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Abstract 

 

 In this dissertation, I conduct a visual lexical decision megastudy for the Semitic language 

Maltese and describe the construction of “MaltLex”, a database of visual lexical decision responses 

to 11,000 real words and 11,000 non-words by native Maltese speakers. MaltLex is the first such 

megastudy for a Semitic language, which characteristically use nonconcatenative morphological 

processes: Nonconcatenative morphology poses novel challenges for theories of word recognition 

and morphological decomposition which may be explored through the MaltLex dataset. Maltese 

is also unique among Semitic languages in several respects, such as in its use of the Latin alphabet 

and in its split lexicon (roughly half of all Maltese words are of non-Semitic origin and use only 

concatenative morphological processes), and so Maltese provides unique testing conditions for the 

role of letters, morphology, etc. in visual word processing. I conduct several “virtual experiments” 

(i.e. where I analyze subsets of the MaltLex dataset) in order to (1) validate MaltLex by replicating 

well-established findings from the lexical decision literature and (2) build upon our understanding 

of lexical processing in Maltese and Semitic languages by demonstrating several novel findings. 

 In Chapter 1, I explore how word frequency and individual differences in language use and 

proficiency mediate lexical processing in Maltese. I replicate the canonical word frequency effect 

(readers judge more frequent words faster and more accurately) and show that a frequency measure 

that is based on the number of documents in which a word occurs in a corpus (contextual diversity) 

better predicts lexical processing performance than does a more traditional measure that is based 

on a word’s total number of occurrences (word frequency), which is consistent with megastudy-

based research on non-Semitic languages (e.g. Brysbaert and New 2009). All MaltLex participants 

were bilingual in Maltese and English, and I also show that the more English-dominant participants 
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exhibited smaller processing differences in judging the lexicality of non-Semitic versus Semitic 

Maltese words than did the more Maltese-dominant participants, which is broadly consistent with 

“cognate advantage” effects found in multilingual lexical processing (e.g. Poort and Rodd 2017). 

 In Chapter 2, I explore how the orthographic form of a word mediates lexical processing 

in Maltese. I replicate standard orthographic neighborhood density effects: MaltLex participants 

judge real words that have more orthographic neighbors faster and more accurately than those with 

fewer neighbors, though this advantage becomes smaller as words increase in frequency; and they 

judge non-words with more neighbors slower and less accurately than those with fewer neighbors 

(e.g. Andrews 1989). Beyond the standard neighborhood density effect, I also show that MaltLex 

participants are even slower and less accurate at judging the lexicality of non-words that differ 

from an existing Maltese word except by the addition or omission of a diacritic, suggesting that 

Maltese readers process certain pairs of letters alike during lexical processing (e.g. “g” and “ġ”). 

 In Chapter 3, I explore the role that the consonant letters that comprise individual words 

play in visual lexical processing in Maltese. In a novel visual masked priming study, I show that 

similar priming effects obtain for non-Semitic versus Semitic words when primed by strings that 

consist of their consonant letters (e.g. pnġ priming PINĠA ‘to paint’), which is consistent with 

subset priming effects in non-Semitic languages (e.g. Anderson and Geary 2018, Duñabeitia and 

Carreiras 2011) but inconsistent with Geary and Ussishkin (2018), who found such priming effects 

for Semitic Maltese words but not non-Semitic Maltese words. I then analyze the MaltLex dataset, 

showing that the frequency of a word’s set of consonant letters across the Maltese lexicon mediates 

unprimed lexical processing and thus may mediate these differences in observed priming effects. 

 I have hardly scratched the surface of the range of analyses that may be performed using 

the MaltLex dataset, which I make freely available to other researchers. I conclude by describing 

the structure of the MaltLex dataset and how other researchers may access it in Chapter 4.  
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Chapter 1 

MaltLex: A database of visual lexical decision responses to 11,000 Maltese words 

 

1.1 Introduction1 

 In this chapter, I report on a visual lexical decision “megastudy” for the Semitic language 

Maltese and describe the construction of a database of Maltese lexical decision responses called 

“MaltLex”, the first of its kind for a Semitic language. In a megastudy, researchers collect many 

behavioral responses to a wide range of stimuli, often from a wide range of participants. In lexical 

decision megastudies, researchers assemble lexical decision responses to stimuli that differ across 

a range of characteristics to produce a massive database of lexical decision responses. This often 

includes words that are atypical of the stimuli used in traditional experiments (e.g. both uninflected 

and inflected words, words of various lengths) but which better reflect the linguistic stimuli that 

individuals encounter in everyday language use (Ernestus and Cutler 2015, Tucker et al. 2018). 

Any researcher can then analyze a subset of the total dataset to explore some variable(s) of interest, 

while simultaneously being able to control for other factors known to influence lexical processing.  

Megastudies, which have grown in popularity as an alternative to traditional experiments 

in recent years, circumvent many of the shortcomings of factorial studies (i.e. where researchers 

select and test a set of items that differ minimally except in some variable of interest); see Keuleers 

and Balota (2015) for some of the advantages of the megastudy approach to conducting behavioral 

research. For example, in a typical megastudy participants encounter a diverse set of linguistic 

items during the experiment that better approximates real language experience, thus circumventing 

potential context effects that reflect an artificial similarity among test items. Megastudies avoid 

other potential experimenter biases in selecting items for different conditions, and the massive size 

 
1 I presented an earlier version of this chapter at the 33rd Annual CUNY Human Sentence Processing Conference. 
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of megastudy databases provides greater power than is typical of traditional experiments. Further, 

researchers may be able to study individual differences among language users, depending on the 

range of participants surveyed and the types of participant information collected by the researchers.  

To date, visual lexical decision megastudies have been conducted on a range of languages 

that includes: Cantonese (Chinese Lexicon Project (CLP): Tse et al. 2017), Dutch (Dutch Lexicon 

Project (DLP): Keuleers, Diependaele, and Brysbaert 2010; Dutch Lexicon Project 2 (DLP2): 

Brysbaert et al. 2016), American English (English Lexicon Project (ELP): Balota et al. 2007) and 

British English (British Lexicon Project (BrLP): Keuleers et al. 2012), French (French Lexicon 

Project (FLP): Ferrand et al. 2010; Chronolex: Ferrand et al. 2011; MEGALEX: Ferrand et al. 

2018), Malay (Malay Lexicon Project (MLP): Yap et al. 2010), Mandarin (MELD-SCH: Tsang et 

al. 2018), European Portuguese (Soares et al. 2019), and Spanish (González-Nosti et al. 2014). 

Table 1.1 summarizes the characteristics of previous megastudies. In terms of the overall number 

of responses collected, MaltLex is consistent with some of the smaller megastudies cited here. 

A handful of auditory lexical decision megastudies have been conducted more recently on 

Dutch (BALDEY: Ernestus and Cutler 2015), Canadian English (MALD: Tucker et al. 2018), and 

French (MEGALEX: Ferrand et al. 2018), while other lexical decision megastudies have focused 

on visual masked form priming (Adelman et al. 2014) and on changes to lexical processing that 

occur across the lifespan of children (Schröter and Schroeder 2017). Even more recently, SPALEX 

(Aguasvivas et al. 2018, 2020) and the English Crowdsourcing Project (ECP: Mandera et al. 2020) 

have tapped into online crowdsourcing to create even larger visual lexical decision databases. 

 Megastudy datasets are designed to be so general as to be able to answer research questions 

that the creators themselves may have never envisioned. In recent years, researchers have used 

megastudy data to evaluate the predictions of competing word recognition models (e.g. Adelman  
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Table 1.1. Summary of visual lexical decision megastudies. I include only non-primed, in-lab studies conducted with adult, native 

speakers. Note that ELP (Balota et al. 2007), MLP (Yap et al. 2010), Chronolex (Ferrand et al. 2011), and Soares et al. (2019) also 

included speeded naming tasks, and Chronolex (Ferrand et al. 2011) also included a progressive demasking task, which I do not report. 

The number of items differed systematically across sessions in some studies, which I note in the “Items/Session” column in parentheses. 

For some studies, I had to estimate certain values based on other values provided by the authors, which I note using a tilde “~”. 

 
Language Participants Real words Non-words Items/Session Sessions/Participant Datapoints 

ELP (Balota et al. 2007) American 

English 

816 40,481 40,481 2,000 (1st), 

1,372–4 (2nd) 

2 2,749,324 

FLP (Ferrand et al. 2010) French 975 38,840 38,840 1,000 2 1,946,988 

DLP (Keuleers, Diependaele, 

and Brysbaert 2010) 

Dutch 39 14,089 14,089 500 (1st–56th), 

178 (57th) 

57 1,098,942 

MLP (Yap et al. 2010) Malay 40 1,510 1,510 1,020 3 ~122,400 

Chronolex (Ferrand et al. 2011) French 35 1,826 1,826 912 (1st, 3rd), 

914 (2nd, 4th) 

4 ~127,820 

BrLP (Keuleers et al. 2012) British 

English 

78 28,730 28,730 500 (1st–56th), 

230 (57th) 

57 2,240,940 

González-Nosti et al. (2014) Spanish 36 2,765 2,765 ~922 6 199,080 
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DLP2 (Brysbaert et al. 2016) Dutch 81 30,016 29,601 500 62 2,495,448 

CLP (Tse et al. 2017) Cantonese 594 25,286 25,286 936-938 3 ~1,670,000 

MEGALEX (Ferrand et al. 

2018) 

French 96 28,466 28,466 356 50 2,596,095 

MELD-SCH (Tsang et al. 2018) Mandarin 504 12,578 12,578 2,096–2,100 1 1,056,552 

Soares et al. (2019) European 

Portuguese 

55 1,920 1,920 980 4 211,200 

MaltLex Maltese 104 11,040 10,954 400 1-35 237,476 
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and Brown 2008); to compare the relative contributions of different lexical characteristics to word 

processing (e.g. Soares et al. 2019); to assess the relative efficacy of similar predictors of lexical 

processing efficiency, such as different word frequency norms (e.g. Brysbaert and New 2009, 

Ernestus and Cutler 2015, Keuleers, Brysbaert, and New 2010, Tucker et al. 2018); to contrast the 

factors that influence visual versus auditory word processing (e.g. Ferrand et al. 2018); to study 

the effects of repeated exposure to a given linguistic stimulus (e.g. Keuleers, Diependaele, and 

Brysbaert 2010); and to model word processing computationally (e.g. Baayen et al. 2011). To date, 

no megastudy has focused on a language that productively uses nonconcatenative morphology, 

which poses novel challenges for word recognition (e.g. Frost et al. 1997), which I describe in the 

next section. I aim to fill this gap by conducting the first visual lexical decision megastudy on a 

Semitic language, namely Maltese, which employs nonconcatenative word-formation strategies. 

 

1.1.1 Why Maltese? 

 Traditional analyses (e.g. Berman 1978, McCarthy 1979) posit that native word stems in 

Semitic languages, such as Arabic, Hebrew, and Maltese, typically consist of two discontinuous 

morphemes: A consonantal “root”, which assigns the word to a broad semantic field, and a vocalic 

and consonantal “pattern”, which contributes grammatical and thematic information. For instance, 

Maltese words consisting of the root k-t-b pertain to ‘writing’ (e.g. kiteb ‘to write; he wrote’, kitba 

‘writing’, and ktieb ‘book’), while words containing the pattern 1V22ie32 comprise agentive nouns 

(e.g. kittieb ‘writer’, tebbieħ ‘chef’, and għalliem ‘student’). These nonconcatenative morphemes 

interleave to form word stems, which may combine with concatenative morphemes (i.e. prefixes 

and suffixes) to form more complex words (e.g. kittieb ‘writer’ + -a ‘PL’ > kittieba ‘writers’). 

 
2 I use numerals to indicate the positions of the consonants of the root morpheme, and V to indicate a short vowel. 
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The non-linear nature of Semitic root and pattern morphology poses unique challenges for 

decomposition-based models of word recognition (e.g. Taft 1979, 2004; Taft and Forster 1975) 

which posit that individuals decompose complex words into their constituent morphemes during 

processing, and that these morphemes are stored lexically and mediate lexical access (Frost et al. 

1997, 2000). Nonetheless, psycholinguistic research has supported a role for root morphemes in 

mediating word processing in reading Arabic (e.g. Boudelaa and Marslen-Wilson 2001, 2004) and 

Hebrew (e.g. Deutsch et al. 1998; Feldman and Bentin 1994; Frost et al. 1997, 2000, 2005; Velan 

and Frost 2007, 2009, 2011), as well as Maltese (e.g. Geary and Ussishkin 2018, Twist 2006). For 

instance, Maltese readers judge word lexicality faster when subliminally primed by another word 

that shares the target’s root morpheme (Twist 2006) or by a nonce string that consists of the letters 

of the root (Geary and Ussishkin 2018). Further, letter transpositions that involve word-internal 

root and non-root letters impede sentence comprehension in Hebrew (Velan and Frost 2007, 2011). 

The structure of the Maltese lexicon provides unique testing conditions for the role of root 

morphology in word processing: Maltese descends from Siculo-Arabic (Agius 1996), a Maghrebi 

Arabic variety spoken in Sicily and Malta from the end of the ninth century until the end of the 

twelfth century (Brincat 2011, Comrie 1991), and thus, as a Semitic language, native word stems 

in Maltese typically consist of root and pattern morphemes. However, Maltese has spent the last 

millennium separated from other Semitic languages, instead developing in close contact with a 

series of Indo-European languages: first Sicilian and Latin, then Italian, and now English. Today, 

Maltese represents a mixed language combining features from its Semitic ancestry with those of 

the non-Semitic languages with which it has co-existed (Borg and Azzopardi-Alexander 1997). 

For instance, native words comprise approximately half the Maltese lexicon, with the bulk of non-

native terms having been borrowed from Sicilian or Italian (Bovingdon and Dalli 2006, Brincat 



20 

2011, Comrie and Spagnol 2016). Except for early borrowings, many of which were integrated 

into the root and pattern system (Hoberman and Aronoff 2003, Mifsud 1995a), borrowed words 

usually do not consist of root and pattern morphemes and instead are subject only to concatenative 

morphological processes. In general, nonconcatenative morphology has become less productive 

(e.g. Mifsud 1995b) while concatenative morphology has flourished: For example, Maltese has 

borrowed and extended to native forms several inflectional suffixes of Indo-European origin (Borg 

1994: 57, Gardani 2008: 75, Gatt and Fabri 2018, Hoberman 2007, Mayer et al. 2013). 

Little research has investigated the processing of non-native words in Maltese, nor how 

Maltese’s dual morphological systems interact in constraining lexical access. One exception is 

Geary and Ussishkin (2018), who compared subliminal priming by nonce letter strings consisting 

of the target’s consonant letters: They found facilitation for Semitic words, for which these strings 

represented the word’s root morpheme (e.g. frx priming FIREX ‘to spread’; root: frx), but not for 

non-Semitic words, for which they were non-morphemic (e.g. pnġ priming PINĠA ‘to paint’). The 

lack of priming for non-Semitic Maltese words contrasts with priming by comparable consonant-

letter strings (e.g. csn priming CASINO) found in Indo-European languages like English (Anderson 

and Geary 2019) and Spanish (Duñabeitia and Carreiras 2011), and suggests that language-specific 

morphological patterns may influence the role of consonant letters in constraining lexical access 

(Anderson and Geary 2019). To facilitate further study of the non-Semitic stratum of Maltese, I 

have included words of Semitic and non-Semitic origin, as well as uninflected and inflected words 

that exhibit concatenative and nonconcatenative morphology, as targets in the MaltLex dataset. 

Additionally, Maltese is, together with Cypriot Arabic, one of two Semitic languages that 

are written using the Latin alphabet. Other Semitic languages, like Arabic and Hebrew, use abjad 

writing systems that prioritize representing consonants and often leave vowels unwritten, and thus 



21 

represent the roots of words but leave patterns (partly) unwritten. In contrast, all consonants and 

vowels are written in Maltese (i.e. neither morphemic element is privileged). Differences in writing 

systems may constrain the role of Semitic morphology in mediating lexical access: For instance, 

whereas Velan and Frost (2007, 2011) found that letter transpositions that involve root letters 

disrupt processing in Hebrew, Perea et al. (2012) found that letter transpositions, including those 

that involve root letters, generally fail to disrupt sentence/lexical processing in Maltese, which they 

ascribe to orthographic differences between the two languages (cf. Maltese patterns like Indo-

European languages that are written using the Latin alphabet in that readers tolerate letter 

transpositions). Further, the use of the Latin alphabet in Maltese allows for more straightforward 

comparisons of the contributions of orthographic characteristics between Maltese and non-Semitic 

languages that use the same writing system, such as English (e.g. Balota et al. 2007) and French 

(e.g. Ferrand et al. 2018), for which visual lexical decision megastudy datasets already exist. 

The rest of this chapter is organized as follows: In Section 1.2, I describe the construction 

of MaltLex and the data collection procedures. In Section 1.3–1.5, I demonstrate and validate the 

use of the MaltLex dataset for studying visual word recognition and the factors that mediate lexical 

processing by conducting analyses wherein I compare different measures of word frequency as 

predictors of lexical processing efficiency (Section 1.3), I compare responses to Semitic versus 

non-Semitic Maltese words (Section 1.4), and I explore how language dominance influences the 

processing of words of the two lexical strata (Section 1.5). I summarize my results in Section 1.6. 
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1.2 Methods 

1.2.1 Participants 

 I collected responses from 104 native or near-native Maltese speakers,3 all of whom were 

recruited through the University of Malta. Participants were at least 18 years old, with a mean age 

of 24.0 years (range: 18−77 years). Fifty-three participants identified as female and 51 as male; 87 

participants identified as right-handed and 17 as left-handed. All participants were expected to be 

bilingual in Maltese and English, and so they completed the Bilingual Language Profile (BiLP; 

Birdsong et al. 2012) after their initial session to provide a composite, continuous measure of their 

language dominance (Appendix 1): Possible scores range from −218 to 218, with negative scores 

indicating greater English dominance, positive scores indicating greater Maltese dominance, and 

“0” indicating perfect balance. Participants exhibited a mean dominance score of 38.0 (range: 

−52.2−113.2), reflecting that participants tended to be dominant in Maltese rather than English. 

Participants whose performance met my inclusion criteria were invited to participate in additional 

sessions of the experiment (Section 1.2.3), and participants received €5 for each session completed. 

Data from an additional 29 participants was collected but has been excluded from analysis 

and from the final dataset. These participants were excluded for identifying as late, L2 learners of 

Maltese, rather than (near-)native speakers; for having an accuracy rate below 80% (Diependaele 

et al. 2012); or for failing to follow study procedures (e.g. reporting that they chose not to respond 

as quickly as possible, which was reflected in slower response times relative to other participants; 

reading the potential words aloud; interacting with other participants or the experimenter, or using 

their phone during the session; and mishandling and damaging the experiment hardware). 

 
3 Two participants identified as having learned Maltese starting at the age of 1 years old and English at the ages of 3 

and 5 years old, respectively. However, as they had also identified as having lived in Malta their entire lives and did 

not disclose having learned any other language since birth, I infer that they must have been exposed to Maltese since 

birth. A third participant identified as having learned English from birth but Maltese only starting at age 3. 
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1.2.2 Materials 

 I planned for participants to judge the lexicality of 11,000 real Maltese words and 11,000 

non-words. The real-word targets were randomly selected from Korpus Malti v3.0 (Gatt and Čéplö 

2013), a 250-million-token corpus of written Maltese which I trimmed to remove non-Maltese 

texts and non-words (e.g. URLs) as well as personal names, and supplemented with words from 

other sources. The selected words were checked against Ġabra (Camilleri 2013), a Maltese lexical 

database containing 16,593 lemma-based entries, and vetted by a native speaker to ensure that they 

were not offensive, archaic, or otherwise unlikely to be recognized as words by participants. Real-

word targets included both uninflected and inflected forms, monosyllabic and multisyllabic words, 

words of Semitic and non-Semitic origin, negated forms, and words of various syntactic categories 

(e.g. nouns, verbs, adjectives, numerals, prepositions), such that the target set better reflects the 

language encountered in daily use than those used in more traditional lexical decision studies. 

For each real-word target, I constructed a non-word counterpart by replacing at least one 

consonant letter to create a potential nonce form unattested in the trimmed version of Korpus Malti. 

Non-word construction respected properties of the Semitic and non-Semitic strata of the Maltese 

lexicon (e.g. the letter ħ was never used in creating a non-word from a non-Semitic target, as non-

Semitic words rarely contain this letter; while the letter p, being exclusive to non-Semitic words, 

was never used to create a non-word from a Semitic target). Real-word targets and their non-word 

counterparts were matched exactly in length and approximately in orthographic neighborhood 

density, weighted according to neighbors’ word frequency in Korpus Malti in order to compensate 

for non-words, misspellings, and other low frequency forms.4 A native speaker vetted all potential 

 
4 I counted as an orthographic neighbor any word listed in Korpus Malti v3.0 (Gatt and Čéplö 2013) that differs from 

the target via (1) the substitution, (2) addition, or (3) deletion of a single letter (e.g. for kittieb ‘writer’, (1) kittien ‘flax, 

hemp’, (2) kittieba ‘writers’, and (3) kitteb ‘to write regularly; he wrote regularly’ were counted as orthographic 

neighbors). I weighted neighborhood density by summing each neighbor’s word frequency value in Korpus Malti. 
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non-words to ensure that they were non-words, that they comprised plausible (i.e. phonotactically 

legal) non-words, and that they were not too similar to an existing word such that participants 

might easily confuse the two, and all problematic non-words were replaced and re-vetted.5 

I divided the 22,000 targets into 55 lists, each containing 200 real- and 200 non-word 

targets. To mitigate repetition priming effects, real-word targets having the same lemma (e.g. jikteb 

‘he writes’ and tikteb ‘she writes’, both of the lemma kiteb ‘to write’) were assigned to different 

lists (lemmas were obtained from Ġabra). To maintain length and neighborhood-density matching 

within lists, real-word targets and their non-word counterparts were assigned to the same list. 

For each list, 20 real-word and 20-non-word targets were used as practice items. Practice 

items comprised targets that had been assigned to other lists. To mitigate possible long-term 

repetition priming effects, participants were assigned to lists across the study such that they never 

encountered an item which they had previously judged as a practice item as an experimental target. 

 The final set of targets includes 11,040 unique real-word targets and 10,954 unique non-

word targets. 6 The former comprise 6,514 Semitic words, 4,429 non-Semitic (i.e. Indo-European) 

 
5 I systematically explore how neighborhood density impacts visual lexical processing performance in Maltese in 

Chapter 2, where I replicate several established orthographic neighborhood density effects. In particular, I find that 

Maltese readers judge the lexicality of real words with more orthographic neighbors faster and more accurately than 

words with few neighbors; that this advantage diminishes as words increase in frequency; and that readers judge the 

lexicality of non-words with more neighbors slower and less accurately than those with few neighbors. 
6 Following data collection I discovered that, due to coding errors and despite the vetting procedures in place for 

potential targets, a handful of items needed to be recoded as real or nonce prior to data analysis. Participants did not 

receive feedback during the experiment (Section 1.2.3) and so would not have known if they had given the “incorrect” 

response at any point, hence these inconsistencies will not have affected their lexical decision performance. Rather, 

these changes slightly alter the total number of real-word and non-word targets used across the experiment and within 

lists, as well as alter the overall characteristics of real-word versus non-word targets, which I report below. (1) Six 

words were used twice across the experiment, either twice coded as a real word, or once as a real word and once as a 

non-word. For each of these six pairs, the two instances of the same target had occurred in different lists. I recoded as 

real-word targets all such targets that had originally been coded as non-words, and corrected participants’ response 

accuracies to reflect the target’s corrected lexicality. Further, to mitigate any long-term repetition priming effects, I 

have excluded from analysis and from the final dataset a total of 16 datapoints where the participant judged the relevant 

target a second time. (2) One item, intended to be nsabi ‘nets’, was misspelled as nasbi (error rate = 73%), which I 

have recoded as a non-word target and corrected participants’ response accuracies to reflect its corrected lexicality. 

(3) Lastly, 42 items were used as non-word targets that I have subsequently recoded as real words, and corrected 

participants’ response accuracies to reflect the target’s corrected lexicality: These items are attested as words in Ġabra 

(38 items were generated as potential non-words due to their non-occurrence in Korpus Malti v3.0) and were first 

identified after data collection due to their exhibiting error rates of 70% or higher in the lexical decision megastudy. 
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words, and 97 words of uncertain origin (e.g. because their form is consistent with both a Semitic 

word and a non-Semitic Maltese word, or because their etymology is unknown; etymologies were 

taken from Aquilina 1987–1990). Each list contained 199−203 real-word targets (M = 200.8 real-

word targets) and 197−201 non-word targets (M = 199.2 non-word targets). Real-word targets 

ranged in length from 2−21 letters (M = 7.1 letters), in word frequency from 0−20,446.1 

occurrences per million words in Korpus Malti v3.0 (M = 36.7 occurrences per million words), 

and in word frequency-weighted orthographic neighborhood density from 0−49,584.6 occurrences 

per million words in Korpus Malti v3.0 (M = 157.8 occurrences per million words). I present the 

distributions of length, log-transformed word frequency, and log-transformed word frequency-

weighted orthographic neighborhood density for real-word targets in Figures 1.1−1.3. 

 
This is not to say that all non-word targets that had a high error rate were recoded: Legitimate non-word targets could 

exhibit high error rates resulting from, for instance, their bearing a strong resemblance to an existing word (e.g. the 

nonce target *xeffaq resembles xefaq ‘horizon’), and I have maintained such items as non-words. Likewise some 

legitimate words exhibited high error rates, yet I consider them real words due their having passed stringent selection 

criteria: Each word (1) occurs in Korpus Malti v3.0 (Gatt and Čéplö 2013) or another Maltese source, (2) is attested 

in Ġabra (Camilleri 2013), and (3) was approved by a native speaker prior to data collection. High error rates for some 

targets are to be expected, and such data may prove informative regarding the words that Maltese readers actually 

know, the cues that they use in recognizing words (e.g. what spelling variation they subconsciously tolerate), etc. 

Figure 1.1. Distribution of word lengths for real-word targets (MaltLex). 



26 

 

Figure 1.2. Distribution of log-transformed word frequency for real-word targets 

(MaltLex). Prior to applying a log-transformation, I added 1 to each raw word frequency 

value to account for items having a raw word frequency value of 0. 

Figure 1.3. Distribution of log-transformed word frequency-weighted orthographic 

neighborhood density for real-word targets (MaltLex). Prior to log-transformation, I added 

1 to each raw word frequency-weighted orthographic neighborhood density value to 

account for items having a neighborhood density of 0. 
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The results of a series of Welch’s unequal variances t-tests comparing word length, word 

frequency, and word frequency-weighted orthographic neighborhood density for Semitic versus 

non-Semitic targets revealed (1) that non-Semitic targets had a reliably greater average length than 

Semitic targets (MSemitic = 6.5, MNon-Semitic = 7.9 letters; t(6,959.3) = 32.12, p < 0.001); (2) that 

Semitic targets had a reliably greater average frequency than non-Semitic targets (MSemitic = 40.4, 

MNon-Semitic = 29.9 occurrences per million words; t(8,358.9) = −2.27, p < 0.05); and (3) that Semitic 

targets had a reliably greater average neighborhood density than non-Semitic targets (MSemitic = 

213.7, MNon-Semitic = 70.1 occurrences per million words; t(7,367.7) = −7.27, p < 0.001). The greater 

average frequency for Semitic targets likely reflects multiple factors, such as the fact that Maltese 

function words, which are among the most frequent words, tend to be of Semitic origin (see Comrie 

and Spagnol 2016 for discussion of the distribution of Semitic/non-Semitic words across semantic 

fields and parts of speech in Maltese). The shorter average length of Semitic words contributes to 

their greater average neighborhood density (shorter words tend to have more neighbors), and these 

differences in length and neighborhood density likely also reflect differences in source language 

phonotactics for Semitic versus non-Semitic Maltese words. Researchers should account for these 

differences in comparing lexical decision performance for targets of the two etymological strata. 

 Non-word targets ranged in length from 2−21 letters (M = 7.1 letters) and in word 

frequency-weighted orthographic neighborhood density from 0−54,575.6 occurrences per million 

words in Korpus Malti (M = 124.3 occurrences per million words). The results of a series of 

Welch’s unequal variances t-tests comparing length for real-word versus non-word targets in each 

list were all non-significant, as were a similar series of t-tests comparing word frequency-weighted 

orthographic neighborhood density for real-word versus non-word targets per list in all but one 

list, suggesting that participants could not rely on these sub-lexical cues to judge target lexicality. 
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1.2.3 Procedures 

 The experiment took place in a room at the Institute of Linguistics and Language 

Technology at the University of Malta. Participants sat in front of one of three laptop computers 

during the experiment, facing away from other participants and seated approximately seven feet 

away from the nearest participant (Figure 1.4: A−C). Prior to the experiment participants received 

Figure 1.4. Layout of the experiment room. The experiment took place in a room at the 

Institute of Linguistics and Language Technology at the University of Malta. Participants 

sat in front of one of the computers at stations (A−C). Depending on the number of 

participants present in a session, the experimenter sat either in a chair in the corner of the 

room (D) or at the near end of station (C), where they quietly monitored the session. 
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verbal instructions in English and written instructions in Maltese, and they were then given an 

opportunity to request clarification. Participants were instructed that they would see a series of 

possible words appear onscreen, one at a time, and that for each potential word they would need 

to decide whether it was a real Maltese word or not “as quickly and as accurately as possible”. 

Participants were instructed to respond during the study by pressing one of two bumper buttons on 

a Logitech F310 Gamepad to register their responses. I used a gamepad to record responses in 

order to ensure consistent and accurate response time (RT) measurements (Witzel et al. 2013). 

