model evaluation), we should not consider the relative position
context as the anomaly detection feature. In our case, we keep all the
pre-trained model outputs to generate the contextual features on the
Ped1 dataset and we discard the background segmentation results in
the Ped2 dataset since the visualization shows that most of the
background segmentation results are unsatisfactory. Since we
removed the background segmentation, the relevant mined spatial
contexts are also removed from the features. In Ped1, the dimension of
input features is 100 while in Ped 2 it is 81 since we remove the
unreliable features by checking the visualization results.

4.4 Results
We evaluate the performance of our video anomaly detection method
by considering the effect of the contextual features and training data
volume. Receiver Operative Characteristic curve (ROC curve), Area
Under the ROC curve (AUC), and Equal Error Rate (EER) are the
used metrics since they are widely used metrics for the UCSD Ped1
and UCSD Ped2 datasets [34, 12]. To study the effectiveness of our
approach, we compare it with state-of-the-art approaches. The ROC
curve results are shown in Fig.7. and Fig. 8. The AUC and EER results
are summarized in Table 1.

For the method without contextual features, we only keep the
appearance feature (for more information, refer to the approach in [5]).
The result shows that the contextual feature effectively integrates the
information of movement and semantic result and improves the
performance of the anomaly detection method. Without contextual

feature, the AUC of our approach is 73.1% and 80.1% in the UCSD
Ped1 dataset and the UCSD Ped2 dataset, respectively. Our approach
with contextual feature has achieved the AUC of 85.9% and 92.4% in
the UCSD Ped1 dataset and the UCSD Ped2 dataset.

Fig. 8 ROC curve of Ped2 dataset.

Fig. 7 ROC curve of Ped1 dataset.

As shown in Table 1, our model outperforms the approaches with
low model complexity (MDT [12], Adam [13], Social force [14],
Compact feature set [15], convex polytope ensemble [35], and RBM
[36]) and several approaches with large model complexities by adding
convolutional layers (ConvAE [8], ConvLSTM-AE [9], Two-Stream
R-ConvVAE [16]), and can achieve comparable performance
compared to ST-AE [34], and AMDN [17]. Our method achieves 92.4%
AUC on the Ped2 data set and 85.9% AUC on the Ped1 dataset. Hence,
the DAE with relatively low model complexity can achieve
comparable results using the features derived from the pre-trained
deep models. Our model without contextual features achieves 80.1%
AUC in Ped2 while 73.1% on Ped1, which means an accurate pre-
trained model will improve our final model performance. Most of the
competing methods in this study trained the large model while we only
consider using the high-level and contextual features derived from pre-

Table 1 Frame-level performance comparison of the anomaly event detection

Methods
Ped1 [12] Ped2 [12]

AUC (%) EER (%) AUC (%) EER (%)

