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Abstract

The neuromorphic EveiBased Sensor (EBS) is an imaging sensor that asynchronously aonpgitsg
dataas event®nly when and where a temporal change in scene radiance is detected. An advantage of
EBSis its lowerreadout bandwidtup toordersof-magnitude relative toequivalently sized
conventional framdased sensor. Thisadouthandwidth advantage directly leadsétated potential
advantages such as low sensor power, low processing latency, and higheeapabilities.
Disadvatages of using EBS include potentidibyvertask performancéigherreadout bandwidth in
suboptimal conditions, a high minimum contrast threshold, rafatively poor understoocbmpatibility
with traditionalimaging approaches and systeewever, gantified information on these costs and
benefits is unavailable, preventing the sensor from adoption in defense and commercial $ystems.
overarching goal of thidissertatiorwork isto understand these costs and benefits, formatizaslo
guestions(a) What are quantified costs and benefits of using EBS for defense imaging applicatidns?

(b) How does EBS integrate withaditionaloptics technology and methods?

We pursuédhree researctirectionsto explore these questiarfarst, an image stabiion systenis

integratedwvith EBS,which isusdul in conditions where the sensor is imaging a cluttered scene from a

moving platform. Here, the relative motion of the clutter generates signifitkahti QWY WKDW HOLPLQTUD
bandwidth advantages. By @ating the relative motion, the method demonstrates a recovery of one to

two orders of magnitude bandwidth advantage. Second, a test bed for comparing EBS abddeaime

sensors in moving object detection tasks is demonstrated using receiver operasiogisic (ROC)

analysis. For a uniform background, a performance gap between EBS andh&sadeémaging system

was demonstrated and analyzed, demonstrating that the EBS can produce results similafrtoisehigh
framebased sensor. For cluttered batkR XQGV PRWLRQ LV VKRZQ WR GHJUDGH ER\V\
SHUIRUPDQFH ZKLOH DOVR GHJUDGLQJ (%6YV EDQGZLGWK DGYDQYV
discussedLV WKHQ DSSOLHG WR WKH WHVW EHG WR UHFRYHU GHWHFW
advanage. Third, a coherent optical highss filter is integrated with EBS to increase scene contrast,

enabling lower contrast objects to be detectable. Contrast enhancement expectations were simulated and
matched with experimental measurements, demonstratirgfective 3x decrease in the minimum

detectable object contrast with the applied optical filter.

Each direction addressed the dissertation goal and associated questions in different ways, providing
LQIRUPDWLRQ DERXW (%61V RRectwn\em@n&iraield @QdndwwisandwickhlH LUV W

advantage of integrating EBS with traditional image stabilization and extended the EBS bandwidth
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advantage to additional scenarios. The seclmedtion VLP XOWDQHRXVO\ TXDQWLILHG (%671
SHUIRUPDQFH BEBantiwidih@éhe(itsd &l illustrated the integration of EBS into traditional

framebased imaging systems. The third direction addressed and mitigated the limited contrast

performance and demonstrated benefits of using Fourier Optics techniques with EBESI, @& expect

that the quantification of the costs and benefits justifies EBS usage in larger complex engineering

problems. The integration with traditional imaging should also lead to new EBS systems that can solve

imaging problems in new, creative cavaluable ways.
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Chapter 1

Introduction: Imaging System Technolog ies

In Chapter 1, | introduce the main technologies in the dissertation imohiding the EvenBased

Sensor that played a major part in the research, andsatpporting imaging technologidspresent my
understandingf andconduct a literature survey tfe supporting technologies. Then, | present the
problems addressed in this dissertation, followed by an outline of the remainder of th&heagkals of

this chapter are Istablish the knowledge base necessary to understand my technical contributions and
their context within the larger research areas?ablish authority in traditional optics and EBS 3)

establish the direction of the remainder of the dissertation. Se@iand3 accomplish goals 1 and 2.

Sections 1, 4, and 5 accomplish goal 3.
1.1: Traditional Imaging Review and Application Areas

This setion describes relevant material toaditionalimaging with framebased sensots include
content within the imaging chain construg}, [illustratinghow different parts of an imaging system work

and interact with each other.

The goal of this sectiors tooutlinethe various optics technologies and knowledge that | view as
necessary to reproduce and build off the work. The material here is generic, with specific example
applications to help the reader view it as concrete idde.eferencanaterialin this section facilitate

further studyby the interested readeviuch of the material is used in the research, but some material only

provides context from which to view the work.
1.1.1: The Imaging Chain

| present the optics background using the imaghmgjn structure, which is a model of an imaging system,

incorporating opticselated processes from light generation, to making decisions with output data.

The imaging chain can be viewed as the basis for the research field of Imaging Science, of which |
consider my work a part ofreferencea book, Foundations of Image Sciengg fhat incorporates many
science and mathematical topics related to imaging and integrates/ith a systemic view of the

research areareating the imaging chailfhe mainidea is that every step in the chain operates on the

light, and therefore a researcher should consider how every step affects the output of the imaging system.
This approach applies to every type of imaging system, from RADAR, to opticataioand somaThe

work herefocuses specifically on optical imagisgstemswhere a lens generates a tdimensional
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image of a threelimensional scene, which is then recorded on a focal plane with a camera. However, at
several places | discusslationships to other types of imaging systems.

1.1.2: Light Generation and Propagation

The first topic is light generation and propagation. Light can be generated through several mechanisms.

First, black body radiation, where an object spontaneouslyaesancoherent light based on its

temperature. This often happens in the visible spectrum, as in sunlight or fire, as well as in the infrared
spectrum, as in hot objects. Second, the black body radiation can reflect off an object, which can then be
treakd as a new light source. Other sources inchtideulatedemission, as in a laser, and

electroluminescence, as in a light emitting didfle.assume that a source emits light with a quantity

represented by radiae, with units of \atts per square meter surce, per steradian of propagated solid

angle, and that this light has a Lambertian struct@r®. H ZD\ RI TXDQWLI\LQJ D OLJKW VRXI
using standardized spectra, such as those published byahsational Commission on llluminatipar

CIE. Fig. 11 provides an example of the CIE D65 daylight emission spectrum, wigiplesentblack

body radiation from the sun, filtered through the atmosphere

Fig. 11: An example of a spectral distribution of light. The D65 illuminant is authoritativepresenting the

average spectrum of daylight.

After generation, the ighE URSDJDWHYV DFFRUGLQJ KR OHX[JHQAVYVSHIL R B WIRID \t
assumed, wherde light propagates from an ensemble of point sources, with each smitiiega
spherical waveBased orthe laboratory experiments the dissertation OD[ZHOOfVakTXDWLRQV
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constrained to the simplertUD X QKR IITHU TV Gdlowih® rradldlirgQitd Bodriér Transform
techniquesFor the interested readengtbook Introduction to Fourier Opticprovidesfurther
understanding of the procds}, especially inChapter3 +Chapters.

This ZRUN H[SORUHV WZR DSSOLFDW L R&Pduiel SHIftTXeQrsmRddmvelY ODZV )L
PHFKDQLFDO URWDWULRQNRI D WKHQWRLUI W K H QW D Judefl@orWwhegd (% 6TV ||
stabilization Second, the Fourier Transform property of leralesvs appicationa spatial higkpass filter

to an optical field, before transforming the field back to the image plase BBS useful for contrast

amplification For simpler imaging tasks, the light propagation can be modeled with Fourier transforms.

For some of the experiments, a large computer digagrates an arbitrary light field, used for

generating backgroundsaged by the EBSThis display has a discrete set of pixels with red, green, and

blue subpixels. Each pixel, through a compuyjenerated control signal, can set each pixel to a specific

color and brightness, depending on a brightness value assigneti gubpixel. The screen is spatially

limited in its extent, which represents an aperture limiting the light distribution. This light then propagates

WR D FDPHUD DQG LV LPDJHG E\ D OHQV RQWR D IRFDO SODQH ZKI

Additional propagation effects including atmospheric losses and turbulence can be emulated with my

setup modeled in Chapter 4 as a decrease in scene coitirasispheric losses represent the loss of light

and the introduction of external light from the opticahgabm an imaged object to the camera. An

example of atmospheric loss is Rayleigh scattering of blue light. Here, swaxstelength light interacts

with atmospheric molecules and changes direction away from the original optical path. This scattered

light then scatters into the optical path of an object of interest, becoming a significant part of an image at
ORQJHU GLVWDQFHYVY 7KLV SKHQRPHQRQ H[SODLQV WKH VN\YV EOX
when viewed from a distance. | represent thiskFW DV D GHFUHDVH RI DQ LPDJH VFHQ!
convergence in an objeof- L Q W H U H Mab§dkgduindl @iboQo Trhis is important in Chapter 4

where the scene variance parameter can be viewed as a model of atmospheric losses and scattering
1.1.3: Sensor Design

Thefocus herds on the focal plane of a digital camera, specifically a CMOS active pixel sensor (APS),
and its parts. After propagating from a light source, the light travels through a lens, and the light source is
then imaged at the focal plane of the lens. Proc@sdesling lens focusing and imaging equations were
useful indevelopingmy experiments, however, are not a focus of the work. The lens design process is

well understood and is not an interest of this work.
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A traditional CMOS digital sensor consists of a dgtigels, each containing a photodiode, some charge
storage electronics, and some read electronic$4]. More advanced frarAgased CMOS cameras may
contain additional electronics for purposes such as noise reduction or a global shutter. The photodiode
converts incident light to a photocurrent proportional to the measured radiant power, exploiting the
photoelectric effect. This current is input into a storage capacitor, which integrates the current over time
to generate an electric charge proportiona tmltage level. At a set interval, often described as a frame
rate, the camera reads this voltage with an arataligital converter, generating an integer value

associated with the voltage level.

The image generated by this digital camera can, exant, be mapped to the object space reditom

scene locations. These digital values are proportional to the incident power at each pixel, which with the
photodetector sizeuantum efficiencylight spectrumand other parametersan be mapped to an

irradiance value. This irradiance can then, with knowledge of the lens and thgsosredry be traced

back to a radiacefrom the scene. For more information raaiometryunits, and why | approach it in

this way, | refer the reader to Appendix

Thedata collected at each pixel is then read out with aoeadircuit. Usually, these circuits start by
connecting to one pixel and collecting the measured light as an electric signal and using an analog to
digital converter (ADC) to convert the signaldrdata directly readable by a computer or data collector.
After a period, known as the pixel clock, the circuit disconnects and connects to the next pixel on the
focal plane, reading out there too. This process repeats across all pixels, providingradtiofoneeded

to reproduce the digital imagafter reading out a whole frame, the data is made available to thinuser
three dimensions: The spatial horizordahension, the spatial vertiedlmension, and the time

dimension. The data is then eitheredily presented to the user or processed to provide the user with

additional information.
1.1.4: Image Processing, Object Detection, and Estimation

The data from the sensor is either consumed directly or input into a processing technique to automatically
extract information. Further processing is, in many cases, more useful than a human directly processing
the information Automatic techniques prowabjective and quantitative information, versus qualitative

interpretation by a user directly viewing images, which can lead to biases in decisions based on the data.

Theseautomaticdechniques can accomplish several goals including data aggregation delgetion,
and parameter estimation. For data aggregatignograncan integrate or average the image data over
space or time, to provide dimensionally reduced data for easier data processing and decision making.

Object detections a form of data agggation, aggregating twaimensional spatial information into a

16



binary value that represents whether an object is present or absent within a specific time period.
Parameter estimatiois a more generatansformation of twalimensional spatial informatianto a

scalar or vector value representing some specific scene quantity. All of these techniques may operate on
spatial or spatiotemporal data, with examples of each throughout the work.

1.1.4.1: Object Detection

Here generic, parametdyasedetectorsaard trainingbased detectore exploredBy training we refer

to explicitly providing some information to the detector that specifies what object to search the image for,
as well as possibly information about the scene itself-tkmined detection approhes may involve

techniques such as clustering as well as morphological operations. Trained detection approaches include
linear matched filters, higharder filters, as well as machine learning approaches.

Theparametebasedietectors are designed to aimages to find generic objects of interest.

Techniques such as clusterir fttempt to extract object features from an image, and group them based
on spatial distances or other parametEhgse features can be abstractions, such as detected corners
within a scene, or more direct measurements, such as events, as defined with tBa&sei@ensor

(EBS) in the next sectioiVhen a sufficient number of features are close in a giu@ension they are
considered a cluster, thaf tkeemed to be an objeaf interest. This technique can demonstrate
effectiveness in detecting objedwever it is limited because it has no information on specific objects

of interest. Techniques such as morphological operat&)n$ §ttempt to detect objects based on their
structure and representation in the image, such as the shape amtiesiizst reference§] providesa

highly mathematical description of the technique, tiedsecond referencé] [providesexamples of

using te technique with imaging data. Detection with these techniques assumes that any data that passes
through the operations is an object of interest. While performance with thes@imamg detectors is

limited, they can operate quickly on data and maydpeapriate as the first stage in a mislige

detector, feeding into a training detectiscussed nexfThe nortraining detectors may also be written

in a way that biases them towards detecting specific objects or working in specific scenes, hasvisver th

implicit in the algorithm itself and is not normally an input.

The training detectors use prior knowledge about the expected object of interest to identify the specific
object in an image. This detection operation often includes a correlationlsthgedrches an input

image for the specific object. The simplest trained detectors are linear matched filters;amhoeh

viewed asnonpre-whitened and prevhitened filters. These detectors are effective when the object and
the background are known ety or can be described using secamder statistics. The nepre-

whitened filter is the optimal detector, in the case that the object has no variance, the background is
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uncorrelated, and the noise is additive, white, and Gaussian. This is approxthatzge when the
background is uniform, and the scene is sufficiently bright such that Poisson shot noise is approximately
Gaussian by the Central Limit Theorem. Ed.represents a simplified description of the matched filter,
with a more irdepth desaption given inChapterd.

& ,L 6T C (1.2)

where a?E Js an image representing the output of the matched filtisrthe object template representing

the expected object with no included noise or backgrolindgpresents the croserrelation opeator,

and Cis the image to be searched for the template. After the oper@@gman be compared to a
WKUHVKROG DW HYHU\ SLIHO WR GHWHUPLQH WKH REMHFWY{V DEV}
represented as a tvebmensional image, or asvector where eaatimensiorrepresents pixel.

The nonpre-whitened filter is simple to generate, with the templateing the expected image of the
object against an uncorrelated background, and closely follows linear systems theory. This filter is
commonly used with a change detectammfigured imaging system, where the background can be
registered with itselbver timeand removed, leaving only moving objects against an uncorrelated
background. With this change detection approach, thegrewhitened filter becomes the optimal
detector and more complex filters are superfluous. Note that throughout the disseveatefar to3Q R Q
pre ZKLWHQHG PD¥WNKRGS AL OR\DHNUF KH G -de@hnukbkibl TujiR[8] dboRidésn
introdudion matched filtering for onelimensional RADAR dat& book on correlation filtersd],
specifically Chapter 5, discusses tdimensional matched filters, different matched filter variants, and
the supportingmathematics. Chapter @here the authordiscus modifications to the matched filter to
enable robustness in ndsteal scenarigamay also provide context for the practinahge of matched

filtering.

If the background is nonuniform, but its correlations can be described by second order statistics, the non
pre-whitened filter is no longer optimal and pshitened matched filter becomes the optimal detector

[10]. This referene [10] provides a description of the pvehitened filter, also known as a lind@isher
discriminant, in addition to discussion on performance assessment and human performance, topics that |
briefly discuss in the next subsection. Here, the covariancextiet describes the scene statistics is
inverted and applied to the input image, performing angréening stage that removes scene

correlations, presenting the optimal input to a-poswhitened stage. To train this filter, the covariance
matrix has® be generated and inverted, which in the case of an@gapixel image, has one trillion

elements. Computing the inverse here, with inversion having a superquadratic time complexity, is out of

the question for standard computers. However, by making agsasipn the nature of the matrix,
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authors have managed to generate this inverse mattidespite its sizeEq. 12 provides the summary
equation implementing the prehitened matched filter.

&&,L 6T w’SC (12)

Where wis an inversecovariance matrix representing an expected input image. This expected input

image accounts for all known seceonler statistics in the scene

Usage of the pravhitened matched filter is limiteid generabecause scenes describable with second

order stastics are usually limited to mathematical constructs. However, there are cases where this filter
still has good performance because the scene can still be approximately described with second order
statistics. In one example, discussedub®ction 11.5.1 and a prior reference(], the authors managed

to predict human performance when detecting a tumor in the humamnb@dijogram image$re

whitened filters aralsolimited in lensbased imaging systems because there is a high variance in
expected senes. For example, when imaging urban scehescene can have many different shifted
positions on the focal planean image different buildings and objects, can image in different lighting
conditions, and many other complexities. Linearwhitening sages perform poorly at encapsulating all

of these complexities and are not a good choice with detecting with raw camera images. However, other
SURFHVVLQJ VWHSVY VXFK DV FKDQJH GHWHFWLRQ FDQ PRGLI\ WKH

robust pefiormancedespite complexity.

When applying trained detectors to more complex scenes that cannot be described with second order
statistics, a linear detector is no longer optimal. These more complex scenes repoesedlistic

scenes, and as such, a #imear detector should be used in these systems. Hatspducetwo nonlinear
detector approaches, specifically quadratic detectors and machine |dzasétydetectors. However,

these were not a focus in the dissertation, so I limit the discussienTher quadratic detectdt?] is

trained like the prevhitened matched filter, however, requires more input data and a more complex
training algorithm. Usage of the quadratic detector is limited because machine learning techniques often
achieve better pfarmance, generalize across different scenes better, and have asgpadsacross

many fields. The machine learning detectors often use some type of neural network, as well as a training
set of images that are expected to represent the scenes thetettter is used with. The machine learning
detectors have a reputation for generalizing well across a broad range of training data, having
performance in complex scenes above and beyond linear detectors. However, the behavior of machine
learning techniqes is poorly understood and there are many instances where they can fail drastically and
unexpectedlyA relatively recent survey paper 3L provides an ovemachine learning techniquésr

defense applicationsiowever the techniques are not usethis work.
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The fourabove techniques: Nepre-whitened, prewvhitened, quadratic, and machine learnimae

increasing amounts of robustness to-ideal scenes. Another approach to managing scemelexityis

to generate multiple filters and input image®very filter, selecting the best filter output as

representative of the detection. With the simpler linear filters, many different filters are required, but with
machine learning techniques, the filter is robust to scene variafiersich, machine d&ning would
requirefewer, but more complex filterslere, flter designcould be vieweds a trade space, between

testing scenes against many simple detectors, or testing scenes against fewer complex detectors.

For performance testing with problems like ones discusséd this dissertatiorthelinear detectors
including matched filtersare straightforward to implement and reproduce, they are very well understood,
their performance can be analytically computed for simple scenarios if necasdtrgy can be

generalized to other scenarios. In additibe, EBS is a&hange detection camera, which givestable or
staticbackground, can detect with the Aore-whitened filter in a clos¢o-optimal way.

1.1.5: Imaging System Performance

The performancef an imaging system is often related to its usefulness at accomplishing a specific task.
Here, three specific classes of taaks presented with discussionloow performance is measuried
each Presenting a human observer with an image, deciding basethge data, and measuring a
guantity from image data. | then briefly discuss noise and how it affects system performance.

1.1.5.1: Human Usage of Images

Humans often directly use image information to complete a task. For example, in military hedicopter
pilots are often presented with images acquired from an infrared camera. The pilot then analyzes the
image to determine whether it contaimsabject Here, performance is measured by the alilitthe

pilot to see a objectwhen it is in the scene, dro correctly determine ifraobjectis not in the scene. In

another example, a doctor uses a radiology image to determine whether a patient has cancer.

In the helicopter case, the pilot is searching an image for objects that look like ¢higtdsest The
background may be cluttered, with other objects that might be confused as a target. Thisaslutter
arbitrarystructure as thereés a vasamount of possible scene variations with many different factors that
can affect the ability to detect a target. With a wide range of possibilities, it is difficult or impossible for a
researcher to measure performance in a way that represents everle gossibrio. Thanaging

literature addresses this problem in several ways. The Army has developed heuristic metrics that, with
decades of testing and experience, have been found to represent performance across a wide range of

scenario$16, 17, 18]. Another group at the Georgia Tech Research Institute (GTRI) illustaegesilar
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approach19, 20] where the authors show imaging performance for a class of backgrounds e.g., urban or
natural backgrounds.

From the Army workperformance is measured with fhargeting Task Performand¢&8] (TTP) metrig

with precursor metrics including the Johnson Critgtigl and Johnson Criteriike metricg[17]. These

metrics are based off expensive field trials using human personnel, and measuring their ability to detect
targets, as well as scene parameters that affect this ability. However, this was for humans detecting

targets, either from viewing framseDVHG LPDJHV RU E\ LPDJLQJ D VFHQH GLUHFW
system such as binoculars. This was a valuableapprbecausgerformance predictions did not need to

directly measure performance across a wide range of possible scenes. However, the metrics were only
applicable to direct frame images imaged by a human and would not translate to an EBS performance
measuvementWhether this translation is possible is an open question.

In the medical case, radiographs, tomogiaphages or other medical images are presented to a doctor,
who searches the image for signs of disease. Because the general shape of therbitalyasross

people, it is possible to align the image such that it is similar across different people, reducing scene
variations. This reduced variation leads to the possibility of miioeet performance assessment than in
the helicopter case. One dipption of thisdirectperformance is the usage of linear detection techniques
to simulate human task performajt0]. Here,a prewhitened matched filtawas used tpredict a
KXPDQYY DELOLW\ WR GHWHFW FDQFHU LQ PHGLFDO LPDJHV

1.1.5.2: Decisions Based on Image Data

$ UHVHDUFKHU FDQ QRW RQO\ VLPXODWH D KXPDQYVY GHFLVLRQ PD
case, but can also automatically make decisions with algaithrthis work, these decisions involve

detecting oclassifying objects present in an image, with the decision being whether the object is absent

or present in the scene. Performance in decision tasks is often completed with Receiver Operating

Characteristi¢21] (ROC) analysis, or with the equivalent Pet@n Recal[22, 23] (PR) analysis.

ROC plots the probability of deciding that an object is present, given that it is present (Probability of
Detection, or PD), versus the probability of deciding that an object is present, given that it is not present
(Pradbability of False Alarm, or PFA). The ROC plot is a parameterized plot, such that a user can tune the
parameter to select a specific PD value given a specific PFA value. In general, ROC performance can be
summarized by integrating the area under the Blptcifically, this Area under the ROC Curve (AUC)

value is between 0.5 and 1.0. With a value of 1.0, the ROC curve is interpreted as the system having

perfect performance in terms of always detecting the object when it is present, and never detecting the
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object when it is not present. An AUC value of 0.5 means that the system has no performance, where the
user may as well randomly guess at the presenae object

ROC analysiss prioritized in this workhowever the same results could be achieved witHFBRmore

information,the ROC referencel], describe ROC analysis and why it is a valuable analysis method.
1.1.5.3: Measurements Based on Image Data

Image data cahe further analyzed to generate measuremesgdas input for further processimy

provided as statistics to a user. For example, a researcher might try to measure the velocity of a moving
object, using methods such as a Kalman filter, a motion compensation algorithm, or an optical flow
algorithm. In another case, a doctor might wanttoreate the size of a tumor and attempt to measure a
detected tumor with an algorithm. In a third case, an algorithm might want to not only detect an object but
guantify its position with the image. In some cases, a decision has to first be made,dhpcthie

present, and the quantity can be measured. In other cases, the agsatried to be implicitlgresent,

and the decision step is also implicit.