  As many as three participants completed a session simultaneously, providing a potential 

distraction for one another. Additionally, the Institute of Linguistics and Language Technology is 

located in a noisy parking lot and was adjacent to a loud construction project at the time of data 

collection, providing further potential distractions for participants. Thus, each participant wore a 

pair of active noise-cancelling headphones during the experiment to mitigate such distractions. 

After receiving the instructions and consenting to participate, participants completed the 

40 practice trials followed by the 400 experiment trials. Items were presented pseudo-randomly 

such that participants never received more than four real-word targets or four non-word targets in 

a row (this was not mentioned to participants). Participants were able to take an untimed break 

following the final practice trial and following the 150th and 300th experiment trials (during which 

participants remained seated, being able to stretch, take a drink, etc.). After completing the 

experiment trials, participants were asked to quietly remain seated while other participants finished 

the experiment. Following their first session of the experiment, participants were asked to complete 

a short background questionnaire, which included the BiLP (Birdsong et al. 2012) and additional 

questions asking about handedness and whether they had been diagnosed with a vision problem. 
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 Stimuli were presented using DMDX (Forster and Forster 2003). Stimuli were presented 

in lowercase, 12-point Courier New font. On each trial, a fixation cross “+” first appeared in the 

middle of the screen for 500 ms, then was replaced by a blank screen for 100 ms, and then by the 

target for 3,000 ms. DMDX recorded responses starting from target onset: If a response was not 

made within 3,000 ms, DMDX recorded a non-response and proceeded to the next trial. During 

the experiment, participants received feedback only on non-response trials (“Ebda risposta”, i.e. 

‘No response’), which DMDX displayed for approximately 1,500 ms before proceeding to the next 

trial; otherwise, DMDX displayed a blank screen for approximately 1,500 ms before proceeding. 

 Each session lasted approximately 40 minutes to 1 hour. After completing their first 

session, participants were debriefed about the nature of the study, and then those participants (1) 

who identified as native (or near-native) speakers of Maltese in the background questionnaire, (2) 

who had achieved an overall accuracy rate exceeding 80% (Diependaele et al. 2012), and (3) who 

had not exhibited other performance issues (e.g. reporting that they did not respond as quickly and 

as accurately as possible on each trial) were invited to participate in additional sessions of the 

experiment, during which they were assigned to a new list of items (the order of list assignment 

was randomized). Performance was monitored across sessions, and further participation ceased if 

a participant’s accuracy rate dropped below 80% or they exhibited other performance issues.7 

 Participants were able to sign up for as many as three sessions per day (they took at least a 

ten-minute break between sessions), and participants completed between 1 and 35 sessions apiece 

(M = 5.8 sessions). I originally planned to have a smaller number of participants complete a larger 

number of sessions apiece, namely for 24 participants to complete 30 total sessions apiece. 

 
7 Although no participant who completed multiple sessions had an overall accuracy rate that dropped below 80%, a 

number of participants exhibited sub-80% accuracy rates during their first session and so were not invited to participate 

further; their data is omitted from the final dataset. Additionally, several participants began engaging in disruptive 

behavior as sessions accrued (e.g. interacting with other participants, using their cellphones), necessitating that their 

participation cease and that data for their affected session(s) likewise be omitted from the final dataset. 
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However, participants varied considerably in the amount of time they could commit to the study 

and in their focus across sessions of the study, and so I adopted the current procedures wherein 

participants could participate in any number of sessions up to a max of 35. To account for potential 

effects of practice and fatigue, I recorded for each participant not only trial number within a given 

session (expecting performance to diminish across sessions due to fatigue), but also session 

number in a given day and overall session number for each participant (expecting performance to 

improve with practice across sessions), and I have included these values in the final dataset. 

 I collected approximately 237,500 analyzable lexical decision responses in total, which 

includes 10−13 responses per target (M = 10.8 responses).8,9 Thus, MaltLex is consistent in terms 

of the number of responses collected with some of the smaller visual lexical decision megastudies 

(cf. Table 1.1). I believe that the size of MaltLex will prove sufficient for researchers who wish to 

study the properties of visual word recognition through the Maltese language (e.g. to investigate 

the nuances of lexical processing in a language that uses both concatenative and nonconcatenative 

morphology). In the next sections I conduct several “virtual experiments” using MaltLex data, i.e. 

where I analyze subsets of the total dataset in lieu of conducting a novel experiment (cf. Keuleers 

and Balota 2015, Kuperman 2015), in which I aim to replicate findings from prior lexical decision 

studies on Maltese and other languages in order to demonstrate the validity of the MaltLex dataset. 

 
8 The actual number of responses is 237,476, reflecting four factors: (1) I had planned for participants to judge 500 

non-practice items per session, and in the first three sessions List 1 contained 500 non-practice targets. This proved to 

be too many items for participants to judge and complete the background questionnaire in an hour, and for subsequent 

sessions I trimmed List 1 to 400 targets and assigned the remaining 100 targets to new lists. This produced a total of 

237,500 lexical decision responses (= 500 responses/session * 3 sessions + 400 responses/session * 590 sessions). 

However, (2) I replaced the word nittien ‘pervert’ and its non-word counterpart with new targets after having collected 

3 responses apiece, after one participant conveyed to me that nittien could be perceived as offensive. Because I was 

able to collect few responses to these items, I have omitted them from the final dataset. Additionally, (3) DMDX 

recorded display issues on two trials, and (4) I eliminated 16 datapoints where participants had judged a given target 

a second time (Section 1.2.2), bringing the total number of responses to 237,476 (= 237,500 – 6 – 2 – 16). 
9 I collected responses from 12 participants for the list which originally contained nittien. Because I replaced nittien 

after having already collected 3 responses, I collected only 9 responses for the replacement word, referendum 

‘referendum’, and for its non-word counterpart. For the six targets which were reused across lists, I collected 16−20 

responses apiece (M = 18.3 responses). Otherwise, I collected 10−13 responses per target (M = 10.8 responses). 
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 Following common practice in lexical decision megastudies (e.g. Tse et al. 2017, Soares et 

al. 2019), I trimmed outliers prior to data analysis by removing datapoints for which the RT was 

faster than 200 ms (13 datapoints) or slower than 2,500 ms (2,382 datapoints). Then, I calculated 

the mean and standard deviation (SD) of the RTs for each participant and removed datapoints for 

which the RT was ±2.5 SDs from each participant’s mean RT (6,723 datapoints). This reduced the 

dataset to 228,358 total datapoints (96.2% of the total dataset), comprising 115,612 lexical decision 

responses to real-word targets and 112,746 responses to non-word targets. All analyses reported 

below are based on the trimmed dataset. Within the trimmed dataset, participants were faster to 

judge real-word targets (M = 850 ms, SEM = 1.02 ms) than non-word targets (M = 990 ms, SEM 

= 1.14 ms) on trials on which they gave the correct response, consistent with previous Maltese 

visual lexical decision studies (e.g. Twist 2006) and typical of lexical decision studies generally: 

Possible non-words require an exhaustive “search” of the lexicon to confirm their non-lexicality, 

and so normally take longer to reject in a lexical decision task than real words require to accept 

(e.g. Forster 1976). Participants judged both real-word and non-word targets with greater than 90% 

accuracy, but they were more accurate at judging non-words (94.3%) than real words (90.5%). 

 

1.3 Virtual experiment 1: Analysis of word frequency measures 

 Perhaps the most robust and well-studied variable that is known to mediate lexical 

processing is word frequency: All else being equal, readers and listeners more efficiently process 

words that they have encountered more often than words that they have encountered less often 

(e.g. Preston 1935, Forster and Chambers 1973, Taft and Hambly 1986, Connine et al. 1990; see 

Brysbaert et al. 2011, 2017 for review of recent advances in the study of word frequency effects 

in lexical processing). In lexical decision, participants are faster and more accurate at judging the 

lexicality of high-frequency words than low-frequency words, and word frequency may explain 
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30−40% of the variation observed in RTs and response accuracy in lexical decision experiments 

(Brysbaert et al. 2016, 2017). Of course, researchers do not know how frequent a particular word 

has been in a given individual’s linguistic experience: Instead, we estimate word frequency based 

on corpus counts, expecting that our estimates will hold across the population of language users.  

Word frequency has traditionally been estimated by counting the number of times that a 

word appears in a corpus (henceforth: WF). However, recent research has found that contextual 

diversity (CD), a measure that is based on the number of unique documents in a corpus in which a 

word appears, actually serves as a better predictor of lexical processing efficiency (e.g. Adelman 

et al. 2006, Adelman and Brown 2008, Brysbaert and New 2009, Keuleers, Brysbaert, and New 

2010, Tse et al. 2017). For instance, Brysbaert and New (2009) compared WF and CD measures 

taken from SUBTLEX-US (a corpus of American English film and television show subtitles, part 

of the SUBTLEX family of subtitle-based corpora) in analyzing English lexical decision RTs using 

the ELP dataset (Balota et al. 2007): They found that the SUBTLEX-US CD measures 

outperformed its WF measures (and the WF measures of other corpora) by accounting for a greater 

amount of variance in the RT data. Keuleers, Brysbaert, and New (2010) and Tse et al. (2017) 

similarly observed an advantage for SUBTLEX CD measures over its WF measures in explaining 

variance in lexical decision RTs using Dutch and Cantonese megastudy data, respectively. 

There are two general explanations for the superiority of CD measures over WF measures 

in explaining performance in lexical decision tasks. For one, it may be that CD better approximates 

the average language user’s linguistic experience than does WF, which may over- or underestimate 

word exposure to a greater degree than does CD: For instance, a word that occurs frequently but 

in a limited range of contexts (i.e. high WF, low CD; e.g. as could be the case for certain technical 

vocabulary) may be experienced frequently by some individuals but remain effectively unknown 
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to others who have not encountered those particular contexts, and CD measures may better account 

for such differences than do WF ones. Alternatively, it may be that language users actually track 

the range of contexts in which they experience different words, either instead of tracking the total 

number of times they have experienced each word (i.e. the word frequency effect actually reflects 

an effect of contextual diversity) or in addition to tracking WF. By prioritizing words according to 

the range of contexts in which they have occurred, and treating as more “frequent” those words 

that have been encountered in a wider range of contexts, language users may be better able to 

predict which words they will need in future situations, for instance, by ignoring lexical candidates 

that occur frequently but in a limited range of contexts and thus that one is less likely to need in a 

future context (see Adelman et al. 2006, Adelman and Brown 2008 for similar explanations). 

I leave aside the question of why CD-based measures better explain lexical decision 

performance than WF measures, and instead aim simply to investigate the predictive ability of WF 

and CD in MaltLex, using WF and CD norms calculated across Korpus Malti v3.0 (Gatt and Čéplö 

2013). If I replicate the previously reported advantage for CD, this will serve as a first validation 

of the MaltLex dataset for its use in studying visual lexical processing. I also leave aside related 

questions concerning the appropriate size and composition of the corpus that is used to estimate 

word frequency: For example, previous studies have found that corpora that are based on different 

sources may explain word processing performance better for different participant populations, 

such as corpora based on film and television subtitles for university students (Brysbaert and New 

2009) versus more traditional, book-based corpora for older participants (Cuetos et al. 2012). 

Frequency counts based on corpora larger than 20-million words generally outperform those based 

on smaller corpora (Brysbaert and New 2009, Brysbaert et al. 2017). Korpus Malti v3.0 comprises 

approximately 250-million words taken from written sources of a range of genres (e.g. academic, 

legal, and religious texts; Maltese literature). Likewise, I do not ask whether Korpus Malti WF and 
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CD measures could be improved by incorporating other measures (e.g. Jones et al. 2012 found that 

a CD measure that incorporates the semantic redundancy between contexts better accounts for 

visual word processing performance than do raw CD counts) and instead focus on comparing the 

WF and CD measures alone as predictors of Maltese visual lexical decision performance. 

 

1.3.1 RT analysis and results 

 I analyzed RTs to real-word targets on trials on which participants provided the correct 

response (104,644 responses to 10,951 unique targets) by comparing a series of three maximum 

likelihood-fitted linear mixed-effects regression (LMER) models using the lme4 package (Bates, 

Maechler et al. 2015) in R (R Core Team 2021). Models were fitted using the bobyqa optimizer. 

Each model included log-transformed RT as the dependent variable, participant and target as 

random effects, and the following control variables as fixed effects: log-transformed word 

frequency-weighted orthographic neighborhood density (I added 1 to each value prior to applying 

the log transformation to account for targets having a value of 0); log-transformed target length (in 

number of letters); participant’s age; participant’s trial number; participant’s overall session 

number; and participant’s session number within a given day. Critically, the three models differed 

in terms of which Korpus Malti v3.0 frequency measure they included as an additional fixed effect: 

• no frequency measure; 

• log-transformed WF (WF-only model); 

• log-transformed CD (CD-only model); 

I added random slopes for log-transformed WF by-participants in the WF-only model, and log-

transformed CD in the CD-only model: The results of a series of likelihood ratio tests comparing 

each model to its random intercepts counterpart supported their inclusion for the WF-only (χ2(2) 

= 536.49, p < 0.001) and CD-only models (χ2(2) = 503.49, p < 0.001) (Bates, Kliegl et al. 2015). 
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To compare models, I analyzed each model’s Akaike Information Criterion (AIC): AIC 

represents a composite measure of a model’s goodness-of-fit (i.e. the amount of explained variance 

in the fitted dataset) and complexity. Among a set of models fitted to the same dataset, the model 

that has the lowest AIC has the best combination of fit and complexity, as it minimizes the loss in 

explained variance relative to the “true” model of the dataset. Models with higher AIC values have 

a worse combination of fit and complexity: While adding parameters necessarily improves the fit 

of a model, if the increase in explained variance does not offset the increase in model complexity, 

AIC increases (Akaike 1973, Burnham and Anderson 2004). I compare the likelihood of each 

model using the formula: exp(−Δi/2), where Δi represents the difference in AIC between model i 

and the model with the lowest AIC (i.e. Δi = AICi – AICmin). This indicates the probability that 

model i minimizes information loss relative to the model with the lowest AIC value, indicating the 

likelihood of model i relative to the best-fitting model (Burnham and Anderson 2004: 270-272). 

To then assess the significance of fixed effects within the best-fitting model, I used the lmerTest 

package (Kuznetsova et al. 2017) to simulate Satterthwaite approximations for degrees of freedom. 

 The results of model comparisons are presented in Table 1.2. Unsurprisingly, both the WF-

only model (Δ = 3,213.64, p < 0.001) and the CD-only model outperformed the model that did not 

include any measure of target frequency as a fixed effect (Δ = 3,271.12, p < 0.001). However, the 

CD-only model outperformed the WF-only model, exhibiting a significantly better combination of 

goodness-of-fit and model complexity (Δ = 57.93, p < 0.001). Thus, CD alone also outperforms 

WF alone in explaining the variance in visual lexical decision RTs within the MaltLex dataset. 

 All fixed effects that were included in the CD-only model were significant: Unsurprisingly, 

participants responded faster as CD increased: More frequent targets elicited faster RTs than did 

less frequent targets (β ̂ = –0.03964; t(139.8) = –28.82, p < 0.001). Participants were faster to 
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respond as neighborhood density increased (β̂ = –0.00165; t(10,400) = –2.64, p < 0.01) but slower 

as target length increased (β̂ = 0.16430; t(10,080) = 34.47, p < 0.001). RTs increased along with 

participant’s age (β ̂= 0.00443; t(267.8) = 3.41, p < 0.001). Participants were slower to respond 

across trials, likely reflecting an effect of fatigue (β̂ = 0.00008; t(100,500) = 11.35, p < 0.001), but 

faster to respond across sessions, reflecting an effect of practice and increasing familiarity with the 

lexical decision task (β̂ = –0.00174; t(88,860) = –11.82, p < 0.001). Likewise, participants were 

faster to respond across sessions within the same day (β ̂= –0.01459; t(101,000) = –7.97, p < 0.001). 

 

1.3.2 Accuracy analysis and results 

I analyzed response accuracy to real-word targets (115,612 responses to 11,040 unique 

targets) by comparing a series of three generalized linear mixed-effects regression (GLMER) 

models fitted using the binomial logit link function and the bobyqa optimizer in R. Each model 

included response accuracy as the dependent variable (0 = incorrect, 1 = correct); log-transformed 

target length and the participant’s within-day session number as fixed effects; and participant and 

target as random effects. As in the RT analysis, the models differed in whether they also included 

Table 1.2. Results of model comparisons for the analysis of word frequency measures. The 

models are organized in increasing order of AIC, and the Δ- and p-values are based on 

comparison of the model’s AIC value with that of the best-fitting model. 

 RT Accuracy 

 AIC Δ p AIC Δ p 

CD-only model 18,167.48 ----- ----- 50,539.43 ----- ----- 

WF-only model 18,225.41 57.93 < 0.001 50,743.47 204.03 < 0.001 

No frequency measure 21,438.64 3,271.12 < 0.001 53,725.63 3,186.20 < 0.001 
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no measure of target frequency, log-transformed WF (WF-only model), or log-transformed CD 

(CD-only model) as a fixed effect. Models that included additional fixed effects (e.g. for 

neighborhood density or overall session number) either failed to converge or failed to improve 

model fit; the fixed effects structure used here results in the best-fitting set of models that 

converged.10 I included random slopes for log-transformed WF by-participants in the WF-only 

model (χ2(2) = 97.63, p < 0.001) and for log-transformed CD by-participants in the CD-only model, 

which the results of likelihood ratio tests comparing each model with its random-intercepts 

counterpart model support for this dataset (χ2(2) = 96.61, p < 0.001) (Bates, Kliegl et al. 2015). 

The results of model comparisons are presented in Table 1.2. Once again, both the WF-

only model (Δ = 2,982.16, p < 0.001) and the CD-only model outperformed the model that did not 

include a measure of target frequency as a fixed effect (Δ = 3,186.20, p < 0.001), and the CD-only 

model outperformed the WF-only model (Δ = 204.03, p < 0.001). All fixed effects included in the 

CD-only model were significant: Participants responded more accurately as CD increased (β̂ = 

0.60701; z = 37.55, p < 0.001) and as target length increased (β̂ = 2.14285; z = 24.25, p < 0.001). 

Accuracy decreased across sessions within the same day (β̂ = –0.11315; z = –4.08, p < 0.001). 

 

1.3.3 Discussion 

 Consistent with earlier analyses of visual lexical decision megastudy data (e.g. Brysbaert 

and New 2009, Keuleers, Brysbaert, and New 2010, Tse et al. 2017), the results of the RT and 

response accuracy analyses both support the hypothesis that a measure of frequency that is based 

on contextual diversity, rather than token word frequency counts, better predicts Maltese lexical 

processing performance as measured by visual lexical decision. Given the unavailability of other 

 
10 Convergence issues are not unusual for a generalized linear mixed-effects regression analysis. Further, the overall 

high accuracy rate (90.5%) leaves little variation for the models to explain. 
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large Maltese corpora (e.g. one based on film and television subtitles), I only compared WF and 

CD measures taken from the 250-million-word Korpus Malti v3.0 (Gatt and Čéplö 2013), but I 

believe that the overall size of the corpus supports the validity of these measures (Brysbaert and 

New 2009, Brysbaert et al. 2017). In subsequent analyses I include CD, rather than WF, as a 

predictor of lexical decision performance, and I recommend that other researchers do the same. 

 

1.4 Virtual experiment 2: Analysis of lexical stratum 

 One of the most interesting properties of Maltese is its split lexicon: Roughly half of all 

Maltese words are of Semitic origin, reflecting Maltese’s beginnings as a Maghrebi Arabic dialect, 

while the other half comprise borrowings from non-Semitic languages (namely Sicilian, Italian, 

and English), reflecting a millennium of contact with these languages as well as widespread 

multilingualism among Maltese speakers (Bovingdon and Dalli 2006, Brincat 2011, Comrie and 

Spagnol 2016). To be able to address processing differences between native and borrowed Maltese 

words, I included both Semitic and non-Semitic words as targets in the visual lexical decision 

megastudy, yet it is worth acknowledging that words of the two strata are, in many ways, not equal. 

For example, function words and other core vocabulary are overwhelmingly of Semitic origin; 

Maltese speakers have primarily borrowed content words (Comrie and Spagnol 2016). Among the 

MaltLex target set, words of the two strata differ in that Semitic words are reliably shorter, more 

frequent, and inhabit denser orthographic neighborhoods than non-Semitic words (Section 1.2.2). 

 A priori there is no reason to expect processing differences between Semitic and non-

Semitic Maltese words that are due to their etymologies and not to more basic differences between 

words of the two strata, for instance in their semantic, morphological, or orthotactic characteristics. 

Yet studies that explore the processing of non-Semitic Maltese words are scarce, and in a recent 

visual masked priming study Geary and Ussishkin (2018) found that readers were faster to judge 
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the lexicality of Semitic Maltese words (M = 652 ms) than non-Semitic ones (M = 682 ms), as well 

as more accurate at judging Semitic words (94.5% overall accuracy rate) than non-Semitic ones 

(88.5% overall accuracy rate). The 96 Semitic and non-Semitic targets used in their study were 

matched according to length and word frequency, and a post-hoc analysis failed to indicate that 

the two sets of targets differed reliably in orthographic neighborhood density, a third factor which 

could have explained this difference.11 Here, I attempt to replicate this finding by comparing 

lexical decision performance for Semitic versus non-Semitic targets using data from MaltLex, 

assessing whether Semitic and non-Semitic Maltese words exhibit differences in RTs or response 

accuracy when other lexical characteristics, such as target length and frequency, are accounted for. 

 

1.4.1 RT analysis and results 

 I analyzed RTs to real-word targets of Semitic (6,445 unique targets) and non-Semitic 

origin (4,413 unique targets) on trials on which participants provided the correct response (103,848 

total responses) using an LMER analysis: I fitted a restricted maximum likelihood-fitted LMER 

model in R (R Core Team 2021) using the lme4 package (Bates, Maechler et al. 2015). I fitted the 

model using the bobyqa optimizer, and I assessed the significance of fixed effects using the 

lmerTest package to simulate Satterthwaite approximations for degrees of freedom (Kuznetsova 

et al. 2017). The model included log-transformed RT as the dependent variable, participant and 

target as random effects, and the following variables as fixed effects: target lexical stratum (levels: 

Semitic versus non-Semitic; reference: Semitic), log-transformed target CD, log-transformed word 

 
11 Geary and Ussishkin (2018) obtained frequency values from Korpus Malti v2.0 (Borg et al. 2012), a 130-million 

word version of Korpus Malti. I obtained WF and CD counts for the 96 targets from Korpus Malti v3.0 (Gatt and 

Čéplö 2013), as well as recalculated neighborhood density, and compared these values across lexical strata in a series 

of Welch’s unequal variances t-tests: Likewise, I did not find that the targets differed significantly in WF (t(91.2) = 

0.46, n.s.), CD (t(93.3) = 0.04, n.s.), or word frequency-weighted orthographic neighborhood density (t(82.1) = –0.07, 

n.s.), consistent with these variables not underlying performance differences for Semitic versus non-Semitic targets. 
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frequency-weighted target neighborhood density, log-transformed target length, participant’s age, 

participant’s trial number, participant’s overall session number, and participant’s session number 

within a given day. I also included random slopes for lexical stratum by-participants: The results 

of a likelihood ratio test comparing this model with the random intercepts model were significant 

(χ2(2) = 218.78, p < 0.001), justifying their inclusion for this dataset (Bates, Kliegl et al. 2015).12 

 The results of this analysis are consistent with those reported in Section 1.3.1: Participants 

were faster to respond both as CD increased (β̂ = –0.03755; t(10,980) = –54.46, p < 0.001) and as 

neighborhood density increased (β̂ = –0.00171; t(10,310) = –2.72, p < 0.01), but slower to respond 

as length increased (β ̂= 0.16790; t(10,060) = 33.36, p < 0.001). RTs increased with participant’s 

age (β̂ = 0.00524; t(279.4) = 3.87, p < 0.001). Participants were slower to respond across the trials 

of a session (β̂ = 0.00008; t(99,830) = 11.13, p < 0.001), but faster across sessions both overall (β̂ 

= –0.00173; t(88,110) = –11.71, p < 0.001) and within the same day (β̂ = –0.01447; t(100,200) = 

–7.86, p < 0.001). However, the effect of lexical stratum was not significant (β̂ = 0.00018; t(157.3) 

= 0.04, n.s.): Despite a 5 ms advantage in mean RT for Semitic targets (M = 848 ms) compared to 

non-Semitic targets (M = 853 ms), I did not find that this difference was statistically reliable. That 

is, I did not replicate Geary and Ussishkin’s (2018) RT advantage for non-Semitic words. 

 

1.4.2 Accuracy analysis and results 

I analyzed response accuracy to real-word targets of Semitic (6,514 unique targets) and 

non-Semitic origin (4,429 unique targets; 114,609 total responses) using a GLMER analysis. I 

fitted a GLMER model using the binomial logit link function and the bobyqa optimizer, using the 

lme4 package in R. The model included response accuracy as the dependent variable (0 = incorrect, 

 
12 The results of the random intercepts model were qualitatively identical in that the effect of lexical stratum failed to 

reach significance (β̂ = –0.00410; t(10,040) = –1.50, n.s.). All other fixed effects remained significant. 
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1 = correct); lexical stratum, log-transformed CD, log-transformed target length, and participant’s 

within-day session number as fixed effects; and participant and target as random effects. I added 

random slopes for lexical stratum by-participants, as supported by the results of a likelihood ratio 

test comparing this model with the random intercepts model (χ2(2) = 183.9, p < 0.001). 

 The results of this analysis are consistent with those reported in Section 1.3.2: Participants 

responded more accurately as CD increased (β̂ = 0.67756; z = 54.02, p < 0.001) and as target length 

increased (β ̂= 2.44638; z = 26.90, p < 0.001), while responding less accurately across sessions 

within the same day (β̂ = –0.11569; z = –4.15, p < 0.001). The effect of lexical stratum was also 

significant, but while participants responded more accurately to non-Semitic words (91.7%) than 

to Semitic words in terms of raw accuracy rate (89.9%), the model revealed that, when these other 

variables were accounted for, participants actually responded less accurately to non-Semitic than 

Semitic words (β̂ = –0.76557; z = –8.72, p < 0.001), consistent with Geary and Ussishkin (2018). 

 

1.4.3 Virtual experiment 2b: Replication of Geary and Ussishkin (2018) 

 Sixty of Geary and Ussishkin’s (2018) 96 real-word targets were used as targets in the 

MaltLex megastudy (38 Semitic and 22 non-Semitic targets). To further assess possible processing 

differences between Semitic and non-Semitic Maltese words, I conducted a virtual replication of 

their study by analyzing RTs and response accuracy to those targets using the MaltLex dataset. 

I analyzed RTs to real-word targets of Semitic and non-Semitic origin on trials on which 

participants provided the correct response (617 total responses) by fitting a restricted maximum 

likelihood-fitted LMER model using the bobyqa optimizer. The model included log-transformed 

RT as the dependent variable; lexical stratum (levels: Semitic versus non-Semitic; reference: 

Semitic), trial number, overall session number, and session number within a given day as fixed 

effects (adding further fixed effects for neighborhood density, target length, or participant’s age 
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failed to improve model fit, reflecting the lower power afforded by the size of this dataset); and 

participant and target as random effects. A model with a more complex random effects structure 

including random slopes for lexical stratum by-participant failed to converge; I report the results 

of the random intercepts model. Participants were faster to respond as CD increased (β̂ = –0.05018; 

t(51.8) = –5.70, p < 0.001) and across sessions overall (β̂ = –0.00632; t(592.8) = –3.14, p < 0.005), 

but slower to respond across the trials of a session (β̂ = 0.00032; t(567.4) = 3.64, p < 0.001) and 

across sessions within the same day (β ̂= 0.06113; t(548.2) = 2.11, p < 0.05). Although participants 

were faster overall to judge non-Semitic targets (M = 771 ms) than Semitic targets (M = 809 ms), 

the effect of lexical stratum failed to reach significance (β̂ = –0.00602; t(52.4) = –0.22, n.s.). 

 I analyzed response accuracy to real-word targets of Semitic and non-Semitic origin (653 

datapoints) by fitting a GLMER model using the binomial logit link function and the bobyqa 

optimizer in R, using the lme4 package. The model included response accuracy as the dependent 

variable (0 = incorrect, 1 = correct); lexical stratum and log-transformed CD as fixed effects 

(including other variables as fixed effects either failed to improve model fit or caused the model 

to fail to converge); and participant and target as random effects. I also included random slopes 

for lexical stratum by-participant, which the results of a likelihood ratio test suggest were justified 

for this dataset (χ2(2) = 7.36, p < 0.05). Participants responded more accurately as CD increased 

(β̂ = 0.9315; z = 2.39, p < 0.05), and less accurately to non-Semitic words (88.9% overall accuracy 

rate) compared to Semitic words (97.8% overall accuracy rate; β̂ = –6.1119; z = –3.01, p < 0.005). 

 

1.4.4 Discussion 

 My findings with respect to lexical stratum are mixed: I failed to replicate a processing 

speed advantage for Semitic Maltese words compared to non-Semitic ones in the overall analysis, 

and in analyzing the 60 words that recurred as targets in Geary and Ussishkin (2018; further, the 
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overall difference in RTs favored non-Semitic words). The lack of an effect in the latter analysis 

may simply reflect a lack of power afforded by the smaller size of the dataset (617 datapoints). 

However, the power afforded by the size of the overall dataset (103,851 datapoints) seemingly 

should have been sufficient to detect such an effect if it exists: I tentatively conclude that there 

does not exist a general processing speed advantage for Semitic Maltese words that is due to their 

lexical stratum, and not to some confounding variable (e.g. target frequency, length), and instead 

encourage further research which considers more nuanced differences between words of the two 

strata, such as how consonant letters (which may correspond to a root morpheme) constrain lexical 

processing differently for Semitic versus non-Semitic words (Anderson and Geary 2019). 