Adam [13] 65.0 38.0 63.0 42.0

Social force [14] 67.5 31.0 63.0 42.0

MDT [12] 81.8 25.0 82.9 25.0

Compact feature set [15] 82.0 21.1 84.0 19.2

Convex polytope ensemble
[35] 78.2 24.0 80.7 19.0

RBM [36] 70.3 35.4 86.4 16.5

ST-AE [34] 89.9 12.5 87.4 12.0

ConvAE [8] 81.0 27.9 90.0 21.7

ConvLSTM-AE [9] 75.5 N/A 88.1 N/A

Two-Stream R-ConvVAE
[16] 75.0 32.4 91.7 15.5

AMDN [17] 92.1 16.0 90.8 17.0

STAN [19] 82.1 N/A 96.5 N/A

ST-CaAE [18] 90.5 18.8 92.9 12.7

Optical flow-GAN [20] 97.4 8 93.5 14

Our preliminary work [49] 84.1 23.8 92.4 14.9

Our method 85.9 22.0 92.4 13.5

Our method without
Context 73.1 34.8 80.1 29.3

trained models to reduce the model complexity for the anomaly
detection model. For example, in the Ped1 dataset, the ConvAE model
uses the fully convolutional autoencoder [8]. It has 6 convolutional
layers and 4 pooling layers in the encoder and decoder. The input layer
dimension is 238 × 158 × 10 . The training process requires up to
16,000 epochs to converge. ConvLSTM-AE model adds 10
convolutional long short-term memory layers that are interconnected
in addition to the convolutional layers [9]. The training process
requires up to 60,000 epochs. In our case, we only use 3 fully
connected layers with an input dimension of 100 and the training
process only requires up to 25 epochs to converge in the Ped1 dataset
and 200 epochs in the Ped2 dataset with an input dimension of 81. We
also list the state-of-the-art approaches (STAN [19], ST-CaAE [18],
and Optical flow-GAN [20]). In addition to training CNN to learn the
spatial features, STAN and Optical flow-GAN takes the Generative
Adversarial Network architecture to improve the performance.
However, it increases the model complexity. For example, STAN has
17 convolutional layers with kernel size between 5 × 5 and 3 × 3
where the number of layers has almost tripled compared to ConvAE.
ST-CaAE consists of adversarial network ST-AAE and convolutional
network ST-CAE. ST-AAE has four 3D convolutional layers and the
corresponding four 3D deconvolutional layers, while ST-CAE has
three 3D convolutional layers and three 3D deconvolutional layers.
Each convolution layer uses kernels with the size 3 × 3 × 3, and the
number of kernels is 16 in the input convolutional layer. The ST-CaAE
also needs to be trained on appearance stream and motion stream,
respectively, which further increases the model complexity. Compared
to the above models, our approach extracts the complicated part into
pre-trained models and only needs to train the decision model with the
fully connected layers.

Our model also shows the advantages of the interpretability of
abnormal event decisions. The other models such as Two-Stream R-
ConvVAE use the reconstruction error on each pixel to locate the
anomaly region [16]. This method only reflects the spatial features of
decision-making and cannot explain the temporal or group anomalies.
Since our input features are high-level features and semantically
meaningful features, we can directly show the reconstruction error
vector to explain the decision-making process. Note that here we just
use three pre-trained deep models to extract features, and we have
shown in the experiments that they are already beneficial. It is

expectable that more profit can be attained by using more pre-trained
models that can be used to derive varied features. We leave the
possibilities for future exploration.

4.5 Time Analysis
We compare our method running time with several algorithms, as

shown in Table 2. It reports the average running time of each frame
during the test phase. Our method is significantly faster than MDT [12],
AMDN [17], Xu et al.’s method without GPU [50], and Hierarchical
framework [60]. Our method is also faster than ST-CNN [61], AED
[62], and ICN [63]. Compared to the state-of-the-art method like XU
et al. method with GPU and Two-Stream R-ConvVAE [16], our
method achieves comparable run time speed. Note that the GPU is
only used on the pre-trained models for getting the high-level features
in our approach. We calculate the pre-trained models running time by
taking the maximum value of inference time per frame from PFPN,
JDE, and R101 since these pre-trained models can run simultaneously
by their corresponding GPU described in Section 3.2.1, which is
0.067s. The pre-trained model inference speed can be improved by
the advance of computer vision research and the improvement of GPU
technologies. Our lightweight denoising autoencoder does not need
GPU, and the average inference time for each frame is 2.18 × 10−5𝑠𝑠

Table 2 Frame-level anomaly detection running time comparison

Method Platform CPU GPU
Running Time (seconds

per frame)
UCSD Ped1 UCSD Ped2

MDT [12] - 3.0
GHz - 25 -

AMDN [17] MATLAB 2.1
GHz

Nvidia Quadro
K4000 5.2 7.5

XU et al [50]
without GPU Pytorch 2.1

GHz - 2.68 6.84

Hierarchical
framework [60] MATLAB 3.0

GHz - 5 5

ST-CNN [61] Caffe 2.8
GHz - 0.37 0.39

AED [62] N/A N/A N/A 0.073 -

ICN [63] Tensorflow 2.4
GHz

NVIDIA Tesla
K40c - 0.18

XU et al [50] with
GPU Pytorch 2.1

GHz Nvidia TITAN X 0.00242 0.00265

Two-Stream R-
ConvVAE [16] Tensorflow 2.6

GHz Nvidia TITAN X 0.0012 -

Oursa Tensorflow 2.6
GHz

Nvidia V100,
Nvidia TITAN

Xp

𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡 +
2.18 × 10−5

𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡 +
3.71 × 10−5

a. Our pre-trained model running time 𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡 = 0.067.

on the UCSD Ped1 dataset and 3.71 × 10−5𝑠𝑠 on the UCSD Ped2
dataset.