There are various metrics that can be developed to quantify the measuricmnimon approach ist
use MearSquared Error (MSE) metrics that measure performance as the deviation of the measurement
from some truth value. MSE metrics are useful but must be anchored to a physical value to be useful.

For measurements that require an explicit detectigedtae Localization ROC, or LROQ@4] metricis
often usedLROC measures the probability of correctly detecting and localairmpject of interest
within a circle of confusion, versus the probability of false alarm, again a parameterized funatioe of s

control parameter.
1.1.5.4: Noise and its Relationship to System Performance

Measuremenhoise consists aaindom variations in the measured irradiance at each pixel. These
variations may be attributed to randomness in the incident light, in theatetedhe reagbut circuit, or
elsewhere in the imaging system. Imaging system noise adds variance to all irradiance measurements,
leading to confused decisions and inaccurate measurements. Regarding decision making, noise
contributes by making neobjecs of interest sometimes appear similar to objects of interest, and vice
versa. In tasks such as moving object detection, where the moving objeftecdie easily distinguished

from the background, the noise component of the measurement often liméta pgstormance.
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1.1.6: Imaging System Design

Givena task and some knowledge abautlass ofcens, an imaging system designer will often want to
optimize the system towards this goal. As such, a designer can optimize multiple elemeritaagitige

chain, often concurrently.

First,a designecan optimize the imaging hardware, including the lens and other elements before imaging
on the focal plane, and the specific digital camera focal plane. Imaging hardware optimization can include
activities such as lens design and selection, aberration correction, and light amplification. Lens design
activities often attempt to reach specified optag@cificationssuch as depth of field or minimal system
aberrations, while maintaining a small ratio begw the focal length and lens diame##so known as the
f-number Camera focal plane optimization includes the development of specialized hardware that can
perform well at specific tasks. This activity contrasts with using a standard-frased camer&at is not

specialized for any one tgsénd he EBS and other sensors fall into thiicialized sensaategory

Seconda designecan optimize the processing stage with better algorithms designed for the specific
scene, or better processing hardwarspeed up the system. Algorithm optimization can include
specialization, speed optimization, and task performance optimization. By specialization, | imgi&h to

an algorithm specifically for an imaging chain, as opposed to using a generic algorittexafmaie, the

optical flow[14] and motion segmentatigi5] algorithms can both be used to separate objects based on
their motion in spatidgemporal data. However, optical flow algorithms are designed to provide generic
motion information that may have unfficient quality for the task, compared to a more specialized
algorithm. Other optimizations can trade off task performance for speed or can provide lower quality data

with a faster algorithm that can enable some tasks.

The above optimizations are donmaltaneously in a field called computational imaging, where imaging

hardware and processing algorithms areleeeloped to optimize system performance. For example, one

can optimize the amount of taskecific informatiorj25] (TSI) available for a giverask by computing

WKH PHWULF DQG WXQLQJ V\VWHP SDUDPHWHUY EDVHG RQ D JLYHC(
are often sensitive to other ignored parameters such as temperature or vibrationsedndingsuch

sersitivities is an active resedrarea.
1.2: EBS Technology Description

This section describes the Evdddsed Sensing (EBS) technology, its desaperation, and history.
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1.2.1: EBS Device Behavior

TheEBS consistof a twodimensional array of EBS pixels, all integrated together with agaadircuit,

which is then integrated into a usable cam&he EBS pixel provides change detection functionality and
generates a signal for the reawt circuit when a sufficiet change in the incident irradiance is detected.

This subsystem integrates into a larger camera module that provides interfaces to other subsystems such
as a controlling computer or optidhe sectiorpresent a highlevel description okach of these

components, as well as discussion on hbgdevice is useit this work
1.2.1.1: EBS Pixel

The EBS pixel is a photodiode electronically interfaced to a change detector circuit through a
transimpedance amplifier. The change detector circuit outputs whehahge in the input surpasses a
constant threshold. This input is generated by a transimpedance amplifier that converts the measured
photocurrent into a logarithmic quantity. By operating in this log space, the overall system detects a
constant logarithnai change in the irradiance at each pixel, or equivalently detects a percent change in
irradiance Eq. 13 describes the temporal contramtd Eq. 14 relates the temporal contrast to the

generation of output, called events, at the pixel.

5 xAc , x:;jl:Ag;
Noasaade 7o L g (1.3)
AP N YAP@UUYIx (1.4)

where %g 2 5 3 & dthe temporal contrast in units of per secofd, is photocurrentlerived from the

irradiance measurement with a photodetecfoP, is the event rate in units of events per second,aad

the contrast threshold in units of per evé&iven a small temporal contrastpg 5 5 3 a €80 be

approximated as a perdashange over time and can be rewritten with units of percent change per second.
This enablesato be expressed with units of percent change per event, which is straightforward to

interpret versus urgtof oneper event.

A figure from the EBS paper visuzes the different components of the pixel and how they behave, as
seen inFig. 12. In Fig. 1.2(a), the measured irradiance value is first converted to a log photocurrent. This
logarithmic operation accounts for the high dynamic range of the pixellog photocurrent is then fed

into a differencing circuit that completes the change detection operation. Finally, the output is fed into a
pair of comparators that determine if either an on event or an off event should be triggergdl.2(b),

theevent outputs and how they relate to a temporally changing input are illustrated.
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Fig. 12: Copyright © 2008, IEEEZS6, 26.1]. An illustration of the EBS pixel behavior. In (a), the device behavior is
presented. In (b), the principal behavior is desatitvith an example waveform.

The EBS pixel was designed to implement the change detection capability with low pixel circuit
mismatch, high dynamic range, and low signal latency with a small pixel[@&:HT his circuit is

designed for computer vision dimations where a goal is to capture all available scene information in
minimal time without device reconfiguration. Recent works describe different EBS benefits: Low power,
high dynamic range, and low laten@y]. Forthis work,valuethe change detecticcapability itself, and

how it is used to selectively output only changing pixels. While this fomises orEBS,w expect the

results to generalize to other change detection sensors.
1.2.1.2: EBS Read -out circuit

After an event is generated byixel, a global rea@ut circuit detects the event and its location. The
event and location are combined with a timestamp to generate the full event data structure. This general
readout operation is used in all EBS sensétswever different implementatins have emergda$g

[29] [3Q] that use differenteadout approaches

Theearliesimplementation uses an asynchronous handshake circuit, where a device called an arbiter
searches for signals in the pixel grid and establishes a connection with theettipel! through a
handshake, followed by measurement of the event. The connection is then disestablished and the arbiter

searches for signals again. The event timestamp has 1 microsecond precision here, however other factors
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in the readbut subsystem liththe accuracy of this timestamp to about 100 microsec&@edtion 2.2 in
the referenced booR§] provides more details on this readt approach.

A newerimplementatioruses a serrsynchronous desigr29], where an event is triggered at many
pixels, bu the event is only read out in aggregate with the other triggers after a waiting period. The
waiting period reduces the timestamp precision but enables a higher event throughput as the handshaking

overhead is greatly reduced.

An even newer and legsovenimplementation uses a raster scan to find and-oeadchanging pixels

[30]. The advantage here is tisarching for triggered pixels involves searching for a digital signal. This
purely digital scanningrocesss low-cost,in terms of power consumptiand latencyas opposed to
scanning a pixel, reading out the analog signal, and converting it to digital in traditionablaaste
systems. In addition, this approach does not have the overhead associated with the arbiter in the
asynchronous circuit anchn operate at lower power than the asynchronousougtadrcuit. However,

this circuit is new and will require further development before its usage in commercial devices.

All of the readout circuits share theommontrait that they only output a pixel when a sufficient change
is detected, which leads to a reduced bandwidth in EBS versus reading out full frames. Reduced
bandwidth is the main advantaigethis workwith EBS, because if an object of interest is smadl an
moving, while the background is static, the required data is greatly reduced while still providing

information on the moving object.
1.2.1.3: EBS Noise

Like a framebased sensor, EBS outputs noise, however the noise is of a binomial nature versus the
corntinuous nature of a frarigased sensor. EBS noise can be partitioned into ofidsad noise,
detectorbased noise, and electronic/procesgiaged noiseéAs the output of EBS is events, a noise event
will be triggered when the irradiance signal, plusedources, is sufficiently above or below the prior
HYHQWfV PHDVXUHG VLIJQDO SOXV QRLVH

The literature describes two noise regions dependent on the measured irradiance at e&dh[Biel [
At low irradiance, optical shot noise dominates the noiseathiyh irradiance, junction leakage
dominates. With a default temporal contrast threshold with the DAVIER]6The event noise is
measuredvithout a noise filtef34] to minimize around 20,000 events per secamzteaingup to
millions of events ahigh and low irradiances. l@hapter5, someanalysis on the noise and its effect on
system performands conducted, providing quantification on how this value compares to a-baseel

Sensor
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Researchers have developed many techniquesrtovenoise events from the data stream, by using
techniques such as removing any spaimporally uncorrelated everjt¥, 35). These techniques

manage to significantly reduce the number of noise events while maintaining events associated with scene
objects ad motion. One work quantifies this performance using ROC andB@lismeasuring the

probability of a noise event passing the filter (false alarm) versus the probability of an object/scene event
being rejected by the filter. This quantification showshibrefits of sucla techniquend its application

in thiswork.
1.2.1.4: Integrated Devices

To build a useful device, the EBS pixels must be integrated with sotgamrcuit, which is then
integrated with electrical and mechanical interfaces. The integnatth processingftenincludes some
sort of oncamera processing, as well as an interface to a personal comp&B6 brevices used here
the interface is a USB3 port that connects between the camera and the computeicarheran
processingftenincludes timestamp hardware, USB inteifigchardware, and some computing
controlled by onboard firmware. For example, the DAVISERH has all of these features and has an
onboard field programmable gate array (FPGA) that can handiereaktime processg algorithms
such as a noise filtein addition to the electronic interfadgy usinga cameramodule, mechanically
integrating other components such as mounts and lenses becomes straightBynvaedjrating these
interfaces with the EBBardware, it becomes straightforward to reconfigure the EBS hardware for

different optics and different applications.
1.2.2: EBS History

Here, a brief history dEBStechnologyis presentedstaring with a description of the early technology,
followed bythe developmentf the EBSsensoyand finishing with a description of the device

commercialization and widespread adoption.
1.2.2.1: Early Technology

The EBS technology is based on research around 1990 in neuromorphic engineering andddgnsing [

[42]. The goal of this research was to build electronic sensors that would mimic the way the human eye is
understood to work. Specifically, the research integrated mixed signal analog/digital circuits, with
asynchronous digital design, to build imaging sensotdd features similar to the human visual

system.

These neuromorphic imaging sensors were designed to use electronics to amplify high frequency spatial

and high frequency temporal scene content. The spatial features correlate to the edges of objects and t
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temporal feature correlate to the motion of change of objects. Both the spatial technology and the
temporal technology have been improved and implemented with modern processes (&§atial: [
Temporal: p6].)

The development of electronic spatial higgss filteringhas important context hetteecauséemporal
filtering has demonstrated a high minimum temporal contrast that could be mitigated with the spatial
filtering. The concept complements work in opticats highpass filtering, which when combined with

the electronic filtering would allow EBS performance at lower scene contrasts.
1.2.2.2: EBS Development and Commercialization

EBS technology was developed at the Institute of Neurolnformatics (INI) in Switzerland. The early
neuromorphic sensing researchers were among the first faculty there. | viEB®mesearch there and
in otherinstitutions as developing the building blocksd circuit background necessary to innovate with
EBS [44)]. | also reference the neuromorphic systems book for documentation on EBS G&uits [

especially chapters 2, 3, and-18.

The first EBS was developed in 20B8]. The EBS pixel, described Bubection 12.1.1, was patented

in the USA in 200746]. The first commercial EBS, the DVS1287], was made publicly available no

later than 2013, following the Dynamic Vision Senf28§] (DVS) design. This 128x128 camera had
asynchronouseadout electrmics and operated at a 1 million events per second throughput. This camera
was sold by the startup, IniLabs, named after where it was invented. The startup spun off a second entity,
iniVation, to market EBS technology. Wation followed up the DVS with ¢hDAVIS240[48, 49

camera, that integrated a fratbbased sensor on the same focal plane as the EBS. The DAVIS240 was

then followed up with the DAVIS346, which is the camera used commonly in this dissertation.

Other organizations have commercialized EB®i@logy, most notably Samsung and Sony. Samsung

developed the sersiynchronous readuttechnology andhtegrated it into a 640 by 48fixel focal plane

[29@ 7KLV IRFDO SODQH LV XVHG LQ LQL9D®W ariQllieveRidisedUHFHQW
in athird (%6 VWDUW XS, ORbRr& ¢ahhé&fadl fHdivever the OnBoard is likely now

discontinuedSony has invested in a new pixel architecture where thélitwensional focal plane

consists of severédyers stacked in a third dimensj@nalling smaller pixels because the stacked

electronics can fitnore functionalityinto a smaller cross section. This focal plane has a 720p resolution,
consisting of 1280 by 720 pixeeld@ DQG LV XVHG LQ 3UBFKHVHHTV +' FDPHUD >

, YLHZ (%61V EUWuddedsVeKkdppdaed ko earlier devices, as being due to its focus on traits

important to the computer vision community, as describedily®ction 12.1.1.
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1.2.3: Similar Change Detection Cameras

Other sensor technologies are designed for change detéotioigling theMassachusetts Institute of
Technology,/LQFROQ /DERUDWRU\TV GLJLWsB QuhidhsRiesighed bQdm@ée) UD\ ')3$
generalpurpose ofFPA processing, and the Q LW H G . LERCAGIR [P damera which implements
generalpurpose, analog eRPA processing. | describe the DFPA and SCAMP casiereause they

provide context for potential future development of EBS technology, as well as potential applications for

techniques developed in the dissertation.

The DFPA is asensor that converts the measured analog light level to a digital value at each pixel, and
each pixel has the capability of operating on its own measurements and the measured values stored at
neighboring pixels. The capability has traits including highagyic range, background cancellation,
bandwidth reduction, and spatial filtering. The DFPA can operate with similar behavior to EBS including
high dynamic range and background subtraction, while operating with low noise because of digital
computation. Oveith the DFPAwould likely hawe higher performance with similar operations to EBS,

however there are advantages to EBS as discussed in the next subsection.

SCAMP is like DFPA, but it operates directly on the photodetector stored charge instead of converting

the measurement to a digital value. Behavior is like DFPA in that SCAMP has high dynamic range,
background cancellation, bandwidth reduction, and filtering capabilities, however the operation is

completed using analog processing and has high noise calripdd&PA. | expect SCAMP to have

performance like EBS, however SCAMP also has more general programmability than EBS. | view DFPA

DV KDYLQJ KLJKHU SHUIRUPDQFH WKDQ 6&%03 EHFDXVH RI UHGXFH

Because these other technolodieFDQ SHUIRUP RSHUDWLRQV OLNH (%6fV RSHUD\
experiments in Chapterss in principleapply to these technologies in the same walyjthree
technologies fitvithin a class of offocal plane processovgherethis dissertatiof Msultsapply to an

extent. In the next subsectiamcomparison of these technologie€®S shows why EBS is used
1.2.4: Why Use EBS?

In most defense applications, high dynamic range is not necessary, and the latency provided by EBS is
lower than necessary, which were major design goals of the EBS pixel. As such, onexpegta

sensor better designed for defense applications.

Academicand industrynterest in EBSnaybebecause it provides a readily available, turnkey system
that enables the testing and evaluation of the change detection capability. In other words, the value of

EBSmay bethatit canbe purchasd for a relatively low ost, with around a month lead time, and once
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receival, JAER or similar softwarés easily downloaded for quick usadde usability is likely because
there is a larger community of interest behind EBS in computer vision, than there istheloither
technologies. As such, significantly more investment in E8lkely thanin similar sensor technologies.

1.3: Project Motivation, Summary, and Impact
1.3.1: Project Motivation

The project was motivated by the need to build better object detauging systems for defense
applications. An important problem in this application space is the detection of small cigebtsed to

at most several pixels within a large, cluttered background. An example of suchuastaizned aircraft
detectiorwhereRADAR technologyhas difficultydetecing the object because of its small radar cross
section. A popular solutioim this taskhas been to use fraabased electro optic/infrared (EO/IR)
technologies to search a field of view for the obj&ét [57] [58]. However, these devices have a limited
field-of-view-spacetime-resolution (FST), in that they cannot image a WFOV with sufficient spatial
resolution at a sufficient frame rate, to adequately complete theTtaele are also contrast limitations in
that even if there is sufficient spatial resolution to detect the object, the object can often blend in with the
background such that detection can still be challen@igqgl5 describes the FST relationship. Figd 1.
describes the FST limitation.

$L % (56 (15)

where $is the reaebut bandwidth, in units of bytes per secofils a data size constant, in units of

average bytes per pixée{ is the field of view in units of square degrees per fadldiew, 5is the spatial
resolution, in units of pixels per square degegel 6is temporal resolution with units of fielas-view

per second4is a data reduction constant that represdmtfaction of the total amount of pixels
WULJJHUHG LQ WKH IUDPH UDWHYV S HUGWwIGixedyaués\obXPdandid HV V
any increase in(, 5 or 6must correspond to a corresponding decrease in the other two valiges. Thi
concept isllustratedbelow in Fig. 14 as a trade space between F, T, and S with other parameters

constant.

30

E X\



Fig. 13: An example of the limited FST of an imaging sensor

The system limitation above is for a relatively lpwiced framebasedsensor. Efforts to build large
cameras that ameliorate the above trade off, on the order of hundreds of megapixels to gigapixels have
been researchd89], however such systems have scaling issues such as processing, power, and system

capacity.

To addresshe system limitations given limitec, we consideithe EBS technology, which has change
detection circuits at every pixel that only output when the irradiance at the pixel chamgascene
constrainedo a static background and a small moving olbpé@tterestsuch as an unmanned aircraft,
only pixels associated with tmeovingobject would output. The reduced bandwidth means that an
imaging system could be built with reduced requirements, or equivalently that the EBS system could
image a higher FS3cene with the same requirements. In other words, EBS systems provide an
expansion in the FST trade space compared to flzased systems.

The trade space expansion can be quantified with respect to the EBS, which would decrease the data
reduction constdrR. In termsof Eq. 15, the data reduction constadtvould decrease, enabling larggr

5 or 6values with the same readit bandwidth. In practice, a standard fralpased camera would have
%N1 byte per pixel andl N s while anexampleEBS has%L zbytes per pixel andt N &r vin

optimal conditions with a 60Hz reference temporal resolution artbutita hardware noise filtg34]. In

this case, 4 N swhen every pixel outputs every periothL zbecause of the AEDAT form§29], which

in common usage has eight bytes per evén¥l & r vcorresponds to a general observation of the

expected amount of EBS3xels triggeedwithin a 1/60 second window, given a static, witlscene.
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With the hardware noise filter in an observed avexage performances further decreases té N

drrtwThe EBS here has thirgne and five hundred times the FST of the frdrased sensor, without

and with the hardware filter, showcasing theoretical benefits of E§S15 provides a simple 3D plot

VKRZLQJ KRZ LQ SULQFLSOH WKH V\VWHRHMiSpidvéRantP DQFH FDQ FKDC

Fig.14 *LYHQ D FRQVWUDLQHG VFHQH (%6 L Qéntpbral kesbMitioi KBy radBdngL QJ V\V W H
ZKLFK ZH PRGHO WKH (%6fV EHKDYLRU DV GRLQJ WKH WUDGH VSDFH FDQ

resolution.

In an FSTHimited sysem, the trade space expansinaytranslate into an improved application with EBS
sensorsTasks like thesmall, unmannedetection task have performance correlated to pxedsrget, or
the spatial resolution with respect to the small unmanned aircraft, where the in®eatses can
translate directly into higher pixets+target,while increasing the other parameteas enable a more

robust imaging system.

To conclude, usage of the EBS can improve the spatiporaifield-of-view trade off with respect to
framebased sensors. If one can provide a data reductioritveitbther parameters in Eq. 1.5 held

constant, byeducing 4, the trade space can be expanded in ways that can increasadieg systeny V
performanceThis higher performance can be useful in resolution limited applications such as the drone

detection problem described earlier.
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1.3.2: Limitations to Implementing Motivation:

While EBS can achievbandwidthimprovementsit incursthe cost of reducegerformanceat least in
object detection applications. While the bandwidth reduatimbehighly beneficial improved EBS
devicesin terms of parameters suchfasal plane size or minimum contragill likely be required to

mitigate the performanceostto prove EBS valueer framebased sensors.

We did not manage texperimentallyprove this trade space expansion in the dissertation because it

requires higher resolution EBS sensors that match thedtthe-art framebased sensors. These higher

resolution sensorsare uwildbLODEOH KRZHYHU SURJUHVV KDV EHHQ PDGH DW
UHVROXWLRQ ZLWK L G0 bdvivgl3870aovpixels SabdRhé IRldphesee Gen 4 BRS [

having 921,000 pixelaVe anticipate that withithe within several years, suffiently large EBS focal

planes will be available to test the trade space expansion.

As an example gbotentialEBS valuewe cite a commoninexpensivanachine visiorcamera, the JAI
GO-2400MUSB [60]. This camer&an output at 37dillion pixels per secah or 374 megabytes per
second at eight bits per pixel resolution. This camera hasragjdpixel focaplane andet usassume

that the 374 megabytes per second represents the maximum processing speed of the system. With a
commonly cited 100x bandwidtimprovement for a static EBS, a Znkgapixel static EBS imaging the
scene would only output 3.7 megabytes per second, freeing 99% of the reserved processor time.
Alternatively, a 24@megapixel EBS would require the same amount of data aneugdzindwidh as

the 2.4megapixel framéased sensor.