 I did find an advantage for Semitic words over non-Semitic words in terms of response 

accuracy in both analyses, which is difficult to explain. One possibility was raised by participants, 

who, in post-session conversations with the researcher and other participants, would occasionally 

discuss whether certain words “should” be considered Maltese or not due to their status as English 

(and, less frequently, Italian) loanwords. These arguments tapped into participants’ knowledge of 

English, and reflected their concerns over the influence of English across the Maltese archipelago 

(e.g. the possibility that English would supplant Maltese) and on the Maltese language. It could be 

that a more conscious decision process led participants to reject some non-Semitic Maltese words 

(as determined by linguists and lexicographers; e.g. Aquilina 1987–1990, Camilleri 2013) at a 

higher rate in the lexical decision task, though this taps into sociolinguistic factors which go 

beyond the scope of the present study (crucially, not all loanwords were deemed “inappropriate” 

to consider as Maltese words). However, Geary and Ussishkin (2018) observed RT and response 

accuracy advantages for Semitic Maltese words despite having avoided using English loanwords 

as non-Semitic targets, and so their results cannot be explained by a conscious, sociolinguistics-
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sensitive decision process disfavoring English-origin Maltese words in a lexical decision task.13 

Alternatively, some other factor may mediate the processing of Semitic and non-Semitic words, 

and in the next section I consider how multilingualism influences word recognition in Maltese, 

focusing on differences in participants’ relative dominance between Maltese and English.  

 

1.5 Virtual experiment 3: Analysis of cognate status and language dominance 

 All MaltLex participants were bilingual in Maltese and English, reflecting widespread 

bilingualism stemming from two centuries of English being spoken in the Maltese archipelago: 

This started when France’s brief occupation ended and Malta became a protectorate of the British 

Empire in 1800, and has lasted into the present day where both Maltese and English have official 

status in the Republic of Malta. Many speakers, including some participants, are also multilingual 

in Italian, reflecting continued exposure, for instance, via Italian-language media (Brincat 2011). 

Yet speakers of the same languages vary in the extent to which they use each language, with some 

being more dominant in one language than the other(s), and I had participants complete the BiLP 

(Birdsong et al. 2012) to provide a composite, continuous measure of language dominance. Indeed, 

some participants proved to be English-dominant, though most were more Maltese-dominant. 

In general, all of a multilinguals’ languages remain simultaneously active and compete for 

cognitive resources during language processing, even when only one language is appropriate in 

the current speech context (e.g. in completing a monolingual lexical decision task). For instance, 

lexical processing is easier for words in one language that have a cognate in the other language 

compared to words that lack a cognate (a “cognate” is defined here as a word that shares aspects 

of its form and meaning with the target, reflecting that the two languages inherited and/or borrowed 

 
13 I can recall one target that prompted some of these discussions: gowl ‘goal (in football)’, which is transparently the 

English word goal borrowed and adapted to the Maltese orthography. However, gowl and its plural form gowls 

exhibited overall accuracy rates of 90% and 80% across the study, respectively, inconsistent with this hypothesis. 
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these words from a common source), reflecting the simultaneous activation of the target word and 

its cognate, the latter of which facilitates access to the target word relative to other words in the 

same lexicon. This “cognate advantage” results in faster RTs to words having a cognate in lexical 

decision and naming tasks, even when the other language is irrelevant to the task at hand (Costa et 

al. 2000, Dijkstra et al. 1999). Crucially, language dominance has been found to mediate the 

cognate advantage: These effects are stronger when participants perform in their non-dominant 

language than in their dominant language (Jared and Kroll 2001, Poort and Rodd 2017). The non-

Semitic stratum of the Maltese lexicon is rife with words having a cognate in English, whether 

because Maltese and English borrowed from comparable sources (e.g. English piano and Maltese 

pjanu were borrowed from Italian piano) or because Maltese borrowed directly from English (e.g. 

Maltese xelter ‘shelter’ was borrowed from English shelter; Aquilina 1987–1990). Based on earlier 

research, I expect more English-dominant MaltLex participants to outperform more Maltese-

dominant MaltLex participants on non-Semitic targets that have a cognate in English. 

In this analysis, I aim to replicate the cognate advantage on lexical decision performance 

in Maltese using data from MaltLex. I use lexical stratum as a proxy for cognate status because 

non-Semitic Maltese words often have a cognate in English while relatively few Semitic Maltese 

words do, and I compare lexical decision performance for Semitic versus non-Semitic words for 

English-dominant participants versus Maltese-dominant participants. To minimize differences in 

the composition of the Semitic and non-Semitic strata of the Maltese lexicon (e.g. most function 

words are of Semitic origin) and to increase the likelihood that a given non-Semitic target has a 

transparent cognate in English (and because there are currently no electronic databases that would 

allow me to automate tagging MaltLex targets for cognate status), I analyze only singular nouns. 

Such words bear minimal morphology except for the feminine singular suffix -a (cf. plural nouns 
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take a wide range of plural suffixes and morphological patterns; likewise, uninflected and inflected 

verbs may differ considerably in form in Maltese). Although this rough approximation of cognate 

status is limited (e.g. some non-Semitic words that do not have a transparent English cognate are 

included in the dataset analyzed here, and it is difficult to account for individual variation in the 

English cognates that participants actually know), future research may refine this analysis. 

In the following analyses, I test for an interaction between lexical stratum/cognate status 

and language dominance: Finding that more English-dominant participants exhibit a greater RT 

advantage for non-Semitic words compared to Semitic words than do more Maltese-dominant 

participants would be consistent with the cognate advantage (which, to my knowledge, has yet to 

be demonstrated with Maltese-English bilinguals) and so further elucidate processing differences 

between words of the two etymological strata (albeit one which is not due to stratum itself). 

 

1.5.1 RT analysis and results 

I analyzed RTs to real-word singular noun targets of Semitic and non-Semitic origin on 

trials on which participants provided the correct response (24,106 total responses, including 9,068 

responses to 962 Semitic-origin Maltese targets and 15,038 responses to 1,546 non-Semitic-origin 

targets) using an LMER analysis: I fitted a restricted maximum likelihood-fitted LMER model in 

R (R Core Team 2021) using the lme4 package (Bates, Maechler et al. 2015). I fitted the model 

using the bobyqa optimizer. I assessed the significance of fixed effects by simulating Satterthwaite 

approximations for degrees of freedom using lmerTest (Kuznetsova et al. 2017). 

The model included log-transformed RT as the dependent variable, and participant and 

target as random effects. As fixed effects, the model included lexical stratum/cognate status (levels: 

Semitic/non-cognate versus non-Semitic/cognate; reference: Semitic/non-cognate), participant’s 

language dominance score, and the lexical stratum by language dominance interaction. Including 
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participants’ language dominance scores allows me to assess whether there is a general effect of 

relative language dominance on lexical processing speed, while including the interaction of lexical 

stratum by language dominance allows me to assess whether differences in language dominance 

mediate processing speed differences for Semitic versus non-Semitic Maltese words. As additional 

fixed effects, the model included the following control variables: log-transformed target CD, log-

transformed word frequency-weighted neighborhood density, log-transformed target length, 

participant’s age, trial number, overall session number, and session number within a given day. 

I also included random slopes for lexical stratum by-participants: The results of a likelihood 

ratio test comparing this model and the random intercepts model suggest that they are justified 

(χ2(2) = 57.79, p < 0.001). Including random slopes for dominance by-targets caused the model to 

fail to converge, and so I do not analyze models with more complex random effects structures. 

As in the overall analysis of lexical stratum (Section 1.4.1), participants responded faster 

as CD increased (β̂ = –0.03893; t(2,510) = –23.71, p < 0.001), but slower as target length increased 

(β̂ = 0.15090; t(2,269) = 14.50, p < 0.001). Participants responded slower across the trials of a 

given session (β̂ = 0.00009; t(22,920) = 6.12, p < 0.001), but faster both across sessions overall (β ̂

= –0.00146; t(20,350) = –4.86, p < 0.001) and across sessions within the same day (β̂ = –0.01662; 

t(23,120) = –4.34, p < 0.001). However, in this analysis of a smaller and more restricted subset of 

the MaltLex dataset, the effects of orthographic neighborhood density (β ̂= 0.00024; t(2,329) = 

0.19, n.s.) and participant’s age failed to reach significance (β̂ = 0.00247; t(146.1) = 1.60, n.s.) 

The effects of both lexical stratum/cognate-status (β̂ = –0.00770; t(105.6) = –0.86, n.s.) and 

language dominance failed to reach significance (β̂ = –0.00035; t(103.0) = –0.89, n.s.). However, 

the interaction of lexical stratum by language dominance was significant (β̂ = 0.00032; t(62.9) = 

2.14, p < 0.05): As participants became more Maltese-dominant, they responded slower to non-

Semitic targets that may have a cognate in English compared to Semitic targets. In other words, 
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Semitic and non-Semitic Maltese targets induce less of a difference in RTs for the more English-

dominant participants, which is consistent with previous findings on the cognate advantage. 

 

1.5.2 Accuracy analysis and results 

I analyzed response accuracy to singular noun targets of Semitic and non-Semitic origin 

(26,605 total responses, including 10,249 responses to 973 Semitic targets and 16,356 responses 

to 1,548 non-Semitic targets) by fitting a GLMER model using the binomial logit link function 

and the bobyqa optimizer. The model included response accuracy as the dependent variable (0 = 

incorrect, 1 = correct); participant and target as random effects; and lexical stratum/cognate status 

(levels: Semitic/non-cognate versus non-Semitic/cognate; reference: Semitic/non-cognate), 

participant’s language dominance category (levels: English-dominant versus Maltese-dominant; 

reference: English-dominant), and the interaction of lexical stratum by participants’ language 

dominance category as fixed effects. To circumvent convergence issues introduced by the original, 

continuous dominance score variable, I converted dominance score to a categorical variable by 

binning the 52 participants with a dominance score below the median of 36.735 into an “English-

dominant” group, and the 52 participants with a dominance score above the median into a 

“Maltese-dominant” group. As additional fixed effects, the model included the following control 

predictors: log-transformed CD, log-transformed target length, and the within-day session number. 

I added random slopes for lexical stratum by-participants, which were supported by the 

results of a likelihood ratio test comparing this model with the random intercepts model (χ2(2) = 

30.22, p < 0.001). Models with more complex random effects structures (e.g. including random 

slopes for dominance category by-targets) failed to converge, so I do not analyze them here. 

 Consistent with prior analyses, participants responded more accurately as CD increased (β ̂

= 0.83294; z = 24.94, p < 0.001) and as target length increased (β ̂= 1.09542; z = 5.58, p < 0.001), 
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but less accuracy across sessions within the same day (β̂ = –0.14497; z = –2.48, p < 0.05). The 

main effect of dominance category was significant (β̂ = 0.57638; z = 2.89, p < 0.005): The Maltese-

dominant participants responded more accurately to Semitic targets (90.7% overall accuracy rate) 

compared to the English-dominant participants (87.1% overall accuracy rate). However, neither 

the main effect of lexical stratum/cognate status (β̂ = –0.21312; z = –1.27, n.s.) nor the interaction 

of lexical stratum by dominance category reached significance (β̂ = –0.26986; z = –1.41, n.s.). 

 

1.5.3 Discussion 

 Analyzing a subset of the MaltLex dataset, namely singular nouns, I found that MaltLex 

participants who were more English-dominant exhibited a smaller RT advantage in judging the 

lexicality of Semitic Maltese words compared to non-Semitic Maltese words than did Maltese-

dominant participants. In other words, the more English-dominant participants, performing lexical 

decision in their non-dominant language, experienced less difficulty in judging the lexicality of 

non-Semitic words compared to Semitic words than did their Maltese-dominant counterparts. 

Taking lexical strata as a rough approximation of cognate status (since the non-Semitic stratum of 

the Maltese lexicon contains many words that have cognates in English, while the Semitic stratum 

contains few such words), these results are consistent with prior research showing an advantage 

for cognates in lexical processing when participants perform in their non-dominant language (e.g. 

Costa et al. 2000, Dijkstra et al. 1999, Jared and Kroll 2001, Poort and Rodd 2017). Still, future 

research on Maltese should take a more nuanced approach to cognatehood, as a cognate advantage 

may be found within the non-Semitic stratum when the processing of non-Semitic words having 

an English cognate is compared with that of non-Semitic words lacking such a cognate. Ultimately, 

my results are not consistent with prior research finding a RT advantage for Semitic Maltese words 
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(Geary and Ussishkin 2018), but they do suggest that language dominance is an important factor 

mediating the processing of words of the two strata which has been overlooked by prior studies. 

 I found that more Maltese-dominant participants were more accurate at judging Semitic-

origin Maltese words than were English-dominant participants. However, I did not find that the 

effect of lexical stratum on response accuracy differs for English-dominant and Maltese-dominant 

participants, which I believe is also consistent with research on the cognate advantage (which, to 

my knowledge, is typically found for lexical processing speed, not accuracy): The activation of an 

English cognate may help activate the Maltese target and so speeds its recognition, but as long as 

participants know the Maltese target they should ultimately be able to recognize it and judge it 

accordingly, and so the presence of a cognate form should not affect response accuracy. 

 

1.6 General discussion 

 The analyses performed here have illuminated the roles that three variables play in the 

processing of Maltese words: The frequency at which language users have encountered individual 

words, the etymology of different words, and Maltese-English bilingual speakers’ relative levels 

of language dominance. None of these results are particularly surprising in light of prior research: 

Rather, the fact that I was able to replicate established findings from the lexical decision literature 

supports the validity of the MaltLex dataset for studying visual word recognition in Maltese. 

I found that a measure of frequency that is based on the number of unique documents in 

Korpus Malti v3.0 (Gatt and Čéplö 2013) in which a word appears (CD) serves as a better predictor 

of lexical processing efficiency, as measured by both RTs and response accuracy in a visual lexical 

decision task, than does a more traditional measure based on the total number of times that a word 

appears in the corpus (WF). This result is consistent with prior analyses of visual lexical decision 

megastudy data for English (Brysbaert and New 2009), Cantonese (Tse et al. 2017), and Dutch 
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(Keuleers, Brysbaert, and New 2010), and I suggest that Maltese researchers who study lexical 

processing should attend to words’ Korpus Malti CD values rather than to their WF estimates. 

 Contrary to Geary and Ussishkin (2018), I did not observe a general RT advantage for 

Semitic Maltese words compared to non-Semitic words, though I did observe an advantage for 

Semitic words in terms of response accuracy. Although all MaltLex participants self-identified as 

Maltese-English bilinguals, I found that participants differed in their relative levels of language 

dominance, with some being more English-dominant and others being strongly Maltese-dominant: 

I found that Maltese-dominant participants judged Semitic-origin targets more accurately than did 

English-dominant participants, reflecting their having greater use of the Maltese language. 

Furthermore, I found that more English-dominant participants exhibited a smaller difference in 

RTs for Semitic versus non-Semitic targets than did more Maltese-dominant participants (both 

groups responded slower numerically to non-Semitic targets compared to Semitic targets, although 

the main effect of lexical stratum did not reach significance in this analysis). This may reflect the 

fact that many non-Semitic Maltese words, and few Semitic words, have cognates in English, and 

is consistent with prior research on the cognate advantage in lexical processing: When performing 

in their non-dominant language, multilinguals are usually faster to process words having a cognate 

in their dominant language than words lacking such a cognate, owing to interlingual coactivation 

that ultimately facilitates recognition of the non-dominant target form (e.g. Jared and Kroll 2001). 

These results underscore the need for Maltese researchers to account for individual differences in 

language use/proficiency and suggest that language processing megastudies that use multilingual 

participant populations should collect information about participants’ language dominance. 

 In the chapters that follow, I continue to validate the MaltLex dataset by replicating other 

established findings from the visual lexical decision literature. I explore how the orthographic form 

of a word mediates lexical processing in Chapter 2, and the role of consonant letters in Chapter 3.  
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Chapter 2 

Orthographic similarity effects in a Maltese visual lexical decision megastudy 

 

2.1 Introduction14 

 In Chapter 1, I described the development and composition of the MaltLex database of 

Maltese visual lexical decision responses, and I used data from MaltLex to investigate how two 

factors – (1) how frequently participants have encountered a given word as estimated using corpus 

measures, and (2) whether an individual word is of Semitic or non-Semitic origin – impact lexical 

processing performance in Maltese. In particular, I found (1) that a measure of word frequency 

that is based on the number of documents in which a word appears in a corpus (called “contextual 

diversity”) outperforms a more traditional measure that is based on the total number of times that 

a word appears in a corpus (“word frequency”) in predicting visual lexical decision response times 

and response accuracy, consistent with previous studies that focused on English (e.g. Brysbaert 

and New 2009), Dutch (Keuleers, Brysbaert, and New 2010), and Cantonese (Tse et al. 2017). I 

also found (2) that English-dominant Maltese readers (all of whom were bilingual speakers of 

Maltese and English) are faster to judge the lexicality of non-Semitic-origin Maltese words than 

Semitic words, but this advantage diminishes as participants become more Maltese-dominant. 

In Chapter 1, I also found that the length of a given word, in number of letters, correlates 

positively with response times (RTs) and response accuracy in the MaltLex dataset: Participants 

respond slower to real-word targets as they increase in length, most likely due to the fact that more 

information must be processed in order to confirm the target’s identity as a real word; and they 

respond more accurately to real-word targets as they increase in length, perhaps reflecting a speed-

accuracy tradeoff. In this chapter, I continue to explore how the orthographic form of a target 

 
14 I presented an earlier version of this chapter at the 2021 Words in the World International Conference (WOW2021). 
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impacts lexical processing in Maltese, focusing on how targets may resemble other Maltese words. 

The analyses presented here inform our understanding of lexical processing in Maltese, a language 

that has a unique combination of orthographic and morphological properties that may mediate the 

effects of orthographic form on lexical processing, while also validating the MaltLex dataset by 

replicating effects on visual word recognition that are commonly found in lexical decision. 

   Prior research has repeatedly shown that the number of words that are orthographically 

similar to a given target, called its orthographic “neighbors”, strongly influences lexical processing 

performance for that target as measured in visual lexical decision (e.g. Andrews 1989, 1992, 1997; 

Balota et al. 2004; Keuleers, Diependaele, and Brysbaert 2010). An orthographic neighbor may 

include other words that differ from the target by the substitution, insertion, or deletion of a letter, 

or by the transposition of two adjacent letters (e.g. train, trails, rail, and trial represent neighbors 

of trail). All else being equal, participants tend to judge the lexicality of words that occupy “high-

density” neighborhoods (i.e. that have many neighbors) faster and more accurately than words that 

occupy “low-density” neighborhoods (i.e. that have few neighbors). Indeed, I found such effects 

of orthographic neighborhood density in the analyses reported in Chapter 1: MaltLex participants 

responded faster and more accurately to real-word targets as their neighborhood density increased. 

 However, prior research has also found that other lexical variables, namely target lexicality 

and word frequency, mediate the effects of neighborhood density on lexical decision performance. 

Whereas orthographic neighborhood density has a generally facilitatory effect for real-word targets 

in visual lexical decision, it has an inhibitory effect for non-word targets: All else being equal, 

participants tend to judge the lexicality of high-density non-words slower and less accurately than 

low-density non-words, possibly due to increased competition with potential real-word candidates 

(e.g. Andrews 1989, Balota et al. 2004, Carreiras et al. 1997, Coltheart et al. 1977, Forster and 

Shen 1996, Hendrix and Sun 2021, Keuleers, Diependaele, and Brysbaert 2010, Yap et al. 2015). 
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On the other hand, the facilitatory orthographic neighborhood density effect for real-word targets 

has been found to diminish as targets increase in frequency, with high-frequency targets that are 

of low-density versus high-density exhibiting no processing difference (e.g. Andrews 1989, 1992; 

Lim 2016; Sears et al. 1995). I attempt to replicate these findings using the MaltLex dataset in the 

analyses presented below, by assessing how orthographic neighborhood density interacts with the 

lexicality of the target (Section 2.3) and with target frequency for real-word targets (Section 2.4). 

 In Section 2.5, I consider what it means for two words to be orthographically similar, 

focusing on similarities between pairs of letters of the Maltese alphabet. Namely, Maltese has three 

pairs of letters that are identical except in the omission or inclusion of a diacritic: “g” and “ġ”, “h” 

and “ħ”, and “z” and “ż”.15 Due to the prevalence of English keyboards that lack diacritic-bearing 

letters, Maltese writers often omit these diacritics (e.g. using “g” instead of “ġ”, but not vice versa; 

cf. Mifsud and Mitterer 2020). During the post-session debriefings, participants mentioned having 

noticed that some non-word targets resembled real words except in whether a diacritic had been 

omitted from or added to a letter, and they reported that such similarities had made rejecting these 

non-words in the lexical decision task especially difficult. I test this observation here, assessing 

whether diacritic-based word-similarity has an inhibitory effect on lexical decision performance 

for non-word targets that goes beyond the standard orthographic neighborhood density effect. 

Maltese is unique among Semitic languages in that it is written using the Latin alphabet, 

allowing for a more-straightforward comparison with orthographic similarity effects in languages 

in which orthographic neighborhood density has been previously explored. Maltese is also unique 

among the languages of prior study in that it uses nonconcatenative morphology that is typical of 

Semitic languages: Because changes to a word’s internal letters are likely to alter its morphological 

 
15 An additional letter, “ċ”, includes a diacritic. While its diacritic-less counterpart, “c”, is not used in standard Maltese, 

Maltese readers are familiar with it as a letter of English. Further, like “ġ”, “ħ”, and “ż”, “c” is often substituted for 

“ċ” in more casual written Maltese (Mifsud and Mitterer 2020). However, I did not use “c” in constructing nonce 

Maltese stimuli for use in the MaltLex visual lexical decision study, and so I do not focus on “c” here. 
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composition, I may find different effects of orthographic similarity in a Semitic language such as 

Maltese. To my knowledge, only Frost et al. (2005) have ever explored orthographic neighborhood 

density effects in a Semitic language, namely Hebrew: As in non-Semitic languages, they found a 

facilitatory effect of neighborhood density on responses to real-word targets in a masked priming 

visual lexical decision study. Likewise, little research has explored the processing of non-words in 

Maltese (cf. Twist 2006, who found effects of verb pattern for both real and non-words in lexical 

decision). Research on the role of diacritics in lexical processing is in its earliest stages (e.g. Marcet 

et al. 2020, Mifsud and Mitterer 2020). Thus, the analyses reported below explore neighborhood 

density effects in a language that has a novel combination of orthographic and morphological 

properties, while also illuminating the processing of Maltese-like non-words by Maltese readers. 

 

2.2 Methods 

 In all analyses reported below, I analyze lexical decision data from the MaltLex database 

of Maltese visual lexical decision responses, the development and structure of which was described 

in greater detail in Chapter 1. The MaltLex dataset consists of approximately 237,500 total lexical 

decision responses to 21,994 targets that were collected from 104 native or near-native Maltese 

speakers who were recruited from the University of Malta. Participants ranged in age from 18−77 

years (M = 24.0 years). Participants judged the lexicality of 200 real- and 200 non-word targets 

during a single lexical decision session. Individual participants could participate in up to three 

sessions per day, and in up to 35 total sessions across days (M = 5.8 sessions per participant). 

 Real-word targets comprised Maltese words that ranged in length from 2−21 letters (M = 

7.1 letters), in word frequency from 0−20,446.1 occurrences per million words in the 250-million-

word/253-thousand-document Korpus Malti v3.0 (M = 36.7 occurrences per million words), and 

in contextual diversity from 0−851.2 occurrences per thousand contexts in Korpus Malti v3.0 (M 
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= 11.9 occurrences per thousand contexts). For each real-word target, I calculated orthographic 

neighborhood density by (1) counting the number of words in Korpus Malti v3.0 that differ from 

the target by the substitution, insertion, or deletion of a letter (e.g. għana ‘wealth’, għalaq ‘it shut’, 

and ħala ‘wasting’ represent neighbors of għala ‘why’) to calculate a total number of neighbors, 

and then (2) weighing the target’s number of neighbors by summing the word frequency/contextual 

diversity values of the target’s neighbors, in order to compensate for non-words and various typos 

that may be included in Korpus Malti v3.0 and in order to account for effects of neighbor frequency 

on lexical processing performance (cf. Andrews 1997 for a review of neighbor frequency effects). 

Real-word targets ranged in word frequency-weighted neighborhood density from 0−49,584.6 

occurrences per million words in Korpus Malti v3.0 (M = 157.8 occurrences per million words), 

and in contextual diversity-weighted neighborhood density from 0−3,071.4 occurrences per 

thousand contexts in Korpus Malti v3.0 (M = 41.9 occurrences per thousand contexts). 

 For each real-word target, I created a corresponding non-word target by replacing at least 

one consonant letter to generate a nonce form that was matched with the original target in word 

frequency-weighted neighborhood density, which was then vetted by a native Maltese speaker. 

Non-word targets ranged in length from 2−21 letters (M = 7.1 letters), in word frequency-weighted 

neighborhood density from 0−54,575.6 occurrences per million words in Korpus Malti v3.0 (M = 

124.3 occurrences per million words), and in contextual diversity-weighted neighborhood density 

from 0−3,895.0 occurrences per thousand contexts (M = 28.8 occurrences per thousand contexts) 

As in the analyses reported in Chapter 1, I calculated the mean and standard deviation (SD) 

of the RTs for each participant and removed 6,723 datapoints for which the RT was ±2.5 SDs from 

each participant’s mean RT prior to data analysis. This reduced the dataset to 228,358 lexical 

decision responses to 21,994 unique targets (i.e. 96.2% of the dataset), comprising 115,612 lexical 

decision responses to real-word targets and 112,746 responses to non-word targets. 
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2.3 Virtual experiment 4: Analysis of orthographic neighborhood density x target lexicality 

 Prior research has consistently shown that lexical decision performance for real versus non-

word targets is differently affected by changes in the target’s orthographic neighborhood density: 

Generally, as neighborhood density increases, RTs decrease and response accuracy increases for 

real-word targets. For non-words, the opposite pattern holds: As neighborhood density increases, 

RTs increase and response accuracy decreases, owing to increased competition with potential real-

word candidates which impedes readers’ ability to confirm the target’s status as a non-word (e.g. 

Andrews 1989, Balota et al. 2004, Carreiras et al. 1997, Coltheart et al. 1977, Forster and Shen 

1996, Hendrix and Sun 2021, Keuleers, Diependaele, and Brysbaert 2010, Yap et al. 2015). In 

Chapter 1, I showed that the expected neighborhood density effect holds for real-word targets in 

the MaltLex dataset: Participants responded faster and more accurately to real-word targets as they 

increased in neighborhood density. I did not explore neighborhood density effects for non-word 

targets, nor has anyone explored neighborhood density effects for non-word targets in a Semitic 

language (cf. Frost et al. 2005 found a facilitatory neighborhood density effect for real-word targets 

in a Hebrew visual masked priming lexical decision task, but they did not explore neighborhood 

density effects for non-word targets; Twist 2006 analyzed performance for non-word targets in a 

Maltese visual lexical decision experiment, but did not analyze neighborhood density effects). 

 I address this gap in the following analyses, assessing whether neighborhood density 

effects differ for real versus non-word targets in Maltese. In particular, I compare lexical decision 

performance to the MaltLex real-word versus non-word targets, testing the interaction between the 

target’s orthographic neighborhood density value (weighted according to the contextual diversity 

values of its neighbors) and lexicality. I expect to find that participants respond faster and more 

accurately as real-word targets increase in neighborhood density (cf. the effects that I reported in 

Chapter 1), but slower and less accurately as non-word targets increase in neighborhood density. 
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2.3.1 RT analysis and results 

 I analyzed RTs on trials on which participants provided the correct response (210,960 

lexical decision responses to 21,900 unique targets, including 104,644 responses to 10,951 real-

word targets and 106,316 responses to 10,949 non-word targets) by fitting a maximum likelihood-

fitted LMER model using the bobyqa optimizer in R (R Core Team 2021), using the lme4 package 

(Bates, Maechler et al. 2015). I assessed the significance of fixed effects by using the lmerTest 

package (Kuznetsova et al. 2017) to simulate Satterthwaite approximations for degrees of freedom. 

The model included log-transformed RT as its dependent variable; target lexicality (levels: 

real versus nonce, reference: real), log-transformed contextual diversity-weighted orthographic 

neighborhood density (to account for targets having a value of 0, I added 1 to each value prior to 

the log transformation), and the interaction of target lexicality by log-transformed contextual 

diversity-weighted orthographic neighborhood density as fixed effects; and participant and target 

as random effects. The model also included the following control variables as fixed effects: 

• log-transformed target length (in number of letters); 

• participant’s age; 

• participant’s trial number; 

• participant’s overall session number; 

• participant’s session number within a given day. 

I included random slopes for both target lexicality by-participants and log-transformed 

contextual diversity-weighted orthographic neighborhood density by-participants: The results of a 

series of likelihood ratio tests indicated that including random slopes for target lexicality by-

participants improved model fit compared to the random intercepts model (χ2(2) = 2,926.2, p < 

0.001), as did including random slopes for neighborhood density by-participants compared to the 
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random intercepts model (χ2(2) = 1,210.1, p < 0.001). Further, including random slopes for both 

variables improved model fit compared to the model that only included random slopes for target 

lexicality by-participants (χ2(3) = 646.0, p < 0.001) and compared to the model that only included 

random slopes for neighborhood density by-participants (χ2(3) = 2,362.0, p < 0.001), justifying the 

inclusion of both random slopes for this dataset (Bates, Kliegl et al. 2015). A model that included 

random slopes for target lexicality, neighborhood density, and the interaction by-participants failed 

to converge, and so I do not consider models with more complex random effects structures. 