We also show the training time comparison among algorithms, as
shown in Table 3. Since our method relies on the pre-trained model
features, a large amount of training time can be saved. We only need
to focus on the training of the lightweight denoising autoencoder. We
take the mean value of the 10 repetitive measurements and our method
only requires 5𝑠𝑠, 2.9𝑠𝑠, and 9.6𝑠𝑠 for the Ped1, Ped2, and Avenue
dataset (here Avenue dataset only be used for training time analysis,
the epoch is set as 28), which is significantly faster than AMDN,
ConvAE, TSC, and sRNNAE [51].

4.6 Explanation of video Anomalies
The experiment results of the video anomaly explanation method are
discussed. We demonstrate our method by displaying three cases from
the USCD Pedestrian dataset. We set the upper limit of the number of
keyframes as 3 and the number of top important features as 6. It is
worthwhile to mention that the number of keyframes is a
hyperparameter, and the value varies by the setting of video, such as
the video length, event number, etc. As described in Algorithm 2, we
skip the keyframe without abnormal events since we are only
interested in explaining anomaly.

4.6.1 Sample case 1: Ped1 video Test017
The video summary result of video Ped1_Test017 is shown in Fig. 9.
In this video, there is one anomaly that occurred. The video summary
presents three keyframes: frames 11, 76, and 151, where frames 76 and
frame 151 are discarded because of the lower anomaly score. The

Table 3 Training time comparison

Method Platform CPU GPU
Training Time

UCSD
Ped1

UCSD
Ped2

Avenue

AMDN
[17] MATLAB 2.1 GHz Nvidia Quadro

K4000 9 hours 4 hours 3.5 hours

ConvAE
[8] Caffe unkonwn NVIDIA Tesla

K80 Total around 1 hour 50 min

TSC [51] TensorFlow unkonwn unkonwn - - 30 hours
sRNNAE

[51] TensorFlow unkonwn unkonwn - - 1.2 hours

Oursb Tensorflow 2.6 GHz - 5 seconds 2.9
seconds

9.6
seconds

b. Since we use pre-trained CNN model, we did not use GPU.

remaining keyframes 11 summarize the major activities on video
Ped1_Test017.

The ground truth of anomaly in this video consists of a person
riding a bicycle on the pavement, as presented in Fig. 10. Here Fig. 11
shows the explanation result of frame 11 for demonstration.

We select top 3 most important features from Fig. 11(a) and Fig.
11(b) to explain the frame. Therefore, frame 11 can be explained by
the important features, including “tracked_occur”, “bicycle”,
“on_tree”, “speed_std”, “x_max”, and “person”. Obviously, “bicycle”
matches the ground truth description. In addition, other output features

Fig. 9 The anomaly score of video Ped1_Test017, the unfilled start marker is the
discarded frame. The read shadow interval represents the ground truth abnormal
interval.

Fig. 10 The ground truth of anomalies in video Ped1_Test017 frame 11.

also assist the anomalies decision-making. For example,
“tracked_occur” means some people are moving much faster in a
period and are tracked automatically; this feature is highly positively
related to “bicycle” and “skateboard”. The features of “person” and
“on_tree” show how many people on this frame and how many people
are walking near the tree. The feature, “speed_std” means the speed
standard deviation of the moving objects in this frame. It implies this
scenario has an abnormal event since the moving object (such as
skateboarder, bicycle, and motorcycle) is faster than the walking
person.

4.6.2 Sample case 2: Ped2 video Test004
The video summary result of video Ped2_test004 yields three
keyframes: frames 26, 46, and 96, as shown in Fig. 12. Frame 26 is
discarded since it represents the normal case. The abnormal keyframes
are correctly fallen into the ground truth abnormal interval and can

(a)

(b)

Fig. 11 Explainable features of video Ped1_Test017 frame 76. (a) The important
features sorted by the mean of absolute SHAP value. (b) The important features
sorted by the mean of SHAP value.

represent the major activities of video anomaly in video Ped2_test004.
Here we discuss the explanation results of Frame 46.

The Fig.13. shows the ground truth content of frame 46, which is
the abnormal keyframe of video Ped2_Test004: A car occurs on the
right side of the pavement. Both sorted graph results explain this frame,
as shown Fig. 14. In this case, the sorted mean absolute SHAP value
features in Fig. 14(a) and the sorted mean SHAP value features in Fig.
14(b) have the same top 3 features, including “car”, “bicycle”, and
“peed_min”. The feature “car” correctly reflects the ground truth of
the anomaly of frame 46. However, the feature “bicycle” is a false alert
since frame 46 does not include a bicycle. The feature “speed_min” is
the minimum speed of all objects in the frame. In this frame, “car”

Fig. 12 The anomaly score of video Ped2_Test004, the unfilled start marker is the
discarded frame. The read shadow interval represents the ground truth abnormal
interval.