However, neither a 240 megapixel nor athdgapixel EBS is availabltue to the early state of the
technology The largest available EBS is about one megaggelputthe vendor, Sonyjoes not make
this cameravailable for defense reseatafised on their ethical concerhsthe future, | imagine EBS
basedmagingsystems attemptingrosaicsmalker EBSsto form larger, supecamerasas done with

framebased sensdis9].
1.3.3: Project Summary and Impact

This dissertatiomvestigaeés neuromorphic evertased sens¢EBS)[26] imaging technologwndits
ability to improve existing frambased sensor applicatior®pecifically,| investigatethe problem of
detecting small moving objecits larger sceness well agliscuss otheapplicationssuch as active
coherent imaging and integrating EBS into existing systesagionally reserved for framleased
sensors, YLHZ WKH (%61V P islofeBdEndyijiddrdatbut vandwidth reductioaver

an equivalently sized conventional fraim@sed sensor. This bandwidth reduction comes from the
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implementation of a change detection capability at every pixel, where the pixel only outputs when a
sufficient temporal contrast, or a sufficient change in irradiance incident gixgtle hasbeen detected.

The pixel converts the irradiance measurement into an electric photocurrent that is physically measured
and compared to a temporal contrast threstmttetect the chang#/hen a sufficient change is detected,

the pixel outputs a discrete data unit called an ewvemnith consists of a spatial location, a timestamp, and

a polarity stating whether the change was positive or negsitieeefer thereader tdeq. 13 and Eq. 4

as a remindeabout how the photocurrent relates to the temporal contrast and the event rate.

Thiswork will enable engineers to quantitatively evaluate EBS capabilitiesis framéased
capabilitiesand asthe technology @ntinues to succeed and develgBS will becommonlyusedin
commercial and defengmaging systemdNe envisiorEBS being implemented infagh pixel count
camera for wide fielgbf-view (WFOV) imaging systems where standard frdrased sensors require
high readout bandwidth antligh-performancerocessingThe orders of magnitude improvement in
readout bandwidth with EBS, demonstrated irstilissertationcanenableEBS usage ithese WFOV
tasks.

1.4: Problem Statement

The dissertation goal is to find answers for the following two questWhstarethe quantifieccosts and
benefis of EBS fordefenseamaging applications? How does EBS integrate wabditionaloptics
technologyand method3

1.5: Dissertation Outline

As discussed in Chapter 2, there is a gap in the literature, both in others invedfigatibgveproblem
with EBS and in their quantitative analysis of EBS. In Chapter 2, | attempt to describe this gap through a
critical analysis and draw conclusionsimwthe gap can be filled then use these learned lessons to

design new approaches that form the basis of my dissertation.

This work haghreemaintechnical contributions: Hardware image stabilization with EBS (Chapter 3),
relative performance betweenemtbased and frambased imaging systems (Chaptirand ative
coherent imaging with EBS (Chapt®r These are brieflgescribé here along with their potential
impact. After describing all contributions, | provide a conclusion that synthesizesrail digsertation

impact from these works.

Chapter 3 evaluates the reawt bandwidth of the EBS when mounted on a moving platform, compared
to a static EBS. | then introduce hardware image stabilization, a technique frorbiaeteimaging and

repurposedhere to reduce reaaut bandwidth requirements while moving. | introduce several techniques
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for implementing the stabilization and evaluate them using a hardw#ne-loop system. The results
show a ondo-two order of magnitude reduction in bandwidthem stabilizing and movingyith room
for further reductions tetatic bandwidttimit. This work quantifies EBS reaalt bandwidth and the
benefits and methods of stabilizing the EBS while moving. The demonstration of the stabilization
methods provides strong basis for implementing the technology in movingweald systems, for

applications such as detecting small objects within larger scenes.

Chapterd develops a more complex test setup and uses it to compare the EBS teta-etpsealent

framebased sensor using receiver operating characteristic analysis. The analysis provides a baseline
performance comparison between the two technologies and giaabdmgineer to conduct a cost benefit

analysis to determine which technology to use in an imaging system. This analysis mastthe
challengingtechnical part of the dissertatiasseveral monthg/ere spentiouble checking and

recomputing results to sare all possible errors or biases in the analysi® addressed his

FRPSDULVRQYV TXDQWLILFDWLRQ GHPRQVW-bdeal ahd EBSSystdrmR UP D Q F H
in terms of the noise and the threshold of the EBS. The first impact is that a dgsigner can use the

data here, or from a reproduced setup to address a more specific problem, to decide on using EBS or
framebased sensors in their imaging application. The second impact is by using the relative noise and
threshold values, an EBS devidesigner can set concrete goals to develop future EBSs for achieving all

RI WKH WHFKQRORJ\YVY EHQHILWY ZLWK QRQH RI Lwv¥aboRRMANYV 7KH W
be measured with respect to scene parameters, such that techniquespemialized to match a certain

task or scene.

Chapters evaluates the usage of EBS in imaging an active, coherently illuminated scene, and the ability
to apply filtering in the optical domain to improlmv-contrast object detectigrerformance. | note #t
Chaptersis a joint effort with fellow graduate student Sebastian Valencia. Here, we measure the ability
to detect example objects of varying levels of contrast with EBS and compare this ability to a level
expected through theoretical calculations. hén add an optical higbass filter to the system to increase
the contrast of the image. We finally evaluate our ability to detect the example objects with this filter and
compare this ability to expectations from the theoretical calculations. This wankiiies the benefits of

the optical filter and validates the ability to use theoretical models to predict EBS behavior in new

scenarios such as active coherent imaging.

Regarding our specific contributions in Chaglel contributed the project develogmti and direction,
the original concept, and helped troubleshoot technical problems. Sebastian contributed the technical

work including modeling and simulation and laboratory work, as well as draftingxhe
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The contributions here were selected to asklen overall theme, described at the beginning of the

section. The overall work quantifies the costs and benefits of using EBS in aldagex sensor
DSSOLFDWLRQ GHPRQVWUDWHY KRZ (%6TV SHUIRUPDQFH FDQ YDU
EBScan fit into existing framdvased systems. Overall, these contributions allow an engineer to
TXDQWLWDWLYHO\ UHDVRQ DERXW (%6TV FRVWY DQG HBas&HILWV T
sensors to set EBS design performance goals, and devetemsyaround EBS technologihese
contributionsarenecessary and important for building larger EBS capabilitiesraadvancing the

overall research area.

I includedsix appendices that expand upon several parts of the wpplendix A describes the

experimental parameters used in Chapter 3. Appendix B describes additional results regarding image
stabilization with different EBS device bias@égpendixC discussesow | specified down from a broad
requesbf the projectsponsor to a specific research sfimn. AppendiD discusses radiometric and
luminance units and discusses how | contrast from the literature in using radiance instead of luminance.
Appendix E describes the operation and usage in the experiments and includes discussion on software
usage ad howthe configuration was decided. Appendix F briefly describes some experiments using the
coherent imaging techniques with a reflective system, and discusses how EBS interacts with speckle.
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Chapter 2

Problem Background: Approachesto  Solving
Problem with EBS

This chapteprovides a description to my approach to the problem in Sectdohféund this chapter
necessary to show the significance of the technical contributions. While the contributinogedy¢his

novelty is not derived from any special insight or capabilities, but from a perspective where EBS should
be used like a frambased sensor in a traditionally frafbased system. The goals of this chapter are to 1)
provide evidence that this ppach to EBSs valid within the context of other EBS approaches, 2)
describe related research and how this prior research is limited in helping accomplish my3jpgpyect
thattheapproach is valid, anid context withprior research, specify down tioe different technical
contributions and relate them back to the approd)gbrovide a concrete description of our approach in
terms of EBS modelingsub®ction 2.1.1 accomplishes goal $ub®ctions 2.1.2 2.1.5 accomplish goal

2). Section 2.2accomplishes goal 3). Section 2.6 accomplishes goal 4)
2.1: Specific Literature Survey, With Critical Comparisonto Our Approach

This section provides details about integration of Sections 1.3 and 1.4, the intersection of which is highly
relevant to thisvork. Analying RWKHUVY ZRUNV WKHLU iddesOriball infReéng KflaS WR WKL
gap in knowledge between their work and the requirements for this Wowkever, when attempting to

addressW KLV ZRUN TV ,Urkitdtiens thagplyiNghedekorks began to appear, which led to the

solutions in upcoming chapteiBhe purpose of this analysisisto clarly KH G LV \pditt of Dad L R Q TV

in terms of addressing the topic, with respect to other works.

Next, background information on thetate and applicability of multiple relevasthnologiess
presentedThese technologies inclutte general EBS literature research directi€BS devicesobject
detection algorithm&£BSimagingsystem integratiorandEBS system performance analysis.

2.1.1: EBS Literature Research Direction
2.1.1.1: Sources of EBS Literature

There are several available resources for learning aboutfBgonline resources includingsearch
engine[61] and awebsite [62] were used for a hidggwvel survey of theverall EBS topicMost works

were outside of the scope of tldissertationhoweverseveral sectionsere within scopeThese
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valuable sections includie application sections of:j®ct recognition, motion segmentati@vent
denoising, control, angpace applications. Additional valuable sections include the sections of datasets
and simulators, software, and theses and dissertations.

The third source was a walited EBS survey pap§27] written byEBSinventors ancuthors who

publishlarge volumes of literaturen EBS.

The fourth source regards publicly available information from the American organization, the Defense
Advanced Research Project Agency, or DARPA. As of publishing this document, DARPA has a program
called FENCHG63] thatis attempting to builén infrared EBSnfrared sensor, with fundingf sixty

million dollars. This work is being conducted by defense contraataitsout publicly available

information linking specific technical work to the progradowever, there isague, highlevel

information thais analyzel and discussd below

Thefinal source was the Defense Technical InformaGamter(DTIC) [64] to find cases of EBS uses in
defense applications few relevant EBS workeerefoundthere, however they were vague and publicly
unavailable. As suchthese are nahcluded in this dissertation and do nfatrm the basis foany of the

presented work.
2.1.1.2: Review of Survey Paper and Literature Direction

This subsectiomanalyze the larguage and priorities presented in the survey p@7érThe research
covered herés representative of the general direction of EBS researcts andtrast with language and
prioritiesin the dissertatiarOnly a portion of the papés reviewed from which conclusionare drawn

and lessonarelearnedor further research.

On the first page, the authors state that the work is focused on computer vision and robotics applications.

On this page, EBS technology is described agrsipired, neuromorphic, and a paradigm sHiftis

description as appropriately suited to the intended audiercaemputer vision and roboticSpecifically,

the audience in this research aigestrongly associated with the hiddchnology industry, which thués

and has founthanysuccesses witkhigh risk high reward projects.This contrass with the research

direction herein the context of amdustrywith a tradition of risk adversity, large investments in systems
engineering and analysasnd long technology development cycle® FRQWUDVW WR WKH DXWKR
computer vision and roboticthe work herdocuses on a systems engineering audiencgng different

language suchs evenbased sensors, change detection, and compatiblérantiebased systems.

An example of this different audienceois the first page is that the authors state that a ftzased

sensor has frame ratehat has no relation to the scene being imagesvever many framebased
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sensors have a reconfigurablerfre rate, and a user can select a frame rate that is most appropriate to the
scene being imaged. For example, if a user is imaging-anfaghg vehicle, they would select a high

frame rate, but could lower the frame rate if imaging a pedestienauthes may havemade this

statement because computer vision systems are expected to be used in environments where no prior
knowledge of the scenario is available, or when it is not possible to reconfigure the Gdnsera.
implicationhas been observéa otherworkscomparing EBS to frambased sensorgvhere the frame

based sensor is constrained to be unreconfiguvdtile in a configuration wherew performances
expectedThis statemenshowsthat an advantage of EBS is that it does not require reconfigutation

work in a range of environments.

Reviewing the section on EBS advantageited advantagesvere high temporal resolution, low latency,
low power, and high dynamic rang@ther advantags, such age change detection capabildyreduced
bandwidth as advantage®re not observed

The subsectiafor each EBS applicatiowere reviewedwhere most of them discussed opportunities in
the research area. Each section except object recagdiicussed areas in which better algorithms could
be written or existing algorithms could be better companéutk object recognition opportunities stated
that EBS recognition was inferior to frarhased recognition. The text then stated that the ideahsio

for framebased recognition is a static camera and a static obj@atever, this could be shown falas

in somemore specific moving object recognition tasks, whestatic camera with a moving object may
be ideal By applying a change detectiapproach, as discussedsimb&ction 2.2.3, background
correlations can be removezimplifying theproblem,and making optimal detection/recognition possible
with asimplealgorithm given object motiorAn example of this is attempting to detect a stationary
camouflaged animal in a forest. This task is significantly harder than if the drégiasmoving, at

which point its presence becomes obviGuKk H D X W KR U V 1 n&aRhe@ué/toRramédiased

computer vision algorithms operatimtyectly on frames and not considering change detection

preprocessing stages.

The authors then suggest that EBS could provide value in a resource constrained task and could provide
value in imaging from a moving platformwhich are supported in this dissertatiéis shown laterEBS

is demonstrated to haveduced task performance, but also has reduceebrgaashndwidth costs

compared to frambased sensingvhich is especially useful when bandwidth constraiRedjardinghe

latter, stabilized but moving sensors are demonstrated to have improved but not equivalent task

performanceversus a static sensor.
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Severakonclusionsare drawn from these and other analy§@st,the work should be completed for a
specifictarget audience, not for the largganeraEBS community. Second, EBS advantagiesuld be
explicit, specificallywhich onesare explored and measurdthird, thatthe EBS computes vision
community places implicit constraints on fratm@sed sensors, atttht approaching the technology from
a different perspective may enable new ideas in the technology area.

2.1.1.3: Search of Publicly Available DARPA FENCE  Material

The goal of this subsection is to provide information on the FENCE program in develapsentor in
IR for defense applicationBased on publicly available information on the DARPA FENCE program
[63], thedescriptionprovidesgeneral technical informaticabout the program

7KH PRVW LQWHUHVWLQJ GLVFX\VboakA6q wherelaQlessrip8ahipY/thislptojeat,L I L FD W L
the need for the work, and its benefits are described. There are many valuable parts hewe]idiscuss
bullet list form.Their point of view to atined with the dissertatiorand as sucthere idess critical

discussiorhere than with the survey paper.

x State of the art visible evebased cameras have been shown to produce over two orders of
magnitude less data in optimal conditions relative titicnal framing cameras, because they

only transmit data from pixels that have changed.

This data poinis true through experimental validation, with emphasishentermoptimal DARPA
showed emphasizedterestin data reduction, whicthe survey paper ignores a primary benefibutit
is the primary benefit here. Other benefits can be derived from this benefit, as discussed in the next point.

X 3This leads directly to two orders of magnitude lower data laterttya @ommensurate reduction

in power consumption.

This statement that can be true depending ongawmer and latencgire measuredPreliminary
measurements of EBS powmgrformancesuggesthat at the camera integration level, the power level is
approximagly constant with the reaout bandwidth. With a custom system like the program is
developing, realizing thegmwerperformance improvements is possible. Also, if data latency includes
processindime andsupetlinear time complexity algorithms are uséd;ould be possible to reduce

latency by more orders of magnitudRegarding the general latency and power reduction, they depend on
the specific design details and as such we are not in a position to agree or disagree without further

information.
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x  Despite their inherent advantages, existing ebased cameras are not compatible with DoD
applications because DoD applications regularly face conditions that are not naturally sparse,
where issues such as clutter and noise would cause a large peroéthageventbased pixels to
change simultaneously. When this happens elvaséd cameras do not perform significantly

better than traditional camera.

This is a key justification on approaching EBS from the defense side, as tasks are significarelyt differ
than in computer visiorThis statement follows the theme of my dissertation, as my garke viewed
asquantifying the incompatibility and includes systemic approaches that mitigate the incompatibility.
However this pointwasinteresting when corasting with the program description, as frabased
sensorsnayalso fail there in cluttered environmentis description acknowledges that EBS is not
always better than frareased sensars

A second insight from these statements is that EBS is comgiaeetly to a framébased sensor, and
DoD applications are described generically, without regard to whigthéaskis accomplished with a

framebased sensor or EBS.

x  FENCE will develop a four megapixel asynchronous +egitintegrated circuit (ROIC), €o
designed with a 3D integrated processor that will intelligently remove noise and clutter to
maintain low power and latency operation even when faced with all of the pixels firing

simultaneously’.

The goal is ambitious, as the state of the art in visibl® EBne megapixel. The program also aims to
handle noise and clutter, the former of whigmot addressedbut the latters with hardware stabilization
in Chapter 3Experience with software clutter remoy&B] suggestshat the algorithmbiave supelinear
time complexityand would take significant resources to discover new algorithms or optimize old
algorithmsto avoid these issueAs suchjt may be possible to relake processingequirementshrough
integratechardvare stabilization techniquéisat reduce the EBS event rate

Overall, DARPA showsa largedefensefocused aspect of EB®/hichprovides context for thig RUN TV
impact.The FENCE program provides an authoritative counterpoint for focusing olefitrese side of

EBS as opposed to the computer vision side.
2.1.2: Object Detection Algorithms  and Datasets

The objectdetection problem involves detecting a small ohjesitle of a complex backgroumdthin a

large fieldof-view. One publiclyavailablework has been founthat attempts to solve a similar problem
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with EBS. Much otthework hereis inspired by this author, howeveere, anore quantitative approach
to the problems demonstratecbuilding off of lessons learned from thasid other authors

In severaEBS detectiordirections of which a feware cited67, 6§, a machine learning algorithm is

trained and tested on a commonly available dataset, with the performance here assumed to be
representativeR| WKH DOJRULWKPIV JHQHUDO SHUIRU Rserqbleti im@adgesi VH GDW
or videos, with no control over object placement or type, or scene parameters such as lighting or scene
complexity. There is often only one recording per scenarih, mé minor variations or additional

recordings that can be used for statistical analysis. These datasets are designed for generic algorithms that
can generalize to a wide range of scehesjeverare unfit to test algorithms built for a specific type of

scenario.

Reviewing the framebased literaturea commonly available frardgased change detection techni¢@l
computes the difference between consecutive frames and thresholds thé ngsditference that
successfully passes the threshold is deemed a significant cliaigtechniquevas foundo be similar

to the EBS operation, seen in B3, within the literature. As such, a frarbased system using this
techniquds comparedo theEBS system further into the dissertation. Studying this technique, its
effectiveness required the consecutive frames to WegisteredIn other words, the technique required
alignmentin the spatial dimensions such that static background and objetdsbeocancelled through

the frame subtractioiGiven this requirement, a matched filter could then be applied to this result, and
assuming any background objects are sttteyesult would be an optimal detectasithe common

background would be nulldid

When designing the project, the sameegistration requirement would likely apply to EBS in the same
way thatit applied to the framéased techniquéVith this requirement in mind, a matched fittde
algorithm wouldhave strong performander EBS as itdoesfor the framebased systengiven the now
sparse image backgrountdowever, because the EBSes not hava Gaussian noise structure, instead
having a discrete, binomial behavi&BS will have some different optimal detector that has nabgen

explored in the literature
2.1.3: EBS Integration

A major topic inthiswork is understanding how EBS integrates into traditional imaging systdos.
works simply attach a lens to the EBS and treat it as they waiéthdarccomputer vision camerdhere
is a significant body of work that attempts to ssmdardramebased computer vision algorithms with
convertedeEBS datamaking an entirelyrhmebased computer vision system except for EBfese

techniques are successful, it leads to the possibilgyngbly replacing the frambased sensavith EBS
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and achieving the costs and benefits of doing\dale this integration is sufficient faomputer vision
applications, it says nothing about integration in applications where a more complex optical system is
required.

There are at least two areas WhEBRS is integrated into a more complex systéhe first area is satellite
imaging[70], where EBS is integrated with a telescope. The second area is wavefront BEljsingere

EBS is integrated with a lenslet array to form a Shack Hartman wavefront darthese cases, the EBS

was simply interfaced like a normal camera. This observatmupled with my own preliminary

experiences with EBS, led me to conclude that, in most if not all cases, the optomechanical interface will
bethe same as in standard fratvesed system#n thesecasesand in many literarecases, the EBS data

is procesed evenby-event to generate system results. However, in some other cases, the data is placed
into frames and processed like fraivesed data.

2.1.4: EBS System Performance Analysis

An important question in this work was how to compare an-E&%d imaging system to a traditional
framebased imaging system. The goalsreto establish aigorous comparative framewobetween the
two systems, which is the context used to evaluate #ratlitre There areseveralother works where the
EBS/frame comparison ismaajor parf72-74], andthreewhere it isthe focusof the work[75-77].

In many works comparing the technologies, the authors implement a machine learning tehisque.

introduesa training bias because tB8S and framdasedechnologies produce different data types. If

WKH WHFKQLTXHY DUH WUDLQHG RQ RQH VHQVRUTY GDWD RQH FD
appropriate for the technique. If the teithues are trained on each respective data type, one can question

whether the training is appropriate for the technique.

Any work comparing théwo technologiesvill have someinherent differencéetween the corresponding
systemsA researcher will want aystem where the only variable is the device itdatfvever because of
fundamental differences in data types, some conversion is necessary to make the imaggpehsin
compatible Based on this line of reasonirtge matched filter beingstraightforwad to understand and

implementwould help make the conversion explicit and straightforward.

We find amajorlimitation in that almosgll of these works is that they represent the friased sensor

technology with the active pixel sengdPS)on the DAVIS sensors. As stated on BwVIS346

specification33] XQGHU WKH 3/LPLWWKH RO 6VHFONKRQY *SEHORZW\YHUDJH LP
As such, each of these studies introduceslectionbias where, according to the vendor, the frdrased

sensor produces performance lower than would be expected from an industry standabd$eine
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sensor. As each of these works claims validatgtbpmance of EBS over frari®sed sensors, this bias

can bring such claims into question.

One exception to this bias is presina work in astronom{70] where the authors attempted to image a
satellite in the daytime, which isdéfficult space domain awarenegdwllengeThe authors separated the
EBS from the framdvased sensor, which removed the DAVIS APS bias.

However there was an additional bias hareonstraining the frambased sensor, as discussed in

Section 2.1.1.2 whettde authors attached the frafp@sed sensor to a separate telescope and covered

! RI WKLY WHOHVFRSHTV DSHUWXUH ZLWK S D-Spénkd apiireOH KDYLQJ
telescopeHowever, there was no discussion on whether the rl&nieVHG VHQVRUYYV FRQILJXUDMW
appropriate for this systeror if the covered aperture provided sufficient light to operate the fbased

sensor For example, the authors could haveH W WKH VHQVRUTTV HH8 sawvatddth®V LPH WRR
detector coveing the aperture to compensate, versus simply lowering exposur€eltimaperture
covering,withoutdiscussion of other potential causedonf framebased systemperformanceis sea as

ELDVLQJ WKH DXWKRUVY FRQFOXVLRQV EHF BXdutdonwds@HDYHYV R SH(

appropriate way to design and test comparative EBS and-frapesl systems.
2.2: Project Selection and Design

This section describes how \a&rived at our project choices and specific implementatioessons
learned from critical analysis of the literature déscussedn the prior sectionare applied to this design

process
2.2.1: Lessons Learned and Applied to Design

This is a summarygf lessonextracted from Section 2.Zhe lessons are in chronological order, however

other orders may make more sense.