 All fixed effects were significant and patterned in expected directions: Participants were 

slower to respond as target length increased (β̂ = 0.22790; t(20,350) = 62.51, p < 0.001). RTs 

increased both with participant’s age (β ̂= 0.00823; t(416.9) = 7.40, p < 0.001) and across trials, 

likely reflecting an effect of fatigue (β ̂= 0.00002; t(201,200) = 5.14, p < 0.001). On the other hand, 

RTs decreased both across sessions generally (β̂ = –0.00239; t(185,100) = –22.86, p < 0.001) and 

across sessions within the same day (β̂ = –0.01839; t(202,000) = –14.42, p < 0.001). 

Consistent with prior research, the effect of target lexicality was significant (β̂ = 0.04762; 

t(181.7) = 4.87, p < 0.001), with participants responding slower to non-word targets (M = 990 ms) 

than real-word targets (M = 850 ms). The effect of neighborhood density was also significant (β̂ = 

−0.01800; t(261.1) = −19.97, p < 0.001), with participants responding faster to real-word targets 

as neighborhood density increased. Moreover, the interaction of target lexicality and neighborhood 

density was significant (β̂ = 0.01983; t(20,760) = 28.29, p < 0.001), with the facilitatory effect of 

neighborhood density diminishing for non-word targets compared to real-word targets (Figure 2.1). 

To investigate this interaction further, I split the dataset by target lexicality and re-fitted 

separate LMER models to the real-word and non-word data. Each model included log-transformed 

RT as its dependent variable. As fixed effects, each model included log-transformed contextual 

diversity-weighted orthographic neighborhood density, log-transformed target length, participant’s 
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age, participant’s trial number, participant’s overall session number, and participant’s session 

number within a given day. Each model included participant and target as random effects, as well 

as random slopes for neighborhood density by-participants: The results of likelihood ratio tests 

comparing these models with the random intercepts models suggest that they are justified for both 

the real-word (χ2(2) = 175.8, p < 0.001) and non-word datasets (χ2(2) = 561.0, p < 0.001). 

All fixed effects were again significant for both the real-word and non-word data: For real-

word targets, the effects of target length (β̂ = 0.13820; t(10,110) = 25.76, p < 0.001), age (β ̂= 

0.00474; t(275.6) = 3.61, p < 0.001), trial number (β̂ = 0.00008; t(99,200) = 11.01, p < 0.001), 

session number (β̂ = −0.00136; t(94,350) = −8.99, p < 0.001), and same-day session number were 

significant (β̂ = −0.01447; t(99,740) = −7.85, p < 0.001). For non-word targets, the effects of target 

length (β̂ = 0.32630; t(10,360) = 68.66, p < 0.001), age (β̂ = 0.01035; t(272) = 7.46, p < 0.001), 

trial number (β ̂ = −0.00003; t(102,500) = −3.81, p < 0.001), session number (β ̂ = −0.00346; 

Figure 2.1. Mean RTs by log CD-weighted orthographic neighborhood density for real versus 

non-word targets. Note that log RT was analyzed, but raw RT is presented here. 
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t(88,780) = −24.38, p < 0.001), and same-day session number were significant (β̂ = −0.02205; 

t(102,700) = −12.56, p < 0.001). Consistent with previous research, moreover, the neighborhood 

density effect was facilitatory for real-word targets (β̂ = −0.02196; t(196.1) = −21.83, p < 0.001) 

but inhibitory for non-word targets (β ̂= 0.00678; t(147.9) = 7.63, p < 0.001): As neighborhood 

density increased, participants were faster to respond for real words but slower for non-words. 

 

2.3.2 Accuracy analysis and results 

 I analyzed response accuracy on all trials (228,358 responses to 21,994 unique targets, 

including 115,612 responses to 11,040 real-word targets and 112,746 responses to 10,954 non-

word targets) by fitting a GLMER model using the binomial logit link function and the bobyqa 

optimizer in R (R Core Team 2021), using the lme4 package (Bates, Maechler et al. 2015). The 

model included response accuracy as the dependent variable (0 = incorrect, 1 = correct). As fixed 

effects, the model included target lexicality, log-transformed contextual diversity-weighted target 

orthographic neighborhood density, and the target lexicality by orthographic neighborhood density 

interaction, along with log-transformed target length and the participant’s within-day session 

number as control predictors. The model included participant and target as random effects. Models 

that included random slopes for target lexicality by-participants or for neighborhood density by-

participants failed to converge, and so I analyze the results of the random intercepts model. 

 All fixed effects were significant: Participants responded more accurately as target length 

increased (β ̂= 0.98502; z = 12.70, p < 0.001) but less accurately across sessions within the same 

day, likely reflecting an effect of fatigue (β̂ = –0.11335; z = –5.64, p < 0.001). The effect of target 

lexicality was significant (β̂ = 2.61071; z = 25.21, p < 0.001), with participants responding more 

accurately to non-words (94.3%) than to real words (90.5%). Perhaps this stems from the fact that 

many obscure or archaic, and thus low-frequency words were used as targets to expand the real-
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word target set. The effect of neighborhood density was also significant (β̂ = 0.24535; z = 20.60, 

p < 0.001), with participants responding more accurately to real-word targets as neighborhood 

density increased. Moreover, the interaction of target lexicality and neighborhood density was also 

significant (β̂ = –0.29887; z = –20.48, p < 0.001), with the facilitatory effect of increases in 

neighborhood density diminishing for non-word targets compared to real-word targets (Figure 2.2). 

To investigate this interaction further, I split the dataset by target lexicality and re-fitted 

separate GLMER models to the real-word and non-word data. Each model included response 

accuracy as its dependent variable. Each model included log-transformed contextual diversity-

weighted orthographic neighborhood density, log-transformed target length, and the participant’s 

within-day session number as fixed effects. Each model also included subject and target as random 

effects. For the real-word data, including random slopes for neighborhood density by-participants 

Figure 2.2. Mean accuracy by log CD-weighted orthographic neighborhood density for real 

versus non-word targets. 
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improved model fit relative to the random intercepts model (χ2(2) = 69.8, p < 0.001), whereas for 

the non-word data the model failed to converge when random slopes for neighborhood density by-

participants were included. For ease of comparison of the two analyses, I did not include random 

slopes in either model. (However, all fixed effects remained significant and patterned in the same 

directions in the analysis of the real-word data when such random slopes were included). 

For real-word targets, the effects of target length (β̂ = 3.05355; z = 26.33, p < 0.001) and 

same-day session number were significant (β̂ = –0.13792; z = –4.99, p < 0.001), with participants 

responding more accurately as target length increased but less accurately across sessions within 

the same day. For non-word targets, the effect of target length was significant (β̂ = –1.32662; z = 

–13.11, p < 0.001): Participants responded less accurately as target length increased. The effect of 

same-day session number was not significant for non-word targets (β̂ = –0.05743; z = –1.87, n.s.). 

Consistent with previous research, moreover, the effect of orthographic neighborhood density was 

significant and facilitatory for real-word targets (β̂ = 0.38607; z = 27.43, p < 0.001) but inhibitory 

for non-word targets (β ̂= –0.17535; z = –17.04, p < 0.001): As neighborhood density increased, 

participants responded more accurately to real-word targets but less accurately to non-words. 

  

2.3.3 Discussion 

The results of both analyses are consistent with my predictions and with the findings of 

prior studies that have compared orthographic neighborhood density effects for real- versus non-

word targets (e.g. Andrews 1989, Coltheart et al. 1977, Hendrix and Sun 2021, Yap et al. 2015): 

MaltLex participants responded faster and more accurately to real-word targets as they increased 

in orthographic neighborhood density, but they responded slower and less accurately to non-word 

targets as they increased in orthographic neighborhood density and became more similar to real 
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Maltese words. To my knowledge, this is the first demonstration of an orthographic neighborhood 

density effect on visual lexical decision performance for non-words in any Semitic language. 

In analyzing responses to real- and non-word targets, I excluded any measure of word 

frequency, which for all non-words should effectively be null, as a predictor of lexical decision 

performance in order to facilitate the comparison of performance for real and non-word targets. 

While the effect of orthographic neighborhood density is generally facilitatory for real-word 

targets, prior research has shown that the advantage that neighborhood density affords for visual 

lexical decision diminishes as real-word targets become more frequent (e.g. Andrews 1989, 1992; 

Lim 2016; Sears et al. 1995). In the next section, I attempt to replicate these findings by assessing 

how contextual diversity (i.e. a measure of frequency) interacts with orthographic neighborhood 

density in predicting lexical decision performance for real-word targets in the MaltLex dataset. 

 

2.4 Virtual experiment 5: Analysis of neighborhood density x contextual diversity (real words) 

 Consistent with prior research, I observed significant facilitatory effects of orthographic 

neighborhood density on lexical decision performance to Maltese words in the MaltLex dataset: 

Participants responded faster and more accurately to real-word targets as neighborhood density 

increased and the targets became more orthographically similar to other Maltese words. However, 

prior research has also found that the neighborhood density effect for real words exhibits a complex 

relationship with word frequency, in that the advantage for high-density words compared to low-

density words diminishes and may even disappear as targets increase in frequency (Andrews 1989, 

1992; Lim 2016; Sears et al. 1995). That is, lexical decision participants respond faster and more 

accurately to low-frequency, high-density real-word targets than to low-frequency, low-density 

targets, whereas no such difference may be observed for responses to high-frequency targets. 
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 I address these findings in the following analyses, assessing whether the asymmetrical 

effect of orthographic neighborhood density for low-frequency versus high-frequency real words 

replicates in Maltese, a language with a unique combination of orthographic and morphological 

properties compared to the experimental language in previous studies: English. To my knowledge, 

these will be the first analyses to ever explore the relationship between neighborhood density and 

word frequency in any Semitic language. In particular, I analyze lexical decision responses to the 

MaltLex real-word targets, testing the interaction between the target’s orthographic neighborhood 

density value (again, weighted according to the contextual diversity values of its neighbors) and 

its contextual diversity value. I expect participants to respond faster and more accurately as the 

targets increase in contextual diversity (cf. the effects reported in Chapter 1), and as the targets 

increase in orthographic neighborhood density (cf. the effects reported in Section 3.1), but for the 

advantage for high-density targets to also diminish as targets increase in contextual diversity. 

 

2.4.1 RT analysis and results 

 To assess how word frequency interacts with the neighborhood density effect on RTs, I 

analyzed RTs to real-word targets on trials on which participants provided the correct response 

(104,644 lexical decision responses to 10,951 unique targets) by fitting a maximum likelihood-

fitted LMER model using the bobyqa optimizer in R (R Core Team 2021), using the lme4 package 

(Bates, Maechler et al. 2015). I assessed the significance of fixed effects by using the lmerTest 

package (Kuznetsova et al. 2017) to simulate Satterthwaite approximations for degrees of freedom. 

 The model included log-transformed RT as its dependent variable. As fixed effects, the 

model included the target’s log-transformed contextual diversity, its log-transformed contextual 

diversity-weighted orthographic neighborhood density, and the interaction of contextual diversity 

by neighborhood density. The model included the following control predictors as additional fixed 
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effects: log-transformed target length, participant’s age, participant’s trial number, participant’s 

overall session number, and participant’s session number within a given day. The model included 

participant and target as random effects, and random slopes for contextual diversity by-participants 

and neighborhood density by-participants: The results of a series of likelihood ratio tests revealed 

that adding random slopes for contextual diversity by-participants (χ2(2) = 504.4, p < 0.001) or for 

neighborhood density by-participants alone improved model fit relative to the random intercepts 

model (χ2(2) = 192.9, p < 0.001). Further, including random slopes for both contextual diversity 

by-participants and neighborhood density by-participants improved model fit relative to the model 

that included only random slopes for contextual diversity by-participants (χ2(3) = 53.8, p < 0.001) 

and the model that included only random slopes for neighborhood density by-participants (χ2(3) = 

365.3, p < 0.001), justifying their inclusion for this dataset (Bates, Kliegl et al. 2015). An additional 

model having random slopes for contextual diversity by-participants, neighborhood density by-

participants, and the interaction of contextual diversity and neighborhood density by-participants 

failed to converge, and so I do not analyze models with more complex random effects structures. 

 All fixed effects were significant and patterned in the expected directions: Participants 

were slower to respond as target length increased (β̂ = 0.16670; t(10,090) = 35.14, p < 0.001). RTs 

increased both as participants’ age increased (β̂ = 0.00438; t(268.9) = 3.38, p < 0.001) and across 

the trials of a given session (β̂ = 0.00008; t(100,500) = 11.32, p < 0.001). On the other hand, RTs 

decreased both across sessions generally (β̂ = –0.00174; t(88,580) = –11.78, p < 0.001) and across 

sessions that were completed within the same day (β̂ = –0.01464; t(101,000) = –8.00, p < 0.001). 

Consistent with prior research and with analyses performed here, the effect of contextual 

diversity was significant (β̂ = –0.05247; t(509.0) = –26.51, p < 0.001), with participants responding 

faster as CD increased. Further, the effect of neighborhood density was significant (β̂ = –0.01444; 
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t(1,083) = –9.41, p < 0.001), with participants responding faster as neighborhood density increased.  

However, the interaction of contextual diversity and neighborhood density was also significant (β ̂

= 0.00197; t(11,240) = 9.41, p < 0.001), with the facilitatory effect of neighborhood density 

diminishing as targets increased in their contextual diversity: That is, high-frequency, high-density 

targets yielded a smaller RT advantage compared to high-frequency, low-density targets than did 

low-frequency, high-density targets compared to low-frequency, low-density targets (Figure 2.3). 

 

 

 

Figure 2.3. Mean RTs by log CD-weighted orthographic neighborhood density for high-CD 

and low-CD real-word targets. To visualize the interaction of contextual diversity (CD) by 

neighborhood density, I binned targets according to the median CD value of 595 (high-CD > 

595, low-CD ≤ 595). Note that log RT was analyzed, but raw RT is presented here. 
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2.4.2 Accuracy analysis and results 

 To assess how word frequency interacts with the neighborhood density effect on response 

accuracy, I analyzed response accuracy to real-word targets on all trials (115,612 lexical decision 

responses to 11,040 unique real-word targets) by fitting a GLMER model using the binomial logit 

link function and the bobyqa optimizer in R (R Core Team 2021), using the lme4 package (Bates, 

Maechler et al. 2015). The model included response accuracy as the dependent variable (0 = 

incorrect, 1 = correct). Unfortunately, but not unexpectedly for a GLMER analysis, a model with 

as “simple” of a fixed effects structure as one that included only the target’s log-transformed 

contextual diversity, its log-transformed contextual diversity-weighted orthographic neighborhood 

density, and the interaction of contextual diversity by neighborhood density failed to converge. 

To compensate for this, I binned the targets by their contextual diversity value, treating as 

“low-frequency” targets having a contextual diversity value less than or equal to the median value 

of 595 (i.e. 2.4 occurrences per thousand contexts; this included 56,884 responses to 5,524 real-

word targets), and as “high- frequency” targets with a contextual diversity value greater than 595 

(58,728 responses to 5,516 targets). As fixed effects, the model included the target’s contextual 

diversity category (levels: low-frequency versus high-frequency; reference: low-frequency), its 

log-transformed contextual diversity-weighted orthographic neighborhood density, and the 

contextual diversity category by orthographic neighborhood density interaction, along with log-

transformed target length and the participant’s within-day session number as control predictors. 

The model also included participant and target as random effects, as well as random slopes 

for contextual diversity category by-participants and for neighborhood density by-participants: 

The results of a series of likelihood ratio tests revealed that adding random slopes for contextual 

diversity category by-participants (χ2(2) = 66.9, p < 0.001) or neighborhood density by-participants 
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alone improved model fit relative to the random intercepts model (χ2(2) = 56.2, p < 0.001). Further, 

including random slopes for both contextual diversity category by-participants and neighborhood 

density by-participants improved model fit relative to the model that included only random slopes 

for contextual diversity category by-participants (χ2(3) = 35.1, p < 0.001) and the model that 

included only random slopes for neighborhood density by-participants (χ2(3) = 45.7, p < 0.001), 

justifying their inclusion here (Bates, Kliegl et al. 2015). Adding random slopes for the interaction 

of contextual diversity category and neighborhood density by-participants caused the model to fail 

to converge, and so I do not analyze models with more complex random effects structures. 

 Target length and same-day session number had significant effects on response accuracy: 

Participants responded more accurately as target length increased (β̂ = 2.53197; z = 22.95, p < 

0.001) but less accurately across sessions held on the same day (β ̂= –0.11765; z = –4.25, p < 

0.001). Moreover, the effect of contextual diversity category was significant (β ̂= 2.26459; z = 

10.65, p < 0.001), with participants responding more accurately to high-frequency targets (96.6%) 

than low-frequency targets (84.3%). The effect of neighborhood density was also significant (β̂ = 

0.17289; z = 10.04, p < 0.001), with participants responding more accurately to low-frequency 

targets as orthographic neighborhood density increased. In contrast, the interaction of contextual 

diversity category and neighborhood density was not significant (β ̂= –0.03665; z = –1.42, n.s.), 

thus providing insufficient evidence to suggest that the effect of neighborhood density on response 

accuracy reliably differed for high-frequency targets compared to low-frequency ones (Figure 2.4). 

 

2.4.3 Discussion 

 The results of the RT analysis were consistent with my predictions and with the findings 

of earlier research on orthographic neighborhood density effects (Andrews 1989, 1992; Lim 2016; 

Sears et al. 1995): MaltLex participants responded faster to real-word targets as they increased in 
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orthographic neighborhood density, but this advantage for high-density targets compared to low-

density targets was also greater for low-frequency targets than for high-frequency targets. 

On the other hand, the results of the response accuracy analysis were only partly consistent 

with my predictions: MaltLex participants responded more accurately to real-word targets as they 

increased in orthographic neighborhood density, but the orthographic neighborhood density by 

contextual diversity interaction was not significant, and so there is insufficient evidence to assess 

whether the neighborhood density effect on response accuracy reliably differed for low-frequency 

versus high-frequency targets. This may seem surprising, in that the size of the MaltLex dataset 

should afford the analysis sufficient power to detect such an effect (if it exists), given that earlier 

studies detected such effects in smaller datasets obtained through traditional factorial experiments. 

Figure 2.4. Mean accuracy by log CD-weighted orthographic neighborhood density for high-

CD and low-CD real-word targets. To visualize the interaction of CD by neighborhood density, 

I binned targets according to the median CD of 595 (high-CD > 595, low-CD ≤ 595). 
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However, the need to bin the targets by contextual diversity to mitigate convergence issues, which 

are an unfortunate but common issue in conducting GLMER analyses, may have limited the power 

of the present analysis to detect subtle effects that involve contextual diversity such as this. 

  

2.5 Virtual experiment 6: Analysis of diacritic-based word-similarity (non-words) 

 Three pairs of letters of the Maltese alphabet differ only in whether they include diacritics, 

including: “g” and “ġ”, “h” and “ħ”, and “z” and “ż”. In practice, however, Maltese writers often 

omit diacritics from “ġ”, “ħ”, and “ż” (as well as “ċ”, which lacks a diacritic-less counterpart “c” 

in standard Maltese), in part due to the prevalence of English keyboards which lack the diacritic-

bearing letters in Malta and to the absence of Maltese spell checkers (Mifsud and Mitterer 2020). 

Thus, Maltese readers often encounter Maltese words that are written without diacritics. During 

the post-session debriefings, multiple participants mentioned having noticed that some of the non-

word targets resembled real words except in that a diacritic either had been omitted from some 

letters or had been added superfluously to other letters, and they believed that such similarities had 

made rejecting these non-words in the lexical decision task more difficult. Indeed, a small number 

of the non-word targets were (unintentionally) constructed such that they differed from an existing 

word only in whether some diacritic had been included on 1–2 letters (M = 1.04 letters). For 

example, the non-word target gera resembles the real word ġera ‘he ran, roamed, flowed’ except 

in the absence of a dot above the letter “g”, while the non-word target vaġun resembles the real 

word vagun ‘wagon, carriage (of a train)’ except in the inclusion of a dot above the letter “ġ”. 

 To identify which non-word targets resembled Maltese words in this manner, I searched 

the Maltese lexical database Ġabra (Camilleri 2013) for real words that could be derived from each 

of the 10,954 non-word targets by the addition of a diacritic to the letters “g”, “h”, or “z”, or by 

the omission of a diacritic from the letters “ġ”, “ħ”, or “ż”. My search revealed 51 such potential 
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real words that are listed in Ġabra (i.e. corresponding to 0.46% of the non-word targets), which 

are presented in Appendix 2. However, it is worth noting that Ġabra lists many infrequent and/or 

archaic words that may be unknown to participants, as well as many morphologically possible yet 

semantically implausible verb conjugations: For example, the non-word raħbuhom resembles 

rahbuhom ‘they joined them a religious order’, which is listed in Ġabra as a form of the intransitive 

verb rahab ‘to join a religious order’ that is inflected for perfect aspect and a third person plural 

subject (cf. rahbu ‘they joined a religious order’), plus a third person plural direct object (-hom). 

It is unlikely that participants would have perceived any of these non-word targets as their 

infrequent, archaic, or implausible “real”-word counterparts. To account for such discrepancies 

between Ġabra and participants’ language experience, I also obtained each potential real word’s 

word frequency and contextual diversity values from Korpus Malti v3.0 (Gatt and Čéplö 2013), 

the 250-million-token/253-thousand-document corpus of written Maltese: 23 of the potential real 

words do not occur in Korpus Malti, while the remaining 28 potential real words (i.e. 0.26% of the 

total non-word targets) range in word frequency from 0.004–8.9 occurrences per million words (M 

= 0.9 occurrences per million words) and in contextual diversity from 0.004–6.2 occurrences per 

thousand contexts (M = 0.7 occurrences per thousand contexts). That participants noticed these 

non-words and perceived them to be more difficult, despite their comprising a small percentage of 

the non-word target set and despite their real-word counterparts’ being relatively infrequent overall 

(cf. actual real-word targets had an average word frequency of 36.7 occurrences per million words, 

and an average contextual diversity of 11.9 occurrences per thousand contexts), underscores the 

saliency of the apparent processing difficulty that these non-words presented for participants. 

I address two questions regarding the processing of Maltese non-words and of the role that 

diacritics play in Maltese lexical processing in the following analyses: (1) Do Maltese readers 
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subconsciously tolerate changes to letter diacritics, such that they process non-words that differ 

from real words except in their diacritics as their real-word counterparts? That is, were participants 

correct in suggesting that such non-words were more difficult to reject in the lexical decision task? 

I address this question by analyzing lexical decision responses to the MaltLex non-word targets, 

assessing whether non-words that resemble real words except in their diacritics are more difficult 

to reject than other non-word targets: I expect participants to respond slower and less accurately 

to such non-word targets. In particular, I analyze whether the potential real-word counterpart’s 

contextual diversity value impacts lexical processing performance for non-word targets that differ 

from a potential real word except in their diacritics, expecting that it will be more difficult for 

participants to reject such non-words as the potential real-word counterpart increases in frequency. 

(2) Is the effect of diacritic-based word-similarity separate from the effect of orthographic 

neighborhood density on non-word processing? As I have shown in Section 2.3, Maltese readers 

respond slower and less accurately to non-word targets as neighborhood density increases and non-

word targets become more similar orthographically to real words, stemming from the activation of 

potential real-word candidates (cf. Andrews 1989, Hendrix and Sun 2021). I ask whether the 

similarity of real and non-words that differ only in their diacritics influences lexical processing 

beyond the more general effect of orthographic similarity that orthographic neighborhood density 

already captures, and I assess this by including a measure of neighborhood density as a predictor 

in the following analyses: Any effect of diacritic-based word-similarity that is significant in these 

analyses is thus independent from the neighborhood density effect (Wurm and Fisicaro 2014). 

Current models of visual word recognition typically assume that letter representations are 

abstract (Kinoshita et al. 2013), and only recently have researchers begun to explore how the visual 

components of letters mediate visual lexical processing. For example, in visual masked priming 
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lexical decision, Marcet and Perea (2017, 2018) have observed significant facilitatory priming by 

non-word primes that differ from the target by the replacement of a letter with a visually similar 

letter/set of letters versus a visually dissimilar letter/set of letters in Spanish (e.g. nevtral versus 

neztral priming NEUTRAL ‘neutral’, docurnento versus docusnento priming DOCUMENTO 

‘document’). These results suggest that a letter’s visual components play a critical role in language 

processing, such that visually similar letters may in fact activate the same letter representations. 

The role of diacritics in lexical processing appears to be language- and letter-specific. For 

example, Perea et al. (2016, 2018) obtained no priming in an Arabic visual masked priming lexical 

decision task by primes that differed from the target by the replacement of a consonant letter with 

a letter that differs only in a diacritic versus primes that differed from the target by the replacement 

of one consonant with a dissimilar letter (e.g. صخفية versus صكفية priming صحفية ‘journalist’). They 

interpret their results as suggesting that diacritics are processed rapidly, such that consonant letters 

that differ only in their diacritics in Arabic (e.g. “خ” and “ح”) nonetheless do not activate the same 

lexical representations. Similarly, priming is not obtained by primes that differ from the target by 

only a diacritic in Spanish (e.g. rasgó ‘he tore’ priming RASGO ‘I tear; feature’; Domínguez and 

Cuetos 2018) and French (e.g. tâper priming TAPER ‘to type’; Chetail and Boursain 2019)  

In contrast, Marcet et al. (2020) obtained priming in Spanish by nonce primes that differ 

from the target by the omission of a tilde above the letter “ñ” compared to primes that differ by 

the substitution of a visually dissimilar letter (e.g. muneca versus museca priming MUÑECA 

‘doll’). However, they obtained no priming by nonce primes that differ by the addition of a tilde 

above the letter “n” (e.g. moñeda versus moseda priming MONEDA ‘coin’). This suggests that, in 

the early stages of visual lexical processing, the absence of a tilde permits “n” to activate the letter 

representations for “n” and “ñ”, whereas the presence of a tilde on “ñ” is rapidly processed thus 

preventing it from activating any letter representation for its diacritic-less counterpart “n”. 
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Mifsud and Mitterer (2020) recently explored the role of diacritics in Maltese visual lexical 

processing, focusing on how their absence from the letters “ċ”, “ġ”, “ħ”, and “ż” impacts word 

recognition in a visual masked priming lexical decision study and a sentence reading task.16 In the 

lexical decision study, they obtained a facilitatory priming effect both by repetition primes and by 

primes that were derived from the target by the omission of a diacritic compared to primes that 

were derived by substituting a dissimilar letter (e.g. girja versus dirja priming ĠIRJA ‘run’). In 

the sentence reading task, they varied whether individual words were written using their standard 

diacritics or not, and they found no effect of diacritic omission on participants’ eye movements. 

The researchers interpret these results as indicating that Maltese readers process words that are 

missing diacritics the same as their diacritic-bearing counterparts. Further, they propose that their 

results differ from those of prior studies (e.g. Perea et al. 2016, 2018) because Maltese readers are 

uniquely exposed to forms that are missing their diacritics in everyday language use, suggesting 

that language experience modulates the processing of diacritics in visual word recognition. 

In the present study, I analyze non-words that are related to a real Maltese word both by 

the omission of a diacritic and by the addition of a superfluous diacritic for two reasons: (1) Few 

such non-words were included as targets in the MaltLex non-word target set, and (2) participants 

explicitly identified both types of non-words as being difficult to reject. It is worth acknowledging, 

of course, that Mifsud and Mitterer’s (2020) hypothesis predicts that the addition of superfluous 

diacritics should not make a non-word more “word-like” to Maltese readers, since Maltese readers 

do not encounter words with superfluous diacritics in real language use. If this were the case, then 

analyzing the two types of non-words together as such makes this a more conservative analysis in 

that the latter type of non-words will offset any processing disadvantage imposed by the former. 

 
16 I wish to thank one of the WOW2021 participants for bringing this relevant research to my attention. 
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2.5.1 RT analysis and results 

 To assess how lexical processing performance for non-words is affected by the absence of 

diacritics that would make a non-word target into a real word (e.g. the non-word gera resembles 

the real word ġera ‘he ran’ except in the absence of a dot above the letter “g”), and the inclusion 

of superfluous diacritics whose absence would make a non-word target into a real word (e.g. the 

non-word vaġun resembles the real word vagun ‘wagon’ except in the inclusion of a dot above the 

letter “ġ”), I analyzed RTs to non-word targets on trials on which participants provided the correct 

response (106,316 responses to 10,949 unique targets) by fitting a maximum likelihood-fitted 

LMER model using the bobyqa optimizer in R (R Core Team 2021), using the lme4 package 

(Bates, Maechler et al. 2015). I assessed the significance of fixed effects by using the lmerTest 

package (Kuznetsova et al. 2017) to simulate Satterthwaite approximations for degrees of freedom. 

 The model included log-transformed RT as its dependent variable. To assess how diacritic-

based similarity to a real word affects non-word lexical decision performance, and to account for 

the fact that potential words that are listed in Ġabra differ in the frequency with which participants 

will have encountered them and may even be unknown to participants, I included the potential 

real-word target’s log-transformed contextual diversity value as a fixed effect: This included non-

zero values for 28 of the non-word targets (raw range: 0.004–6.2 occurrences per thousand 

contexts).17 To assess whether diacritic-based word-similarity had an effect on RTs that was 

independent from the overall orthographic neighborhood density effect, the model also included 

the target’s log-transformed contextual diversity-weighted orthographic neighborhood density as 

 
17 I also fitted a model in which the non-word targets were instead coded according to whether Ġabra simply listed a 

real word that differed from it in the addition/omission of a diacritic, without taking into account the potential real-

word target’s contextual diversity: In this analysis 51 targets were coded as having a potential real-word counterpart. 

Comparison of the AIC values for random intercepts models in which frequency was versus was not accounted for 

showed that the model in which frequency was accounted for provided a better fit to the dataset (Δ = 8.57, p < 0.05). 
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a fixed effect. Finally, as control predictors, the model also included the following variables as 

additional fixed effects: log-transformed target length, participant’s age, participant’s trial number, 

participant’s overall session number, and participant’s session number within a given day. 