Fig. 13 The ground truth of anomalies in video Ped2_Test004 frame 46.

feature is rank 1st in both Fig.14 (a) and Fig. 14(b) , which increase the
confidence of the decision to make the “car” features as the anomalies.

4.6.3 Sample case 3: Ped2_Test005
The video summary result of video Ped2_Test005 consists of three
keyframes: frame 21, frame 76, and frame 136, as shown in Fig. 15.
It covers the major normal and abnormal events in the video. Similarly,
frame 136 will be skipped during the explanation process because of
the low anomaly score. Here we present the anomaly explanation
results of frame 76.

The ground truth content consists of a person riding a bicycle from
right to left, as presented in Fig. 16. The pre-trained object detection
model successfully detected the bicycle. Fig. 17(a) shows the “bicycle”
is one of the most contributing features to the anomaly detection result
of frame 76. Other features like “speed_min”, “speed_mean”, and

(a)

(b)

Fig. 14 Explainable features of video Ped2_Test004 frame 46. (a) The important
features sorted by the mean of absolute SHAP value. (b) The important features
sorted by the mean of SHAP value.

“speed_max” also support the possible occurrence of the moving
object from a contextual perspective.

5 Conclusion
This work presents a novel design of an explainable and efficient video
anomaly detection framework based on the high-level features from
the pre-trained models and using a denoising autoencoder to detect
anomalous video events and provide anomaly explanations. Our
method selects three pre-trained models (background segmentation,
object classification, and object tracking) to get the appearance feature
and Spatio-temporal feature. The UCSD pedestrian datasets are used
to evaluate our approach and to compare it with several state-of-the-
art methods. Our experimental results show that contextual features
improve model performance and interpretability. Moreover, our
proposed model achieves comparable results and provides more
accurate anomalies explanation with low model complexity, short
training time, and low computational overhead. Our approach is not
developed to replace state-of-the-art approaches; instead, it offers a
better understanding of how pre-trained deep learning models can be

Fig. 16 The ground truth of anomalies in video Ped2_Test005 frame 76.

Fig. 15 The anomaly score of video Ped2_Test005, the unfilled start marker is the
discarded frame. The read shadow interval represents the ground truth abnormal
interval.

used for video anomaly detection, especially when a large volume of
training data is unavailable for complex models. Our method can also
increase model interpretability, which is crucial to modern machine
learning. In addition, the run time analysis shows our method is
significantly efficient in the training process.

Acknowledgement
This work is partly supported by the Air Force Office of Scientific
Research (AFOSR) Dynamic Data-Driven Application Systems
(DDDAS) award number FA9550-18-1-0427, National Science
Foundation (NSF) research projects NSF-1624668 and NSF-1849113,
(NSF) DUE-1303362 (Scholarship-for-Service), National Institute of
Standards and Technology (NIST) 70NANB18H263, and Department
of Energy/National Nuclear Security Administration under Award
Number(s) DE-NA0003946.

(a)

(b)

Fig. 17 Explainable features of video Ped2_Test005 frame 76. (a) The important
features sorted by the mean of absolute SHAP value. (b) The important features
sorted by the mean of SHAP value.

Reference
 Vigne, N.G.L., Lowry, S.S., Markman, J.A., and Dwyer, A.M.:

Evaluating the use of public surveillance cameras for crime control and
prevention. Washington, DC: US Department of Justice, Office of
Community Oriented Policing Services. Urban Institute, Justice Policy
Center (2011)

 Zhu, Y., Nayak, N. M., and Roy-Chowdhury, A. K.: Context-Aware
Activity Recognition and Anomaly Detection in Video. IEEE J. Sel. Top.
Signal Process., vol. 7, no. 1, pp. 91–101, Feb 2013 (2013)

 Gao, X, Ram, S, Rodriguez, JJ.: A Post-Processing Scheme for the
Performance Improvement of Vehicle Detection in Wide-Area Aerial
Imagery. Signal, Image and Video Processing, vol. 14, no. 3, pp. 625–633
(2019)