X Know the target audienc&€he main beneficiaries of thigork aresystems engineerirend
defensecommunities not the more popaliscomputer vision and robotics commuest
o Thiswork will contribute to performance risk reduction, something that will be necessary
to implement EBS on large projects such as satellites or airthaftwork is written wih
this audience and vision in mind.
x Explicit EBS advantages
0 The advantages do not have to match commonly cited advantages] wikichas

implicitly constrained to be advantages for computer vision and robotics applications.
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0 Advantages different than the literature are good, because they can lead to new, novel
EBS applications.

Build wavelengthgeneric solutiong-uture EBS devices will likely be available in infrared
bandswheresolutions that generalize to Would bemore valuable moving forward.

o0 In emissive bands such as MWIR and LWIR, signdlackground ratios can be high for
hot objects, with minimal clutter if configured properly. This scenario opens up benefits
of using matched filtelike approaches.

Build a specialized dataset for system testirest EBS against frar@ased sensors in specific

tasks and scenarios, with high control over what happens. More generic datasets fit poorly with

this goal because a highly diverse set of images can intreduesces in performance that

cannot be easily explained.

Framebased systems may have analogous components int@sad systems. Exploring these

analogies, and how they relate to unigue aspects in-basetd systems may end up being a rich

research aee

Any comparison between EBS and frabrased systems is going to hawgperfections because

WKH VHQVRUVY GDWD W\SH GLIIHUHQFHYV PDNH DQ DGGLWLRQLI

0 Therefore, no comparisdhat converts between data typas be 100% accurate.

o HRZHYHU LI GHVLIJQHG SURSHUO\ WKIxpl&m&DULVRQTV YD

0 However, if a measurement is compatible between the technologies, such-astread
bandwidth, then there may be wariance

Try to build an evenbased system by replacing themebased sensor from the frarhased
system with EBS.

Do not use the DAVIS APS to compare to the DAVIS EBS

Ensure that, when comparing EBS and fradmasedsystemsthesystems are asmilar as

possible, and explicitly state ways that they are not.

2.2.2: Project Design

2.2.2.1: Design Decisions

The lessons learnedere incorporated idesigninghe experiments and overall projec&me ofthe

important design decisiorse described along wittpinionregardinghe decision.

Themaindecision was thproject approactandwhetherit is bestapproachblefrom the computer

vision research area or the defense research area. | chose to approach the project starting from a

foundation in defense research and add computer vision topics as appropriaten@hefadtor was that
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the existing defense applications have been proven with operational usage for decades, while computer
vision approaches are relatively new and have not been proven in defense applications. A secondary
factor waghe availability of quatitative data and datasets, which is much higher in computer vision than
defense, because defense researchers usually keep datasets and results piidpristgndary factor

was discountebecause computer vision techniques are relatively wétvfew proven, major

applications, and even fewer proven applications in defense. The higher dataset availability with
computer vision is great for comparing techniques and relative performance, homithart proven
defenseapplicationspne cannomeasure EBS value in applications in an absolute séms¢her words,
without proven application valutechniquesiere can only be viewed bstter or worse than other
techniquesvithout quantiication ofthe valueto a userThis was the hardest decisibacause the

computer vision approach is by far the best from a communications standpoint rilatinat

performance improvemeit easily shown andompared to the literature.

The second decisiomas the selection of test applications for integratiB& End comparing to frame

based sensorRelating the project to object detection westraightforwarddecision, a£O/IR systems

are well known to have limitations and EB8&straits that could help remove these limitatiofstther

selection was difficult because at the time, there were few reference works of using EBS in a normally
framebased system. In the few works, the systemsiraple,and testing was limitedHowever,

regarding the research questioms,best test applications were ones that related EBS to-raseel

systems, demonstrating ways of specializing EBS systems towards my problem, and could generalize to

other tasks.

Hardware stabilizatiowas a straightforwal choicebecause it related to wethownframebased
techniquescould demonstrate how EBS benefits change depending on the scene and the system
configuration, and would be useful for controlling the system in many object detectiorCtakksent

imaging and contrast amplificationereselected because the EBS is, in a sense an edge detector, and
because the highass filter passes object edges, the system achieves the benefits of contrast amplification
without the cost of lost lovirequency informationT he statisticalsensor comparison in object detection
provided aguantitative metric that would allow a compatible compariswavailable in the literatuyes
compatible with traditional imaging approachasdenabled a similar setup between fitzane and

eventbased sensor systems

The third decision wasietrics and expected results, specificallyatwasneeded to demonstrate
significant progress towardle goal Theresultsdid not requireelaion to the literature, becauses few
others haveursued aimilar goal, apart fronextrapolation othe DARPAFENCEprogram As such,

EBS analysisvas vieweds a function of costs and beneiitish respect to EBS and franimsed
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sensing, versus comparing EBS technolodgsen that the survey paper views EBS detection
performance as below frari@sed performance, | accepted this as the t@sROC metriavas usedor
performance, becausecinabstract allmaging system factors such as noise, data conversion, dynamic
range, etc. into a comparable metric describing each sySther. types of approaches that are able to
abstract performander both sensori this wayareunknown at the time of this warBecause of

priority for readout bandwidth reductiom thiswak DQG '$53$%$fV H[SHFWDWLRQ RI
bandwidth reductiomasas the benefthere To measure reagut bandwidth, the metriof anaverage

event rate over a period, multiplied by the event data wias usedOther possible benefits include
dynanic range and latency, however dynamic range benefits are less straightforward to mithsute
realworld objects and latency depends on highly variable, applicatiependent computer resources.

While these are valuable benefits, however thilnot cnsidered in thdissertation

Thefourth decision waghe test setup design for the dissertation experim€&heschoice wabetween

high data quality with real, continuous objects and backgrounds, or large data quantities with computer
generated and displayed, discrete objects and backgraiardedataquantitieswere chosehecause
while higher quality would have added rieat, the requiredesourcesndsupportwere unavailabléo
generate andnalyze the required volume of higher quality dataaddition,the lower quality scenes
were expected to affect both technologies in the samenéyvould have a common effect on
performancereducing the need of ensuring highality. A second decisioherewasthe design of the
detection systems in ChapterThe matched filtemwasfor its simplicity and understandability, knowing
that it would not be a popular, common, or optimdgbrithm.Severakeviewersprovided feedbacthat
machine learning algorithnmshould be considerddr detectiortasks as it is much more common among
researchershas higher performancand the results would generate more impBoé matched filtewas
keptbecause it is better aligned with the project gaal$ would likely have moreverall project impact

with less development time

2.2.2.2: Design Summary

We nowdescribe the overall design of the project, as well as the design of the experiments and the setup.

[ UF

7KH PDWHULDO KHUH KDV DOUHDG\ EHHQ VWDWHG LQ WKH RWKHU

purpose beintp provide a coherent understandingtie® problemapproach

Based on the above and other decisifmsebased technologies from defense reseasate adoptetb
EBS along withmeasuementf the costs and benefité the adaptationThis approactenabled three

experiments witliramebasedechnologies that form the core of this work.
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An image stabilization system demonstrated benefits of EBS, usage in a franfebased system,
drawbacks of using EBS in relevant mowisgnsor scenarios, and ways of mitigating dnawbacks.

Three algorithmsvere selectedshowng how an EBS system designer can also mitigate the drawbacks in
their systemsThe overalltechnique willlikely alsoapply to infrared sensarproviding value as the
technology continues tmature

An adive imaging system demonstrdteourier Optics principles with EBS and validdtn EBS
simulation The projecf V R S W L FilaSchéllevighhil t8 develqmasit requiredstrongproblemsolving
skills to accomplishiihe objective The most difficult requiremerin this projectwascontrol of the optical
system to match inputs to the madelminimize diffraction effectsand to maintain the coherence of the
light field. A transmissive systemvas usedo mitigate speckle and demorsgea spatial higkpass filter
systemA customtest objectvas constructetlecause of the inability to find appropriate, controllable

transmissivebjects elsewhere.

A controlled setupvas usedor comparing EBS to frambased sensors for object detection performance.
The weltknown matched filtewas usedo measure ROC against highdgntrolled scenestatistical

analysis enabledroadeimg of the results across a class of scenarios, versungke scenario.

For two of the experimentt)is setup was used, with a more detailed descripti@hapters 3 and.&he

test setupvas used for both ROC and reawlt bandwidth measuremeithis desigrequired significant
controlbecause it had to regi@bly collect, process, and aggregate data to generate correct ROC curves
across hundreds of runs. A major specification is that both the-frasexl sensor and EBS imaging the
same fieldof-view, to ensure that the ROC curves represent the same cotlatée second

specification is that the system must image a set of similar, but not the same scenes, to generate ROC
curves that represent different scene possibiliies theactive imagingexperimentwe developed a

custom optical bench setup to demtrate optical filtering.
2.2.3: Key Design Elements and Choices

X Why use a poeperforming matched filter when you can apply machine learning or at least EBS

specific algorithms that achieve better performance?

The goal is to achievenderstanding of EBS and frarbhased systems, not to build better detection
systems or to demonstrate new and improved capabiltiferent techniqueareless wellunderstood
than matched filterand require significant training that can introduce wvkm biases into the analysis

causingpotentially incorrect conclusions.

X How can you compare two technologies that are fundamentally different?

48



The technologiebave documented differencéaita well understoodnd discussedompatibility layer
can be adeld to make the systeraser There are reasonable questions on what information is lost in
the compatibility layethat are hard to answer.

X You are applying a frambased detector to EBS data. Is thatunfair towards EBS?

Converting EBS data to work ia framebased data isot ideal given the EBS data format geneal,
any comparison or conversitime two different technologies and systems will have fundamental

differences that require reconciliation

X Why do younotuse the APS on the DAVIS sengile other comparisof?Are you concerned
abouthaving separate focal planes.

The vendor states that the APS has bedwarage image quality.endos often oversell their products,
and stating that the DAVIS has belawverage image quality shows that BwVIS APS is not

representative of a standard fratrased sensor

X Are you concerned about aliasing and other artifacts from the disoréiscrete imaging

system?

No. These concerns were addressed by addsrgall defocus to the lenses $patial alialg. Sarching

the literature for other works using a discritaliscrete mapping, and how they handled the proplem
howevemone consider or mention the possibilityatisingartifacts.The framebased sens@sohad
possibilities of temporal aliasingvhich was addressed by increasing the exposure time, adding motion
blur.

X Why do you need your own scene generator/datasetdtiage one already available in the

literature and compare results to other detection projects?

Many literature datasets arailb to emulate EBS behavior inspecific taskin a wide range of scenes.
Other datasets are built to minfifamebased machine learnimgtasets andre intendedior computer
vision applications. | additionally want to compare my EBS performance éoreebased sensor, and

there areno datasets that provide the desired type of comparison.
2.3: EBS System Modeling and Simulation

This section describes approaches to modeling and simulation of EBS techoblogth the device and
EBS systemsThe goal is to describe several purposes of models, the basis for building an EBS model,
and several models from the literatufée section finishes byescriling the modeling and simulation

used in this work to address the problem questions.
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2.3.1: Why model EBS Systems ?

Several purposes of EB§stemmodelingare discussed her€he first purpose is risk reduction, where a
researcher can predict EBS performance using a common personal computer, without a significant
investment in the technologyhis purposevas usefulvhen first researching EBS, running an EBS

model to set exmmations for the project. The second purpose is experimental control, where a researcher
can precisely control simulated system parameters, versus working with available parameters with real
hardware. The third purpose is device characterization, whesearcher can generate a large diversity

of simulated input into the EB®odel andrerify that the EBS will behave as expected in every case. The
fourth purpose is algorithm development, where a researcher wants to explore a new algorithm can
explore a vdety of applications to determine the capabilities of new technidinresbenefiin this work

is as part of a verification and validation process, where a researcher can verify that EBS behavior theory
matches with their simulation, and then validate BE$ works as expected in a given application.

2.3.2: Constructing EBS Models

Here,the different components in an EBS moad discusse@long withsome example factors that lead

to building a model for a specific applicati@pecifically, the inputs, the device behavior, and the output

are discussed f&BS device models, and EBS system madéige differencéoetween modelis that a

device model abstracts device behavior, while a system model abstracts system behavior, not necessarily
abstracting the device.

At an abstrackevel, EBS modelgan be vieweih terms of the imaging chadiscussed in Section 1.4.
An EBSdevicemodel acceptinput from somewhere before thataprocessing stage, and output
somewherénside of orafter the proessingstage buabstracting the EBS behavior itsdfBS system
modek have similar inputs and outpukt®weverthe goal is to model an EB$ased system, so the device

itself is not necessarily simulated and can be physical.

The input to the EBS deviceadel is usually located after the image recording stag&h encapsulates
the change detection part of the device, but excludes the measurement part of the device. There are
several good reasons why teisopemight beused First, it enables a dataset already generated for frame
based systems to be input to the model, to generate equivalenrbasedtdatasets. Second, inputting
frames enables modularization of the systlodularization enables a researcher to use cust@ge
generatiortechniquewith the model. Third, higher fidelity achieved from modeling the first part of the
imaging chain is not necessary for many applicatibmslly, most EBS research is in the computer
vision and robotics fieldgnd such modelgre usuallymissingfidelity in the optical aspects of

simulationsnecessary for a higfidelity front-endimaging model.
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The output to the device modslusually an event stream, and processing and decision making is
excluded This structure, coupled vtitthe limited input, enables encapsulation of the device model as to
enable usage of the model as a surrogate for a physical EBS in an imaging chain.

EBS system models often involve a physical ERS8erajmaging an electronic displagat isdisplaying

an ensemble of images, used as stimulus for saskeperformed by the systenfihis setugs often used

to train and test machine learning algorith#snajor factor in this input is the scene generation or

selection, which is defined by thegyWHP VY WDVN ORVW RI WKH OLWHUDWXUH GLV
framebased machine learnimtatasets anchoves the EBS to stimulate event generafidris usage of

standard image datasetpresenta generic task of detecting static objects against &tackgroundsAs

such, most system models incluggt generationpropagationand imaging.

| view the system model as, almost by definitifmtused on processing and system task compleTiois
is because with an EB$ased system, a researcher ligwgants to measure the overall system response,
which is output from the right end of the chain and therefore requiresth# abmponents after light

measurement.
2.3.3: Literature Review

Here, EBS device models and system models froriténatureare reviewedDevice model®bserved
includemathematical models, SPICE models, and software, opetadised models.

Mathematical models form the basis for understanding EBS behavior. While they are often simple to
understand and work with, thare an abstraction of the actual EBS behawiad, often do not include

characteristics such as noise and electronic nonidealities.

| view themathematicainodels as fitting into spatial and temporal modelspAtialmodel is described

[27] where an evat is defined as a relative change above a previmasured light valudhe authors

then simplify and approximate the event ratddd&K H JUDGLHQW RI WKH VFHQH LQ WKH C
apparent motion, multiplied by the contrast of the pixel with its neigflhis.is considerec spatial

PRGHO EHFDXVH LW DVVXPHV WKDW WKH (%6TV UHVMgRIEets LV JHQF

This modelprovidesatheoretical basifor the dissertation wheilditional theorys derivedfrom it.

Thetemporalmodeloriginated with thevriginal DVS papef26] and isdescribedn Section 1.1, Eq. 1.1.
7KLV PRGHO GHYVFU UEHaNctetisBck epvaddnttR bl the EBS responds to a temporal
change in irradiance at each pixehe temporal moddias valuavhen developing device model, and

the spatial model as more useful for developing intuition on how EBS responsggdoiféic scene.
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For a highly accurate model, SPICE simulatifiz§ [77] are often used. These simulations model
individual EBS circuit components and measure their interactitmsever, lecause of the number of
components in each EBS pixellgtransistes plus additional components), and the number of pixels in a
sensor (About 80,000 for DAVIS348PICE models of a full device quickly become computationally
intractable. As such, SPICE models are normally only used in device design and testing, and are n

applicable to this work.

A third choice igo use a software model that implements the mathematical model, but also includes
macrolevel nonidealities such as noisehese macracale modifications enable more realistic EBS
simulation without the heawyomputational cost of the SPICE models. Most device models fall into this
category with a few cited hererB] [79], although special attenti@hould be givemo the V2Emodel

[79]. V2E attempts to model EBS by converting a digital video into whadrisidered an equivalent

event stream.

A flaw common to mangevice models is the lack of model validation. Specifically, the literature lacks
ways of testing whether the events generated from the model given an expected stimulus match the events
generatedby a physical EBS given an expected stimulligs as an open problem that, whilessibly

approachabl&ith the systems used in my experiments, did not fit into the scope of the dissertation.

For system models, | have observed full software simul§@@jn partial software simulatiof81], and

EBS hardwarén-the-loop models.A full simulator couples an artificial scene generator with an EBS
model and processinghere are natany full software EBS simulators, ssene generation is limited in
accuracy, and usage of frarhased datasets in a partial simulation can provide more realistic realllts.
simulationswere used in preliminary analysis hévedemonstrat&BS conceps without regardto

realismor reatworld precision Many system models are partial software simulation, feeding recorded
framebased sensor data into an EBS model and processing the output. This partial approach is most
useful whercomparing algorithms, or when a physical EBS is unavaildblardwarein-the-loop model
uses simulated scene generation, but a physical EBS, to realize thwlhigie behavior of a system with
realistic device behavior. Hardwairethe-loop is a common laboratory setup, and | have seen it most

often usedvith mactine learning datasets.
2.3.4: Models Used in This Work

Three system modelgeredevelogdin this work. The first was a simple model to test the image
stabilization principle. The second incorporated the V2E model, to set expectations for the ROC analysis.

The third was a hardwaie-the-loop model thatvas used in the image stabilization and R&»@lysis.
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The first model was a coupling between a scene generator and a primitive EBS model. Sergtal

predict the performance of the image stabilization systemardsbuilding anunderstanding of EBS

behavior, and to evaluate the possibilityfurther investment into the technologihe scene generator

was builtto accept a large format, manyegapixel image, and select a single, smaller subinTduge,

added motion simulatka movingobjectand a moving EBSThe system generated the movoigect

path and velocity, and sensor path and velocity based on a configuration té¥héie.in configuration

mode, the user could click to specify each path, and the program would save the text file. Otherwise, the
previous configuration would be uséthe moving EBS simulator worked by selecting new subimages
every frame, with the new image center basetherspecified velocity, with the shifted images

representing motiohe EBS model acquired consecutive frames and subtracted them. If the diferenc
between frames was sufficiently larger or smaller than a percent threshold, the system would generate a

simulated event.

The second model was anprovement orthefirst. The goal vasnow exclusivelyto predict the
performance of mobjectdetection sygm Thefirst major modification was replacing the primitive
model with the V2E device model, which | evaluated as the most nathliely available modelThe
second major modification was adding batch processing code, to generate videos with randagesubi
I could then generate multiple videwith the same objedf interest to feed to V2EThe system could
then output V2E into my detection algorithm, which would generate a PD dumegrocess coulthen
repeatexcept first remowng the object of interesto retest the detection algorithm and generate a PFA
curve. Combining the PD and PFA data, the R@@gomance of the EBS systemould be illustrated

The third model was the hardwéretheloop system used to generate resulSliapter3 andChapters.

The goat of the modelvereto add realistic EBS device behavior, while maintaining the desiraiig tr
described irsubgction 2.4.1and to be able to control the modeigolate and measure individusdene

parametersThis model added a physical EBSd computerize motion stagasd used a thirderation of
thescene generator to generate images, usindisieesteto-discretedisplay paradigm discussed in

subgction 2.4.2.

The major change to the scene generator was the addition of variablasdelevicgparameter
configurations Specifically, the user can ol the sceneontrast FKDQJH WKH REMHFWY{V VLJQ
background ratioWKH SK\VLFDO (%6fV GHYLFH ELDVHV DQG WKH YHORFLYV

By using a physicaEBS, we couldneasuresystembehaviorrepreserdtive ofa real EBS systemvhile
still allowing computer control to quickly iterate through scenafibg. purpose for the parameter

configurations was tenable us to adjust the difficulty of a task and observe how the system responds.
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For example, by varying the sigralbackground ratiathe objecican be controlleds havingigher or
lower contrast versus the backgroymehich intuitively would make a detection task easier or harder.
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Chapter 3
Reduced Bandwidth of Motion Stabilized Event -

Based Imaging Sensors

3.1: Introduction

An eventbased sensor (EB$26], also referred to as a dynamic vision sensor, is a passive electro
optical imaging sensor with a specialized read circuit that outputs asynchronous events. These events
are associated with tepatic WHPSRUDO G\QDPLFV RI D VFHQHYV RSWLFDO UDGL
pixel detects a local change in incident optical radiance that exceeds a threshold. As a resultptlie read
bandwidth, or the eventrea@ XW UDWH GHSH Q Gtenpaalliyhamid) Fhis\bakds/idtis
typically lower than that of an equivalent fraibased imaging sensor for a broad class of scenes where the
background is primarily static.

An EBS typically outputs a spatially and temporally sparse data streanspBingity derives from the
EBS pixels independently generating asynchronous events. In the EBS, an event encodes the nature of the
local radiance change and has several attributes including the time, the location, and the polarity of the
irradiance changeélhese attributes contrast with frafibhased imaging sensors that output a spatial signal
map proportional to the sensor plane radiance map synchronously, at a given frame rate. For further details
about EBS and its operating nature, we refer the interesaeiér to the literatar26, 27, 48, 83].

A potential advantage of EBS over frafin@sed sensors is that reauat bandwidth is often lower when
collecting similar scene information, which has garnered significant interest from the research community.
ThisEBS advantage of lower readit bandwidth is especially significant as it is a limited resource in many
applications. For example, a spacecraft with size, weight, and power constraints may not have sufficient
hardware resources to support a Higindwidthdata bus required to interface with high spatimporal
imaging systems. As such, reduction in the read bandwidth can yield several potential benefits,
including increased spatiemporal resolution and lower computing requirements. Increased -spatio
temporal resolution can, in principle, lead to increased focal plane size and/or focal plane temporal sampling
rate [76] This translates to sensors with higher space and time performance for batituidth
platforms. Another potential benefit is in t&ihg processing resources because of the reduced data stream.
For example, airborne systems have limited onboard processing power and bandwidth. Here, limitations
can translate into reduced focal plane size and reduced onboard processing capabilityaifor ce
applications such as change detectioalgecttracking. With reduced processing requirements from EBS,

we expect that a larger focal plane on these types of platforms is possible.
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Regarding our focus on bandwidth, we briefly mention that our feoomsrasts with much of the
literature who focus on other EBS benefits including high temporal resolution, high dynamic range, low
latency, and low powd26,27 :H DWWULEXWH WKLV WR WKH OLWHUDWXUHTYV I
where it is desable to have a single lopower device capable of higierformance imaging in a wide
range of environments without reconfiguration. In our research area, military technology, the user can
usually reconfigure the imaging system to meet a specific missed, rwithout requiring a single
configuration for all missions. In these cases, the commonly cited EBS benefits present no clear, new
capabilities that cannot be met without reconfiguration of existing imaging systems. We approach this
problem of uncleardnefits by investigating the overall imaging system trade space and how EBS can grow
this trade space to introduce new capabilities such as larger focal planes. The main theme in our work here
is that we are applying techniques from military research 8 &l exploring the unique benefits of the
technology.