The model included participant and target as random effects, as well as random slopes for 

the target’s log-transformed contextual diversity-weighted orthographic neighborhood density by-

participants: The results of a likelihood ratio test comparing this model and the random intercepts 

model revealed that adding random slopes improved model fit compared to the random intercepts 

model (χ2(2) = 560.8, p < 0.001), justifying their inclusion for this dataset (Bates, Kliegl et al. 

2015). Adding random slopes for the potential target’s log-transformed contextual diversity by-

participants instead of random slopes for neighborhood density by-participants failed to improve 

model fit compared to the random intercepts model (χ2(2) = 4.7, n.s.); adding such random slopes 

in addition to random slopes for neighborhood density by-participants failed to improve model fit 

compared to the model that included only random slopes for neighborhood density by-participants 

(χ2(3) = 3.7, n.s.), and so I do not analyze models with alternative random effects structures. 

 All fixed effects were significant and patterned in expected directions: Participants were 

slower to respond as target length increased (β̂ = 0.32720; t(10,370) = 68.89, p < 0.001), as well 

as with increases in participant’s age (β̂ = 0.01036; t(271.8) = 7.46, p < 0.001). On the other hand, 

participants were faster to respond across the trials of a given session (β̂ = –0.00003; t(102,500) = 

–3.85, p < 0.001), across sessions generally (β ̂= –0.00346; t(88,750) = –24.37, p < 0.001), and 

across sessions completed within the same day (β̂ = –0.02206; t(102,700) = –12.57, p < 0.001). 

Consistent with prior research and with the analyses already performed here, the effect of 

neighborhood density was significant (β̂ = 0.00674; t(147.9) = 7.59, p < 0.001), with participants 

responding slower to non-word targets as neighborhood density increased. Moreover, the effect of 

diacritic-based word-similarity was also significant (β̂ = 0.04122; t(16,350) = 6.08, p < 0.001): 
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That is, participants responded slower to non-word targets for which the addition or omission of a 

diacritic would create a real word, and this disadvantage increased as the potential real-word target 

increased in contextual diversity (Figure 2.5). Furthermore, because I included both orthographic 

neighborhood density and the potential target’s contextual diversity value as fixed effects, I can be 

certain that the inhibitory effect of diacritic-based word-similarity is statistically independent from 

the inhibitory effect of neighborhood density on non-word lexical decision performance. 

  

2.5.2 Accuracy analysis and results 

 To further assess how lexical processing performance for non-words is affected by the 

absence of diacritics that would make a non-word target into a real word, and the inclusion of 

superfluous diacritics whose absence would make a non-word target into a real word, I analyzed 

Figure 2.5. Mean RTs by the log contextual diversity of the potential real-word target (via 

diacritic omission or addition). Note that log RT was analyzed, but raw RT is presented here. 
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response accuracy to non-word targets on all trials (112,746 responses to 10,954 unique targets) 

by fitting a GLMER model using the binomial logit link function and the bobyqa optimizer in R 

(R Core Team 2021), using the lme4 package (Bates, Maechler et al. 2015). The model included 

response accuracy as the dependent variable (0 = incorrect, 1 = correct). As fixed effects, the model 

included the potential real-word target’s log-transformed contextual diversity,18 the target’s log-

transformed contextual diversity-weighted orthographic neighborhood density, and the following 

control predictors: log-transformed target length and participant’s same-day session number. 

The model included participant and target as random effects, and random slopes for the 

potential target’s log-transformed contextual diversity by-participants: The results of a likelihood 

ratio test revealed that adding random slopes improved model fit relative to the random intercepts 

model (χ2(2) = 10.6, p < 0.005), justifying their inclusion for this dataset (Bates, Kliegl et al. 2015). 

Adding random slopes for the target’s log-transformed contextual diversity-weighted orthographic 

neighborhood density by-participants instead of random slopes for the potential target’s contextual 

diversity by-participants failed to improve model fit compared to the random intercepts model 

(χ2(2) = 1.4, n.s.), while including random slopes for both factors introduced convergence issues 

into the model, and so I do not analyze models with alternative random effects structures. 

The effect of target length was again significant (β̂ = –1.35810; z = –13.47, p < 0.001), with 

participants responding less accurately as target length increased, whereas the effect of same-day 

session number was not significant (β̂ = –0.05704; z = –1.86, n.s.). The effect of neighborhood 

density was also significant (β̂ = –0.17426; z = –17.01, p < 0.001), with participants responding 

less accurately to non-word targets as orthographic neighborhood density increased. Moreover, the 

 
18 As in the RT analysis, comparison of the AIC values for random intercepts models in which the frequency of the 

potential real-word target was versus was not accounted for showed that the model in which frequency was accounted 

for provided a better fit to the dataset (Δ = 15.13, p < 0.001), and so this is the variable that I analyze. 
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effect of diacritic-based word-similarity was significant (β̂ = –0.69514; z = –6.50, p < 0.001): That 

is, participants responded less accurately to non-word targets for which the addition or omission 

of a diacritic would create a real word, and this disadvantage increased as the potential real-word 

target increased in contextual diversity (Figure 2.6). Again, because I included both orthographic 

neighborhood density and the potential target’s contextual diversity as fixed effects, we know that 

the inhibitory effect of diacritic-based word-similarity on response accuracy for non-word targets 

is statistically independent from the inhibitory effect of orthographic neighborhood density. 

 

2.5.3 Discussion 

 The results of both analyses are consistent with my predictions: Non-words that resemble 

real words except in the addition or omission of diacritics were harder for MaltLex participants to 

Figure 2.6. Mean accuracy by the log contextual diversity of the potential real-word target (as 

derived via the omission or addition of a diacritic). 
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reject, resulting in their responding slower and less accurately compared to other non-words. This 

suggests that Maltese readers subconsciously tolerate changes to a word’s diacritics, such that they 

process these non-words as their potential real-word counterparts. Moreover, because the analyses 

included measures of both diacritic-based word-similarity and orthographic neighborhood density 

as fixed effects, we know that this effect is independent of the general neighborhood density effect. 

 That non-words became more difficult for participants to reject as the potential real-word 

counterpart increased in contextual diversity could reflect that high-contextual diversity real words 

were more easily activated by the non-word targets and competed more for recognition. On the 

other hand, it may simply be that weighting the potential real words by their contextual diversity 

value allows me to better approximate participants’ language experience and so predict whether a 

given non-word target will be processed as its real-word counterpart. For example, participants are 

more likely to know a high-contextual diversity word like fhimtx ‘I/you did not understand, realize’ 

(which occurs in Korpus Malti 2.1 times per thousand contexts) than a low-contextual diversity 

word like mazzu ‘they shuffled cards’ (which occurs in Korpus Malti 0.004 times per thousand 

contexts). Consequently, participants will be more susceptible to processing the non-word fħimtx 

as the word fhimtx than they are to processing the non-word mażżu as the word mazzu. An analysis 

that includes a measure of the potential real-word counterparts’ contextual diversity should be 

better able to predict which words participants will know and thus whether they could experience 

this processing ambiguity for a given target, producing the pattern of results observed here. 

 My results are consistent with those of Mifsud and Mitterer (2020), who hypothesize that 

Maltese readers process non-words without diacritics as their diacritic-bearing counterparts (e.g. 

the non-word girja as ġirja) because of their exposure to such diacritic-less counterparts in writing. 

I extend these findings both through MaltLex participants’ self-reported difficulty in rejecting such 
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non-words in the lexical decision task and through these statistical analyses: Even when they 

successfully identify such items as non-words, Maltese readers do so slower than on average due 

to interference from the real-word counterpart. Further, unlike Mifsud and Mitterer, I obtained 

these results while analyzing non-words that have a superfluous diacritic compared to a real-word 

counterpart, but I note that this difference must be interpreted with caution: Maltese readers do not 

normally encounter words that have been written with a superfluous diacritic, and it is possible 

that non-words that are formed by the omission of a diacritic are harder to reject/more likely to be 

processed as a real word than are those formed by the addition of a diacritic. Indeed, inspection of 

Figures 2.5–2.6 suggests that the processing disadvantages on RTs and response accuracy were 

greater for non-words formed by diacritic omission than for those formed by diacritic addition. 

 I tested this by re-running the analyses reported in Sections 2.5.1 and 2.5.2, with diacritic 

relation (contrast coded: –0.5 = diacritic added to form a non-word, 0 = default non-word, 0.5 = 

diacritic omitted to form a non-word) as well as the interaction of diacritic relation by the potential 

target’s log-transformed contextual diversity as fixed effects. Neither the effect of diacritic relation 

(β̂ = –0.07103; t(11,840) = –0.77, n.s.) nor the interaction were significant in the RT analysis (β̂ = 

0.04716; t(14,030) = 1.85, n.s.). Likewise, neither the effect of diacritic relation (β̂ = –0.92597; z 

= –0.59, n.s.) nor the interaction were significant in the response accuracy analysis (β̂ = –0.12149; 

z = –0.31, n.s.). It is likely that the low number of non-word targets that are related to a real word 

via diacritic-omission (N = 17) or diacritic-addition (N = 11) affords too lower of statistical power 

to detect any difference; a traditional factorial experiment comparing lexical decision performance 

for non-words derived via the omission versus addition of a diacritic may thus be needed here.  

 My results demonstrate an issue in constructing and selecting non-word targets for use in 

Maltese word recognition experiments, and so allow me to make the following recommendation 
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to Maltese word recognition researchers: Non-word targets that resemble real words except in their 

diacritics pose special processing challenges for Maltese readers beyond the standard orthographic 

neighborhood density effect, and so such non-words need to be used as experiment stimuli with 

caution. Likewise, MaltLex users may need to avoid analyzing datapoints corresponding to these 

non-word targets or include diacritic-based word-similarity as a factor in their analyses of the non-

word data (although the size of the MaltLex non-word dataset may effectively nullify the effect of 

diacritic-based word-similarity in any analysis of the non-word data). It seems probable that this 

finding will extend in some form to other writing systems in which sets of symbols differ only in 

diacritics, though investigating this beyond Maltese goes beyond the scope of the present study. 

 

2.6 General discussion 

 The analyses reported here investigated the role that the orthographic form of a given word 

or non-word plays in lexical processing in Maltese. Consistent with prior research, I found that 

how orthographically similar a given target was to other Maltese words (here, operationalized as 

the target’s orthographic neighborhood density) influenced visual lexical decision performance as 

measured in MaltLex, but that the effect of orthographic similarity differed for real-word versus 

non-word targets (e.g. Andrews 1989, Coltheart et al. 1977, Hendrix and Sun 2021, Yap et al. 

2015) and for low-frequency versus high-frequency real-word targets (e.g. Andrews 1989, 1992): 

That is, increases in orthographic neighborhood density had an overall facilitatory effect for real-

word targets but an inhibitory effect for non-word targets. Further, the orthographic neighborhood 

density advantage became smaller as real-word targets increased in frequency. To my knowledge, 

these analyses are the first to probe neighborhood density effects in Maltese visual lexical decision, 

as well as the first to explore neighborhood density effects for non-words in any Semitic language: 

The results of these analyses suggest that orthographic similarity effects in Maltese visual language 
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processing pattern the same as in non-Semitic languages, despite its unique morphology, and they 

further support the validity of the MaltLex dataset for studying visual word recognition in Maltese 

 I also found that, beyond the overall orthographic neighborhood density effect, lexical 

decision performance for non-word targets was influenced by whether the target resembled a real 

Maltese word except in its diacritics (e.g. the non-words gera and vaġun resemble ġera ‘he ran, 

roamed, flowed’ and vagun ‘wagon, carriage (of a train)’, respectively, except in their diacritics): 

Consistent with previous lexical processing research on Maltese (Mifsud and Mitterer 2020) and 

confirming MaltLex participants’ subjective impression that such targets were difficult to judge, I 

found that diacritic-based word-similarity made non-word targets more difficult for participants to 

reject in lexical decision compared to other non-word targets. This finding suggests that 

researchers who study visual word recognition in Maltese (and perhaps in other languages whose 

writing systems differentiate sets of letters only by their diacritics) must pay special attention to 

the manner in which non-word stimuli resemble real words, particularly in their diacritics, and 

avoid using non-words that differ from Maltese words in their diacritics as experiment stimuli. 

 To be sure, I have not nearly exhausted the full range of orthographic similarity effects on 

visual lexical decision performance that one could investigate using the MaltLex dataset. For 

example, individual differences in participants’ language experiences and language processing 

abilities may mediate orthographic similarity effects on Maltese lexical processing. Related to this, 

for instance, Andrews and Hersch (2010) and Andrews and Lo (2012) have found that individual 

differences in spelling proficiency mediate the effects of neighbor priming in a series of English 

visual masked priming experiments (e.g. jury priming FURY): Better spellers exhibit an inhibitory 

effect of neighbor priming while worse spellers exhibit less inhibition or even a facilitatory effect 

of neighbor priming on lexical decision performance for high-density real-word targets, possibly 
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because poorer spellers maintain less precise lexical representations that are more susceptible to 

preactivation by a similar visual input (cf. the lexical quality hypothesis: Andrews 2012; Perfetti 

1992, 2007). The MaltLex dataset includes participants’ scores on the Bilingual Language Profile 

(BiLP; Birdsong et al. 2012), which represents a composite, continuous measure of their relative 

language dominance, as well as participants’ responses to individual BiLP questions that elicited 

self-assessments of their ability to speak, understand, write, and read Maltese versus English. As 

shown in Chapter 1, these measures could be used to further explore how individual differences in 

participants’ language experiences and abilities mediate lexical processing in Maltese. 
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Chapter 3 

Investigating the role of consonant letters in Maltese lexical processing 

 

3.1 Introduction 

 In Chapter 1, I described the development and composition of the MaltLex database of 

Maltese visual lexical decision responses, and I used MaltLex data to compare the effectiveness 

of two measures of word frequency to predict lexical decision performance in Maltese: I found 

that a measure of word frequency that takes into account the number of documents in which a word 

appears (“contextual diversity”) outperforms a traditional measure based on the number of times 

that a word appears in a corpus (“word frequency”) at predicting lexical decision performance, 

consistent with prior megastudy-based research on a range of languages (e.g. English, Cantonese). 

In Chapter 2, I used MaltLex data to explore how the orthographic form of a word affects lexical 

processing in Maltese, focusing on how lexical decision targets resemble other Maltese words. In 

particular, I replicated several established orthographic neighborhood density effects in Maltese: I 

found that Maltese readers judge the lexicality of real words with more orthographic neighbors 

faster and more accurately than words with few neighbors; that this advantage diminishes as words 

increase in frequency; and that readers judge the lexicality of non-words with more neighbors 

slower and less accurately than those with few neighbors, likely due to increased competition with 

potential real-word candidates that are activated by the target. In this chapter, I conduct a novel 

visual masked priming experiment and again use the MaltLex dataset to explore how the consonant 

letters that comprise individual words influence lexical processing performance in Maltese. 

 Prior research has consistently shown that a word’s consonant letters play a significant role 

in mediating lexical access and determining lexical identity. For example, visual masked priming 

studies have obtained priming by non-word strings that contain the same consonant letters as the 



88 

target but different vowels (e.g. jalu priming French JOLI ‘pretty’; New et al. 2008, Soares et al. 

2014) as well as by nonce letter string that consists of (a subset of) the consonant letters of a real-

word target (e.g. csn priming CASINO; Anderson and Geary 2018, Duñabeitia and Carreiras 2011, 

Grainger et al. 2006, Peressotti and Grainger 1999), suggesting that exposure to a word’s consonant 

letters may be sufficient to permit lexical access. These priming effects disappear when the prime 

contains unrelated letters (e.g. blcn versus bslcrn priming French BALCON ‘balcony’; Peressotti 

and Grainger 1999), demonstrating the importance of the set of consonants in mediating lexical 

access. Further, these priming effects disappear when the relative order of the letters that comprise 

the prime differ from their order in the target (e.g. arict versus acirt priming APRICOT; Grainger 

et al. 2006), indicating that linear order may play an essential role in lexical processing here. 

 The aforementioned studies have focused on Indo-European languages. Maltese, a Semitic 

language, provides unique opportunities for exploring the role of consonant letters in mediating 

lexical processing and for understanding how orthographic effects on lexical processing are shaped 

by language-specific morphological patterns. Like other Semitic languages, native word stems in 

Maltese typically consist of two discontinuous morphemes:  a consonantal root, which assigns the 

stem to a broad semantic field, and a vocalic/consonantal pattern, which contributes grammatical 

and thematic information to the stem. For example, Maltese words that contain the root ktb pertain 

to ‘writing’ (e.g. kiteb ‘to write; he wrote’, kitba ‘writing’, and ktieb ‘book’) and words containing 

the pattern 1V22ie319 typically comprise agentive nouns (e.g. kittieb ‘writer’, tebbieħ ‘chef’, and 

għalliem ‘student’). These nonconcatenative morphemes interleave to form word stems, which 

may combine with concatenative morphemes (i.e. prefixes and suffixes) to form more complex 

words (e.g. kittieb ‘writer’ + -a ‘PL’ > kittieba ‘writers’). Experimental research has suggested that 

root morphemes mediate word processing in Semitic languages, including Hebrew (e.g. Deutsch 

 
19 I use numerals to indicate the positions of the consonants of the root morpheme, and V to indicate a short vowel. 
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et al. 1998; Feldman and Bentin 1994; Frost et al. 1997, 2000, 2005; Geary and Ussishkin 2019; 

Velan and Frost 2007, 2009, 2011), Arabic (e.g. Boudelaa and Marslen-Wilson 2001, 2004; 

Schluter 2013), and Maltese (e.g. Geary and Ussishkin 2018; Twist 2006; Ussishkin et al. 2015, 

2016). For example, in Hebrew (Geary and Ussishkin 2019) and Maltese (Ussishkin et al. 2015), 

listeners are typically faster to judge the lexicality of a word when primed by another word that 

consists of the same root, though not by another word that consists of the same pattern, suggesting 

that exposure to one word activates other words that are derived from the same morphological root. 

 Yet not all Maltese words exhibit nonconcatenative morphology: Although it is a Semitic 

language, descending from Siculo-Arabic (Brincat 2011, Comrie 1991), Maltese has spent the last 

millennium developing in close contact with and frequently borrowing lexical items from a series 

of Indo-European languages, namely Sicilian and Latin, Italian, and English. Today, non-native 

borrowings comprise as much as half of the Maltese lexicon, with the bulk of non-native terms 

having been borrowed from Sicilian or Italian (Bovingdon and Dalli 2006, Brincat 2011, Comrie 

and Spagnol 2016). Except for some early borrowings that were integrated into the root and pattern 

morphological system (Mifsud 1995), non-native words typically do not consist of root and pattern 

morphemes and instead are subject only to concatenative morphological processes in Maltese. 

Recently, Geary and Ussishkin (2018) used the visual masked priming paradigm to explore 

how consonant letters mediate lexical processing in Maltese, focusing on their role in the system 

of nonconcatenative morphology that characterizes the Semitic half of the Maltese lexicon (e.g. 

Borg and Azzopardi-Alexander 1997). They compared priming by nonce letter strings consisting 

of the target’s letters for native, Semitic-origin Maltese words, for which these strings comprised 

the target’s root morpheme (e.g. frx priming FIREX ‘to spread’), versus non-native, non-Semitic 

words, for which these strings were non-morphemic (e.g. pnġ priming PINĠA ‘to paint’). They 

found that participants were faster to judge the lexicality of Semitic Maltese words when primed 
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by such letter strings, but not non-Semitic Maltese words. Unaware of prior research on “subset 

priming” effects, they interpreted these results as stemming from morphological activation: They 

hypothesized that, across reading experience, Maltese readers have abstracted out and stored root 

morphemes for Semitic Maltese words lexically, such that exposure to root morphemes in isolation 

activates their lexical representations and thus primes their morphological derivates (e.g. exposure 

to frx activates the lexical representation of frx, and so activates its morphological derivative firex). 

Their results conflict with those found for Indo-European languages: The lack of subset priming 

for non-Semitic words suggested that language-specific morphological patterns may determine the 

role that consonant letters play in constraining lexical access (cf. Anderson and Geary 2018). 

 In this chapter, I conduct a novel visual masked priming study as a follow-up to Geary and 

Ussishkin (2018), assessing whether subset priming effects occur for non-Semitic Maltese words. 

In particular, I test for priming effects by letter strings that comprise the consonants of a non-

Semitic Maltese word when said strings also comprise a root versus when they are non-morphemic. 

In their original study, Geary and Ussishkin failed to control for whether the “root-letter” prime 

for non-Semitic targets comprised the letters of a Semitic root. If their explanation is correct, i.e. 

that the priming effect they observed stems from morphological activation, then it may be that they 

failed to observe priming effects for non-Semitic targets due to inhibition from the activated lexical 

representation of the root morpheme. If this is the case, then I may observe facilitatory priming by 

nonce strings corresponding to the consonant letters of a non-Semitic word when those letters do 

not correspond to a Semitic root morpheme, but not when they do correspond to a morpheme.20 

 

 
20 Consistent with this hypothesis, a post-hoc analysis of Geary and Ussishkin’s results reveals that their participants 

were numerically faster to judge the lexicality of non-Semitic targets in the root-letter priming condition compared to 

the control condition when the root-letter primes did not comprise a Semitic root (667ms versus 693ms; effect = 

−26ms), but slower when they did comprise a Semitic root (735ms versus 696ms; effect = 39ms). 
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3.2 Factorial experiment 1 – Visual masked priming study 

3.2.1 Methods 

3.2.1.1 Participants 

 I collected lexical decision performance data from 44 self-identified native speakers of 

Maltese, all of whom were recruited from the University of Malta. Participants ranged in age from 

18−52 years (M = 23.2 years). Twenty-three participants self-identified as female; 21 participants 

self-identified as male. Thirty-seven participants self-identified as right-handed; 7 participants 

self-identified as being left-handed. None of the participants whose data was analyzed reported 

having an uncorrected vision problem that could have affected visual lexical decision performance. 

 Data from an additional 15 participants was collected but is not analyzed due to their having 

achieved low accuracy rates during the experiment: They provided the correct response on less 

than 80% of real-word and/or non-word trials. Data from an additional 4 participants was collected 

but is not analyzed for various reasons: Two participants for self-identifying as L2 Maltese learners 

(i.e. not native speakers), and 2 participants for reporting having an uncorrected vision problem. 

 

3.2.1.2 Materials 

 Participants judged the lexicality of 160 visual targets, including 80 real Maltese words 

and 80 Maltese-like non-words. All real-word targets comprised Maltese words of non-Semitic 

origin that contained three distinct consonant graphemes, ignoring gemination (e.g. figura ‘figure’, 

tabella ‘street sign’, and kappell ‘hat’ served as real-word targets; Appendix 3). Real-word targets 

ranged in length from 4–7 letters (M = 5.8 letters), in word frequency from 0.09−324.2 occurrences 

per million words in the 250-million-word Korpus Malti v3.0 (M = 21.0 occurrences per million 

words), and in contextual diversity from 0.07−79.9 occurrences per thousand contexts in the 253-

thousand-document Korpus Malti v3.0 (M = 8.9 occurrences per thousand contexts). Real-word 
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targets ranged in word-frequency weighted orthographic neighborhood density from 0.1−738.7 

occurrences per million words in Korpus Malti v3.0 (M = 57.7 occurrences per million words), 

and contextual diversity-weighted orthographic neighborhood density from 0.1−144.1 occurrences 

per thousand contexts in Korpus Malti v3.0 (M = 24.2 occurrences per thousand contexts). 

 Each real-word target was paired with three primes (Table 3.1): 

1. a “repetition” prime, which was identical to the target; 

2. a “root-letter” prime; which was the target’s three consonant letters; and 

3. a “control” prime, which was another set of three consonant letters that shared no letters 

with the target’s root-letter prime, and that did not correspond to a Semitic root. 

To assess how root-letter priming interacts with the status of the target’s “root” letters as a Semitic 

root, for half of the real-word targets the root-letter prime corresponded to a Semitic root (e.g. the 

“root” letters of klima ‘climate’, klm, occur as the root of Semitic-origin Maltese words like kelma 

‘word’ and kellem ‘to converse’). For the other half, the root-letter prime did not correspond to 

any Semitic root (e.g. the “root” letters of figura ‘figure’, fgr, are non-morphemic in Maltese). The 

Table 3.1. Example prime-target pairs for which the target was a real Maltese word 

(Experiment 1). Note that all real-word targets comprised Maltese words of non-Semitic 

origin, and so the “root” letters of each target are non-morphemic for the target itself. 

Priming 

condition 

Does the root-letter prime correspond to a Semitic root? 

Yes No 

Prime Target Prime Target 

Repetition klima KLIMA ‘climate’ figura FIGURA ‘figure’ 

Root-letter klm KLIMA fgr FIGURA 

Control rsf KLIMA snt FIGURA 
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results of a series of Welch’s unequal variances t-tests comparing real-word targets across these 

categories revealed that they do not differ reliably in length (MYes = 5.9, MNo = 5.8 letters; t(76.5) 

= −0.535, n.s.), word frequency (MYes = 22.0, MNo = 19.9 occurrences per million words; t(70.5) 

= −0.205, n.s.), contextual diversity (MYes = 9.0, MNo = 8.8 occurrences per thousand contexts; 

t(77.8) = −0.075, n.s.), word frequency-weighted orthographic neighborhood density (MYes = 49.8, 

MNo = 65.5 occurrences per million words; t(59.8) = 0.662, n.s.), or contextual diversity-weighted 

orthographic neighborhood density (MYes = 23.6, MNo = 24.8 occurrences per thousand contexts; 

t(76.9) = 0.161, n.s.). Thus, it is unlikely that differences in any of these variables would underly 

differences in any priming effects that are observed across the two categories of real-word targets. 

 For each real-word target, I constructed a corresponding non-word target by replacing the 

original target’s consonant letters with those of an orthographically legal but unattested root to 

create a possible non-word target with approximately equal orthographic neighborhood density 

(Appendix 4). I checked each nonce root against the Maltese lexical database Ġabra (Camilleri 

2013), and a native speaker vetted each non-word target to ensure that it was an actual, plausible 

non-word that was not too similar to any real word; and that each nonce root was a nonce root. 

Non-word targets ranged in length from 4–7 letters (M = 5.8 letters), in word frequency-weighted 

orthographic neighborhood density from 0.0−1,811.0 occurrences per million words (M = 65.6 

occurrences per million words), and in contextual diversity-weighted neighborhood density from 

0.0−546.0 occurrences per thousand contexts (M = 26.6 occurrences per thousand contexts). The 

results of a series of Welch’s unequal variances t-tests revealed that real and non-word targets do 

not differ in length (t(158) = 0.0, n.s.), word frequency-weighted neighborhood density (t(114.7) 

= 0.297, n.s.), or contextual diversity-weighted neighborhood density (t(112.9) = 0.279, n.s.). 
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 Each non-word target was similarly paired with three primes: a repetition prime, a root-

letter prime, and a control prime (Table 3.2). Unlike for real-word targets, for non-word targets the 

root-letter and control primes never corresponded to the letters of a Semitic root morpheme. 

 Another twelve items were used as practice targets. This included six real-word targets of 

non-Semitic origin and six non-word targets derived from a real Maltese word in the manner 

described above. Two real-word practice targets and two non-word practice targets were paired 

with a repetition prime, two apiece with a root-letter prime, and two apiece with a control prime. 

 Three lists counterbalanced by priming condition were constructed using a Latin square 

design: Each list included 160 prime-target pairs (80 real-word targets and 80 non-word targets), 

with approximately one third of the targets (26–27 real-word targets and 26–27 non-word targets) 

occurring in each priming condition within a given list. Subjects were assigned randomly to one 

and only one list, and so they judged the lexicality of each target only once during the experiment. 

 

3.2.1.3 Procedures 

 The study took place in a room at the Institute of Linguistics and Language Technology at 

the University of Malta. Participants were seated in front of one of three laptop computers during 

the experiment, facing away from other participants and seated approximately seven feet away 

Table 3.2. Example prime-target pairs for which the target was an 

orthographically legal, Maltese-like non-word (Experiment 1). 

Priming condition Prime Target 

Repetition kriga KRIGA 

Root-letter krg KRIGA 

Control vfd KRIGA 
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from the nearest participant. Participants were instructed that they would see a series of possible 

words appear onscreen, one at a time, and that for each potential word they would need to decide 

whether it was a real Maltese word or not “as quickly and as accurately as possible”; no mention 

was made of the primes. Participants were instructed to respond by pressing one of two bumper 

buttons on a Logitech F310 Gamepad to register their responses. I used a gamepad to record 

responses to ensure consistent and accurate response time (RT) measurements (Witzel et al. 2013). 

As many as three participants completed the study simultaneously: In order to minimize potential 

distractions (e.g. other participants, loud noises), participants wore a pair of active noise-cancelling 

headphones during the experiment (see Chapter 1 Section 1.2.3 for more on the room layout). 

After receiving the instructions and consenting to participate, participants completed the 

12 practice trials followed by the 160 experiment trials. Items were presented pseudo-randomly 

such that participants never received more than four real-word targets or four non-word targets in 

a row (this was not mentioned to participants). Participants were able to take an untimed break 

following the final practice trial and following the 80th experiment trial (during which participants 

remained seated, being able to stretch, take a drink, etc.). After completing the experiment trials, 

participants were asked to quietly remain seated while other participants finished the experiment. 

Participants then completed a short language background questionnaire and were debriefed. 

 All stimuli were presented in DMDX (Forster and Forster 2003), using the visual masked 

priming paradigm (Forster and Davis 1984). On each trial, a forward mask consisting of seven 

hashtags “#######” appeared in the middle of the screen for 500 ms, then the prime replaced the 

mask and appeared in lowercase for 50 ms, and then the target replaced the prime and appeared in 

uppercase for 500 ms (Figure 3.1). All stimuli appeared in 12-point Courier New font: I used a 

monospaced font to make the appearance of the primes less obvious, and a seven-character forward 
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mask so that it would be as wide as the longest possible prime. DMDX recorded responses starting 

from target onset: If a response was not made within 3,000 ms, DMDX recorded a non-response 

and proceeded to the next trial. During the experiment, participants received feedback only on non-

response trials (“Ebda risposta”), which DMDX displayed at the bottom of the screen for ~1,500 

ms before proceeding to the next trial; otherwise, DMDX displayed a blank screen for ~1,500 ms. 