 Gao, X.: Performance Evaluation of Automatic Object Detection with
Post-Processing Schemes under Enhanced Measures in Wide-Area Aerial
Imagery. Multimedia Tools and Applications, pp. 1-30 (2020)

 Smeureanu, S., Ionescu, R.T., Popescu, M., and Alexe, B.: Deep
Appearance Features for Abnormal Behavior Detection in Video. Image
Analysis and Processing - ICIAP 2017 Lecture Notes in Computer
Science, pp. 779–789 (2017)

 Nguyen, T. N. and Meunier, J.: Anomaly Detection in Video Sequence
With Appearance-Motion Correspondence. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea
(South), Oct. 2019, pp. 1273–1283 (2019)

 Xu, H., Gao,Y., Yu, F., and Darrell, T.: End-to-End Learning of Driving
Models from Large-Scale Video Datasets. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017)

 Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K., and Davis, L.
S.: Learning Temporal Regularity in Video Sequences. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

 Luo, W., Liu, W., and Gao, S.: Remembering history with convolutional
LSTM for anomaly detection. 2017 IEEE International Conference on
Multimedia and Expo (ICME) (2017)

 Wang, X. and Ji, Q.: Hierarchical Context Modeling for Video Event
Recognition. IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 9, pp.
1770–1782, Sep 2017 (2017)

 Shao, S., Tunc, C., Al-Shawi, A., and Hariri, S.: An Ensemble of
Ensembles Approach to Author Attribution for Internet Relay Chat
Forensics. ACM Transactions on Management Information Systems
(TMIS) 11, no. 4, pp. 1-25 (2020)

 Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N.: Anomaly
detection in crowded scenes. 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (2010)

 Adam A., Rivlin, E., Shimshoni, I., and Reinitz, D.: Robust Real-Time
Unusual Event Detection using Multiple Fixed-Location Monitors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3,
pp. 555–560, Mar 2008 (2008)

 Mehran, R., Oyama, A., and Shah, M.: Abnormal crowd behavior
detection using social force model. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009, pp. 935–942 (2009)

 Leyva, R., Sanchez, V., and Li, C.-T.: Video Anomaly Detection With
Compact Feature Sets for Online Performance. IEEE Transactions on
Image Processing, vol. 26, no. 7, pp. 3463–3478, Jul 2017 (2017)

 Yan, S., Smith, J. S., Lu, W., and Zhang, B.: Abnormal Event Detection
From Videos Using a Two-Stream Recurrent Variational Autoencoder.
IEEE Transactions on Cognitive and Developmental Systems, vol. 12, no.
1, pp. 30–42 (2020)

 Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N.: Learning Deep
Representations of Appearance and Motion for Anomalous Event
Detection. Procedings of the British Machine Vision Conference 2015, pp.
8.1–8.12 (2015)

 Li, N., Chang, F., and Liu, C.: Spatial-temporal Cascade Autoencoder for
Video Anomaly Detection in Crowded Scenes. IEEE Transactions on
Multimedia, pp. 1–1 (2020)

 Lee, S., Kim, H. G., and Ro, Y. M.: STAN: Spatio-Temporal Adversarial
Networks for Abnormal Event Detection. 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1323-1327 (2018)

 Ravanbakhsh, M., Nabi, M., Sangineto, E., Marcenaro, L., Regazzoni, C.,
and Sebe, N.: Abnormal event detection in videos using generative
adversarial nets. 2017 IEEE International Conference on Image
Processing (ICIP), pp. 1577-1581 (2017)

 Zhang, T., Liu, S., Xu, C., and Lu, H.: Mining Semantic Context
Information for Intelligent Video Surveillance of Traffic Scenes. IEEE
Trans. Ind. Inf., vol. 9, no. 1, pp. 149–160, Feb 2013 (2013)

 Pasini, A., and Baralis, E.: Detecting Anomalies in Image Classification
by Means of Semantic Relationships. In 2019 IEEE Second International
Conference on Artificial Intelligence and Knowledge Engineering
(AIKE), Sardinia, Italy, Jun. 2019, pp. 231–238 (2019)

 Kirillov, A., Girshick, R., He, K., and Dollar, P.: Panoptic Feature Pyramid
Networks. in 2019 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, pp. 6392–6401, Jun 2019,
(2019)

 Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., and Girshick, R.: Detectron2.
(2019)

 Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., and Zitnick, C. L.: Microsoft COCO: Common Objects in
Context. Computer Vision – ECCV 2014 Lecture Notes in Computer
Science, pp. 740–755 (2014)

 Wang, Z., Liang, Z., Liu, Y., and Wang, S.: Towards Real-Time Multi-
Object Tracking. arXiv preprint arXiv:1909.12605 (2019)

 He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778
(2016)

 Vincent, P.: A connection between score matching and denoising
autoencoders. Neural computation, 23(7), 1661-1674 (2011)

 Lu, X., Tsao, Y., Matsuda, S., and Hori, C.: Speech enhancement based on
deep denoising autoencoder. In Interspeech, vol. 2013, pp. 436-440 (2013)

 LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning. Nature 521, no.
7553 (2015): 436

 Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q.:
Understanding Batch Normalization. In NeurIPS (2018)

 Kingma, D. P., and Ba, J.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014)

 Bisong, E.: Google Colaboratory. Building Machine Learning and Deep
Learning Models on Google Cloud Platform, pp. 59–64 (2019)

 Chong, Y. S. and Tay, Y. H.: Abnormal Event Detection in Videos Using
Spatiotemporal Autoencoder. Advances in Neural Networks - ISNN 2017
Lecture Notes in Computer Science, pp. 189–196 (2017)

 Turchini, F., Seidenari, L., and Del Bimbo, A., :Convex Polytope
Ensembles for Spatio-Temporal Anomaly Detection. In Image Analysis
and Processing - ICIAP 2017. vol. 10484, pp. 174–184, Springer
International Publishing (2017)

 Vu, H., Phung, D., Nguyen, T. D., Trevors, A., and Venkatesh, S.: Energy-
based Models for Video Anomaly Detection. arXiv preprint
arXiv:1708.05211 (2017)

 Kim, Jaechul and Grauman, K.: Observe locally, infer globally: A space-
time MRF for detecting abnormal activities with incremental updates.
2009 IEEE Conference on Computer Vision and Pattern Recognition
(2009)

 Lu C., Shi, J., and Jia, J.: Abnormal Event Detection at 150 FPS in
MATLAB. 2013 IEEE International Conference on Computer Vision
(2013)

 Bulathwela, S., Pérez-Ortiz, M., Lipani, A., Yilmaz, E., and Shawe-Taylor,
J.: Predicting Engagement in Video Lectures. arXiv preprint
arXiv:2006.00592 (2020)

 Zhou, B., Wang, X., Zhang, S., Li, Z., Sun, S., Shu, K., and Sun, Q.:
Comparing Factors Affecting Injury Severity of Passenger Car and Truck
Drivers. IEEE Access, vol. 8, pp. 153849–153861 (2020)

 Kristjanpoller, W., Michell, K., and Minutolo, M. C.: A causal framework
to determine the effectiveness of dynamic quarantine policy to mitigate
COVID-19. Applied Soft Computing, vol. 104, p. 107241 (2021)

 Antwarg, L., Miller, R. M., Shapira, B., and Rokach, L.: Explaining
anomalies detected by autoencoders using SHAP. arXiv preprint
arXiv:1903.02407 (2019)

 Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., and Hua, X.S.: Spatio-
temporal autoencoder for video anomaly detection. In Proceedings of the
25th ACM international conference on Multimedia, pp. 1933-1941 (2017)

 Gao D and Vasconcelos, N.: Decision-theoretic saliency: computational
principles, biological plausibility, and implications for neurophysiology
and psychophysics. Neural computation 21, no. 1 (2009): 239-271.

 Chen, N.F., Du, Z., and Ng, K. H.: Scene Graphs for Interpretable Video
Anomaly Classification. Conference on Neural Information Processing
Systems Workshop on Visually Grounded Interaction and Language
(2018)

 Savitzky, A. and Golay, M. J.: Smoothing and differentiation of data by
simplified least squares procedures. Analytical chemistry 36, no. 8 (1964):
1627-1639.