Our work here is inspired by several works in frabased imaging. These include hardware
stabilization for object detection techniqli6g] and for astronomy applicatiof34] In the object detection
technique, consecutive frames are subtracted to isolate moving objects for detection. However, the
technique requires egistration between consecutive frames, which is implemented with hardware
stabilization. We expect our tedfne will also improve detection performance, but our focus here involves
reducing sensor bandwidth, which is an advantage unique to EBS oveitfaaetksensors.

Given potential EBS advantages, our work focuses on analyzing the utility of EBS for mbjgng o
detection tasks and applications where the sensor is in mbtorthese applications, we view a scene
comprised of a background and moving objects of interest (foreground). Thus, for object detection and
tracking tasks, we treat the backgroundlager, where the data stream depends on EBS platform motion.

For an EBS on a stationary sensor platform, the background image is primarily static, and since EBS change
detection electronics do not respond to static intensity, the background does nbtieotirthe readut

bandwidth. This limits the EBS data stream to only moving objects and-axdigated events. However,

if the EBS is mounted on a moving sensor platform, the background image is no longértetagparent

background motion addslutter, which is undesirable as it increases the t@madbandwidth without
FRQWULEXWLQJ WR WKH REMHFW GHWHFWLRQ WDVN ,Q WKLV ZRU?M
for costbenefit analysis of using EBS for relevant stated tasks.

To illustrate the challenge of imaging in clutter, the event rate can easily surpass one million events per
second with the 80,000ixel DAVIS346 when imaging a complex scene while moving. We follow theory
that states that this event rate will be linearly prtipnal to the velocity of the sensor, orthogonal to the
optical axis, and to the pixel count given the same-fiéldiew. With the newer 921k pixel HD camera

from Prophesd&3], we calculate an event rate near twelve million events per second fonthdieia of
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view and configuration and expect the rate to continue to increase as the technology matures. These event
rates requirelatabusescapable of readingut realtime, and processors capable of processingtiraal

As such, we want to reduce teeent rate in these scenarios, such that we can produce systems with lower
requirements while still being able to process higieeplution EBSs. One approach to reducing this clutter

is to use hardware stabilization, rotating the EBS in the oppositdidiresf linear platform motion,
compensating for and canceling said motion.

We explore hardware stabilization techniques by setting up two experiments with different scenes. The
first experiment measures the EBS read bandwidth at different velocitiesitivout stabilization. The
second experiment again measures +@madbandwidth except with stabilization enabled. In both
experiments, weisedreadout bandwidth as a figure of merit to demonstrate our ability to stabilize our
scene. This work improves ounderstanding of reducing system resource requirements in detecting and
tracking from a moving platform, with a focus on the ability to stabilize our system.

The challenges with hardware stabilization include requiring rotation stages, and some stabilizati
configurations may require other hardware. These devices may have imperfections that limit potential
stabilization performance. Additionally, hardware methods can only cancel one source of motion, limiting
performance in scenarios with many moving otgedlowever, if a user is not limited by readt
bandwidth, they might try software stabilization techniques to cancel background clutter with higher
performance. Such algorithms, including motion segmentation or optical flow, may avoid some of the above
challenges at the expense of computational complexity and higheouebdndwidth.

We expect our work to be valuable to a reader who is attempting to build an imaging system with EBS
and understanthe differentadvantages and disadvantages of the tdoggpoWhile we focus on only one
facet of the technology, we expect that a reader will be able to combine this with other works to understand
how they might evaluate and build systems with EBS.

This work is structured to illustrate one advantage of hamlgtabilization with EBS, and the
associated results a reader might expect given a similar system setup. We start in Sections 2 and 3 with
discussions on our measurement and hardware stabilization techniques. In Section 4 we describe the
experimental setuand calibrations. In Section 5 we describe the results and analysis. In Section 6 we draw

conclusions and speculate on future work in this research direction.

3.2: EBS Read-Out Bandwidth Advantage

Conventional framdoased imaging has sceimelependent, atstant reagbut bandwidth performance
based on a synchronous frame reat rate. However, EBS sensor bandwidth is scene dependent. This
scene dependence is due to sed@gendent noispl8] and scenepecific content. The scemependent
noise includes djral shot noise and is typically a small contribution to overall bandwidth inlityelighly

cluttered scenes. Techniques such as iris control and hardware noise filtering can reduce its bandwidth
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contribution to a point where scene content dominate®S output. There is also sceandependent
noise due to electronic noise and specific detector configuration but becomes negligible for scene with
significant background clutter.

Here we define an EBS bandwidth improvement relative to flaased senssrusing the following

improvement ratio$z

T i A
where $¢ 5 sand $,,, denote the conventional fraabased sensor bandwidth and the EBS bandwidth
respectively, with units of bits per second. For a fair definitiopive assume that the two sensors should
have same configurations i.e., fiedflview, spatial resolution, lens parameters such aswuapesize and
focal length.

Here the constantg, 5 s describes the bit depth of a focal plane array pixel outBf,s is denotes
number of frames per second afigs ¢ aig the number of pixels per frame. The conversion factor from an
event ate to a bandwidth i94,,,and ' . 5 . dg the total EBS event rate. The total EBS event rate can be
further decomposed intb, 4 ' aavand' ¢, corresponding to the background, object of interest, and noise
event ratesiespectively.

Our model of the readut bandwidth, starting with a noiseless EBS, is based on the one proposed in
Gallego et al[27] Here, an event is generated when the change in log irradiance at a pixel surpasses a pre
defined threshold as shown in BB2. We increment the event counter variallio denote that spatio

temporal information is stored upon a triggered event.

A TodRds Z ¢.: T8 4 GLLUGZ GE 5 (32)
where GUHSUHVHQWY WKH F XU the Ghwvantyzit@hey/ dLixferit @oatidl[locatiorss the
current time, andl, LV WKH HY H QW4 e SHRxP ld Llog/ irradiance since tast event was
triggered at the pixel%s a threshold constantthat fV PDJQLWXGH PXVW VXUSDVV WR WL
comparison is truef, is registered in space and time a@i$ incrementedWe can approximate,. for a
small time period,¢, Fas:

i N@ .GRP (33)
Where @ is the spatial gradient of the log irradiance, represented by the imaged sceRis,thied/elocity
of this gradient, orthogonal to the optical axis. Our model assumes that there is na greatige due to
scene depth, and that motion parallel to the optical axis has no effect. Given this behavior model, one can
envision a cluttered scene, whegeis significant at all scene locations. If the sensor platform has a large
velocity, R ¢,. would be large at all scene locations, and all pixels will generate significant event counts.
7KLY ODUJH DJJUHIJDWH HYHQW FRXQW FDQ PLWLJDWH (%6TV EDQG
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and possibly reduced system performance. We attemgdoce this event rate when moving by controlling
R which has a form following Ed3.4 and Eq.3.5. These are equations defining the scene object and
EDFNJURXQG YHORFLWLHV DQG IRUPDOL]JLQJ WKHLU UHODWLRQVK
Rov Rax E Ry (34)
Bal Ry (3.9)

where R, g is the relative velocity of any independently moving scene obj&tsis the velocity with no
moving objects and only the EBS motioR; 4 is the velocity of independently moving objects such as
powered vehicles or aircraft. ag), ,iLV WKH (%6 SODWIRUPTV RH W BthitMe o6\ PLQLP
goal to sigificantly reduce EBS bandwidth while maintaining the object event rate given signifgant
Eq. 34 represents a generic case including moving objects of interest abEgpresents the static
background case. When moving sufficiently fast amdin low noise conditions, E85 drives the majority
of EBS bandwidth.

To measure the event rate and the impact of velocity, we can count the average number of registered
events within a period, specifically the cardinality of the set of time stamps Withperiod. This does not
include the noise events, which we explicitly separate irBBq.

. : 5 X . o
sagol -WYQE@AJD-%QO%(;&& E'c (36)
We separate outc to highlight that the model does not explicitiglude noise events. Next, we discuss

image stabilization and how it can potentially help improve EBS bandwidth performance.

3.3: Hardware -Based Image Stabilization Approach

Here, we describe our readit bandwidth problem generated by background clattdrEBS platform
motion and describe how we can address it using various techniques. Specifically, we describe our methods
in terms of the model described in the preceding section, discussing their advantages and disadvantages and
their implementation.

In applications involving moving object detection tasks, we can minimize background events generated
by motion by applying hardware stabilization techniglrebardwarebased techniques, a user controls the
EBS to stay pointed at a fixed scene locationsHpuproach uses EBS sensor platform rotation to cancel
out linear velocity, maintaining image alignment on the focal plane, minimiBpgand removing the
orthogonal motion component. We assume a small angle approximation such that the rotagsn appli
evenly across the field of view. This approximation applies when the start and end position of the sensor
platform is sufficiently small and the distance to the scene is sufficiently large. In this case, the angle

between the start and end positiomma, usually less than twenty degrees, such that any scene projections,

59



modeled with a cosine term, are insignificant. We represent the stabilized velocity, which we want to
minimize, by replacing the unstabilized velocity, ,,; in Eq.3.4 and Eq3.5 with the following:

Risbaii L RuniE 4 URag (3.7)
Where R, »hai I,is the stabilized EBS velocity, R is the distance to the scene from the EBE, @@J‘the
rotation velocity. If we can find and apply the corré cwecan cancelR, ,,jand minimize readut
bandwidth.

3.3.1: Image Stabilization Techniques

We consider three methods for EBS hardware image stabilization: alfi@sed, actively illuminated
method, an everliased method, and a baseline method. Each method attempts to minimize the apparent
scene motion as viewed by the EBS. The frdvaged methidentifies the brightest point in the scene and
attempts to keep this point at a constant location on the focal plane through active control of the rotation
stages. The eveiased method estimates an initial EBS velocity direction from an onboardlinerti
measurement unit (IMU) and uses the measured event rate to estimate a compensating rotation rate and
maintain a correct rotation rate throughout the measurement. The baseline method finds the best stage
rotation velocity R 5 dn a calibration phasayhere we search for the best constant velocity. To cancel
platform motion, we apply the rotation rate to the stage in subsequent runs. We note that other, purely
softwarebased approaches are possible, where the scene velocity is estimated and ugedated ali
partition the measured data. While this approach is useful for removing background clutter from the data,
unlike hardwarebased stabilization, this approach does not reduceawtdasandwidth.

3.3.1.1: Baseline or Ideal Stabilization

This proposed @thod provides a scefiedependent performance baseline and operates on known
experimental parameters. This technique employs aegoaded calibration step to estimate the best
constant angular velocity that compensates for a known linear velocity BB@@latform. This constant
angular velocity is used in future runs, to simulate an ideal baseline for the best expected performance given
our experimental setup. This method emulates a sensor platform having prior knowledge of its velocity and
the scengieometry. However, because of projection effect (i.e., mapping ofdihremsional scene to the
two-dimensional optical image inherent in the test setup,) this approach cannot exactly cancel out all motion
with only a constant angular velocity. For exaeph the highvelocity case, the EBS creates about a 45
degree projection angle that presents the projected scene resolution changing 30% across the recording.

The EBS would need to compensate about 30% slower here to properly account for this projection.

3.3.1.2: Frame-Based, Active -lllumination Stabilization
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The framebased method seeks the location of the brightest point in the scene and measures the distance
from this point to the center of the focal plane. We then apply a software propemimgsd-derivative
(PID)-like controller to this measurement to compute the sensor platform velocity.

This approach was chosen for several reasons. First, we can actively illuminate the scene such that the
bright point is scene invariant. Control with activeelagdlumination is a wellestablished technique for
defeng [85] and other applications such as computer wig6], and more recently work integrating it

with EBS [82,87]. Our controller model can be expressed as
RacL G@E GAg QEG:@F @, (38)

where R 3 ¢is the rotational velocity at time stelp G is the proportionality constant@is the distance

from the center pixel at time stap Gjs the integration constant, ar@ is the derivative constant.

3.3.1.3: Event-Based Stabilization

The proposed evefiitased method is straightforward to implement and provides an example of EBS
based method without any further image sensor input. This method entails counting events since the
previous update and applying aoceleration proportional to the counted event rate. Here the event rate is
assumed to be generated by constant velocity EBS platform motion, whose direction is estimated by an
onboard IMU measurement. The premise of this method is that it will providagrar acceleration to
match the angular velocity with the linear velocity at steady state with a minimal event rate. The main
advantage is the reduced complexity of the imaging system, because the EBS can stabilize itself without
external cameras. Thidsa removes the reamut bandwidth penalty associated with the frameed
method. The main disadvantage is that the technique cannot detect velocity overshoot because the event
UDWH LV SURSRUWLRQDO WR WKH URWDW bhR® ih®relati/® dRredtiad.\ TV P D J(
To mitigate this lack of direction, we employ underdamped coefficients and del#jty to prevent
overshoots.

The eventbased controller model can be expressed as:
Racl Ggodaws EG' (3:9)

where G 4 ¢ d¢5 the velocity decay constant, set to a fractional value,' aisdhe current event ratés is
the event rate proportionality constant and is set to an underdamped value.
In practice, we implemented this technique with a staged agpreach thatG g 3 @nd G; change
depending on the current event rate. We used three event rate regions and varied the constants as the event
rate was varied across these regions. This approach allowed us to isolate and optimize specificffeatures o

the output event rate plot and reduce the sensitivity of this technique to the model constants/parameters.
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We found this approach to be viable as it provided more stability across minor scene variations and enabled
fast optimization with varying scenepiys and sensor platform velocities.

3.3.2: Stabilization Technique Comparison

We presented three techniques for hardware stabilization, each with advantages and associated
challenges. The frarfgased technique is scene independence but requires a biighhpgbe scene and
additional imaging hardware. The ewdratsed technique requires no additional hardware but is sensitive to
scene variances. However, this technique is robust over minor scene variations, as discussed in following
sections. Both the frae-based and evedflitased techniques tolerate velocity variations, in the sense that the
algorithm configuration can operate at different platform velocities, although with some reduction in
performance. The baseline technique can operate without extrainegdware and is scene independent,
however, it requires accurate prior information including velocity and scene distance. As discussed in the
following sections, each technique can achieve significant bandwidth reduction when the EBS is operating
on amoving sensor platform.

Each technique is appropriate for different applications. We envision the baseline method as useful in
spaceborne systems where hjgcision positioning data is often available. We expect the -ased
method to be appropriate an airborne system where positioning data may be less precise. We expect the
active illumination method to be useful when the active illumination is implicit in the application, such as
guided weapaom [87] or lidar systems. In the next sections, we difjarthe performance of these
stabilization techniques using an experimental approach.

Since each technique has pros and cons and is viable in different applications, we do not compare their
performance or rank them in our analysis but instead presenttheptions for consideration depending
RQ D UHDGHUfV VSHFLILF DSSOLFDWLRQ )RU H[DPSOH WKH DFW
inherent advantage of using a known point source, compared to the EBS method. A researcher could also
illuminate thre scene and use a purely EB&ed algorithm using system components in the liter§&i,
to provide a fairer comparison between EBS and fraasd methods. However, we view the specific
implementations here only as examples of how one might bsitdkdlization system given engineering

constraints, and not as a way of favoring one technique over another.

3.4: Experimental Validation

An experimental setup was developed to explore and quantify the three hardware stabilization methods
described here.d’achieve our goal of minimizing the background event rajg)( we compensate for the
VHQVRU SODWIRUPTY OLQHDU YHORFLW\ XVLQJ D FRXQWHU URWDW
setup employs the EBS placed on a linear stage, witmé#ilt stage to keep the EBS pointed at a fixed
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location during linear motion. The pointing of the pan/tilt stage is based on measured information for the
frame or EBSbased methods, or prior information for the baseline method.

This experimental setup and associated details are discussed as follows: 1) description of the system,
the geometry, and the implementation details; 2) description of the calibration process that provides ground
truth units for the data collection; and 3) dgstoon of the sensor data, how it is collected, and how the
data relates to the results. For the interested reader additional details regarding our setup are found in

Appendix A.

3.4.1: System Setup

The experimental system setup is illustrated in &ify. The geometrical layout of the various system
components is shown with tHEBS mountedon a tip/tilt stage that rides along on a linear stage. As the
system translates, the EBS or the framsed sensor provides image data from the scene to the control
conmputer. The system then processes the data according to the algorithm configuration to rotate the EBS

such that the scene is approximately fixed, reducing the background clutter.

Fig. 3.1: Images of the hardware setup. The left image shows the camemastaom hardware. The right image

shows an example background imaged by the cameras.

A block diagram clarifying information flow in the experiment is illustrated in B@. In an
initialization step, the control computer sets the linear stage to maveatstant velocity matching the
experiment specification. After the experiment starts, the EBS and/or-raseel sensor then acquire
spatiotemporal image data from the scene. This data is transmitted to the control computer where the
selected technigyarocesses the data and decides on the best velocity estimate to stabilize the sensor given

the data. The computer transmits a command with this velocity to the rotation stage. The EBS then
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stabilizes, reducing the readit bandwidth. The control computecords the EBS data during the run and
computes readut bandwidth based on this recording. There are further details to this process, which we
continue to discuss in the section and in the appendices. In summary, the control PC accepts recorded spatial
daa from the EBS and frarieased sensor, saves the data, and uses the data to estimate the required
URWDWLRQDO YHORFLW\ WR FDQFHO WKH OLQHDU VWDJHTV YHORF

Fig. 3. $ EORFN GLDJUDP RI WKH V\VWHPY{V LQIRétE@RIp&RiI do@ R tHeKH FRQ W |
EBS and framdased sensor, saves the data, and uses the data to estimate the required rotational velocity to cancel
WKH OLQHDU VWDJHTV YHORFLW\

The framebased camera recorded the scene at 60Hz within a refjiaterest onstrained to
containing an artificial bright point used for image stabilization. Each fizesed output pixel had a per
pixel bandwidth,%, 5 4 ©f one byte per pixel.

We employed several complex backgrounds including desert and urban scenes.l@ekgralind
images [88] randomly selected from within the larger image field, were employed to provide scene
diversity. Fig.3.3 shows illustrative sections of the two aerial images used in the experiment that include
representative scene features, sustbraush, road, buildings etEor the experiment data collect, five
random subimages from each larger image were used for display, with one instance illustrated by the red
boxes and arrows. The desert background provides denssgaghifrequency clugr such as bushes, a
moderate slope to the spatial variations, and a moderate degree of contrast. In contrast, the urban
background provides a more structured clutter characterizing hovade structures including regions of
low spatial frequencies puncted by sharp edges.

The experimental measurements were constrained by the laboratory geometry, which limited the sensor

platform linear velocity to around 13 pixels/second for 15 second run. With a scene resolution of 0.3 meters
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per pixel, or 0.39 meterepEBS pixel, this is the equivalent to 5 meters/second or 11 miles per hour given
the geometry. In the future efforts, we would like to scale the experiment up to validate stabilization
performance at higher velocities typical of airborne and spacebpptieaions.

Fig. 3.3: Images representing the two backgrounds. The goal of this variation is to show that the stabilization can
work across a variety of scene types. We randomly selected five subimages from each larger background, each of
which was theriested with our setup, as illustrated with the red boxes.

3.4.2: Camera Calibration

The platform velocity and the magnification from display to EBS pixels was calibrated to provide
output spatial data in units of EBS pixels. To calibrate platform veloaitglistinct linear shape was
GLVSOD\HG DJDLQVW D XQLIRUP EDFNJURXQG DQG WUDQVODWHG
position variation over time, as measured by the EBS, created a time series of object positions that
corresponded to the Meeity in pixels per second. To estimate the magnification a vibrating checkerboard
pattern, with known checker pixel spacing on the display, was imaged with the EBS. The object vibrations
generated lines at the edge of each checker pattern with corregpemdnts that were used to estimate
the spacing between lines. The ratio between this spacing and the known display spacing was 1:1.3,
corresponding to one EBS pixel per 1.3 display pixels. Aliasing issues were also considered, and we

defocused the lerte mitigate aliasing.

3.4.3: Data Processing

The data processing, the nature of the outatéh and impact of the system configuration is the focus
of discussion in this subection First, each EBS recording is processed to ensure uniform timing across all
runs. Using computer control, the experiments yielded event rate data with consistent timing and motion.
For each experimental data acquisition, the recorded EBS event datagnegasef into consecutive-33
ms time frames, and the instantaneous event rate was computed by averaging within each time frame. Due
WR YDULDWLRQ LQ HDFK UHFRUGLQJTV H[DFW VWDUW DQG HQG

synchronized to a consgstt time window. An initial higkeventrate flash was used to synchronize the data
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acquisitions. Subsequently, the calibration flash event was crop out of a fixed time window to generate a
consistent measurement period as seen ind4gwith the calibraéd event data is represented as a time
series. These illustrative data acquisitions demonstrate different cases including static background, moving
unstabilized background, and moving stabilized background.

The baseline motion stabilization method genaraignilar EBS data as frantesed and EBS
stabilization methods and for brevity it is not included here. For the cases with EBS platform motion, the
platform velocity was set to 9.5 pixels/second or 4 m/s in smagant units. The EBS observes only the
background, without any foreground objects in Big. (a), while Fig.3.4(b) shows data for background
with a highcontrast object. Vertical lines in F&# (a) correspond to the time window used to compute an
average event rate for the data in Section 4

The vertical lines in Fi@.4 (b) correspond to time slices that were used to illustrate spatial information
in Fig. 3.5. These time windows were chosen to correspond to periods of higher and lower motion
stabilization performance. The goal is to demaistthe temporal variations and different features of the
EBS event data time series. An ordémagnitude readut bandwidth reduction is observed for the three
stabilized cases relative to the unstabilized case. The EBS stabilization method andftamébased
stabilization measures are shown here. The first faased stabilization measure only accounts for the
EBS bandwidth to calculate sensor read bandwidth, while the second measure includes theaeiad
bandwidth of the frambased sensosgart of the total sensor readt bandwidth.

Horizontal lines in Fig34 (a) and (b) represent the average bandwidth when applying the two
stabilization methods, not including the fralleDVHG VHQVRUYYVY EDQGZLGWK 7KH DYHU
the windowmarked in Fig3.4 (a) with vertical lines. Note that there is variance in this measurement, and
the mean can change across measurements.

Both EBS and framtbased methods exhibit an oscillatory pattern, where the bandwidth variation spans
nearly twoorders of magnitude of dynamic range. This was also observed in the baseline method (not
shown), and it is attributed to mechanical instability of the rotation stage. Even with thdeabrotation
stage behavior, the minimum readt bandwidth improveant with motion stabilization is a factor of ten
and the average is nearly tweitityes bandwidth improvement relative to the unstabilized case.