 

3.2.2 Analyses and results 

 Prior to data analysis, I removed datapoints for one real-word target due to low accuracy, 

which suggested that it actually represents a non-word for most participants (29.5% of participants 

judged milsa ‘spleen’ as a non-word; including datapoints for this target does not qualitatively 

change the results of either analysis of the real-word data that is reported in this section). Thus, I 

analyzed a total of 3,476 lexical decision responses to 79 unique real-word targets, and 3,520 

lexical decision responses to 80 unique non-word targets in the series of analyses reported below. 

 

 

Figure 3.1. Illustration of a visual masked priming trial. 
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3.2.2.1 RT analysis and results (real-word targets) 

 I analyzed RTs on trials on which participants provided the correct response to a real-word 

target (3,195 lexical decision responses to 79 targets) by fitting a maximum likelihood-fitted 

LMER model using the bobyqa optimizer in R (R Core Team 2021), using the lme4 package 

(Bates, Maechler et al. 2015). I assessed the significance of fixed effects by using the lmerTest 

package (Kuznetsova et al. 2017) to simulate Satterthwaite approximations for degrees of freedom. 

 The model included negative reciprocal-transformed RT (i.e. –1,000/RT) as the dependent 

variable: I analyzed reciprocal RT to compensate for the effects of positive skew that are typical 

of masked priming experiments (Kliegl et al. 2010). The model included priming condition (levels: 

repetition, root-letter, and unrelated; reference: unrelated), whether the target’s consonant letters 

comprise a Semitic root (“root-status”; levels: no versus yes; reference: no), and the interaction of 

priming condition by root-status, plus log-transformed target contextual diversity, log-transformed 

target length, and trial number as fixed effects21; and participant and target as random effects. 

 I included random slopes for priming condition by-targets: The results of a likelihood ratio 

test indicated that including random slopes for priming condition by-targets improved model fit 

compared to the random intercepts model (χ2(5) = 14.7, p < 0.05). In contrast, including random 

slopes for priming condition by-participants or root-status by-participants resulted in a singularity 

fit, and so I do not consider models with more complex random effects structures. Finally, I applied 

a model-based trimming procedure which, given a linear model, removes from the fitted dataset 

datapoints for which the residual standard score is more than 2.5 units from the mean of zero 

(Kenneth I. Forster p.c.), and then I re-fitted a new LMER model to the trimmed dataset. Applying 

this trimming procedure removed 52 datapoints from the dataset (1.6% of the data). 

 
21 Including log-transformed contextual diversity-weighted orthographic neighborhood density as an additional fixed 

effect either failed to improve model fit and/or resulted in a singularity fit in this and subsequent analyses (likely due 

to the lack of power afforded by the small size of this dataset), and so I omit this as a fixed effect in all analyses. 
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 I obtained significant effects of contextual diversity, target length, and trial number: 

Participants responded faster as targets increased in frequency (β ̂= –0.03631; t(77.8) = –3.95, p < 

0.001) and across trials (β̂ = –0.00025; t(3,011.0) = –2.65, p < 0.01), but slower as targets increased 

in length (β̂ = 0.26090; t(77.5) = 2.49, p < 0.05). I also obtained significant priming effects, with 

participants responding faster to targets whose consonant letters did not correspond to a Semitic 

root when primed by a repetition prime (M = 651 ms; β̂ = –0.09053; t(73.0) = –4.86, p < 0.001) or 

a root-letter prime (M = 669 ms; β̂ = –0.03760; t(71.8) = –2.16, p < 0.05) compared to an unrelated 

prime (M = 689 ms). Though participants responded faster numerically to targets whose consonant 

letters do not correspond to a Semitic root (M = 669 ms) than to targets whose consonant letters 

do (M = 720 ms), the effect of root-status was not significant (β̂ = 0.06540; t(77.0) = 1.96, n.s.). 

Moreover, the priming condition by root-status interaction failed to reach significance at either the 

repetition (β ̂= 0.02856; t(75.7) = 1.07, n.s.) or root-letter levels (β̂ = 0.02389; t(75.0) = 0.95, n.s.), 

providing insufficient evidence to suggest that priming effects differ across levels of root-status. 

Still, for targets whose consonant letters correspond to a Semitic root the difference in RTs between 

the root-letter (M = 729 ms) and unrelated priming conditions (M = 733 ms) is small (Figure 3.2). 

 

3.2.2.2 Accuracy analysis and results (real-word targets) 

 I analyzed response accuracy on all trials with a real-word target (3,476 responses to 79 

targets) by fitting a GLMER model using the binomial logit link function and the bobyqa optimizer 

in R (R Core Team 2021), using the lme4 package to fit the model (Bates, Maechler et al. 2015). 

The model included response accuracy as its dependent variable (0 = incorrect, 1 = correct). 

As fixed effects, the model included priming condition (levels: repetition, root-letter, and unrelated; 

reference: unrelated), root-status (levels: no versus yes; reference: no), the priming condition by 
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root-status interaction, log-transformed target contextual diversity, and log-transformed target 

length.22 As random effects, the model included participant and target. Including random slopes 

for priming condition by-participants or by-targets produced a singularity fit, while including 

random slopes for root-status by-participants failed to improve model fit compared to the random 

intercepts model (χ2(2) = 0.2, n.s.), and so I report the results of the random intercepts model below. 

 As in the RT analysis, the effect of contextual diversity was significant, with participants 

responding more accurately as targets increased in frequency (β̂ = 0.33011; z = 3.80, p < 0.001). 

However, neither the effect of target length (β ̂= –0.18866; z = –0.19, n.s.) nor the effect of root-

status were significant (β̂ = –0.45148; z = –1.37, n.s.): That is, there is insufficient evidence to show 

that response accuracy differed for targets whose consonant letters corresponded to a Semitic root 

 
22 Including trial number as a fixed effect here or in the response accuracy analysis for non-word targets caused the 

model to fail to converge, and so I do not include trial number as a fixed effect in any analysis of response accuracy. 

Figure 3.2. Mean RTs by priming condition for real-word targets. Error bars indicate standard 

error. Note that reciprocal RT was analyzed, but raw RT is presented here. 
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(89.0%) versus for targets whose consonant letters did not (94.7%). The effect of priming condition 

was significant at the repetition level, with participants responding more accurately to targets for 

which the consonant letters did not correspond to a Semitic root that were primed by a repetition 

prime (96.4%) versus an unrelated prime (93.4%; β̂ = 0.67903; z = 2.37, p < 0.05). In contrast, the 

effect of priming condition was not significant at the root-letter level (94.4%; β̂ = 0.18611; z = 

0.73, n.s.), nor were the effects of the priming condition by root-status interaction at the repetition 

(β̂ = –0.56392; z = –1.59, n.s.) or root-letter levels (β̂ = –0.22555; z = –0.69, n.s.; Figure 3.3). 

 

3.2.2.3 RT analysis and results (non-word targets) 

 I analyzed RTs on trials on which participants provided the correct response to a non-word 

target (3,328 lexical decision responses to 80 targets) by fitting a maximum likelihood-fitted 

Figure 3.3. Accuracy by priming condition for real-word targets. Error bars indicate standard 

error. 
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LMER model using the bobyqa optimizer in R (R Core Team 2021), using the lme4 package 

(Bates, Maechler et al. 2015). I assessed the significance of fixed effects by using the lmerTest 

package (Kuznetsova et al. 2017) to simulate Satterthwaite approximations for degrees of freedom. 

 The model included negative reciprocal-transformed RT (i.e. –1,000/RT) as the dependent 

variable. As fixed effects, the model included priming condition (levels: repetition, root-letter, and 

unrelated; reference: unrelated), root-status (levels: no versus yes; reference: no), and the priming 

condition by root-status interaction, as well as log-transformed target length and trial number. As 

random effects, the model included participant and target. Including random slopes for priming 

condition by-participants failed to improve model fit compared to the random intercepts model 

(χ2(5) = 6.4, n.s.), while including random slopes for priming condition by-targets resulted in a 

model with a singularity fit, and so I report the results of the random intercepts model below. 

Figure 3.4. Mean RTs by priming condition for non-word targets. Error bars indicate standard 

error. Note that reciprocal RT was analyzed, but raw RT is presented here. 
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Finally, I applied the same model-based trimming procedure as in Section 3.2.2.1 to remove 54 

datapoints (1.6% of the dataset), and then I re-fitted the model to the trimmed dataset. 

 As in the analysis of real-word targets, I obtained significant effects of target length and 

trial number on RTs for non-word targets: Participants responded slower as targets increased in 

length (β ̂= 0.21690; t(78.2) = 3.77, p < 0.001) and across trials (β ̂= 0.00035; t(3,179.0) = 4.63, p 

< 0.001). I also obtained significant effects of priming condition at the repetition (β̂ = –0.03181; 

t(3,155.0) = –3.74, p < 0.001) and root-letter levels (β ̂= –0.01861; t(3,155.0) = –2.19, p < 0.001): 

Participants responded faster to non-word targets when primed by a repetition prime (M = 808 ms) 

or by a root-letter prime (M = 824 ms) compared to an unrelated prime (M = 832 ms; Figure 3.4). 

 

3.2.2.4 Accuracy analysis and results (non-word targets) 

 I analyzed response accuracy on all trials with a non-word target (3,520 responses to 80 

targets) by fitting a GLMER model using the binomial logit link function and the bobyqa optimizer 

in R (R Core Team 2021), using the lme4 package to fit the model (Bates, Maechler et al. 2015). 

The model included response accuracy as its dependent variable (0 = incorrect, 1 = correct). 

As fixed effects, the model included priming condition (levels: repetition, root-letter, and unrelated; 

reference: unrelated) and log-transformed target length. As random effects, the model included 

participant and target. Including random slopes for priming condition by-participants or by-targets 

resulted in a singularity fit, and so I report the results of the random intercepts model below. 

 Unlike in the analysis of response accuracy for real-word targets, the effect of target length 

failed to reach significance for non-word targets (β̂ = –0.34373; z = –0.34, n.s.). Likewise, the 

effects of priming condition failed to reach significance at either the repetition (β̂ = 0.06805; z = 

0.36, n.s.) or root-letter levels (β̂ = 0.20328; z = 1.06, n.s.), thus providing insufficient evidence to 
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support that accuracy differed for non-word targets when primed by a repetition prime (94.5%) or 

a root-letter prime (95.1%) compared to an unrelated prime (94.1%; Figure 3.5). 

 

3.2.3 Discussion 

 These results are somewhat puzzling. On the one hand, I found a facilitatory priming effect 

on RTs for non-Semitic Maltese words when primed by strings consisting of their consonant letters, 

unlike Geary and Ussishkin (2018). These results suggest that, under some conditions, consonant 

letters play the same role in constraining and facilitating the recognition of non-Semitic Maltese 

words for which they are non-morphemic as they do for Semitic Maltese words for which they are 

morphemic: Whether prior exposure to a word’s consonant letters facilitates lexical access is not 

contingent upon the status of those letters as a root morpheme. On the other hand, I failed to find 

evidence that priming effects differed according to the morphemic status of the target’s consonant 

Figure 3.5. Accuracy by priming condition for non-word targets. Error bars indicate standard 

error. 
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letters23, and so the source of the discrepancy between my results and those of Geary and Ussishkin 

(2018) remain unresolved. I attempt to identify the source of this discrepancy in the next section 

by exploring the role that a word’s consonant letters play in mediating visual word recognition in 

unprimed lexical decision in Maltese, using lexical decision data from the MaltLex dataset. 

 I also found a facilitatory priming effect on RTs for non-words when primed either by 

repetition primes or by strings consisting of their consonant letters. This may seem surprising, in 

that masked priming is usually assumed to tap into lexical representations, which non-words lack, 

and so masked priming effects are not usually expected to occur for non-words (e.g. Forster and 

Davis 1984, Twist 2006: 58). For example, neither Frost et al. (1997) nor Twist (2006) obtained 

masked priming effects for non-words in a series of Hebrew and Maltese visual masked priming 

lexical decision experiments, respectively. However, some masked priming effects are prelexical 

in nature, and masked priming effects do sometimes occur for non-word targets, though they tend 

to be smaller and therefore less stable/harder to detect than priming effects for real-word targets 

(e.g. Bodner and Masson 1997, Forster 1992, Masson and Isaak 1999; see Forster 1998 and Forster 

et al. 2003 for a review of masked priming effects for non-words). For example, masked repetition 

priming effects have been found for non-word targets that closely resemble a long word that has 

few neighbors (e.g. fanulous priming FANULOUS, which differs from fabulous by only one letter; 

Forster 1992, cited in Forster 1998), and it is worth noting that, in this study, non-word targets had 

been derived from Maltese words by replacing 1–2 consonant letters. Regardless, masked priming 

effects can occur for non-word targets, and I will explore these priming effects no further here. 

 
23 It is worth noting, again, that the root-letter priming effect was much smaller numerically for non-Semitic real-word 

targets whose consonant letters correspond to a Semitic root (M = 4 ms) than for those whose consonant letters do not 

correspond to a Semitic root (M = 20 ms). When I recode the data so that the reference level of root-status is “yes”, 

and rerun the analysis reported in Section 2.2.1, I find that the effect of priming condition is no longer significant at 

the root-letter level (β̂ = –0.01371; t(78.0) = –0.76, n.s.). Of course, the priming condition by root-status interaction 

remains non-significant at the root-letter level of priming condition (β̂ = –0.02389; t(75.0) = –0.95, n.s.), and so this 

analysis too provides insufficient evidence to support that root-letter priming effects differ across levels of root-status. 
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3.3 Interim discussion – Analyzing consonant letter competition effects in MaltLex 

 Prior research has consistently demonstrated that consonant letters play a significant role 

in mediating lexical access and determining lexical identity. For example, visual masked priming 

studies have obtained facilitatory priming by non-word strings that contain the same consonant 

letters as the target but different vowels (e.g. jalu priming French JOLI ‘pretty’), but not by non-

word strings that contain the same vowels as the target but different consonants (e.g. vobi priming 

JOLI; New et al. 2008, Soares et al. 2014). Prior research has also found that exposure to a nonce 

letter string that consists of (a subset of) the consonant letters of a real-word target (e.g. csn priming 

CASINO) facilitates target recognition (e.g. Anderson and Geary 2018, Duñabeitia and Carreiras 

2011, Grainger et al. 2006, Peressotti and Grainger 1999), although such priming effects disappear 

when unrelated letters are inserted into the prime (e.g. blcn versus bslcrn priming French BALCON 

‘balcony’; Peressotti and Grainger 1999) or the relative order of the letters that comprise the prime 

differ from their order in the target (e.g. arict versus acirt priming APRICOT; Grainger et al. 2006). 

In contrast, exposure to a nonce letter string that consists of (a subset of) the target’s vowel 

letters (e.g. aia priming ANIMAL) typically does not influence target recognition (e.g. Duñabeitia 

and Carreiras 2011). Duñabeitia and Carreiras have shown that the lack of priming by vowel letter 

substrings is not due to differences in letter frequency, as exposure to consonant letter substrings 

that consist of low-frequency consonants nonetheless facilitates target recognition; nor due to the 

repetition of letters in vowel substring primes, as facilitation persists with consonant substrings 

that contain repeated letters (e.g. rtr priming Spanish FRUTERO ‘fruit’); nor due to phonological 

processing, as subset priming effects persist at short prime durations when phonological processing 

does not occur. Instead, Duñabeitia and Carreiras argue that the difference in occurrence of subset 

priming effects reflects the fact that more words share vowel substrings than consonant substrings 
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(because languages typically have fewer vowel letters than consonant letters, and so allow fewer 

possible combinations of vowels than consonants). Thus, consonant letters more tightly constrain 

lexical competitors than do vowel letters, and so a priming effect emerges from consonant letter 

substrings but not necessarily from vowel substrings. In other words, the distributional properties 

of consonant letters versus vowel letters shapes their role in constraining lexical access. 

In the following set of analyses, I explore the role that consonant letters play generally in 

mediating lexical access in Maltese by assessing how changes to the frequency of a target’s 

consonant letters impact lexical decision performance within the MaltLex dataset. Prior to these 

analyses, I calculated the frequency of each MaltLex target’s constituent consonant letters across 

all words in Korpus Malti v3.0 (Gatt and Čéplö 2013) by separately summing the word frequency 

and contextual diversity values of each word containing that set of consonant letters (in the same 

order). For example, for the target kittieb ‘writer’, I calculated the frequency of kttb by summing 

these values for all words that consist of this set of consonants, including kiitieb ‘write’ itself as 

well as kitteb ‘to write regularly’. Likewise, for the target privat ‘private (masculine)’, I calculated 

the frequency of prvt by summing these values for all other words that contain this consonant set, 

such as privat ‘private (mas.)’ and its feminine form privata ‘private (feminine)’. Consonant letter 

substrings that are attested among the MaltLex targets range in word frequency from 0–39,583.1 

occurrences per million words (M = 68.6 occurrences per million words) and in contextual diversity 

from 0–1,579.3 occurrences per thousand contexts (M = 22.7 occurrences per thousand contexts).24 

In the following analyses, I assess whether the frequency with which a given target’s set 

of consonant letters occurs across words influences lexical decision performance for that target. In 

 
24 I also calculated the frequency of each target’s constituent vowels, but I leave assessing whether the frequency of 

vowel letter substrings mediates lexical processing for future research. Attested vowel substrings range in word 

frequency from 0.004–77,356.7 occurrences per million words (M = 13,329.2 occurrences per million words) and in 

contextual diversity from 0.004–15,307.2 occurrences per thousand contexts (M = 4,347.3 occurrences per thousand). 
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particular, I compare consonant-subset frequency effects on lexical processing for real Maltese 

words versus non-words (Section 3.4), and for Semitic versus non-Semitic Maltese words (Section 

3.5). If consonant letters mediate lexical access in Maltese, then I expect to find that participants 

respond faster and more accurately to real-word targets that consist of high-frequency consonants 

but slower and less accurately to non-words, since targets that consist of a high-frequency set of 

consonants should be more “word-like”. On the other hand, if consonant letters play different roles 

in mediating access to Semitic words than non-Semitic words because of Maltese’s morphological 

characteristics (cf. Geary and Ussishkin 2018), I may obtain greater consonant-subset frequency 

effects for Semitic Maltese words. Further, by including neighborhood density in these analyses, 

I assess whether any effect of consonant-subset frequency is independent of the more general 

orthographic neighborhood density effect on lexical processing. By exploring the role of consonant 

letters in mediating lexical access, I ultimately aim to reconcile the divergent masked priming 

results that I obtained in Section 3.2 with those reported by Geary and Ussishkin (2018). 

 

3.4 Virtual experiment 7 – Analysis of consonant-subset frequency x target lexicality 

 In this analysis, I assess whether the frequency of a given target’s set of consonant letters 

across all Maltese words influences lexical decision performance for that target by analyzing visual 

lexical decision responses from the MaltLex dataset. In particular, I compare consonant-subset 

frequency effects for real and non-word targets, while also assessing whether any consonant-subset 

frequency effect is independent of the general neighborhood density effect on lexical processing. 

As in Chapters 1–2, I calculated the mean and standard deviation (SD) of the RTs for each 

participant and removed 6,723 datapoints for which RT was ±2.5 SDs from each participant’s 

mean RT prior to data analysis. This reduced the dataset to 228,358 lexical decision responses to 

21,994 unique targets (115,612 responses to real-word targets, 112,746 responses to non-words). 
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3.4.1 RT analysis and results 

 I analyzed RTs on trials on which participants provided the correct response (210,960 

lexical decision responses to 21,900 unique targets, including 104,644 responses to 10,951 real-

word targets and 106,316 responses to 10,949 non-word targets) by fitting a maximum likelihood-

fitted LMER model using the bobyqa optimizer in R (R Core Team 2021), using the lme4 package 

(Bates, Maechler et al. 2015). I assessed the significance of fixed effects by using the lmerTest 

package (Kuznetsova et al. 2017) to simulate Satterthwaite approximations for degrees of freedom. 

The model included log-transformed RT as its dependent variable. As fixed effects, the 

model included target lexicality (levels: real versus nonce, reference; real), the log-transformed 

contextual diversity value of the target’s consonant letters (i.e. “consonant contextual diversity”), 

and the interaction of target lexicality by log-transformed consonant contextual diversity as fixed 

effects. The model also included the following control variables as additional fixed effects: the 

target’s log-transformed contextual diversity-weighted orthographic neighborhood density, log-

transformed target length, participant’s age, trial number, overall session number, and session 

number within a given day. The model included participant and target as random effects. 

 I included random slopes for target lexicality by-participants, log-transformed consonant 

contextual diversity by-participants, and the lexicality by log-transformed consonant contextual 

diversity interaction by-participants. The results of a series of likelihood ratio tests indicated that 

including this set of random slopes improved model fit compared to the random intercepts model 

(χ2(9) = 3,971.3, p < 0.001), as well as compared to models that included random slopes only for 

target lexicality by-participants (χ2(7) = 1,076.8, p < 0.001) or for log-transformed consonant 

contextual diversity by-participants (χ2(7) = 1,287.4, p < 0.001; an additional model that included 

random slopes for target lexicality by-participants and for log-transformed consonant contextual 

diversity by-participants, but not for their interaction by-participants, failed to converge). 
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 All fixed effects were significant in the RT analysis: Overall, participants were slower to 

respond as target neighborhood density increased (β̂ = 0.00334; t(20,100) = 8.14, p < 0.001) and 

as target length increased (β̂ = 0.22120; t(20,410) = 61.21, p < 0.001). RTs increased both with 

participant’s age (β̂ = 0.00832; t(413.0) = 7.54, p < 0.001) and across trials (β̂ = 0.00003; t(202,000) 

= 5.28, p < 0.001). RTs decreased across sessions generally (β̂ = –0.00251; t(181,400) = –24.27, p 

< 0.001) and across sessions within the same day (β̂ = –0.01852; t(202,700) = –14.56, p < 0.001). 

The main effect of target lexicality was significant (β̂ = –0.06465; t(117.9) = –5.44, p < 

0.001), as was the main effect of consonant contextual diversity (β̂ = −0.03516; t(134.1) = −25.51, 

p < 0.001): Participants responded faster to real-word targets as the frequency of their consonant 

letters across all Maltese words increased. However, the target lexicality by consonant contextual 

diversity interaction was significant (β̂ = 0.03248; t(148.4) = 25.51, p < 0.001), with the facilitatory 

advantage of consonant contextual diversity diminishing for non-word targets (Figure 3.6). 

Figure 3.6. Mean RTs by log consonant contextual diversity. Note that log RT was analyzed, 

but raw RT is presented here. 
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To investigate this interaction further, I split the dataset by target lexicality and re-fitted 

separate LMER models to the real-word and non-word data. Each model included log-transformed 

RT as its dependent variable. As fixed effects, each model included log consonant contextual 

diversity, log contextual diversity-weighted orthographic neighborhood density, log target length, 

participant’s age, participant’s trial number, participant’s overall session number, and participant’s 

session number within a given day. Each model included participant and target as random effects, 

and random slopes for log consonant contextual diversity by-participants: The results of likelihood 

ratio tests comparing these models with random intercepts models suggest that they are justified 

for both the real-word (χ2(2) = 471.6, p < 0.001) and non-word datasets (χ2(2) = 584.5, p < 0.001). 

For real-word targets, the effects of target neighborhood density (β̂ = −0.00259; t(10,260) 

= −3.38, p < 0.001), target length (β̂ = 0.12160; t(10,100) = 24.42, p < 0.001), age (β ̂= 0.00434; 

t(267.4) = 3.35, p < 0.001), trial number (β̂ = 0.00008; t(99,970) = 11.20, p < 0.001), session 

number (β̂ = −0.00159; t(91,000) = −10.70, p < 0.001), and same-day session number were 

significant (β̂ = −0.01458; t(100,500) = −7.95, p < 0.001). For non-word targets, the effects of 

target neighborhood density (β ̂= 0.00902; t(10,160) = 19.35, p < 0.001), target length (β̂ = 0.34600; 

t(10,420) = 68.55, p < 0.001), age (β̂ = 0.01031; t(278.0) = 7.57, p < 0.001), trial number (β ̂= 

−0.00003; t(102,600) = −3.88, p < 0.001), session number (β̂ = −0.00345; t(88,490) = −24.34, p < 

0.001), and same-day session number were significant (β̂ = −0.02225; t(102,800) = −12.68, p < 

0.001). Moreover, while the consonant contextual diversity effect was significant and facilitatory 

for real-word targets (β̂ = −0.03586; t(166.3) = −24.90, p < 0.001), it was non-significant (as well 

as numerically inhibitory) for non-word targets (β̂ = 0.00110; t(135.4) = 1.27, n.s.). 
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3.4.2 Accuracy analysis and results 

 I analyzed response accuracy on all trials (228,358 responses to 21,994 unique targets, 

including 115,612 responses to 11,040 real-word targets and 112,746 responses to 10,954 non-

word targets) by fitting a GLMER model using the binomial logit link function and the bobyqa 

optimizer in R (R Core Team 2021), using the lme4 package (Bates, Maechler et al. 2015). The 

model included response accuracy as the dependent variable (0 = incorrect, 1 = correct). As fixed 

effects, the model included target lexicality, log-transformed consonant contextual diversity, and 

the interaction of target lexicality by consonant contextual diversity, along with log-transformed 

orthographic neighborhood density, log-transformed target length, and participant’s within-day 

session number as control predictors. The model included participant and target as random effects. 

 I included random slopes for target lexicality by-participants: The results of a likelihood 

ratio test indicated that including such random slopes significantly improved model fit compared 

to the random intercepts model (χ2(7) = 1,966.4, p < 0.001). This model also had a significantly 

lower AIC value/better fit (AIC = 94,833.68) than did a model that included random slopes for 

log-transformed consonant contextual diversity by-participants (AIC = 96,322.91; Δ = 1,489.23, p 

< 0.001), while models with more complex random effects structures (including random slopes for 

target-lexicality and log-transformed consonant contextual diversity by-participants) failed to 

converge, and so I do not analyze models with alternate random effects structures. 

 All fixed effects were significant: Overall, participants responded less accurately as target 

neighborhood density increased (β̂ = –0.02340; z = –2.52, p < 0.05) but more accurately as target 

length increased (β̂ = 1.03271; z = 12.82, p < 0.001). Participants responded less accurately across 

sessions that were conducted within the same day (β̂ = –0.10508; z = –5.14, p < 0.001). The effect 

of target lexicality was significant (β̂ = 3.56627; z = 24.96, p < 0.001), with participants responding 

more accurately to non-words (94.3%) than to real-word targets (90.5%). The effect of consonant 
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contextual diversity was likewise significant (β̂ = 0.43921; z = 32.44, p < 0.001), with participants 

responding more accurately to real-word targets as the frequency of their consonant letters across 

Maltese words increased. Furthermore, the interaction of target lexicality by consonant contextual 

diversity was significant (β̂ = –0.48227; z = –31.62, p < 0.001), with the advantage for targets with 

more frequent consonant letters diminishing for non-words compared to real words (Figure 3.7). 

To investigate this interaction further, I split the dataset by target lexicality and re-fitted 

separate GLMER models to the real and non-word data. Each model included response accuracy 

as its dependent variable. As fixed effects, each model included log consonant contextual diversity, 

log orthographic neighborhood density, and log target length. I also included the participant’s 

within-day session number as a fixed effect in the real-word model, but excluded it from the non-

word model due to convergence issues. Each model also included participant and target as random 

effects, and random slopes for log consonant contextual diversity by-participants: Likelihood ratio 

Figure 3.7. Mean accuracy by log consonant contextual diversity. 
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tests show that including such random slopes improved model fit relative to the random intercepts 

model for both the real-word (χ2(2) = 76.1, p < 0.001) and non-word data (χ2(2) = 10.9, p < 0.005). 

For real-word targets, the effects of orthographic neighborhood density (β̂ = 0.11738; z = 

7.43, p < 0.001), target length (β̂ = 3.28084; z = 28.89, p < 0.001) and same-day session number 

were significant (β̂ = –0.12464; z = –4.50, p < 0.001): Participants responded more accurately to 

real-word targets as neighborhood density or length increased, but less accurately across sessions 

held on the same day. For non-word targets, the effects of orthographic neighborhood density (β ̂

= –0.15445; z = –14.94, p < 0.001) and target length were significant (β̂ = –1.80326; z = –16.79, p 

< 0.001): Participants responded less accurately to non-word targets as neighborhood density or 

length increased. The effect of consonant contextual diversity was facilitatory for real-word targets 

(β̂ = 0.42282; z = 22.41, p < 0.001) but inhibitory for non-words (β̂ = –0.10738; z = –11.29, p < 

0.001): That is, participants responded more accurately to real-word targets but less accurately to 

non-word targets as the frequency of their consonant letters across real Maltese words increased. 

 

3.4.3 Discussion 

 The results of both analyses are consistent with my predictions and with the findings of 

prior studies that have demonstrated a role for words’ consonant letters in mediating lexical access 

(e.g. Anderson and Geary 2018, Duñabeitia and Carreiras 2011, New et al. 2008, Peressotti and 

Grainger 1999): MaltLex participants responded faster and more accurately to real-word targets as 

their constituent consonant letters increased in frequency across Maltese words. In contrast, they 

responded less accurately to non-word targets as consonant-subset frequency increased (perhaps 

because of competition with real Maltese words that consist of the same set of consonants), while 

the RT advantage associated with increases in consonant-subset frequency for real-word targets 

diminished (and was effectively null) for non-word targets. Moreover, the effect of consonant-
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subset frequency was independent of the general orthographic neighborhood density effect (Wurm 

and Fisicaro 2014), for which I obtained expected effects for both real- and non-word targets. 