 Lundberg, S. M. and Lee, S.: A unified approach to interpreting model
predictions. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 4768-4777 (2017)

 Shao, S., Tunc, C., Al-Shawi, A., and Hariri, S.: Automated Twitter author
clustering with unsupervised learning for social media forensics. In 2019
IEEE/ACS 16th International Conference on Computer Systems and
Applications (AICCSA), pp. 1-8. IEEE (2019)

 Wu, C., Shao, S., Tunc, C., and Hariri, S.: Video anomaly detection using
pre-trained deep convolutional neural nets and context mining. In 2020
IEEE/ACS 17th International Conference on Computer Systems and
Applications (AICCSA), pp. 1-8. IEEE (2020)

 Xu, M., Yu, X., Chen, D., Wu, C., and Jiang, Y.: An efficient anomaly
detection system for crowded scenes using variational
autoencoders. Applied Sciences 9, no. 16 (2019): 3337.

 Luo, W., Liu, W., Lian, D., Tang, J., Duan, L., Peng, X., and Gao, S.: Video
anomaly detection with sparse coding inspired deep neural
networks. IEEE transactions on pattern analysis and machine
intelligence (2019)

 Shrikumar, A., Peyton, G., Anna, S., and Anshul, K.: Not just a black box:
Learning important features through propagating activation
differences. arXiv preprint arXiv:1605.01713 (2016)

 Shao, S., Tunc, C., Al-Shawi, A., and Hariri, S.: One-class classification
with deep autoencoder neural networks for author verification in internet
relay chat. In 2019 IEEE/ACS 16th International Conference on
Computer Systems and Applications (AICCSA), pp. 1-8. IEEE (2019)

 Lin, L., and Purnell, N.: A world with a billion cameras watching you is
just around the corner. The Wall Street Journal (2019)

 Ghomi, Z., Mirshahi, R., Bagheri, A. K., Fattahpour, A., Mohammadiun,
S., Gharahbagh, A. A., Djavadifar, A., Arabalibeik, H., Sadiq, R., and
Hewage, K.: Segmentation of COVID-19 pneumonia lesions: A deep
learning approach. Medical Journal of the Islamic Republic of Iran 34
(2020): 174.

 Chen, P. Y., Hsieh, J. W., Wang, C. Y., and Liao, H. Y. M.: Recursive
hybrid fusion pyramid network for real-time small object detection on
embedded devices. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 402-403 (2020)

 Yu, X., Gong, Y., Jiang, N., Ye, Q., and Han, Z.: Scale match for tiny
person detection. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 1257-1265 (2020)

 Redmon, J. and Farhadi, A.: Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767 (2018)

 Wu, C., Szep, J., Hariri, S., Agarwal, N.K., Agarwal, S.K. and Nevarez,
C.: SeVA: An AI Solution for Age Friendly Care of Hospitalized Older
Adults. In HEALTHINF pp. 583-591 (2021)

 Xu, D., Song, R., Wu, X., Li, N., Feng, W., and Qian, H.: Video anomaly
detection based on a hierarchical activity discovery within spatio-
temporal contexts. Neurocomputing 143 (2014): 144-152.

 Zhou, S., Shen, W., Zeng, D., Fang, M., Wei, Y., and Zhang, Z.: Spatial–
temporal convolutional neural networks for anomaly detection and
localization in crowded scenes. Signal Processing: Image
Communication 47 (2016): 358-368.

 Yu, J., Lee, Y., Yow, K. C., Jeon, M., and Pedrycz, W.: Abnormal event
detection and localization via adversarial event prediction. IEEE
Transactions on Neural Networks and Learning Systems (2021)

 Xu, K., Jiang, X. and Sun, T.: An Intra-Frame Classification Network for
Video Anomaly Detection and Localization. In 2018 11th International
Congress on Image and Signal Processing, BioMedical Engineering and
Informatics (CISP-BMEI), pp. 1-6. IEEE (2018)

 Hikvision.com, 2020. [Online]. Available:
https://www.hikvision.com/content/dam/hikvision/en/brochures-
download/vertical-solution-brochure/Safe-City-Solution-Brochure.pdf.

 Jadon, S. and Jasim, M.: Unsupervised video summarization framework
using keyframe extraction and video skimming. In 2020 IEEE 5th
International Conference on Computing Communication and Automation
(ICCCA), pp. 140-145. IEEE (2020)

 Ribeiro, M. T., Sameer, S., and Carlos, G..: Why should i trust you?
Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 1135-1144 (2016)

 Gao, X., Szep, J., Satam, P., Hariri, S., Ram, S., and Rodriguez, J. J.:
Spatio-Temporal Processing for Automatic Vehicle Detection in Wide-
Area Aerial Video. IEEE Access 8 (2020): 199562-199572.