To provide a visual sense of the event distribution across the EBS, we show the event information in
Fig. 3.5. The three sample times were chosen to show the best, worst, and average cases corresponding to
the three sample times indicated in RBgl(b). One can readily observe the reduction of the background
event rate in the stabilized versus unstabilized c&sésapolating to a typical realorld application, one
expects that a user will not only be able to reduce the EBS sensautdszahdwidth but also improve task

performance foobjectdetection and tracking with reduced clutter through motion stabdizati
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Fig. 3.4: Time series showing the event rate of different configurations with the same background. (a) corresponds

to recordings without a moving object in the scene and (b) corresponds to recordings with a moving object in the
same scene. We presdour cases, one with no EBS motion and three with 9.5 px/s EBS motion: One with no

stabilization one with EB®ased stabilization, and one with fraip@sed stabilization. We also include the frame

based stabilization with the frart@sed sensor bandwidth
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Fig. 3.5: lllustrations qualifying the event rate data given a moving object in the scene. This data corresponds to
images constructed from events over a 1/30s period at times 1, 2, and 334 fBY.respectively. These samples
represent the worst case, besse, and average case respectively that one might expect from using the given

configuration.

3.5: Experimental Results and Analysis

In this section, we quantify and analyze the significant EBS-oeadandwidth reduction that is
achievable with motiontabilization for a variety of scenes containing varying backgreand sensor
platform motion velocities.

The experimental data acquisition was carried out using the two types of background, with five
variation of each background type, and EBS platforntiancat five velocities per scene instantiation.
Additionally, each scene had a control point with a static sensor. This data acquisition was conducted with
and without the three stabilization methods, and the EBS and Frame methods were tested wittoand wit
optimization. Given this data set and complexities, we calculated a total of 290 recordings in the core data
set, with additional data plotted AppendixB. The resulting EBS data was aggregated (five background
variations averaged into a single dptdnt) into event rate plots.

Table 3.1 provides the mean and standard deviation of an example data acquisition, with EBS linear
motion set at 9.5 pixels per second. All three of stabilization methods demonstrate a significant reduction
to the bandwidth@mpared to the unstabilized case. However, the stabilization methods are not perfect, and
our proposed stabilization methods have room for improvement before they approach performance limit of
no motion. We attribute this imperfection to various-iealities. The projection effect due to imaging a
flat monitor at short standff distance, i.e., linear translation motion correction with angular rotation is one

of the main limitations, coupled with the quality of rotation stages (with significant jitte9.iJ evident
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from the event rates for the baseline or ideal motion stabilization method in Table 1, where the platform
motion is known exactly, but the stabilized event rates still deviate from the no motion event rates. With
experiment modifications sh@s a longer standoff distance (relevant toweald scenarios) and/or higher
quality rotation stage, we would expect to achieve higher stabilization performance approaching the no
motion limit.

Examining the relative corrected motion noise of a stadiittn method, as measured by the standard
deviations in the recorded bandwidth, it appears that the EBS stabilization method has the largest motion
noise. We believe this is primarily due to the sensitivity of motion compensation performance to tie specif
instantiation of the background because the controlled event rate is itself dependent on the specific
background. The other two motion stabilization techniques were backgimigmkendent, and their motion
noise is attributed to jitter from rotation gea Furthermore, due to the background dependence the EBS
based motion compensation is inherently subject to variability from different scene variations leading to
significantly different event rates. The standard deviation in each case includes backgr@tioms, noise

variations, and algorithm variations as well as-id#al rotation stage performance.

Table3.1: Readout Bandwidths (Bytes/sec) of different scenes with different motion configurations with one point

for each background. The datec@lected with EBS motion of 9.5 pixels per second.

No Motion Unstabilized Stabilized EBS | Stabilized Frame| Stabilized Baseling

Desert| 12,700 + 3.6%| 3,272,000 + 6.5% | 207,200 +59% 123,000 + 17% | 75,700 + 16%

Urban | 9,990 + 5.5% | 1,750,000 + 19% | 133,000 #£36% | 63,800 + 15% 50,100 + 13%

Fig. 3.6 and Fig3.7 show the relative performance of the three stabilization methods spanning six EBS
velocities with optimized and unoptimized stabilization. Each data point represents the mstzmaait
deviation sensor reamut bandwidth over five background variations as a function of a preset sensor
platform motion velocity. The data is grouped into configurations without stabilization, with-lessed
stabilization, with framdbased stabiliation (with and without the frargased tracking camera
bandwidth), and with ideal or baseline stabilization. Ideal stabilization uses the optimal constant rotational
velocity using prior knowledge of sensor platform velocity.

In Fig. 3.6(a) and3.6(b), tre PID tracking parameters are adjusted at each velocity value to provide
optimized tracking for the EBS and frarhased methods in desert and urban scenes. InFiga) and
3.7(b), we use techniques only optimized at 9.5 pixels per second motion afgplexif the EBS velocity
is unknown, one must use a roptimized technique and might expect relative performance like in the
figures. The data shows that motion stabilization benefits are still significant, but that relative performance
degradesasthB FWXDO VHQVRU SODWIRUP YHORFLW\ GHYLDWHY IURP WK

Reference dashed horizontal lines in each plot represent potential performance comparisons with the

corresponding sensor readt bandwidth of standard frar@ased sensorsh&se reference lines represent
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the readout bandwidth of a 346 x 260 frapb@ased camera operating at 60, 30 or 10 frames per second
assuming one byte orl@t depth per pixel. These reference reatl bandwidths represent the potential
bandwidth advantagesf EBS over framéased imaging, demonstrating the capabilities and benefits of
motion stabilization. For example, in the desert background without motion stabilization, the EBS event
rate crosses that for a frarbased sensor operating at 30 fps at Higta velocity of around 9.5 pixels per
second. If hardware motion stabilization is used in this case, one can reduce the EBS event rate by nearly
an orderof-magnitude. Other such relevant comparisons between unstabilized and stabilized EBS event
rates ae readily observable from this experimental data.

The motionstabilization performance analysis demonstrates that &aesetd motion stabilization
techniques work across different scene variations but require optimization when switching between
backgroundypes (such as urban and desert backgrounds) due to the significant differences in background
spatial statistics. The evebased motion stabilization technique also benefits significantly with
optimization at a specific platform velocity. It is worth mening that sensor platform velocity information
required for such optimization may not be readily available on some systems such as a quadcopter
unmanned aircraft. However, we expect this method would be useful on larger sensor platforms such as a
mannedaircraft with more available resources. Benefits of the EBS motion stabilization technique also
include low computational complexity, requiring one increment operation per event, and compusifg Eq.
every time step. As such, this method may be superiother techniques that require more complex event
processing.

The framebased motiorstabilization technique worked consistently across all scene variations.
However, we observed that it still benefitted from optimization at specific sensor platforniti®g]oc
especially at lower velocities. Motion stabilization performance was superior to thebagewttechnique
over a range of velocities, when discounting the actual cost of frameouedzhndwidth. However,
bandwidth was above the evérdsed technige when including the frarAeased bandwidth. The frame
based camera used 250,000 bytes per second and subtracting this to isolate EBS event rate, decreased the
event rate to below the EBS method. The frdrased technique may be superior to the EBS meathod
cases where reduced processing time and other factors outweigh thébfisedebandwidth cost. The
framebased technique only uses a constant fraased bandwidth and does not affect the event rate.

The baseline stabilization performed well but had ugtrend in its event rate and had lower
performance than the frarised method in some cases. We attribute the lower performance to projection
effects from canceling linear motion with rotation motion at short stdihdue to projection effect. As the
argle between the optical axis and the normal to the monitor changes, the rotational motion required to
cancel the linear motion changes and the constant angular velocity loses validity. We expect that the lower

velocities, this projection effect was lesgrsficant.
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While optimality is not claimed for any of the motion stabilization techniques discussed here it is clear
that these techniques deliver significant sensor-ceddandwidth improvements. The improvements are
in comparison to the unstabilized EEand to example frar®ased imaging systems. We believe these
techniques and other related approaches are crucial to the developmenteaigivedered everiiased
imaging systems on moving sensor platforms. Usage of the techniques in these systerad tan le
significant reduction in sensor readt rate, which is a crucial system performance parameter in many real
world imaging applications fasbjectdetection and tracking tasks.
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Fig. 3.6: Bandwidth plots of different stabilization methagssus different EBS velocities. a) and b) are with the
desert and urban background variations, with techniques optimized at respective velocities. Ideal stabilization

represents a baseline performance level. With ideal stabilization, we observe gesater tiideof-magnitude

bandwidth decrease versus an unstabilized system is possible. Overall, we observed similar performance with the

three technigues across the two backgrounds.
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Fig. 3.7: Bandwidth plots of different stabilization methoassus different EBS velocities. a) and b) are with the
urban desert background variations, without techniques optimized at respective velocities. Without optimization,

EBS and frame techniques are optimized at 9.5px/sec.

3.6: Conclusions and Future Work

EBS provide a significant bandwidth advantage in modbgctdetection when the background scene
is fixed, and the sensor is not moving. However, this advantage is significantly compromised when the EBS
has a relative velocity to the scene backgrouho.compensate for this reduction in performance,
techniques can be employed to reduce the relative this relative motion as projected onto the sensor focal

plane. We introduced and successfully demonstrated several such hardware EBS stabilization methods.

73



Thee methods demonstrated oraddérmagnitude readut bandwidth reductions versus unstabilized,
moving EBS systems. One can apply these methods to reduce bandwidth to meet performance thresholds
in applications such as moving object detection. These metlifbeiutiate from other methods, in the

sense that they leave moving objects in the data stream while removing background clutter. The baseline
stabilization performed well but had an uptrend in its event rate and had lower performance than the frame
basedmethod in some cases. We attribute the lower performance to projection effects from canceling linear
motion with rotation motion. As the angle between the optical axis and the normal to the monitor changes,
the rotational motion required to cancel theeinmotion changes and the constant angular velocity loses
validity. We expect that the lower velocities, this projection effect was less signifidansee value in
development of other hardware stabilization methods, and testing against differengsomratries,
however we leave these topics to other researchers. Our EBS method has low complexity but is sensitive
to scene and velocity variations. There are other methods that trade off complexity for reduced sensitivity
and higher performance. Additidha testing with higher velocities, different scene distances, and different
lens focal lengths may demonstrate different limitations for stabilization performance.

By trading off complexity and other system parameters, variations on our methods maie provi
significant improvements over the current performance. Other possible-lfhi@sed approaches might
include passive approaches such as image registration and optical flow techniques. However, these
techniques are scene dependent such that their pericenmmexpected to be less than with a known,
actively illuminated point. These techniques also require heavy processing and a larger scene image, and
their usage may need a different goal than reducing system bandwidth. Other possibleassent
stabilizaion approaches may include motion segmentd80n91]or optical flow[92]. These techniques
would not have the instabilities because they can measure event directionality. Our main concern here was
latency with using CPU processing and wanting to emiphaowresource techniques. However, if a
smaller subset of the event stream were used here, we expdanhesplocessing is possible with some
loss in accuracy. Additionally, these techniqgues may be more effective at lower event rates and combining
them with the event rate measurement may lead to higher performance. We are not aware of these
techniques being tested against aerial images and saw them as a poor fit faritéened scenes such as
the desert. Other stabilization methods may includdMll -based control such as a hardware version of
a software technigu[93]and GPS control, or some type of speedometer to collect platform velocity. Given
scene geometry information, this velocity information might provide a coarse solution to cBjtypl
followed by a solution like one above for finer control.

An example of applying our results might be integration with EBS bias ¢@8®jo which we provide
some insight with Appendix B. Here, a user attempting to achieve high sensitivity oesggimsiveness,

might apply hardware stabilization, such that increased event rates from the higher sensitivity or responsive
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can be reduced. We view this as expanding the trade space available with EBS configurations, using the
lower event rate to enal@wver thresholds, response to higher spatial frequencies, or higher noise tolerance.
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Chapter 4
Task-Based Comparison Betweekvent-Basedand

Frame-BasedSensors

4.1: Introduction

An eventbased sensor (EB$26], also referred to as@ynamic vision sensor, is a passive electro
optical imaging sensor with a specialized read circuit that outputs asynchronous event data. These
events are associated with the dynamics of a scene and occur in time and space when a given EBS pixel
detectsa local change, or an event, when the incident optical radiance exceeds a preset threshold. As a
result, the readut bandwidth, or equivalently the eventreRIXW UDWH GHSHQGtémBaalD VFHQH
dynamics. This bandwidth is typically lower thidrat of an equivalent frarAgased imaging sensor.

An EBS typically outputs a spatially and temporally sparse data stream. This sparsity derives from the
EBS pixels independently generating asynchronous events. In the EBS, an event encodes the mature of th
local radiance change and has several attributes including the tinpéxehkcation, and the polarity of
the irradiance change. These attributes contrast with fleaeed imaging sensors that output a spatial
signal map proportional to the sensom@aadiance map synchronously, at a given frame rate. For further
details about EBS and its operating nature, we refer the interested reader to the Ilj2852urd8, 83].

A potential advantage of EBS over frafin@sed sensors is that reaat bandwidth is often lower when
collecting similar scene information, which has garnered significant interest from the research community.
This EBS advantage of lower readt bandwidth is especially significant as it is a limited resource in many
applications. For example, a spacecraft with size, weight, and power constraints may not have sufficient
hardware resources to support a Higindwidth data bus required to interface with high sgatigporal
imaging systems. As such, reduction in the read bandwudth can yield several potential benefits,
including increased spatiemporal resolution and lower computing requirements. Increased -spatio
temporal resolution can, in principle, lead to increased focal plane size and/or focal plane temporal sampling
rate [76]. This translates to sensors with higher space and time performance for baiiwiidth
platforms. Another potential benefit is in reducing processing resources because of the reduced data stream.
For example, airborne systems have limited onboesdgssing power and bandwidth. Here, limitations
can translate into reduced focal plane size and reduced onboard processing capability for certain
applications such as change detectioalgecttracking. With reduced processing requirements from EBS,

we expect that a larger focal plane on these types of platforms is possible.
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2XU JRDO LV WR SURYLGH D PHWKRG IRU HYDO XD-Daked thsWsKH (%6 T\
to understand the costs and benefits of replacing the fbased sensor withBS. Specifically, we want
to establish baseline performance measures of an EBS anddese@ sensao quantitatively understand
therespectivecosts and benefits of each technology.

This research is designédlimprove systems that are currently lietitby framebased technology in
terms of spatial or temporal resolution. For example, we cite small, unmanned aircraft detection systems
[4] where task performance is limited by pixelstarget or spatial resolution, or more systemically limited
in a trag space between spatial and temporal resolution, and the sensaf-fisddr. With a lower
expected readut bandwidth, EBSystemsxpand this trade space and, in principle, exaddre capable
imaging systems. We envision a large format EBS, possililtyviith mosaicked camera array5], that
can image a large field of view with hundreds of millions of pixels.

Through review of the literature, we found that EBS is commonly considered a paradigm shift whose
data stream requires a whole new way of thigkind acting on the data. In terms of #gatld applications
of EBS solutions, wéiave foundimited quantification ofrealtworld EBS valuein the literature Our
research taketheapproach where EBS is viewed as one in a broad class of imaging sdssansluding
traditional framebased imager[13]and others such as the Digital Focal Plane yAfgd]. Our approach
treats EBS as one in thékass andneasures its performance as if it is a frevmased sensor, to demonstrate
its costs and benefits within an already proven application.

We develop a rigorous, statistical approach for measuring EBS system performance compared to frame
based systems. Specilly, we want to demonstrate a system that measures the relative performance and
outputs data that a decision maker can use in abeostfit analysis. This cebenefit analysis includes
relative task performance and relative bandwidth advantages esstseand benefits. The EBS integrates
with an imaging chain to form an evdmsed imaging system. We use the term EBS to refer to both event
based sensors and ewdaised imaging systems.

Our approach has several challenges including high caatfolrements, controversial methodologies,
and complicated results and analysis. We control the hardware such that both sensors are presented with
the same data in a comprehensive way. The methodology @sdhasning EBS datgwhich removes
potentally valuable temporal informationyemoving potentially valuable temporal information, and the
usage of spatial matched filtering for the detection algorithawill provide justification for these and
other decisionater in the papefThe data aggregatestdts from several hundred detection decisions in
each point, leading to questions of representativeness of the data. We attempt to answer all of these concerns

throughout the paper.
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This work is intended for engineers interested in developingwedtl s/stems with EBS, for
researchers interested in device behavior and how that behavior maps to task performance, and for
researchers interested in building better EBS devices.

This work is structured into four other sections. Section 2 mathematical andgngceoncepts.

Section 3 describes our methodology. Section 4 presents our results and analysis. Section 5 presents our
conclusions and future work.
4.2: Task Performance

We identify task performance and bandwidth advantagdadsrs incomparingeBS vesus frame
based performance. In this section, we discuss task performadte process used to measur®it
both types of sensors.

4.2.1: Performance Measurement
This subsection defines how we measure task performance. We start by definipgrtaskance,

followed by a higHevel description of the steps taken to measure task performance.

The EBS generates a data stream that can be processed to extract information about the scene. We want
to know about the quality of this data, or our abildyatt on the data regarding object detection tasks, and
about the factors that affect the data. To do this, we measure the performance of the EBS imaging system
in object detection. We attempt to keep all system parameters coirstarding the imaged sne, the
field-of-view, the sensor platform and any motion, the imaging lens, data processing, and the detection

algorithm.Detailed discussiownf these parameteis provided in Section 3.

We record data with both cameras by imaging a display showingjact of interest moving against
variousbackground. By controlling the recording timings and by repeating the recording witimooibject
we can gather daend quantfyWKH DELOLW\ WR GHWHFW WKH REMHFW{V SUHVF

For processing the EBdata, we aggregate events into congtarg bins This aggregation removes
temporalobject information from the data, reducing performance. Although not yet applied to EBS, th
concept of object information has been explored with frhamed systems thugh TaskSpecific
Information [35]. We view this loss as providing a lower bound for EBS performance, because there are
processes that might better utilize EBS data without the aggregation and informatiéiotdks. current
study, since we could stilemonstrate the methodology, the information loss was deemed acceptable
without further analysig-or the detection process, we use a frénaged matched filter. We apply this filter

to both the everdbased data and the frarhased data.

We measure perforamce using the Receiver Operator Characteristic (ROC) curve of both EBS and

framebased systems. ROC trades off probability of detecting the object when the object is present
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(Probability of Detection), versus the probability of detecting the object wihenobject is absent
(Probability of False Alarm). ROC is parameterized by a threshold value that selects a specific pair of
probabilities from their trade space. By varying the threshold, we can form the ROC curve and characterize
the trade space. For matetails, we refer the reader to a description of ROC curves from the liesfyr
31]. We further aggregate the ROC curve by taking the area under the ROC curve (AUC), converting the

curve into a scalar performance metric.

With these techniques, we nsege allin performance of the EBS and the frabesed system across

several scene parameters including the scene type, the scene variance, and sensor motion.

4.2.2: Description of Detection Process
Here is a description of the detection process. Wedirstract the image generation process using the

following two equatios:

GC.iL*; B (4.1)

<
G/a»i L *3/4»]B (42)
where G, ,, jrepresents the evehaised sensor image ard ,, jrepresents the frareased sensor image.
G,»iand C, ,jare both vectors, where each element represents a pixel in the image dytpiis. an
operator abstracting the everdsed sensor imaging process &nd, jis an operator abstractitige frame
based sensor imaging process. The EBS operator includes operations such as event framing, which are

covered in more detail in the next section. The objBaan bdurtherpartitioned into several components:
BL BUE BoE Baves (43)

where By yepresents the background sceBe; tepresents thebject and B 3 (; 4gpresents scene noises
such as optical shot noisBmodels occlusion of the background, by the target, through setting any region
in B Jo zero wheever it overlaps withg s.yWe can express this mathematically Bg 5 icluding the
negation ofB; (jn the overlapping regionB 3 ; £¥cludes variations betwee ¢ and B

We conduct the experiment across many randomizextbbgenes. We can describe the background
instantiation process with a vector selection operator. This operator chooses a specific background instance
and is random. For more information on this operator with regards to imaging, we refer to Neifeld et. al

[25]. Eq.4 .4 describes this background selection operation to generate a random scene.
BuL eRge (4.4)

where €is the vector selection operator aBd 4§ a matrix containing the set of potential object vectors.

An instance of &€ has one noizero element that, when operating & g generates a single vector
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representings, 3 We iterateéto generate sets of scenes for analysis. In our anaBsispnsists of a larger
set variations of a single scene type. These types include desert and urban, and variations are subimages of
a larger scene image. Given this randoohigwn image, we then superimpose object B g to form the
displayedimage. We leaveg 5 jy £gpty in the initial image, allowing noise to generate through physical
processes when the image is displayed.

We generate our matched filtebjecttemplates through simulated data. HeBds represented in
software asBg 5 and G, ,, e g iEPresents a simulated imaging system. We first remove physics from the
simulated * operators such as lens effects, noises, and device practicalities, leaving an ideal simulated

output.
CL»‘VBEUA‘ *(;»\VBEU%UQ (45)

which is similar to Eg. 1 except the variables are simulated. We note that we include a calibrated lens
magnification in this* RSHUDWRU VXFK WKDW WKH PDWFKHG ILOWHU LV DS
implement the matched filter, we geaty a template representing only tigect LQ WKH VHQVRU(YV L
space, by applying a higtontrastobjectagainst a uniform background, forming the in®it 24 ¢ £09.

4.6 describes this template generation system.
6L % ieuBoamua (4.6)

where 6is our template and ¢ s43 i$ the simulatedbjectin the scene. We then apply the template by
operating on the real output data after processiig,; using the matched filter. We note that uee the
same template for both the EBS and framased system, to maintain similarity between the systems. We
apply the matched filter through the inner product of the expetigdtwith the image, seen in E4.7.

The inner product operation providesealar value that we interpret as representing a likelihood of the

objectbeing at a specific scene location.
aCE é L GQG/A »1 (47)

where &g ;is a scalar value representing the inner product. The vatigs mathematical and can be
viewed as devel representing the likeness between the template at one location, and the input data. We
then compared ;to a threshold and decide whether the object is absent or present in the scene based on

the result:
L 8, ™a (4.8)

where ais a scalathreshold variable and is a binary value describing the detection decision, having

possible values of one or zer®4s the comparison operator.
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The above process only provides a detection decision at a single image location, which is not useful if
oneis searching across the whole scene. To decide at every scene location, we can usecthrestabiss
operator, which we interpret as computing the inner product at every locat@gn,in

#,L 6T G, (4.9)

where & Js the twedimensional crossorrelation vector, containing a scalar for every scene location.
At the image boundaries, we zgyad to prevent the template from cycling to the other side of the image
during computation. After computingk . We can comare its values to the threshold:

aL g, ™a (4.10)

wheredLV D YHFWRU RI ELQDU\ GHFLVLRQV DFURVV DOO VFHQH ORFD)
or presence at every locatidfor a detection problem, we can aggregate all locations into a scalar,
sceneZLGH GHFLVLRQ VWDMWLULQRIQWRKH WKHWREMNMFGHIV SUHVHQFH LQ W

& L k-dom™r (4.11)
& L (:848) (4.12)

where ( ) describes generic function notatiofis the detection decision ands an operator summing all
elements in a vector& describes whether thebject was deteted anywhere in the scene. It is

straightforward to extend this process to localization, however, we do not demonstrate such here.