 

3.5 Virtual experiment 8 – Analysis of consonant-subset frequency x stratum (real words) 

 In this analysis, I further assess the role that consonant letters play in mediating lexical 

access in Maltese by comparing consonant-subset frequency effects for Semitic and non-Semitic 

real-word targets. Further, I assess consonant-subset frequency effects in the context of models 

that include a measure of target frequency as a separate predictor, which I had excluded from the 

preceding analysis due to the inclusion of data for non-word targets (for which frequency is null, 

and so target frequency would have been highly correlated with target lexicality in the analysis). 

 

3.5.1 RT analysis and results 

 To compare consonant-frequency effects on RTs for Maltese words of Semitic versus non-

Semitic origin, I analyzed RTs to real-word targets on trials on which participants provided the 

correct response (103,848 lexical decision responses to 10,858 targets, including 61,198 responses 

to 6,445 Semitic words and 42,650 responses to 4,413 non-Semitic words) by fitting a maximum 

likelihood-fitted LMER model with the bobyqa optimizer in R (R Core Team 2021), using the lme4 

package (Bates, Maechler et al. 2015). I assessed the significance of fixed effects by simulating 

Satterthwaite approximations for degrees of freedom using lmerTest (Kuznetsova et al. 2017). 

 The model included log-transformed RT as its dependent variable. As fixed effects, the 

model included the target’s etymological stratum (levels: Semitic versus non-Semitic; reference: 

Semitic), its log-transformed consonant contextual diversity, and the interaction of target stratum 

by consonant contextual diversity. The model also included the following control predictors as 

fixed effects: log-transformed target contextual diversity, log-transformed contextual diversity-
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weighted target orthographic neighborhood density, log-transformed target length, participant’s 

age, participant’s trial number, participant’s overall session number, and participant’s session 

number within a given day. The model included participant and target as random effects. 

 I included random slopes for target stratum and for consonant contextual diversity by-

participants: The results of a series of likelihood ratio tests revealed that adding random slopes for 

target stratum by-participants improved model fit compared to the random intercepts model (χ2(2) 

= 220.1, p < 0.001), as did adding random slopes for consonant contextual diversity by-participants 

(χ2(2) = 472.0, p < 0.001). Likewise, including random slopes for target stratum and for consonant 

contextual diversity by-participants improved model fit compared to the model that only included 

random slopes for target stratum by-participants (χ2(3) = 453.8, p < 0.001) and compared to the 

model that only included random slopes for consonant contextual diversity by-participants (χ2(3) 

= 201.9, p < 0.001). However, adding random slopes for the target stratum by consonant contextual 

diversity interaction failed to improve model fit compared to the current model (χ2(4) = 4.3, n.s.), 

indicating that such random slopes are not justified for this dataset (Bates, Kliegl et al. 2015). 

Thus, I do not consider models with more complex random effects structures here. 

All fixed effects were significant and patterned in expected directions: Participants were 

faster to respond as targets increased in contextual diversity (β ̂= –0.03498; t(11,450) = –34.47, p 

< 0.001) and orthographic neighborhood density (β̂ = –0.00150; t(10,240) = –2.03, p < 0.05), but 

slower as targets increased in length (β̂ = 0.16260; t(10,070) = 31.53, p < 0.001). RTs increased as 

participants’ age increased (β̂ = 0.00437; t(269.8) = 3.37, p < 0.001) and across the trials of a given 

session (β̂ = 0.00008; t(99,770) = 11.24, p < 0.001), but decreased across sessions generally (β ̂= 

–0.00175; t(88,030) = –11.86, p < 0.001) and across sessions that were completed within the same 

day (β ̂= –0.01458; t(100,200) = –7.94, p < 0.001). The effect of target stratum was significant, 
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with participants responding slower to non-Semitic real-word targets compared to Semitic targets 

(β̂ = 0.02989; t(3,780) = 2.76, p < 0.01). Likewise, the effect of consonant contextual diversity was 

significant, with participants responding faster to Semitic targets as their consonant letters became 

more frequent (β̂ = –0.00503; t(332.5) = –2.93, p < 0.005). More importantly, the target stratum 

by consonant contextual diversity interaction was also significant, with the facilitatory advantage 

associated with increases in the frequency of a target’s consonant letters being even larger for non-

Semitic targets compared to Semitic targets (β̂ = –0.00360; t(10,760) = –2.80, p < 0.01; Figure 3.8). 

  

3.5.2 Accuracy analysis and results 

To compare consonant-frequency effects on response accuracy for words of Semitic versus 

non-Semitic origin, I analyzed response accuracy to real-word targets on all trials on which the 

target was of Semitic or non-Semitic origin (114,609 lexical decision responses to 10,943 unique 

Figure 3.8. Mean RTs by log consonant contextual diversity for Semitic versus non-Semitic 

targets. Note that log RT was analyzed, but raw RT is presented here. 
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targets, including 68,086 responses to 6,514 Semitic targets and 46,523 responses to 4,429 targets 

of non-Semitic origin) by fitting a GLMER model using the binomial logit link function and the 

bobyqa optimizer in R (R Core Team 2021), using the lme4 package (Bates, Maechler et al. 2015). 

The model included response accuracy as the dependent variable (0 = incorrect, 1 = 

correct). As fixed effects, the model included target’s etymological stratum (levels: Semitic versus 

non-Semitic; reference: Semitic), its log-transformed consonant contextual diversity, and the target 

stratum by consonant contextual diversity interaction. The model included the following control 

predictors as additional fixed effects: log-transformed target contextual diversity, log-transformed 

target orthographic neighborhood density, log-transformed target length, and the participant’s 

within-day session number. The model included participant and target as random effects. 

 I included random slopes for both target stratum and consonant contextual diversity by-

participants: The results of a series of likelihood ratio tests revealed that adding random slopes for 

target stratum by-participants improved model fit compared to the random intercepts model (χ2(2) 

= 185.3, p < 0.001), as did adding random slopes for consonant contextual diversity by-participants 

(χ2(2) = 55.8, p < 0.001). Including random slopes for both target stratum and consonant contextual 

diversity by-participants improved model fit relative to the model that only included random slopes 

for target stratum by-participants (χ2(3) = 45.8, p < 0.001) and the model that only included random 

slopes for consonant contextual diversity (χ2(3) = 175.2, p < 0.001). Adding random slopes for the 

target stratum by consonant contextual diversity interaction did not further improve model fit (χ2(4) 

= 3.7, n.s.), and so I do not consider models with more complex random effects structures here. 

 All fixed effects were significant: Overall, participants responded more accurately to real-

word targets as they increased in contextual diversity (β̂ = 0.69928; z = 39.37, p < 0.001), in 

neighborhood density (β̂ = 0.06080; z = 4.28, p < 0.001), and in length (β̂ = 2.49749; z = 23.03, p 

< 0.001), but less accurately across sessions that were conducted on the same day (β̂ = –0.11422; 
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z = –4.08, p < 0.001). The effect of target stratum was significant, with participants responding 

less accurately to non-Semitic real-word targets compared to Semitic targets (β̂ = –1.49133; z =    

–7.74, p < 0.001). Likewise, the effect of consonant contextual diversity was significant, with 

participants responding less accurately to Semitic targets as their consonant letters became more 

frequent (β̂ = –0.13106; z = –5.85, p < 0.001). Further, the target stratum by consonant contextual 

diversity interaction was significant, with the inhibitory disadvantage associated with increases in 

consonant contextual diversity being smaller for non-Semitic targets compared to Semitic targets 

(β̂ = 0.10609; z = 4.45, p < 0.001; Figure 3.9). The results of this analysis regarding the effect of 

consonant contextual diversity are unexpected; I discuss them further in the next section. 

Figure 3.9. Mean accuracy by log consonant contextual diversity for Semitic and non-Semitic 

real-word targets. Note that this figure suggests that there is a facilitatory advantage associated 

with increases in consonant contextual diversity for both types of targets. However, this figure 

does not consider other predictors that were included in the analysis reported here, such as 

target contextual diversity. I discuss this in Section 3.5.3. 
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3.5.3 Discussion 

The results of this pair of analyses are difficult to interpret. On the one hand, I again found 

that MaltLex participants responded faster to real-word targets as their constituent consonant 

letters increased in frequency across Maltese words. Moreover, I found that the RT advantage that 

is associated with increases in consonant-subset frequency was greater for Maltese words of non-

Semitic origin compared to Maltese words of Semitic origin, which may be related to the fact that 

participants responded slower to non-Semitic targets overall compared to Semitic targets. This also 

raises the possibility that the difference in priming effect by consonant letter substrings that Geary 

and Ussishkin (2018) found for non-Semitic and Semitic Maltese targets may be related to the 

frequency of their constituent consonant letters, which is greater for those that comprise roots. 

On the other hand, I found that participants responded less accurately to real-word targets 

as consonant-subset frequency increased (although this disadvantage was smaller for non-Semitic 

targets compared to Semitic ones), which is contrary to expectations and to the results obtained in 

the previous analysis (Section 3.4.2). However, it is important to remember that, unlike in the prior 

analysis, the models analyzed here included contextual diversity as a fixed effect. For each fixed 

effect included among a linear model’s fixed effects structure, the model identifies the amount of 

variance in the dependent variable that is independently attributable to that fixed effect (i.e. that is 

not attributable to other fixed effects included in the same model). Whenever two factors are highly 

correlated, they account for much of the same variance, and so the results of a linear model that 

include both as fixed effects may produce anomalous results like this, since the model is assessing 

the variance that is independently attributable to each fixed effect (e.g. Wurm and Fisicaro 2014). 

Indeed, log target contextual diversity and log consonant-subset frequency are moderately 

correlated in both analyses (rRT Analysis = –0.505, rAccuracy Analysis = –0.553), likely in part because an 
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increase in a word’s contextual diversity necessarily results in an increase in the frequency of its 

subset of consonant letters. When I omit log contextual diversity from these models, consonant-

subset frequency actually has a facilitatory effect on both RT (β̂ = –0.03493; t(199.1) = –23.22, p 

< 0.001) and response accuracy (β ̂ = 0.43454; z = 20.92, p < 0.001). Further, the facilitatory 

advantage in response accuracy that is associated with increases in consonant-subset frequency is 

greater for non-Semitic targets compared to Semitic targets (β̂ = 0.10276; z = 3.80, p < 0.001). 

This is not to say that omitting contextual diversity is appropriate here, given the robust effect that 

word frequency has on lexical processing, but it does suggest that, in the context of these models, 

the unexpected direction of the consonant-subset frequency effect is due to collinearity. 

 

3.6 General discussion 

 The analyses reported here investigated the role that a word’s consonant letters play in 

lexical processing in Maltese. Consistent with prior research on Indo-European languages (e.g. 

Anderson and Geary 2018, Duñabeitia and Carreiras 2011, Grainger et al. 2006, Peressotti and 

Grainger 1999), I found that readers respond faster to non-Semitic Maltese words when primed by 

nonce strings consisting of their consonant letters. These results are contrary to those obtained by 

Geary and Ussishkin (2018), who found such priming only when the target was a Semitic-origin 

Maltese word (for which the consonant letters comprised a root morpheme) and not a non-Semitic 

Maltese word (for which they were non-morphemic). My results indicate that the occurrence of 

priming by consonant substrings is not contingent upon the target’s being a Semitic or non-Semitic 

Maltese word per se, given that such priming effects obtain for some non-Semitic Maltese words. 

Unaware of the research on subset priming effects in Indo-European languages, Geary and 

Ussishkin (2018) hypothesized that the asymmetrical priming effects that they obtained for Semitic 

versus non-Semitic Maltese words may be due to the status of the target’s consonant letters as a 
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root morpheme in the case of the former but not the latter, i.e. that their results reflect an effect of 

morphological priming by root morphemes. One way to assess this is to compare priming effects 

for non-Semitic targets by consonant letter substrings when they comprise root morphemes versus 

when they are non-morphemic, and indeed I manipulated the morphemic status of the prime in a 

novel visual masked priming experiment (Section 3.2), though they remained non-morphemic in 

the targets themselves: However, I did not find that the consonant-subset priming effect differed 

for primes that comprised a root morpheme versus primes that were non-morphemic, and so the 

source of the discrepancy in my results versus those of Geary and Ussishkin remained unresolved. 

Another way to investigate these differences would be to compare priming effects for non-

Semitic Maltese words for which the consonant letters actually comprise a root morpheme versus 

monomorphemic non-Semitic Maltese words. Until now, I have assumed that all non-Semitic 

Maltese words do not consist of root and pattern morphemes in the traditional Semitic sense, but 

this is inaccurate: Many early loanwords were integrated into the Semitic root and pattern system 

such that their consonants comprise a root morpheme that recurs with other morphological patterns 

in derived forms. Mifsud (1995) describes four stages in the integration of non-Semitic loanwords, 

ranging from their full integration into the root and pattern system (the earliest loanwords) to full 

non-integration and use of concatenative derivational morphology (the most recent loanwords). 

For example, the consonants of the early loanword serp ‘snake’ (from Sicilian serpi ‘snake’) recur 

in such forms as srejjep ‘a small snake’, serrep ‘to zig-zag’, and sserrep ‘to meander’ (Camilleri 

2013: s.v. “serp”; Mifsud 1995: 59). If Geary and Ussishkin’s failure to obtain priming for non-

Semitic words reflects the non-morphemic status of such strings in their non-Semitic targets, and 

not some other difference, then I should find priming for integrated non-Semitic Maltese words by 

letter strings that comprise the letters of their root morpheme. I attempted to design a second visual 
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masked priming experiment in which I systematically manipulated whether non-Semitic Maltese 

targets consisted of an integrated root morpheme or not. However, I found that most integrated 

non-Semitic Maltese words were now archaic or of extremely low frequency (e.g. never occurring 

in Korpus Malti v3.0), or otherwise that contemporary Maltese speakers did not perceive them to 

contain a root morpheme. Thus, I was unable to conduct this experiment as planned.25 

I further explored the role of consonant letters in lexical processing by assessing whether 

the frequency with which a word’s set of consonant letters influences lexical decision performance. 

Using data from MaltLex, I found that participants responded faster and more accurately to real-

word targets as their constituent consonant letters increased in frequency across all Maltese words, 

but less accurately to non-word targets as consonant-subset frequency increased. This measure 

captures information about how orthographically similar one word is to other Maltese words, yet 

this effect was independent of that of another measure of orthographic similarity: orthographic 

neighborhood density. However, consonant-subset frequency is moderately correlated with word 

frequency (i.e. because when a word increases in frequency, the frequency of its consonant letters 

across all Maltese words also increases in frequency) and including consonant-subset frequency 

and a measure of word frequency, namely contextual diversity, as simultaneous predictors in the 

same model introduces collinearity issues that impede the interpretation of their effects. While it 

may be possible to refine this measure of consonant-subset frequency to mitigate this correlation 

with contextual diversity, I leave implementing such changes for future research. 

  

 
25 I ran a pilot study in which 18 participants judged the lexicality of 66 non-Semitic Maltese words, including 33 

words that had been integrated into the root and pattern system (e.g. sserrep ‘to meander’, root: s-r-p; lesta ‘to finish, 

complete’, root: l-s-t; pinġa ‘to paint, draw’, root: p-n-ġ), and in which targets were primed by a repetition prime, their 

consonant letters, or a control prime consisting of an unrelated set of letters. Because of the targets’ low frequencies, 

however, participants responded with poor accuracy during the pilot study (14 real-word targets had accuracy rates of 

50% or lower), making the results of this pilot study difficult to interpret, hence I do not analyze them here. 
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Chapter 4 

Conclusion 

 

4.1 Summary of results and general discussion 

In this dissertation, I described the construction of the MaltLex database of visual lexical 

decision responses for the Semitic language Maltese. I also conducted eight “virtual experiments” 

using data from MaltLex, as well as one novel visual masked priming study, in order to (1) validate 

the use of MaltLex for studying lexical processing in Maltese by replicating established findings 

from the lexical decision literature and (2) demonstrate several novel findings and so contribute to 

our understanding of lexical processing in Maltese and in Semitic languages more generally. Some 

of the main results of the analyses that I reported in this dissertation are summarized in Table 4.1. 

In Chapter 1, I analyzed data from MaltLex to explore how word frequency and individual 

differences in language use and proficiency mediate lexical processing in Maltese. Unsurprisingly, 

I replicated the canonical word frequency effect: Maltese readers were faster and more accurate at 

judging the lexicality of Maltese words as they increased in word frequency. Moreover, I found 

that a measure of frequency that is based on the number of documents in which a word appears in 

a corpus (contextual diversity) better predicts lexical processing performance in Maltese than does 

a more traditional measure that is based on the total number of times that a word appears in a 

corpus (word frequency), which is consistent with the findings of megastudy-based research for 

non-Semitic languages, namely English (Brysbaert and New 2009), Cantonese (Tse et al. 2017), 

and Dutch (Keuleers, Brysbaert, and New 2010). I did not replicate Geary and Ussishkin’s (2018) 

finding of a general RT advantage for Semitic Maltese words over non-Semitic Maltese words. 

Rather, I found that processing performance for Semitic versus non-Semitic words is sensitive to 
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differences in individuals’ language backgrounds: More English-dominant MaltLex participants 

exhibited a smaller RT advantage in judging the lexicality of Semitic Maltese words compared to 

non-Semitic Maltese words than did the Maltese-dominant participants. That is, the more English-

dominant participants, performing lexical decision in their non-dominant language, experienced 

less difficulty in judging the lexicality of non-Semitic words compared to Semitic words than did 

Table 4.1. Summary of major findings from virtual experiments 1–8 (MaltLex). 

1. Word frequency effects (Chapter 1) 

a. Maltese readers judge the lexicality of high-frequency words faster/more accurately, 

but contextual diversity better predicts performance than does word frequency. 

2. Cognate advantage effects (Chapter 1) 

a. More English-dominant readers exhibit less of a processing difference for Semitic 

versus non-Semitic Maltese words than do more Maltese-dominant readers. 

3. Orthographic neighborhood density effects (Chapter 2) 

a. Maltese readers judge words with more orthographic neighbors faster and more 

accurately, but this advantage diminishes for high-frequency words. 

b. Maltese readers judge non-words with more neighbors slower and less accurately. 

4. Consonant letter similarity effects (Chapter 2) 

a. Maltese readers judge non-words that differ from a real word by the addition or 

omission of a diacritic slower and less accurately. 

5. Consonant letter frequency effects (Chapter 3) 

a. Maltese readers judge words whose set of constituent consonant letters occur more 

frequently across the Maltese lexicon faster and more accurately. 

b. Maltese readers judge non-words whose consonants occur frequently less accurately. 
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their counterparts. Taking lexical strata as an approximation of cognate status (i.e. non-Semitic 

words often have English cognates; Semitic words often do not), these results are consistent with 

prior research showing an advantage for cognates in lexical processing when readers perform in 

their non-dominant language (e.g. Costa et al. 2000, Jared and Kroll 2001, Poort and Rodd 2017). 

In Chapter 2, I continued to analyze MaltLex data to explore how the orthographic form of 

a word mediates lexical processing in Maltese, turning my attention to non-words for the first time. 

Once again, I replicated several established orthographic neighborhood density effects: Maltese 

readers were faster and more accurate at judging the lexicality of Maltese words as they increased 

in neighborhood density and thus became more word-like in terms of their orthographic form, but 

this advantage for high-density words diminished as they increased in frequency. On the other 

hand, readers were slower and less accurate at judging the lexicality of non-words as they increased 

in neighborhood density and so became more word-like orthographically (e.g. Andrews 1989, 

1992; Coltheart et al. 1977; Forster and Shen 1996; Hendrix and Sun 2021; Yap et al. 2015). I also 

found that Maltese readers were even slower and less accurate at judging the lexicality of non-

words that differ from an existing Maltese word except by the addition or omission of a diacritic 

(e.g. compare the non-word gera with ġera ‘he ran, roamed, flowed’), which is consistent with 

participants’ subjective impression that such non-words were harder to reject. This result suggests 

that Maltese readers process certain pairs of letters alike during visual lexical processing (e.g. “g” 

and “ġ”), and thus reveals a unique manner in which non-words may appear especially word-like. 

In Chapter 3, I conducted a novel visual masked priming study and continued to analyze 

MaltLex data to explore the role that the consonant letters play in Maltese visual lexical processing. 

Previous visual masked priming research on non-Semitic languages like English and Spanish has 

found that readers more efficiently process real words when exposed to nonce strings that consist 
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of the target’s consonant letters (e.g. csn priming CASINO; Anderson and Geary 2018, Duñabeitia 

and Carreiras 2011). In contrast, Geary and Ussishkin (2018) obtained comparable priming effects 

in Maltese only when Semitic Maltese words were primed by such nonce strings, which correspond 

to the target’s morphological root (e.g. frx priming FIREX ‘to spread’; root: frx), but not non-

Semitic words for which such strings are non-morphemic (e.g. pnġ priming PINĠA ‘to paint’). 

Unaware of previous research on subset priming effects in non-Semitic languages, they interpreted 

these priming effects as stemming from activation of the root morpheme’s lexical representation: 

Because consonant strings are non-morphemic for (most) non-Semitic Maltese words, exposure to 

such strings does not elicit morphological activation and thus fails to facilitate target recognition. 

Contrary to Geary and Ussishkin (2018) but consistent with subset priming research, however, I 

did obtain facilitatory priming for non-Semitic Maltese words when primed by nonce strings that 

consist of their consonant letters, which morphological activation cannot explain. Returning to the 

MaltLex data, I then show that the frequency of a word’s set of consonant letters across the Maltese 

lexicon mediates unprimed lexical processing: Maltese readers were faster and more accurate at 

judging the lexicality of real Maltese words as their set of consonant letters increased in frequency, 

but less accurate at judging non-words as consonant-frequency increased. Consonant-frequency 

may mediate these differences in the priming effects that I and other researchers have obtained. 

I have replicated a wide range of well-established findings from the visual lexical decision 

literature in Maltese using data from MaltLex, thus validating the use of MaltLex to explore other 

aspects of visual word recognition in Maltese and in Semitic languages more generally. I have also 

demonstrated several visual lexical processing phenomena for the first time in Maltese, such as 

how orthographic similarity to real Maltese words (e.g. as estimated using neighborhood density) 

inhibits the processing of non-words (e.g. due to competition from potential real-word candidates). 
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The real contribution of this dissertation, however, is the MaltLex dataset itself, which I make 

freely available to other researchers who wish to further study visual lexical processing in Maltese: 

I have hardly scratched the surface of the analyses that could be performed using MaltLex, which, 

for example, could be used to explore the contributions of other lexical factors to lexical processing 

in Maltese (e.g. morphological complexity, part of speech) or to study any of the variables explored 

here in a more nuanced way (e.g. word length), among other possible analyses. I have performed 

minimal analysis of the non-word data, which may prove fruitful for future research. The data may 

find further application, for instance, in being used to evaluate the predictions of competing models 

of word recognition for lexical processing in Maltese or model word recognition computationally. 

MaltLex is unique compared to previous lexical decision megastudies in at least two ways 

that go beyond simply focusing on a new language, and that provide novel directions for future 

applications of the MaltLex dataset: (1) Maltese is a Semitic language, and so is characterized by 

use of nonconcatenative, root and pattern morphology, the discontinuous nature of which provides 

challenges for models of word recognition that assume that language users decompose words into 

their constituent morphemes during language processing (e.g. Taft 1979, 2004; Taft and Forster 

1975). Over half of the real-word targets used in MaltLex exhibit nonconcatenative morphology, 

whether because they are Semitic-origin words or non-Semitic borrowings that were integrated 

into the root and pattern system (Hoberman and Aronoff 2003, Mifsud 1995a), and the MaltLex 

dataset may be used to further explore the role of root and pattern morphology in Maltese lexical 

processing (cf. Geary and Ussishkin 2018, Twist 2006). MaltLex is unique among visual lexical 

decision megastudies in that it alone focuses on a language that productively uses nonconcatenative 

morphology. (2) All MaltLex participants were bilingual speakers of Maltese and English, and I 

accounted for differences in relative language proficiency and use among participants by collecting 
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language dominance scores using the BiLP (Birdsong et al. 2012). MaltLex is unique among visual 

lexical decision megastudies in including this information, which I have here shown to influence 

visual word recognition in Maltese, and researchers may use the MaltLex dataset to further explore 

individual differences among bilingual readers in visual lexical decision performance. 

 

4.2 Availability and structure of the final dataset 

 The size and scope of the MaltLex dataset affords novel opportunities for researchers to 

study visual lexical processing in Maltese, a relatively understudied and underresourced language, 

in ways that go beyond the analyses reported here: Researchers need not commit resources to 

designing and running new lexical decision studies, but may instead analyze subsets of the overall 

MaltLex dataset to answer their research questions. At the very least, such “virtual experiments”, 

conducted by analyzing subsets of the total dataset (Keuleers and Balota 2015, Kuperman 2015), 

may serve as pilot results motivating the design of subsequent factorial studies. I anticipate that 

MaltLex will find further uses, for instance, in evaluating competing models of word recognition 

through Maltese, a language whose etymologically stratified lexicon contains a large proportion 

of words having nonconcatenative morphology (a unique characteristic among the languages on 

which megastudies have focused), or in modelling word recognition in Maltese computationally. 

Researchers can access the MaltLex trial-by-trial results as a .csv file, which contains the following 

information for each trial, from my website (http://jonathangeary.github.io/maltlex.html): 

 

Participant-level information 

• Participant, containing the ID number for the current participant. 

• Age, indicating the participant’s self-reported age. 

• Gender, indicating the participant’s self-reported gender. 

http://jonathangeary.github.io/maltlex.html
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• Hand, indicating the participant’s self-reported handedness. 

• DominanceScore, indicating the participant’s composite dominance score as assessed via 

the Bilingual Language Profile (Birdsong et al. 2012). Negative scores indicate greater 

English dominance, positive scores indicate greater Maltese dominance, and a score of “0” 

indicates perfect balance between English and Maltese. 

 

Session-level information 

• List, indicating the list to which the participant was assigned for the current session. 

• Trial, indicating the trial number within the current session. 

• Session, indicating the overall session number for the current participant. 

• SessionDay, indicating the participant’s session number within the current day. 

• RT, indicating the participant’s RT (ms) on the current trial. 

• Response, indicating whether the participant provided the intended response (“RIGHT”) 

or not (“WRONG”) on the current trial. 

 

Target-level information 

• Target, containing the ID number for the target judged on the current trial. 

• Word, containing the item itself which served as the target on the current trial. 

• Lexicality, indicating whether the target was intended to be judged as a real word (“Real”) 

or as a non-word (“Nonce”). 

• WF, indicating the target’s total number of occurrences across Korpus Malti v3.0 (Gatt 

and Čéplö 2013), as calculated by the author. 
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• CD, indicating the total number of unique documents in which the target occurs across 

Korpus Malti v3.0 (Gatt and Čéplö 2013), as calculated by the author. 

• N, indicating the total number of unique words in Korpus Malti v3.0 which can be derived 

from the target via the substitution, addition, or deletion of a single letter. Because Korpus 

Malti contains some “unique words” which represent misspellings, foreign words, etc., I 

also include measures of neighborhood density which are weighted according to the WF 

(N_WF) and CD values of the target’s neighbors (N_CD), expecting that the impact of 

such nonce neighbors should be offset by their low WF and CD values. 

• N_WF, indicating the summed WF values of the target’s neighbors. 

• N_CD, indicating the summed CD values of the target’s neighbors. 

• Length, indicating the target’s length in number of letters. 

• Lemma, indicating the target’s lemma. Lemmas were taken from Ġabra (Camilleri 2013) 

and supplemented with information from Aquilina (1987–1990). 

• Gloss, listing an English translation for the target’s lemma. Glosses were taken from Ġabra 

(Camilleri 2013) and supplemented with information from Aquilina (1987–1990). 

• Stratum, indicating whether the target came from the Semitic (“Semitic”) or non-Semitic 

stratum of the Maltese lexicon (“Non-Semitic”), or that the target was consistent with two 

words which come from different lexical strata (“Double”) or that the target’s etymology 

was unknown (“Uncertain”). Etymologies were taken from Aquilina (1987–1990). 
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• Root, indicating the target’s root morpheme (if there is one, otherwise “No Root”). Roots 

were taken from Ġabra (Camilleri 2013) and supplemented with information from Aquilina 

(1987–1990) for words for which Ġabra did not list a root morpheme.26 

 

Target-PoS-level information (unless indicated otherwise, all information was taken from Ġabra 

(Camilleri 2013) and supplemented with information from Aquilina (1987–1990)) 

• Ġabra_PoS, indicating the target’s part of speech, as taken from Ġabra (Camilleri 2013). 

Where Ġabra contained multiple parts of speech for a target, I used the value consistent 

with the target’s most common part of speech in Korpus Malti v3.0 (KM_Dom_Pos). 

• KM_Dom_PoS, indicating the target’s most common part of speech tag in Korpus Malti 

v3.0 as tagged using the Maltese Tagset v3.0 (Gatt and Čéplö 2013). 

• NomGender, indicating gender for nominal targets (i.e. adjectives, determiners, nouns, 

numerals, and pronouns). 

• NomNumber, indicating number for nominal targets. 

• AdpPerson, indicating the person of a fused pronoun for some adposition targets (namely, 

forms of the preposition ta’ ‘of’, wherein the preposition combines with a pronoun to 

specify the possessor; e.g. tiegħi ‘of me’, tiegħu ‘of him’, tagħha ‘of her’). 