We next introduce the selection vectérto repeat this process with different scene variations,

generating a vector of kany decisions. This increased dimensionality is represented as créannlgé

aL (45098 (4.13)
4 L @da™r (4.14)

where 8is a vector obbjectpresence decisions across all scene locations and all scene ins&isces.
singlescenevariationobjectpresence vectawith dimensionality across scene variations with the
summation is across locations within a variation.

While Eq.4.13 provides a&ctor of decisions (Value of onedbjectpresent, zero isbjectabsent),
we want to aggregate the decisions to generate a probability of detectiijeitice\We do this

aggregation with a simple average across the scene variatidhs of
- &;
&L X4 (4.15)
&L (:3 (4.16)
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where &s the average oacross scene variations anfl is the number of variations i@ &is a
probability.

We finally constrainéto generating separatdjectabsent andbjectpresent variation subsets. In
eachsubset,B has the same variations present, Buf say or may not be present. As such, we can
compare the decision with the same variations, except thabjbetis absent or present in each subset.
We can then generate a vector of decisfonshe set of scenes with thbjectactually present and a
vector for the set with thebjectactually absent. This partition generates separé&ffesctions:

gk (3 (4.17)

Soxpdy (19 (4.18)
where & ;5 « {s<the probability obbjectdetection @) and & - gigdhe probability of false alarm
(2,9.

These functions are combined to form an ROC function that is parameterized by
(eeuTd) L (800588 mm:2 29 (419)

where (g g 4s the ROC function and can be plotted to generate the ROC curve for the set of $ieaes.
variable known to represent the horizontal axis in a plot@sd variable known to represent the vertical
axis in a ploand represené® 4 ¢ » 8¢ &6 2 g 4 ¢

However, we want to measure ROC performance across different sets of scenes. For example, we
might want to compare one set with a fagiving sensor platform and one with a stationary platform. To
do this, we measure the area under the ROC curve (AUC) to convert the curve to a scalar performance
metric [19].

#T%L | (cepTd @T (4.20)

where # 7 %s the area under the ROC curve for E§S¢ js the ROC curve function for EBS.

The ROC and#7 %values are generated by sampling scene variations. As such, the values are mean
values and have associated higbeter statistics. We present a variance for each mean as an error bar when

plotted.

In practice, we record time data of a moving objant] can compute detection at different times. We
sample 30 locations per scene variation ovessacbnd window at 30 equivaleinames per second. With
the complex scene, We record ten variations per ROC curve, providing 300 sampl&sapet 2;
measurement. With a uniform background, we only record five variations, providing 150 samples per

measurement.

4.3: Methodology
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This section describes how we developed the different components necessary for the sensor comparison.
We start off in subsectiof.3.1 by describinghe scene generation process, and how we generate ideal
images that are eventually processed into perfocmatata. Then in subsectiah3.2, we provide
descriptions of several important differences between the EBS and-liesed systems, how these
differences bias our system, and how we attempt to control the differences.

4.3.1: Scene Generation and System Vi deo Input

‘H JHQHUDWH FRPSOH[ VFHQHY DQG GLVSOD\ WKHP WR WKH VHQ
performance in distinguishing objects of interest from the background. Our scene generation approach uses
highly constrained scenes where we cdratmf our variables of interest, enabling us to analyze the effect
of individual scene parameters on system performance. Every dataset that we investigated, of which we
give one examplg94] out of several dozen, provides a highly diverse set of sc@his.diversity is
designed to test the robustness of a variety of algorithms in many possible scenarios. We developed the
scene generator and controlled datdocus on generating many minor variations of a few scenaoios,

isolate individual scene pareetersandgain understanding of their relationship to performance.

We first describe our parameters of interest, followed by a description of how we generate scenes and
integrate moving objects. With this information, we expect that a reader could repithéir own scene

generation software for their own research.

4.3.1.1: Parameter Space

We selected and varied several parameters of interest given a uniform or a complex scene. The parameters
includeobjectmotion, sensor motion, scene contrast, and bigabackground ratio for a uniform scene.

For a complex scene, parameters include visible contrast, sensor motion, antbgigeiground ratio.
4.3.1.2: Random Image Chipping

We constructed a random scene generator in MATLAB. We used aeriakifi@®}as macrescale scenes
and created chipped sifnages from this larger image to form a random ensemble. We provide an example
of this process in Figl.1, where we present the larger scenes and present an example of selecting smaller

subimages.
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Fig.4.1: Images representing the two backgrounds. The goal of this variation is to show that the stabilization can
work across a variety of scene types. We randomly selected five subimages from each larger background, each of

which was then tested with psetup, as illustrated with the red boxes.

4.3.1.3: Scene Control

We conduct complex scene tests by increasing the scene contrast from low scene variance to high scene
variance. To compute this variance, we take every generated scene and compute thdiamaxitance
when displayed to the sensors. We then compute the variance of the radiance of each pixel in the scene
versus this mean. Finally, we compute the average of the variances across all scenes in the ensemble to

compute a scalar scene contrastric.

To control the scene variance, we vary the dynamic range in a template scene. The dynamic range
variation operation computes the maximum, minimum, and mean radiant exitance in the scene. Next, we
find the ratio between the current and the desiggthrce and scale the maximum and minimum by this
value, while keeping the mean the same. This operation is not consistent across scenes but provides

approximate control.

Finally, we varied the signdab-background ratio. We generatetjectand backgrours] and set the
signatto-background ratio, as the meahjectradiant exitance divided by the mean background radiant

exitance.

4.3.1.4: Object Integration

We generateabjectsof interest by downloading a public domain 3d model of an unmanned aircraft,
importing it into Blender, and rendering a hig¢solution 2D projectionlo generate different sizedbjects
this highresolution projection was downsampled to corresponding resolutions

After controlling the scene variance and the object sitpbbhckgraind ratio, the object was

superimposed onto the background, generating video input to the test system. We applied alpha blending
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techniques to place these objects in the scene with less edge artifacts. We place the object at a known,
constant pixel positio within the scene and apply a velocity to the object, changing this position each
IUDPH LWK WKH XQLIRUP EDFNJURXQG ZH VHW WKH REMHFWY{V Yl
thenon XQLIRUP EDFNJURXQGYV ZH VHW aligrraRE, br thirty\pik®ls Jed L@ ¢dRd. W\ W R
We generate a video with a static background and either an absent or present moving object for display to

the test system.

4.3.2: Experimental Setup

We developed an imaging system with the EBS and filamsed sems imaging a controlled scene,
presented to the sensors on a pixelated display screen. The controlled scene variations enable their effect
RQ VHQVRU SHUIRUPDQFH WR EH PHDVXUHG DOORZLQJ XV WR K\S
Through measring performance with our system, we also demonstrate an equivalence between EBS and
framebased sensors and allow the usage of EBS in flzased systems.

Fig. 4.2 illustrates the hardware subsystemirttage a displayvith the two sensors, and adubtion

control for further testing.

Fig. 4.2: Images of the hardware setup. The left image shows the cameras and motion hardware. The right image

shows an example background imaged by the cameras.

4.3.2.1: Hardware Setup
We presenthelimitationsand practicalities of our setuphe experimental hardware consists of three
principal subsystems1) optics and sensors 2) image projection, and 3) platform motion, which are

described separately below.
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4.3.2.1.1: Physically separate EBS/FBS
The DAVIS346 was the EBS used for evaluation. While the DAVIS also contains an integrated frame
based sensor on the focal plane, decided to use a separate sensor because of limitations stated by the
EBS vendor iniVatio[45) WKDW 37KH IUDPH RXWSXW KDV EHORZ DYHUDJH SHU
FRPSDUHG WR FRQYHQWLRQDO LPDJH VHQVRUV ~ $V VXFK ZH YLHZ

of the results in favor of EBS.

However, physical separation comes vatmtrol challenges, as the two sensors require the same field
of-view and IFOV, separate control software, separate but similar processing pipelines, and synchronized
data streams. W#&und thesechallengesnecessary to provide a level of rigor in EBS parfance

measurement and comparison unseen in the literature.

4.3.2.1.2: Imaging a Pixelated Display

We imaged a discrete, pixelated screen with the two cameras, forming a disdistrete imaging
system. This brings up several potential issues, inofudpatial aliasing, temporal aliasing, and screen
flicker.

For spatial aliasing, our system had 1.3 screen pixels per sensor pixel. This ratio is 1.3 times than the
Nyquist criterion. As such, we observed significant aliasing effects in both sensordnadging the
uniform background and the static urban background. We found aliasing detrimental here, because it can
interface with our object of interest and degrade detection performance. To address spatial aliasing, we
applied a slight defocus to both t&s that helped mitigate the effect without significantly degrading image

guality. We considered any residual aliasing effects as a common mode detriment to both sensors.

For temporal aliasing, we recorded the frabased sensor at 29.9 FPS, which is sofaaf two smaller
than the Nyquist criterion. We did not attempt to temporally reconstruct our data, and therefore did not
focus on mitigating its effect. The effect on our data was that a frame had more than one half pixel of
motion, which was the desa@esideo structure. For our frame rate, all frames had one pixel of motion, with
a twopixel motion frame every three hundred frames, longer than the recording length. As such, we did

not observe any detrimental temporal aliasing effects.

The display flicke was measurelly imaging the screen at 500Hz with a 64x64 frdrased sensor. We
then took the mean measured pixel value from every frame and plotted the resdiB Higstratesthe
results of this operatioifhe datawassampled with different expage times showhow the screen flicker
varies as we add motion blur to the system. At 2ms exposure, we found a high frequency signal at about

180Hz, with a peako-valley of about 7%. We note that we scaled this value up, from a mean digital value
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of arourd 20, to compare it to the filtered signal. We filtered down this signal by increasing exposure to
have a nearly flat measurement at a 60Hz frame rate, with a mean digital value of 99. We used this shutter
time for our framebased sensor in the experimeetnoving flicker however for the EBS we had no such

filter and did not remove flicker, leaving the EBS to image the 7% change. When imaging the screen with
the EBS, the flicker was insufficient to trigger events by itself, but ultimately adds variatheeitoaged

scene and detected events.

Fig 4.3: Screen flicker measured on the display versus time, with two different exposure times. By increasing
exposure, we effectively motion blur the flicker, making it approximately constant. With filtering, dkégeealley

change was less than 0.5%.

4.3.2.1.3: Platform Motion

The sensorsvere mounted to Bnear stage with a rotation stagddedfor the stabilization sectigmwith
both stages undeomputercontrol :H IRXQG WKH OLQHDU VWDJHYV SRVLWLRQ DQG

runs, while the rotation stage had jitter that prevented ideal stabilization behavior.

4.3.2.2: Data Processing

We processed frames into a change detection format that representsseld in a moving object
detection task. The processing has the following four steps: 1) Input the frame data and downsample it to
match the EBS through interpolation. 2) Operate on the interpolated data using a change detection algorithm
commonly useddr moving object detectiofY1]. Eq. 4.21 describes this proceskere ¢ a6 agan be
viewed as equivalent t&, 3 5 5 AS the input to the matched filtegye sl V. WKH FXUUHQW IUDPHTYV
intensity values, ane 3 gis the previousfDPHV PHDV X UH G. W WeHis\algdithny hecaXsd V
it is well-known and is referenced within an important textbook in the mature infrared imaging field. We
QRWH WKDW WKLV DOJRULWKP LV VLPLODU WR DcGoB operitioiHY D VLI

which uses the difference in the log of the previous and log of the current light measurement. We selected
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the percent change algorithm because it represents a traditionalifases algorithm, however we
discussedising the differencef-log approach in the results, and how it can enable fitzased modeling
of EBS
; hav?hvoa
dwacalt ~ 5 (421)
aY
3) Synchronize the frames in time to ensure consistent measurement across runs. 4) Apply a frame

based, spatial matchéitter to the output to generate detection results.

We then processed events into a frame format for compatibility with the-fvasssl systerwith the
following steps:1) Apply a background activity noise filt¢42] with a 70ms correlation time and a hot
pixel removal technique, representing toast operations that any reasonable EBS system might use. 2)
Frame events within 50ms windows, matching the frame rate for the-frasel sensor and placing the
EBS data imh a compatible format. We note that this step removes the high temporal resolution of EBS,
however we also note that a) The system is setup with low velocity motions such that there is little
information available at these higher temporal resolutionsbambe EBSis configuredo match the low
task temporal resolutiorrequirementby increasing the refractory period and decreasing the temporal
bandwidth. 3)Synchronize the framed events in time to ensure consistent measurement acraggs runs.

Apply the sane framebased matched filter from the frame processing.

After completing a run, we process the data with a MATLAB script using the detection process
described in Section 2. All of the scenes in a given configuration were aggregated to generate ROC curves

and the associated AUC metric.

4.3.2.2.1: Detection and Matched Filter

We used a matched filter for several reasons. First, it is the optimal spatial detector when searching for
a known object in a uniform background with Gaussian noise. In many of ceniragpts, this optimality
is matched by the input to the frarhased sensor. We note that the optimality is not complete because of
Poisson noisénoweverin awell-lit scene the Central Limit Theorem approximates this noise to Gaussian.
The optimality des not apply to the EBS data because of its binary noise structure, and our review of the
literature sees the identification of an optimal EBS detector as an open topic. Secbneantsshift
invariantproperties simplify error analysis, in terms of computing the variance on our ROC calculations.
7KH WKLUG UHDVRQ ZH XVH WKH PDWFKHG ILOWHU LV EHFDXVH RI
well-understood. To apply the matched filter, @pplies a known template representing abgect to a

frame, with a correlation operation.
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However, the matched filter is limited in several ways. In highly cluttered data streams (Moving sensor
without stabilization), background clutter is easily cotiul6 IRU REMHFWYV RI LQWHUHVW GH.
SHUIRUPDQFH ,Q FOXWWHUHG VFHQHYVY EXW ZLWK D VWDELOL]JHG F
the scene, providing a matched filter input that does not match the expected templatevd fiestations
are present in ouwfata;however further analysisf the impact is beyond the scope of this paparally,
whenthe object is unknown, either a different object, or the same-tlmgnsional object with a different

pose, the template maot match well and can lead to further performance degradation.

4.3.2.3: Calibration and Ground Truth Units

To present results in reproducible units such as-B&-plane pixels per second or sceawuivalent
meterspersecond We calibrated the systeto convert from screepixels to EBSpixels. This enables
maping screen resolution to EBS resolution, as well as from platform motion tepE®$-persecond.
The calibration process involved imaging a vibrating checkerboard with the EBS. The edgbscheeker
generated a pair of lines in the EBS data stream. We search for each line and compute any inherent rotation
of the EBS by computing the Radon transform and selecting the maximum value of the sum of the square
of the angular bins. Given knownaextker sizes, this spacing provides a magnification from screen pixels
to EBS pixels. Finally, we image the checkers while moving and measure the change in the line spacing

over time. This measurement maps the EBS platform velocity to pixels per second.

We DOVR FDOLEUDWHG RXU VFUHHQYV OLJKW RXWSXW XVLQJ D SR
uniform backgroundWe varied uniform scene light levels corresponding to integer valuesiaddhe
power meter by measuring with the screen off. Wentcomputed the gamma mapping from different
integer light levels, mapping relative pixel intensity values to pixel integer values4 &ighows the

gamma plot.

Fig. 4.4: Gamma function mapping measured power to the displayed digital value. This mapping was important

for providing ground truth scene variance and sigaddackground ratio isubgction4.3.1.
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4.4: Results

We present four separate analyseshis section These includehie uniform backgroundto evaluate
potentialequivalence between the EBS and framased systems and analyze their performance differences
and complex backgrounds to understand the effect of clutter on performance. The complex backgrounds
include the desert background to demonstrate the effect of clutter on detection performance and to
demonstrate the relationship between clutter and motion. A second background, the urban badkground,

validate the relationship across different scene tatis

4.4.1: Uniform Background

We start our analysis by presenting the AUC performance curve and theutdzahdwidth, of imaging a

static object against a uniform background. Here, we moved the cameras at a velocity, that generated data
correspondingd the moving object. We did not sakasing,or any other anomalous data generated by

the moving object. The signtd-background ratio was set to 1.5, with the EBS contrast threshold set to a
nominal 21% (Calculated in JAER7]), and the framdased comast threshold was set to a nominal

21%. After converting sensor velocity to pixels/se@fis), Fig. 45 (a) shows the AUC performance of

both sensors and Fig.5(b), which shows the reamut bandwidth of both sensors.
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(@)

(b)
Fig. 4.5: Performance plots corresponding to the uniform background. (a) shows the AUC for detection performance
versus object velocity. Increased velocity corresponds to increased detection performance, expected based on our
model. (b) shows readut bandvidth versus velocity, consistently showing about 2.5 orders of magnitude

bandwidth improvement with EBS.

We attributed the AUC performance gap to a combination of a discrepancy between nominal and actual
EBS contrast threshold, and a lower noise perfoomavith EBS. The gap between the technologies closes

at higher velocity because increased event rate presents richer objects for detection while thaskdme
sensor is already saturated and cannot improve performance further. Compariogt feadidwidh, we
managed to achieve a 2.5 order of magnitude improvement with EBS, which confirdegahreduction

benefit of using EBS in an imaging system.

91



To investigatehe AUC discrepancy. We select the 8px/second data point and separate the PD and PFA
plots. From Fig. 4.6 (a) and (b) respectivelyt is evidentthat the framéased sensor has both superior

detection performance and superior false alarm performance.

By modifying the frameEDVHG VHQVRUfV WKUHVKROG VXFK Wacbing, WKH 3' F
setting the framdased contrast threshold to 56% (Observed in Fig. 6 (c)), we can study the impact on an
equivalent PFA curve What is found is that the increased threshold increased thddsmmhenoise
performance, from a maximum PFA of .5atmaximum of zero. At this point, it was clear that the majority
of the performance gap was due to the EBS having increased noise versus tHeafedhsensor, given
that the PD curve now closely matched.

To quantify the noise and how it affects perfonoa, we applied a window to the EBS data, set to reject
a fraction of the focal plane outside of this window. For example, with a 90,000 pixel focal plane we can
form a 50x50, or 2,500 pixel window, reducing the tested focal plane by a factor of 36xn\Wargahe
size of this window to reject more or less events. To convert this event rejection into noise performance,
we took the average total number of events within the detgutivpods andlivided it by the average total
number of events within the mdow, to compute an average noise reduction value. We then compute the
PFA based on the windowed events. We plot the PFA curves with different noise reduction values in Fig.
4.6 (d), showing how noise reduction provides convergence to the-foagesl PFA fozero. We note that
the PD curve was approximately static here, but decreased slightly from the original curve because noise

events could no longer augment the PD curve with true positives.
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(a) (b)

(c) (d)
Fig. 4.6: PD and PFA breakout plots at 8 px/s velocity. In (a) and (b), we see that EBS has both worse PD and PFA.
In (c), wereconfigure the frambased sensor to approximately match the EBS PD. In (d), we see that the matching
process brought the franimsed PFA to zero. We attempt to further match the sensors by reducing the EBS noise,

converging on smaller PFA values.
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Fig. 4.7: Spatial images of EBS and frarhased data corresponding to Figs &). Comparing the FBS and
EBS images, it is clear that FBS can measure objects with similar structure and contend to the EBS, but given the

configuration can do so with significlly reduced noise.

After varying the EBS noise, we confirmed the overall trend of improving ROC performance, by plotting
the respective noiseeduced ROC curves. In Fi¢8, we plot these ROC curves, showing how noise

reductions can increase EBS perfonoe, by pushing the ROC curve to the upper left.

Fig. 4.8: ROC breakout plots for Fig.el(c) and (d). Reduction of noise using the method in E&(d) clearly
leads to an increase in AUC, suggesting that the performance gap 4n5Ka&). is due to poor EBS noise

performance.
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Through this analysis, wdentifiedseverafeaturesabout EBS and its ability to detect objects. First,

(% 6TV FR @ehdddgad ne¥ ddtich nominal values and can be calibrated a task performance metric
to match the threshold to expectations. Second, EBS has inferior noise performance that accounts for the
gap in the ROC curve and object detection performance. Thirdyfmpving noise performance, the
performance gap can be closed, achieving thesaatandwidth advantage with a smaller performance

cost.

4.4.2: Desert Clutter

Our second analysis consists of imaging a moving object against a desert background wijHexaelgn

of clutter, controlled by the scene variance. We test both systems when imaging from a moving and from
a static platform, where background clutter will and will not generate significant output data. We set the
R E M H F W-hbaskgrogdratioa 1.2with the standard deviaticasthe percentage change from the

mean of radiant exitance for 68% of pixdimte that the signab-EDFNJURXQG UDWLRYY PHDQL
different than the uniform background case bechaskground clutter altethe insaintaneous SBR. The
object is moving at 33px/s, in the opposite direction of the sensor motion. We used a 56% threshold for
the framebased sensor, attempting to match PD curves here like id.6ig). We present the clutter
performance data in Fig.9 (a) and (b), showing the AUC and reait bandwidth respectively, against

scene standard deviation.
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(@)

(b)
Fig. 4.9: Performance plots corresponding to the desert background (a) shows the AUC for detection performance
versus sceneariance. Increased variance corresponds to increased detection performance in the static sensors, but
reduced performance in the moving sensors. (b) showsorgdshndwidth versus scene variance, showing that
(%69V RUGHUV RI PDJQ Lwhxe6tlis riaih@ited WwikeWdtatic Bt s Rost when moving.

For thestatic sensor platform, FBS has superior performance. Given no significant clutter théput,
difference isattributed to the EBS noise. As scene variance increases, there is more téxttive scene,
and therefore more locations that contrast, which accounts for the overall uptrend in performance. In the

low-variance case, the low SBR provides fewer opportunities to contrast and therefore fewer opportunities

to detect th@bject
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We identify that the EBS bandwidth advantages degrade when simultaneously moving and imaging a
FOXWWHUHG VFHQH DQG WKDW ERWK VHQVRUVYT $8& GHJUDGHV
performance is shown to be superior to the static EBS at low sega@ce. We attribute this to a case
where 1) The additional velocity component increasesobjectsignal in the event output, improving
probability of detection, and 2) The scesiance is sufficiently low that the background clutter generates
insignificant false alarms compared to the alrepdysent noise. However, moving fraiinesed
performance degrades compared to a static flaased at low scene varianéerformance degradation
here is attributed to the introduction of background clutter intoth@rwise noisdree system where this
background clutter generates a significant false alarmTh&etwo points can be seen in Hdl0(a) and
(b), where we break out the PD and PFA plots at a standard deviation of 0.026.