 
26 Semitic-origin words in Korpus Malti v3.0 (Gatt and Čéplö 2013) are tagged according to their root morpheme, and 

I planned to include root morpheme frequency as part of the final dataset and to analyze its effect on lexical decision 

for Semitic Maltese words as part of the present study (cf. in a series of auditory lexical decision experiments on 

Jordanian Arabic, Wray 2016 found that root frequency had a facilitatory effect on lexical decision RTs for words 

from productive verbal patterns, supporting that such words are decomposed into their root (and pattern) morphemes 

during lexical processing). However, out of 6,029 Semitic targets which occur at least once in Korpus Malti v3.0 and 

which I identified as containing a root morpheme, I found that 3,518 (i.e. 58.4%) were never tagged as having a root 

morpheme in Korpus Malti, even when other words having the same root were tagged as such. Further, I found that 

some words were inconsistently tagged for their root morpheme. For instance, Korpus Malti v3.0 contains 36,195 

occurrences of the word bdew ‘they began’, but only 36,066 occurrences were tagged as having a root (b-d-j). Further, 

Korpus Malti v3.0 contains 977 occurrences of its negated form bdewx ‘they did not begin’, none of which have been 

tagged as containing any root. Because such inconsistencies will skew the estimated frequency for each root, I do not 

include the frequency of each target’s root morpheme as part of the current version of the MaltLex dataset. 
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• AdpGender, indicating the gender of a fused pronoun for some adposition targets. 

• AdpNumber, indicating the number of a fused pronoun for some adposition targets. 

• SubPerson, indicating the person of the subject for verb targets. 

• SubGender, indicating the gender of the subject for verb targets. 

• SubNumber, indicating the number of the subject for verb targets. 

• DirPerson, indicating the person of the direct object for verb targets. 

• DirGender, indicating the gender of the direct object for verb targets. 

• DirNumber, indicating the number of the direct object for verb targets. 

• IndPerson, indicating the person of the indirect object for verb targets. 

• IndGender, indicating the gender of the indirect object for verb targets. 

• IndNumber, indicating the number of the indirect object for verb targets. 

• Aspect, indicating tense-aspect (e.g. perfect, imperfect, imperative) for verb targets.  

• Polarity, indicating whether the form is negated (“neg”) or not (“pos”) for verb targets. 

 

Additionally, researchers can access (1) a .csv file containing information about the items that were 

used as targets in the MaltLex study and (2) a .csv file containing the details of participants’ 

responses to the language background questionnaire (Appendix 1) from the same website.
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Appendix 1 – MaltLex language background questionnaire 

 All MaltLex participants completed the following language background questionnaire, 

which was adapted from the Bilingual Language Profile (BiLP; Birdsong et al. 2012), via Google 

Forms after completing their initial session of MaltLex. Questions 5–31 were analyzed to produce 

a composite, continuous measure of participants’ relative Maltese–English language dominance. 

 

I. BIOGRAPHICAL INFORMATION: 

1. What is your age? 

2. What is your gender? 

3. Are you left-handed or right-handed? 

4. Have you ever been diagnosed with a vision problem by a doctor? NOTE: If you have, but it has 

been corrected with glasses, contacts, surgery, etc., you should say "No". 

 

II. LANGUAGE HISTORY. In this section, we would like you to answer some factual questions 

about your language history. 

5. At what age did you start learning the following languages? 

a. Maltese 

b. English 

6. At what age did you start to feel comfortable using the following languages? 

a. Maltese 

b. English 

7. How many years of classes (grammar, history, math, etc.) have you had in the following languages 

(primary school through university)? 

a. Maltese 

b. English 
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8. How many years have you spent in a country/region where the following languages are spoken? 

a. Maltese 

b. English 

9. How many years have you spent in a family where the following languages are spoken? 

a. Maltese 

b. English 

10. How many years have you spent in a work environment where the following languages are spoken? 

a. Maltese 

b. English 

 

III. LANGUAGE USE. In this section, we would like you to answer some questions about your 

language use. Total use for all languages in a given question should equal 100% 

11. In an average week, what percentage of the time do you use the following languages with friends? 

(Total use for all languages should equal 100%.) 

a. Maltese 

b. English 

c. Other languages 

12. In an average week, what percentage of the time do you use the following languages with family? 

(Total use for all languages should equal 100%.) 

a. Maltese 

b. English 

c. Other languages 
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13. In an average week, what percentage of the time do you use the following languages at 

school/work? (Total use for all languages should equal 100%.) 

a. Maltese 

b. English 

c. Other languages 

14. When you talk to yourself, how often do you talk to yourself in the following languages? (Total 

use for all languages should equal 100%.) 

a. Maltese 

b. English 

c. Other languages 

15. When you count, how often do you count in the following languages? (Total use for all languages 

should equal 100%.) 

a. Maltese 

b. English 

c. Other languages 

 

IV. LANGUAGE PROFICIENCY. In this section, we would like you to rate your language 

proficiency by giving marks from 0 to 6. (0 = Not well at all, 6 = Very well) 

16. How well do you speak Maltese? 

17. How well do you speak English? 

18. How well do you understand Maltese? 

19. How well do you understand English? 

20. How well do you read Maltese? 

21. How well do you read English? 

22. How well do you write Maltese? 

23. How well do you write English? 
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V. LANGUAGE ATTITUDES. In this section, we would like you to respond to statements about 

language attitudes by giving marks from 0-6. (0 = Disagree, 6 = Agree) 

24. I feel like myself when I speak Maltese. 

25. I feel like myself when I speak English. 

26. I identify with a Maltese-speaking culture. 

27. I identify with an English-speaking culture. 

28. It is important to me to use (or eventually use) Maltese like a native speaker. 

29. It is important to me to use (or eventually use) English like a native speaker. 

30. I want others to think I am a native speaker of Maltese. 

31. I want others to think I am a native speaker of English.
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Appendix 2 – Non-word targets with real-word counterparts that differ only in diacritics (MaltLex) 

 The 51 MaltLex non-word targets that resemble words listed in Ġabra (Camilleri 2013) when diacritics are added to the letters 

“g”, “h”, or “z”, or when diacritics are omitted from the letters “ġ”, “ħ”, or “ż”, which were the focus of the analyses reported in Section 

3.3, are listed below with their potential real-word counterparts. Note that only 28 of these potential words occur in Korpus Malti v3.0 

(Gatt and Čéplö 2013), and so only these 28 targets were treated differently from the other non-word targets in these analyses. 

Original non-

word target 

Potential real-word counterpart 

Word Gloss 

WF (occurrences per 

million words) 

CD (occurrences per 

thousand contexts) 

ga ġa ‘already’ 8.935 6.156 

fħimtx fhimtx ‘I/you did not understand, realize’ 2.556 2.110 

gera ġera ‘he ran, roamed, flowed’ 2.616 2.031 

zaqq żaqq ‘he fed, nourished; stomach, belly’ 2.792 1.841 

regax reġax ‘he did not repeat, return’ 1.773 1.577 

ġrafika grafika ‘graphic (feminine)’ 1.858 1.367 

jgibux jġibux ‘they are not bringing, calculating’ 1.099 0.968 

ġer ger ‘gear, gear lever’ 1.007 0.585 

tigbru tiġbru ‘you all are collecting, assembling’ 0.538 0.466 

vaġun vagun ‘wagon, carriage (of a train)’ 0.686 0.281 

jinhakmu jinħakmu ‘they are being ruled, colonized’ 0.277 0.261 

hawwar ħawwar ‘he flavored something, he elaborated’ 0.148 0.146 

seġa sega ‘saw’ 0.169 0.122 

jingarrux jinġarrux ‘they are not being carried, moved’ 0.104 0.095 

tahbu taħbu ‘you all are hiding, keeping secret’ 0.116 0.087 

ngemmgħu nġemmgħu ‘we are collecting’ 0.064 0.051 

mgarra mġarra ‘hand-driven cart’ 0.052 0.047 

jxenġlu jxenglu ‘they are swaying, leaning’ 0.04 0.040 

seġi segi ‘saws’ 0.056 0.024 
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jithallu jitħallu ‘they are going sour’ 0.016 0.016 

ġażi gażi ‘telling on somebody, accusing somebody’ 0.008 0.008 

haru ħaru ‘they made an effort’ 0.008 0.008 

hwar ħwar ‘seasoning, spices and herbs’ 0.032 0.008 

sirħa sirha ‘you all are being cooked her’ 0.008 0.008 

tħeddet theddet ‘she was threatened’ 0.008 0.008 

mażżu mazzu ‘they shuffled cards’ 0.004 0.004 

migi miġi ‘coming, arrival, advent’ 0.004 0.004 

riega rieġa ‘to support’ 0.004 0.004 

fiehu fieħu ‘they had a sweet smell’ 0 0 

gammar ġammar ‘he burned or glowed with heat’ 0 0 

gergħa ġergħa ‘a swallowing (feminine)’ 0 0 

ġerres gerres ‘he upset’ 0 0 

għażżiet għazziet ‘moles (count plural)’ 0 0 

hann ħann ‘to have mercy’ 0 0 

jhemmx jħemmx ‘he is not clearing his throat’ 0 0 

jilħbu jilhbu ‘they are longing for, craving’ 0 0 

jinġass jingass ‘he is being kept under surveillance’ 0 0 

jisirgu jisirġu ‘they are shining, dazzling’ 0 0 

jitgħarrgu jitgħarrġu ‘they are starting to limp’ 0 0 

jmerrhuna jmerrħuna ‘they are yielding fruit us’ 0 0 

jpejjeż jpejjez ‘he is chirping’ 0 0 

leħmet lehmet ‘she was inspired’ 0 0 

nhara nħara ‘he was defecated’ 0 0 

nħellu nhellu ‘we are praising, lauding’ 0 0 

raħbuhom rahbuhom ‘they joined them a religious order’ 0 0 

raħbux rahbux ‘they did not join a religious order’ 0 0 

tirwih tirwiħ ‘act of fanning oneself; ventilation’ 0 0 

tkabbaż tkabbaz ‘he wrapped himself’ 0 0 

torħob torhob ‘you are joining a religious order’ 0 0 

żiek ziek ‘he made insulting remarks’ 0 0 

zwal żwal ‘trash’ 0 0 
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Appendix 3 – Real-word stimuli used in Experiment 1 

 The real-word items that were used as targets in Experiment 1 are listed below, along with the three possible primes that they 

occurred with during the experiment (repetition, root-letter, and control) and whether their consonant letters/root-letter prime occurred 

as a root morpheme in Semitic Maltese words. Items marked with an asterisk “*” were omitted from data analysis for low accuracy. 

 Primes CD (occurrences per thousand contexts) 

Target Gloss Sem. root? Repetition 

Root-

Letter Control Target CD Root CD 

CD-weighted 

neigh. density 

BANJU ‘bathtub’ Yes banju bnj dsk 8.689 140.476 0.944 

FATTUR ‘factor’ Yes fattur ftr ċng 17.474 0.225 31.92 

XMARA ‘river’ Yes xmara xmr pżl 3.41 0.071 80.947 

RIKATT ‘blackmail’ Yes rikatt rkt xfb 1.312 0.004 0.403 

ISSOKTA ‘to continue’ Yes issokta skt mlf 0.889 9.503 7.543 

BRODU ‘broth’ Yes brodu brd tvl 0.644 1.387 0.095 

TABELLA ‘table’ Yes tabella tbl fnr 24.851 0 9.902 

KUTRA ‘blanket’ Yes kutra ktr ġsf 0.494 5.931 64.951 

SKEMA ‘scheme’ Yes skema skm hbt 20.931 0 75.758 

MUTUR ‘motor, engine’ Yes mutur mtr kxs 16.695 0.043 69.863 

ASSOLUT ‘absolute, utter’ Yes assolut slt mrp 9.452 1.592 16.833 

KOMDU ‘convenient’ Yes komdu kmd tfr 10.333 0 15.743 

FATALI ‘fatal, fateful’ Yes fatali ftl żds 8.29 0.036 2.343 

ORDNA ‘to order, give orders’ Yes ordna rdn kżf 9.871 0.024 90.399 

BORMA ‘cooking pot’ Yes borma brm lsk 3.872 1.174 101.791 

KLIMA ‘climate’ Yes klima klm rsf 19.627 74.573 2.142 

FORKA ‘gallows’ Yes forka frk ġnl 0.628 6.105 83.203 

* MILSA ‘spleen’ Yes milsa mls dnt 0.217 0.126 6.346 

TEORIJA ‘theory’ Yes teorija trj nsk 6.496 0.032 2.363 

SETTUR ‘sector’ Yes settur str hdf 79.876 0.281 41.582 

ABBILTÀ ‘ability, skill’ Yes abbiltà blt pks 2.584 107.003 1.96 

SOFRA ‘to suffer’ Yes sofra sfr mzp 18.335 3.126 18.149 

FRODI ‘fraud’ Yes frodi frd nlm 10.448 3.592 2.45 

ENFASI ‘emphasis’ Yes enfasi nfs vċk 14.711 6.935 3.201 
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LIBERU ‘free, vacant’ Yes liberu lbr kvm 10.894 0.004 8.152 

ORBITA ‘orbit, limit’ Yes orbita rbt kżs 0.237 83.685 0.249 

METALL ‘metal’ Yes metall mtl hdr 3.971 0.008 2.96 

AĊĊERTA ‘to make certain’ Yes aċċerta ċrt vfm 1.122 0.897 25.341 

KONNESS ‘connected’ Yes konness kns blż 5.884 0.178 15.142 

TARIFFA ‘tariff, fare’ Yes tariffa trf knd 8.78 0.695 25.294 

ESEBIT ‘to exhibit’ Yes esebit sbt lnp 1.134 0.269 5.2 

BIDILLU ‘caretaker’ Yes bidillu bdl swx 0.186 122.386 0.281 

KATUBA ‘bass drum’ Yes katuba ktb srl 0.162 111.531 0.929 

SILLABA ‘syllable’ Yes sillaba slb xrm 0.067 0.34 3.126 

ANOMALU ‘anomalous’ Yes anomalu nml kżt 0.146 0 0.929 

BAROKK ‘baroque’ Yes barokk brk psn 0.751 7.504 5.078 

SALM ‘psalm’ Yes salm slm bnż 0.395 0.288 51.729 

ŻEBRA ‘zebra’ Yes żebra żbr lsf 0.194 0.099 4.75 

FOSSILI ‘fossil’ Yes fossili fsl vżx 0.415 16.865 0.68 

POTER ‘power’ Yes poter ptr ċfk 36.856 3.948 64.931 

FORZA ‘force’ No forza frz dht 14.834 0 101.933 

FIGURA ‘figure’ No figura fgr snt 15.529 0 42.617 

TINDA ‘tent’ No tinda tnd wsk 5.212 0 76.363 

STILLA ‘star’ No stilla stl mkx 1.513 0 8.84 

BERITTA ‘cap’ No beritta brt psk 0.952 0 0.162 

KAWZA ‘cause’ No kawza kwz lsm 0.988 0 53.713 

ANALIŻI ‘analysis’ No analiżi nlż bjk 25.337 0 6.575 

REĊTA ‘recital’ No reċta rċt lnz 0.553 0 2.746 

GWIDA ‘guide’ No gwida gwd mbn 22.788 0 5.686 

KAŻIN ‘casino, club’ No każin kżn vdm 15.83 0 144.076 

PIXXINA ‘swimming pool’ No pixxina pxn rġf 5.335 0 0.415 

REĠIM ‘regime’ No reġim rġm skż 9.195 0 1.608 

ĠENERU ‘gender’ No ġeneru ġnr skp 4.987 0 4.228 

LITRU ‘liter’ No litru ltr snf 5.074 0 3.386 

TENUR ‘tenor’ No tenur tnr ċvk 3.541 0 3.118 

ĊIFRA ‘price, quantity’ No ċifra ċfr khż 18.082 0 23.82 

ĊORMA ‘crew’ No ċorma ċrm bnk 1.043 0 66.302 

KARUS ‘piggybank’ No karus krs fxn 0.478 0 0.818 

ĊAVETTA ‘key’ No ċavetta ċvt lnk 5.832 0 0.237 

RAĠUNI ‘reason’ No raġuni rġn mbt 76.173 0 34.987 
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LIMITU ‘limit’ No limitu lmt kżx 2.193 0 31.604 

NUTAR ‘notary’ No nutar ntr ġfz 6.595 0 3.477 

BORŻA ‘paper bag, pouch’ No borża brż lsx 8.132 0 7.856 

REGOLA ‘rule’ No regola rgl kbn 14.415 0 59.672 

MUNITA ‘money’ No munita mnt rġt 11.108 0 5.252 

PUDINA ‘pudding’ No pudina pdn khl 0.486 0 0.964 

SPALLA ‘shoulder’ No spalla spl trz 3.849 0 1.391 

MASSIV ‘massive’ No massiv msv drt 1.162 0 3.521 

KAPPELL ‘hat’ No kappell kpl rnt 3.224 0 49.204 

MISSIER ‘father’ No missier msr bfl 24.092 0 18.375 

STOFFA ‘material, stuff’ No stoffa stf kżm 1.581 0 0.466 

SIGARRU ‘cigar’ No sigarru sgr bfp 0.186 0 0.411 

EDUKAT ‘polite, educated’ No edukat dkt mrn 0.454 0 3.675 

LANDA ‘tin, can’ No landa lnd sbġ 2.197 0 60.415 

LIXKA ‘bait’ No lixka lxk rġb 1.739 0 5.979 

AĊĊENT ‘accent’ No aċċent ċnt dżk 1.174 0 5.038 

XABLA ‘sword’ No xabla xbl wnr 1.28 0 0.838 

KAZZOLA ‘saucepan, trowel’ No kazzola kzl nfb 0.526 0 0.213 

KAMERA ‘camera’ No kamera kmr plt 2.651 0 95.453 

FESTA ‘feast’ No festa fst żld 31.632 0 57.301 
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Appendix 4 – Non-word stimuli used in Experiment 1 

The non-word items that were used as targets in Experiment 1 are listed below, along with 

the three primes that they occurred with during the experiment (repetition, root-letter, and control). 

 Primes CD-weighted neighborhood density 

(occurrences per thousand contexts) Target Repetition Root-Letter Control 

KAŻLU każlu kżl msp 1.833 

FASSUR fassur fsr xtk 0.17 

SWARA swara swr hdt 545.909 

MISATT misatt mst nlf 0.004 

ISSOLFA issolfa slf kżp 0.087 

SFODU sfodu sfd pkn 0.036 

ĠABELLA ġabella ġbl msf 24.946 

SUKRA sukra skr vċx 10.001 

SKEFA skefa skf lnċ 34.394 

FUDUR fudur fdr nlk 61.197 

AŻŻOMUT ażżomut żmt kvx 0 

FOMDU fomdu fmd swk 12.044 

NARALI narali nrl xtd 6.089 

ORSMA orsma rsm hdk 50.018 

FOLMA folma flm srt 79.726 

KRIGA kriga krg vfd 50.599 

BOSKA boska bsk xrt 74.225 

XIRSA xirsa xrs bnf 4.299 

BEOTIJA beotija btj ġnk 1.225 

PEŻŻUT peżżut pżt knr 0.822 

ABBIXKA abbixka bxk ċfd 0 

ROŻTA rożta rżt lnf 28.644 

KLODI klodi kld psr 0.68 

ENWALI enwali nwl kżd 1.087 

ĊIBERU ċiberu ċbr vżt 10.906 

ORPINA orpina rpn ċfm 0.095 

RESALL resall rsl mkp 0.458 

AĊĊETMA aċċetma ċtm xrġ 13.317 

BORRESS borress brs kjl 0.012 

LARIFFA lariffa lrf psm 8.784 

EKEBIT ekebit kbt rġw 1.178 

TIFILLU tifillu tfl bnr 0.126 

LAKUBA lakuba lkb rġx 1.051 

TIŻŻANA tiżżana tżn wsb 1.913 

AFONALU afonalu fnl mkf 0 

FAXOKK faxokk fxk blm 0.008 

DARM darm drm bjr 194.908 

TEMRA temra tmr ċfż 28.72 

BOTTILI bottili btl kjp 2.221 

MOKER moker mkr lsp 1.541 

XORZA xorza xrz snk 109.923 

ĊIŻURA ċiżura ċżr dhf 26.688 
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MINDA minda mnd blr 66.808 

PRILLA prilla prl vżm 0.059 

ĊEFITTA ċefitta ċft mbx 0 

KAJBA kajba kjb lng 95.919 

AVARIŻI avariżi vrż bjx 0.087 

ŻEKTA żekta żkt lsr 2.075 

GLIKA glika glk mdċ 4.276 

BAŻIT bażit bżt snp 108.03 

BITTINA bittina btn psl 0.47 

FEŻIT feżit fżt mkn 0.126 

ĊEMERU ċemeru ċmr wsd 0.83 

NISRU nisru nsr vdk 14.798 

TERUM terum trm skd 10.831 

DIMRA dimra dmr ġfk 0.403 

FOSMA fosma fsm khd 61.726 

FALUS falus fls rġd 120.398 

LAKETTA laketta lkt mrġ 0.103 

FAŻURI fażuri fżr khs 1.189 

SIMITU simitu smt bfk 21.702 

KUPAR kupar kpr żnt 0.304 

BOLFA bolfa blf rġs 14.451 

REKORA rekora rkr żlx 21.848 

FURITA furita frt ġkl 6.654 

KUMINA kumina kmn dżb 0.719 

STAŻZA stażża stż lnr 0 

ĠASSIV ġassiv ġsv wnt 3.098 

BASSELL bassell bsl nfk 0.087 

NIŻŻIEX niżżiex nżx pld 0.119 

GROFFA groffa grf lsb 1.869 

VIGARRU vigarru vgr bft 1.877 

ERUVAT eruvat rvt hsm 0.972 

PAŻNA pażna pżn sbd 40.238 

TILKA tilka tlk mrx 6.35 

APPENT appent pnt ċsr 6.556 

MASLA masla msl thk 25.685 

MAŻŻONA mażżona mżn ġrl 0.012 

XAGERA xagera xgr dsm 11.918 

ĠESTA ġesta ġst dżr 85.463 

 



144 

References 

 

Adelman, J. S., Brown, G. D. A., and Quesada, J. F. (2006). Contextual diversity, not word 

frequency, determines word-naming and lexical decision times. Psychological Science 17: 

814-823. https://doi.org/10.1111/j.1467-9280.2006.01787.x. 

Adelman, J. S., and Brown, G. D. A. (2008). Modeling lexical decision: The form of frequency 

and diversity effects. Psychological Review 115: 214-229. https://doi.org/10.1037/0033-

295x.115.1.214. 

Adelman, J. S., Johnson, R. L., McCormick, S. F., McKague, M., Kinoshita, S., Bowers, J. S., 

Perry, J. R., Lupker, S. J., Forster, K. I., Cortese, M. J., Scaltritti, M., Aschenbrenner, A. 

J., Coane, J. H., White, L., Yap, M. J., Davis, C., Kim, J., and Davis, C. J. (2014). A 

behavioral database for masked form priming. Behavior Research Methods 46: 1052-1067. 

https://doi.org/10.3758/s13428-013-0442-y. 

Agius, D. A. (1996). Siculo Arabic. London: Kegan Paul International. 

Aguasvivas, J. A., Carreiras, M., Brysbaert, M., Mandera, P., Keuleers, E., and Duñabeitia, J. A. 

(2018). SPALEX: A Spanish lexical decision database from a massive online data 

collection. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2018.02156. 

Aguasvivas, J., Carreiras, M., Brysbaert, M., Mandera, P., Keuleers, E., and Duñabeitia, J. A. 

(2020). How do Spanish speakers read words? Insights from a crowdsourced lexical decision 

megastudy. Behavior Research Methods. https://doi.org/10.3758/s13428-020-01357-9. 

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In 

Petrov, B. N., and Csaki, B. F. (eds.), Second international symposium of information 

theory, 267-281. Budapest: Academiai Kiado. 

https://doi.org/10.1111/j.1467-9280.2006.01787.x
https://doi.org/10.1037/0033-295x.115.1.214
https://doi.org/10.1037/0033-295x.115.1.214
https://doi.org/10.3758/s13428-013-0442-y
https://doi.org/10.3389/fpsyg.2018.02156
https://doi.org/10.3758/s13428-020-01357-9


145 

Anderson, S. J., and Geary, J A. (2019). Form priming by discontinuous consonant letter strings 

in visual masked priming. Proceedings of the 11th International Conference on the Mental 

Lexicon 1: e060. https://doi.org/10.7939/r3-pvan-0083. 

Andrews, S. (1989). Frequency and neighborhood effects on lexical access: Activation or search? 

Journal of Experimental Psychology: Learning, Memory, and Cognition 15: 802−814. 

https://doi.org/10.1037/0278-7393.15.5.802. 

Andrews, S. (1992). Frequency and neighborhood effects on lexical access: Lexical similarity or 

orthographic redundancy? Journal of Experimental Psychology: Learning, Memory, and 

Cognition 18: 234−254. https://doi.org/10.1037/0278-7393.18.2.234. 

Andrews, S. (1997). The effect of orthographic similarity on lexical retrieval: Resolving 

neighborhood conflicts. Psychonomic Bulletin & Review 4: 439−461. 

https://doi.org/10.3758/BF03214334. 

Andrews, S. (2012). Individual differences in skilled visual word recognition and reading: The 

role of lexical quality. In Adelman, J. S. (ed.), Visual word recognition volume 2: Meaning 

and context, individuals and development, 151−172. New York, NY: Psychology Press. 

https://doi.org/10.4324/9780203106976-15. 

Andrews, S., and Hersch, J. (2010). Lexical precision in skilled readers: Individual differences in 

masked neighbor priming. Journal of Experimental Psychology: General 139: 299−318. 

https://doi.org/10.1037/a0018366. 

Andrews, S., and Lo, S. (2012). Not all skilled readers have cracked the code: individual 

differences in masked form priming. Journal of Experimental Psychology: Learning, 

Memory, and Cognition 38: 152−163. https://doi.org/10.1037/a0024953. 

Aquilina, J. 1987–1990. Maltese-English-Maltese dictionary. Malta: Midsea Books. 

https://doi.org/10.7939/r3-pvan-0083
https://doi.org/10.1037/0278-7393.15.5.802
https://doi.org/10.1037/0278-7393.18.2.234
https://doi.org/10.3758/BF03214334
https://doi.org/10.4324/9780203106976-15
https://doi.org/10.1037/a0018366
https://doi.org/10.1037/a0024953


146 

Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., and Marelli, M. (2011). An amorphous 

model for morphological processing in visual comprehension based on naive discriminative 

learning. Psychological Review 118: 438-481. https://doi.org/10.1037/a0023851. 

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., Neely, J. H., 

Nelson, D. L., Simpson, G. B., and Treiman, R. (2007). The English Lexicon Project. 

Behavior Research Methods 39: 445-459. https://doi.org/10.3758/bf03193014. 

Bates, D., Kliegl, R., Vasishth, S., and Baayen, H. (2015). Parsimonious mixed models. arXiv: 

1506.04967v1. https://arxiv.org/abs/1506.04967v1. 

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models 

using lme4. Journal of Statistical Software 67: 1-48. https://doi.org/10.18637/jss.v067.i01. 

Berman, R. (1978). Modern Hebrew structure. Tel-Aviv: University Publishing Projects. 

Birdsong, D., Gertken, L. M., and Amengual, M. (2012). Bilingual Language Profile: An easy-to-

use instrument to assess bilingualism. COERLL, University of Texas at Austin. 

https://sites.la.utexas.edu/bilingual/. 

Bodner, G. E., and Masson, M. E. J. (1997). Masked repetition priming of words and nonwords: 

Evidence for a nonlexical basis for priming. Journal of Memory and Language 37: 

268−293. https://doi.org/10.1006/jmla.1996.2507. 

Borg, A. (1994). Some evolutionary parallels and divergences in Cypriot Arabic and Maltese. 

Mediterranean Language Review 8: 41-67. 

https://www.jstor.org/stable/10.13173/medilangrevi.8.1994.0041. 

Borg, A. J., and Azzopardi-Alexander, M. (1997). Maltese. London: Routledge. 

Borg, C., Fabri, R., Gatt, A., and Rosner, M. (2012). Korpus Malti: A corpus of contemporary 

Maltese, v.2.0. http://mlrs.research.um.edu.mt/. 

https://doi.org/10.1037/a0023851
https://doi.org/10.3758/bf03193014
https://arxiv.org/abs/1506.04967v1
https://doi.org/10.18637/jss.v067.i01
https://sites.la.utexas.edu/bilingual/
https://doi.org/10.1006/jmla.1996.2507
https://www.jstor.org/stable/10.13173/medilangrevi.8.1994.0041
http://mlrs.research.um.edu.mt/


147 

Boudelaa, S., and Marslen-Wilson, W. D. (2001). The time-course of morphological, 

phonological, and semantic processes in reading Modern Standard Arabic. In Proceedings 

of the Twenty Third Annual Meeting of the Cognitive Science Society, 138-143. Edinburgh, 

Scotland. https://escholarship.org/uc/item/33n880t7. 

Boudelaa, S., and Marslen-Wilson, W. D. (2004). Allomorphic variation in Arabic: Implications 

for lexical processing and representation. Brain and Language 90: 106-116. 

https://doi.org/10.1016/s0093-934x(03)00424-3. 

Bovingdon, R. and Dalli, A. (2006). Statistical analysis of the source origin of Maltese. In Wilson, 

A., Archer, D., and Rayson, P. (eds.), Corpus linguistics around the world, 63-76. New 

York: Rodopi. https://doi.org/10.1163/9789401202213_006. 

Brincat, J. (2011). Maltese and other languages: A linguistic history of Malta. Sta Venera, Malta: 

Midsea Books. 

Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., Bölte, J., and Böhl, A. (2011). The 

word frequency effect: A review of recent developments and implications for the choice of 

frequency estimates in German. Experimental Psychology 58: 412-424. 

https://doi.org/10.1027/1618-3169/a000123. 

Brysbaert, M., Mandera, P., and Keuleers, E. (2017). The word frequency effect in word 

processing: An updated review. Current Directions in Psychological Science 27: 45-50. 

https://doi.org/10.1177/0963721417727521. 

Brysbaert, M., and New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of 
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