At higher variance, movingesisor performance overall decrea3éss decrease is driven by additional
EDFNJURXQG FOXWWHU DSSHDULQJ LQ WKH PDWFKHG ILGWHUTV LC
higher variances, frarfigased performance was significantly less thaBBS, suggesting that the frame
EDVHG V\VWHP KDQGOHV FOXWWHU ZRUVH WKDQ WKH (%6 V\VWH
contribution is insignificant compared to clutter, that EBS can provide superior AUC performance, however

we did not investig@ further.

(&) (b)
Fig.4.10: PD and PFA breakout plots at 0.026 standard deviation. In (a), we see that motion provides a small
increase in B. In (b), we see that motion only creates a small increase in EBS, but a large increase is seen in frame
based PFA. We attribute this discrepancy to a larger noise component in EBS that makes clutter insignificant at low

velocities.

Analyzing the EBS stat and moving performance, EBS PD increases at about the same rate as the PFA
increases, suggesting plausibility of points 1) and 2), discussed after Fig. 9. This contrasts against the frame
based sensor, where the background clutter quickly dominateswitifa marginal increase in PD. At

higher variances, clutter clearly dominated PFA in all cases and led to expected behavior. We emphasize
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that the improved performance under motion is attributed to two performance regions where noise or clutter

dominatePFA and would likely disappear if EBS noise performance were improved.

Investigating the gap between moving frab@sed and moving evebased AUC at low variance
through Fig. 6 (a), EBS has superior probability of detection. We attribute X6 HULRULW\ WR (%61V
detection threshold having a variance such that some pixels have a lower threshold and are able to detect
the object while the fram& DVHG VHQVRUTY FRQVWDQW WKUHVKROG SUHYHQW

Throughthe clutter analysis, we learnexveral things. Firsthe clutter with EBS can be insignificant
versus noise at low varian@ndthe transition to significance can lead to interesting performance behavior
under motion. Secondlutter usually degrades performance when moving, but&arperformance when
staticdue to increased local contrast between the object and backgiidird] with the introduction of
clutter, the frameEDVHG VHQVRUYVY QRLVH DGYDQWDJH FDQ EHFRPH LQVLJ

4.4.3: Desert Stabilization

Our third analysis consists of imaging a moving object against a desert background with varying levels of
sensor motion, controlled by moving the sensor on a motorized stage. We test both systems when imaging
from a moving and unstabilized platform, asub®ction4.4.2, as well as with a hardware image

stabilization system that attempts to cancel out apparent motion. We set théoskzaedground to 1.5,

the variance to 0.5, the object velocity to 33 px/s, and used the 56% tHrestibe framebasedsensor

In stabilized cases, we first estimated the required rotation to cancel each velocity value, then applied this
rotation to the stages during the riihe AUC and readut bandwidth versus velocity with both stable

and unstable sensaage reportedn Fig. 4.11 (a) and (b).
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(@)

(b)
Fig. 4.11: Performance plots corresponding to the stabilized, desert background. (a) shows the AUC for detection
performance versus object velocity. Increased velocity corresponds to decreased dedectiorance, attributed to
clutter being confused for moving objects. Overall, stabilization significantly helps recover detection performance.
(b) shows rea@ut bandwidth versus velocity, showing increased-@adandwidth with increased velocity, kaut
decrease in bandwidth given stabilization. We note that the stabilization is not perfect, and significant performance

improvements are possible with improved technology.

The general trenshowsthat as platform velocity increases, output clutter inciedsowing the same
trend with the unstable platform as in the previous case. However, with stabilization, we can recover most
of the performance expected of a purely static EBS, reducing the performance cost from platform motion.
The trend holds for theeadout bandwidth too, with the EBS bandwidth cost increasing at higher velocities,
but improving by an order of magnitude when stabilized.
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For the test casestabilization is not perfect. There is a gap in performance and bandwidth between the
stable ad static sensors. This is a known problem that we believe is solvable through further investment in
hardware stabilization technologies.

Next, we break out the PD and PFA curves, done above at 8 pixels per second platform velocity, show
in Fig.4.12 (a) and (b).

(@ (b)
Fig. 4.12: PD and PFA breakout plots at 8 px/s velocity. In (a) and (b), we see that stabilization shifts both plots to
the left, but decreases the PFA slope while increasing the PD slope. This corresponds to improved performance with
both PD and PFA.

Here,stabilization shifts both the PD and PFA curves to the left with respect to matched filter threshold

because stabilizedata has less clutter that can be confusedijacts

Additionally, stabilization decreases the average derivative of PFA with respect to threshold, while
increasing the average derivative of PD with respect to threshold, enabling a higher PD withtoe3pA
and demonstrating the improved AUC. The cause is straightforward for the PFA case, as the overall clutter
LV GHFUHDVHG PDNLQJ KLJKHU WKUHVKROGV \LHOG OHVV IDOVH
mitigated, but the object is ppximately the same, leading to a lower PD where clutter would have

saturated the curve to one.

4.4.4: Urban Clutter

The final experiment repeats the procesbsectiod.4.2, usingan urban scene. As before, we set the

R E M H F W-th\badkbgrdan@® @tio to 1.2 and the standard deviation, the object motion to 33px/s, in the
opposite direction of the sensor motion, and a 56% threshold for the-lii@sed sensor. We present the
clutter performance data in Fig.13 (a) and (b), showing the AUC and reaudtt bandwidth respectively,

against scene standard deviation.
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(@

(b)
Fig. 4.13: Performance plots corresponding to the urban background (a) shows the AUC for dptétionance
versus scene variance. Increased variance corresponds to increased detection performance in the static sensors, but
reduced performance in the moving sensors. (b) showsorgdsandwidth versus scene variance, showing that

(%6TV R Whé&gritudée haihdwidth improvement is maintained when static, but is lost when moving.

We observed the same overall trend as in the desert scene, except with interesting behavior at low
variance The urban scene differs in its spatial statistics witirgefraction of each sample scene consists
of white buildings, while the rest consistsmbstly dark roads and desert scenery. The scene consists of
part uniform background and part desert background.

At low variance, the moving and static AUC valgesivergedueto the white buildings having uniform
contrast in the scene.
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As clutter increases, the uniform, white buildings and their low contrast limit performance in the static
sensor case @ valueless than the desert background. However, the unifaifdings also replace heavy
clutter in the moving sensor case, allowing for less confusion and better detection performance than the
desert background.

We note that the framreased moving and static cases diverge at a greater rate than in the desert
baclground and at a greater rate than the EBS at low variance. This occurs at the point where the urban
scene clutter gains significance over the-lmmtrast buildings.

To summarize the urban clutténere is a general trend among the complex scenes regatdiit and
moving detection performance, and one might extrapolate this general behavior to other scene types.
Additionally, scene features such as buildings can affect performance in more complex ways, leading to
possibly unexpected performance results.

4.4.4.1: Urban Stabilization
Stabilization performed analogously to the Desert Stabilization and did not add new information other
than confirming that stabilization behaves similar in the urban case. Therefoleptin analysis was

excluded from the dgertation for brevity.

4.5: Summary and Conclusions

For matchedilter-basedemplates generated by frathased object imageEBS task performance is
less than FBS and is noise limited in uniform scenes. Better performing EBS can close the gap, as well as
other approaches such as software noise mitigation and optical processing techniques. This limitation
becomes insignificant when imaging while moving in clutter, where EBS has relative performance

advantages, but absolute performance is low.

We reconfigued the framéased sensor system and showed that it can be viewed as equivalent to a

noisefree EBS system, in terms of system performanitie an associated degradation in bandwidth.

EBS has superior reaalit bandwidth, achieving the two ordefrmagnituéd improvement when static,
but losing the advantage while moving. By stabilizing the system, we can recover both the absolute task

performance and the bandwidth advantage.

Data here holds with two different scene types, with discussion on the differemtdsow the
differences affect task performance. The data and discussion should be sufficient to hypothesize about other

scene types.
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We can reasonably compare EBS and FBS and can compare their detection performance in a
traditionally framebased task,with framebased algorithm.This comparison, when completed
appropriately, allows system designers to make decisions on the usage of EBS inside of traditionally frame
based imaging systems.
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Chapter 5
Optical Contrast Amplification for Enhancing

Event-Based Vision

5.1: Introduction

Effective change detection and tracking is a necessary part of applica&onsng reattime
information on objects of interest in an imaged scene. However, usage of traditionab&soheensors
is limited by reaebut bandwidth, dynamic range, and other factors. The Evas¢d Sensor (EBS) is a
promising technology that shows promise in performing beyond these limitations. The EBS is designed as
a change detection camera that is seestb relative irradiance changes when and where they occur in an
imaged sceng6], making them particularly well suited for reéahe motion awareness. At the focal plane,
these variations in irradiance are asynchronously detected at each pixel. The EBS reads out measured
information inan AddressEvent Representation (AER) format tmgduce a flow of information in the form
of the event data structure. Events are generated at individual pixels when a changeraditoge
exceeds a specified threshofpviding the location in the imaged field, timestamp, and polarity -of in
scenefiradiance fluctuations.

The everdogging process done at the pixel level is characterized by a change in log irradiance
that exceeds a pair of temporal contrast thresholds for on and off R&r32] The event rate (on or off
events) is dependent aentporal contrast (TCON) and temporal contrast thresh@ldr(d can be

expressed as:

'RAJP=PR N ZES | 22 7w L4 (5.)

wherel is the photocurrent generated at an individual pixel. EBaised sensors react to fluctuations in
logarithmic photocurrent {.). Photocurrent is proportional to intensity (brightness) and its fluctuations

will be caused by moving edges in a capturethadbat generate everjR9].

Biasing circuitry within the EBS is responsible for adjusting the event temporal contrast thresholds
magnitude. Namely, they are set by the ratio between bias currents in the differencing amplifier and
comparatorg26]. . TheEBS detects both increases and decreases in irradiance, whose polarity of these
changes is denoted by ON and OFF events. The EBS behavior, however, may also be approximated by a

subtractandthreshold function in which the previouS( 5 ¢ ¢ p)a@ndcurrent (' v, ¢ 5 3 ¢ dfadiance states
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measured by an individual pixel are differen{2@, 80, 95]. In this model, an event is generated when the
ratio change in irradiance difference surpasses a threshold, known as the temporal contrastg EBSf th

%aWDL?r%wDéOUEp%aWDUF_- s P6% (5_2)
YAvpaoduarp YAvpaouap

Although the EBS works on log irradiance as opposed to irradiance, this model is a sound

approximation when operating near loantrast scene @diances and is expected to best mimic actual

EBS behavior in scenes where the ratios of irradiance and log wradmnce;féﬂé—%”)“are most similar
AYbaOUaPp

[26, 80]

Like with other sensors and imagers, extrachiggr-dimensional information from data sequences
to take decisive actions is an important class of EBS applications. Examples of such implementations
include object/gesture recogniti¢®6], traffic monitoring with vehicle speed estimatifg¥], and object
tracking [98]. EBS technology has shown its ability to outperform their fraased counterparts in several
ways, including reduced motion blur insensitivity, information transfer speed, and dynami¢2aase
101].

In contrast to frambased imager&BS technology operates without a synchronous frame capture
process. When considering applications such as object detection and tracking scenarios, conventional
framebased imagers may under sample the motion of an object in between frames while sinslitaneo
oversampling an unchanged background. When fixed in a static position, an EBS camera triggers the pixels
associated with the movementaf object stimulus and is insensitive to the stationary background. This
elimination of the redundancy of oversdetb scene elements such as the background enables more
efficient usage of the sensor resources. This efficiency contrasts withliasad cameras, which employ
methods that subtract consecutive, ftdgmpled frames to find discrepancies that indicat@itheence of
an object of interest. As only local irradiance changes are logged, there is an overall reduction in bandwidth

and increase in spatitemporal resolutiof80].

High-speed measurements are also strong suit for Ebam@d sensors due to thergased spatio
temporal resolution. Current EBS models, such as those sold by iniVation, carry temporal resolution in the
hundred microsecond range, with typical latencies of less than a milligd€@#}dThe Simultaneous event
capture from the EBS may lm®mbined with the data collection of lespeed conventional imagers to
enable highspeed framéased video reconstructi¢@9, 103 104.

Conventional imagers typically have a dynamic range of up to 6@@Bvhereas the EBS may
have up to 120 dB of dyndc rangg102] since logged events are always relative (log) irradiance changes.
+RZHYHU WKLY ORJDULWKPLF FRPSUHVVLRQ UHGXFHV (%6fV FR
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electronic operations operating on the compressed signal. In this worigcug on mitigating this

limitation through exploring a hardware solution in the optical domain, presenting an optical field better
VXLWHG IRU (%6YV KLJK FRQWUDVW UHTXLUHPHQWY :KLOH WKLYV
detection and trackingpglications, we expect that it will find use in other fields such as microscopy and

biological imaging.

With its integrated, but limited, changetection circuit, the EBS benefits from improvements in
its ability to register lowcontrast edges betweenalnject of interest and other features in the scene. When
contrast in reavorld scene elements is nameal, such as when a moving object may blend in with the
background (i.e overcast clouds and other atmospheric disturbances), the EBS contrastigensitiv
limitation proves troublesome. Here, low contrast leads to reductions in inforrbaidoimg events about
moving object$105]. Simply put, the EBS temporal contrast sensitivity is too low in many applications.

The minimum contrast sensitivity rangaemh 9% to 14% across the range of available EBS
camerag27, 29,102] Contrast sensitivity of EBS cameras is controlled by bias currents set at each pixel,
but defined as a senseide constant value. These currents drive threshold and speed voltagesoiltette
comparators that detect increases or decreases in light intensity exceeding threshol@2jalGesnt
WHPSRUDO FRQWUDVW WKUHVKROGYV PD\ EH ORZHUHG ZLWKLQ VH
JAER) by adjusting bias current paraters that are responsible for setting the TC. Increasingdmivast
visibility through the EBS may be achieved by skewing bias current ratios to trigger off lower irradiance
fluctuations. However, setting minimum allowable contrast sensitivity maytrasuhcreasing false
detection probabilities.€. noise). This notion highlights how the overall EBS effectiveness for successful
object detection is reduced when the effective event stgradise ratio (SNR) is decreasi@y, 76,105,

and underscordbe importance of addressing EBS contrast sensitivity.
5.2: Improving Contrast Sensitivity

5.2.1: Current Approaches

Several attempt® improvecontrast sensitivity for EBS have been made by modifying the change
detection electronics, achieving temporal contrasts as low §80B/d.07,108]. Limitations to low contrast
include EBS noise (i.e., shot noise from photons and comparator circuitydsiy intensity differences
in the detected signal, and transistor mismatches further creating complications in setting low thresholds.
At low temporal contrasts, the EBS is limited by shot noise where individual pixels react to noise
fluctuations in phtocurrent. Such fluctuations regularly surpass contrast thresholds and create noisy, high
eventrate data streani27, 76, 105] This may lead to readout saturation, dropped events, and latencies

that prevent redime output performanc9]. Algorithmic adjustments to bias current parameters for
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active threshold control have also been reported. Such algorithms utilize optimized biases and globally alter
the sampling rate of pixels as a function of the measured event rate for dark and bright illumination
conditions[89, 109,110 .

5.2.2: Proposed Method

In this work, we aim to improve the resolvability of lmentrast objects and features of interest by
LPSURYLQJ WKH RYHUDOO (%6 LPDJLQJ VA\VWHPYV FR®@WW®&VW UHF!
contrast of the features in the optical domain. As such, our approach does not require any modifications to
EBS circuitry, or supplemental algorithms for automatic control of temporal contrast thresholds. The
proposed method involves ppeocessinghe coherently imaged scene using a spatial-pags filter for
better detection and resolution of lamentrast objects of interest.

Spatial frequency filters are common in coherent, optical image processing for modulation of
specific spatial frequencig¢bhat combine an image, which is defined as adimsensional pixeintensity
function. A highpass filter attenuates all spatial frequencies below some cutoff frequency. To enhance
edges and fine details, higiass spatial frequency filters are used tmpce sharpened imadd®6]. When
an image is altered to retain high frequencies, smooth features are removed, and sharp details dominate. As
EBS is highly responsive to object edges and other sharp details, applying the optipaldsidiiter here
pases these details, while removing the smooth features, amplifying the contrast without degrading the
HYHQW VWUHDPYV LQIRUPDWLRQ FRQWHQW ,Q RWKHU ZRUGV D(
detection capabilities achieves contrast benefits withignificant information loss, because the change
detection acts as a second hjgss filter. These filtering operations are done in the frequency domain of

an image signal employing Fourier optics.

Under the conditions of coherent illumination, a cogireg lens (positive focal length) can perform
two-dimensional Fourier Transformations. Coherent waves exhibit a definite phase relationship, allowing
their interference patterns to be predicted. A coherent optical system can then use this transform and its
inverse to apply a spatial filter to the incident light field. As such, this technique requires active object
illumination to create a transmitted/reflected coherent optical field. To physically achieve contrast
amplification, an Optical Higitass FilteHPF) is employed, in which a small circular obstruction is
centralized at the Fourier Plane. Low spatial frequencies are responsible for forming the overall layout of
an image, while higher spatial frequencies establish the edges of scene elements aedaile. A HPF
REVWUXFWY ORZHU VSDWLDO IUHTXHQFLHY ORFDWHG DW RU QHDU
in the Fourier Plane as seen with an example image in Figure 1. As the EBS responpi& ipexdiance

changes from movingeatures, HPF will generally allow for capturing information with higher SNR.
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Fig. 5.1 Example of (a) Standard and (b) Higtass Filtered Images of a shelf with various objects (under coherent
illumination).

This method explores the potential of EBShiemlogy to improve as an effective detector and
tracker due to increased probability of detection for low contrast moving objects. With a means of providing
contrast boosts, the EBS may register previously imperceptibledoivast features. This methoflers

an alternative solution to the EBS device limitation in contrast sensitivity.

5.2.3: Optical High -Pass Filter Imaging System

The optical spatial filtering system employed in this work is a 4f system as shown in Figure 2.
Monochromatic light originatefrom a point source (S) and is collimated by a lerktp create a coherent
illumination object field Q : Tsd4; of a transparency object at the input pla2g {5 3.c The first Fourier

lens in the 4f system. g) transforms the input into ¢éhspatial frequency domain.

Fig. 5.2: 4f spatial filtering imaging system where S is monochromatic illumination sogigcéhe focal length of
collimation lens. g Bjs the focal length of first Fourier leng; Bjs the focal length of second Fourier lens 23 56 ¢
object plane;2, 5 ¢ 3 g ghzourier plane;2: ¢ ¢ 5 &,lmage plane.

When the object plane is located a focal length away from a @ingelens, an exact Fourier
transform relationship between the incident and focal plane field is exp{8§sed
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Q:Tedl, L %174 IF a;p (5.3)

where 73:B &8 ; L a5:Q:Tsdd;; and Q):Tgdl; is the Fourier Transform of the input field at the
Fourier Plang( 2, 3¢ s ) J ke spatial frequencieg and B at .éééU@rg related to spatial coordinates

(Tedp and illuminationZDYHO H QioMgh B L —, and B L — A circular HPF mask is located

|I’
here to suppress leWwequency information, allowing light to pass through according to the aperture
function L, aeaudadd: L ? U@g AF ? U@g Ain the spatial domain, wherblL ¥:Ts;% E : ;% and

95and 9 gare the diameters of the HPF mask, and the clear aperture respectively. The filterethigeld is

product of object FT and pupil function af 5 & 5y gich details spatial frequency throughput

QesTedd: L Q:Tedd: L acavdadd: (54)

The reconstruction of the altered frequency spectrum into the spatial domain is handled by the
second Fourier lens in the 4F systenrg) @nd located a focal length away from the lens. The final output
at 2 & ¢ 5d$ Where the EBS is positioned such that a focused image is projected onto the bare camera
sensor. The resultant output function can be written as:

QG T4, L%I7:¢, I_—Ba%G

oo -
L %1% IQIFL & Up02acavlf 420 (69)

—-

where 75 KB @B oL agkQi g, Tsdd; 0 The ratio between the focal lengths for the two Fourier

Lenses,B B, is the overall system magnification for the imaged object. The final output coordinate

system at2: s ¢ 5 d§ inverted to simplify convention as two FT operations were usedsgglly.
tTdh; L QTds; S (5.6)
The irradiance at the EB%; T, Y ;, is related to the output image field as seen irbEpbove.

5.2.4: EBS Event Generation Model

To model EBS event generation, Bdl presents the event rate asrid#o of the log photocurrent and the
contrast threshold. Under conditions of constant setaréackground illumination and constant velocity,

the log photocurrent approximates to:
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i N FI. R&P (5.7)

The above approximation is valid for sméiked time increments (). Therefore, temporal contrast may
be approximated as a function of brightness gradiént (spatial contrast corresponding to an
LJi+JPAJchRdngk in dolds) and velocity (pixels / second). We use a mrdgion objet with

horizontal brightness gradients. Thus,becomes:
iU dgé'hL é’erc (5.8)

By relating Eq5.7-5.8, a direct relation between the event rate and spatial contrast may then be established.
Considering separate contributions for ON and OFF sv@vith separate temporal contrast thresholds)

results in the following approximations for event rates:
4e N & RP@-A  (59)
"4ecN il &P@%A (5.10)

Although event generation is performed on relative irradiance changes, the utility of HPF is best shown
where the signaio-background ratio approaches 1. Increased background irradiance levels will reduce the
magnitude ofl . compared to a signal withoahy background level irradiano& modified version of Eq

5.2 demonstrates how under some constant background irradiance (B), temporal contrast will be reduced

and thus less likely to trigger events.

Yaavyy 1?2 YAVD 4O i Yaayy
“aYYDUOR AYPadagap LaYYDUBR FsP6% (5.11)
YA v o a B> YAvpaogap

The HPF and EBS system are tested under a spectrally isolated condition, where the coherent
illumination source is the only source of light in the system. This is done in the effort to isolate HPF
performance, such that it freefrom stray background iimination. However, stray light and optical
scattering from the source (i.e., system reflections from optical posts and elements) will still contribute
some form of background light that must be incorporated in our analysis. For a general HPF setup, the
background irradiance level may be determined using a radiometer spectrally calibrated at the wavelength

of the coherent source.
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The individual temporal contrasts perceived by each pixel within the span of the thicker edge
depends on the speed of inducediorotind integration timeR, .of the EBS. For a given integration

cycle, the temporal contrast perceived by EBS pixels is given by:

KT, E€®p ), oF kT, d]0
#kTyd)0

P6%  (5.12)

Using Eq5.9-5.12, the total event rate from all activéteixels after filtering may be predicted.

5.3: Experiment Design & Analysis

Here, we discuss the components forming our HPF setup and its expected results based on the
framework established iBection 2.

A transmissive 4f HPF system is constructed to image a transparent object and evaluate overall
EBS performancelo measure theolvest possible contrast the EBS can detect with this HPF method, a
transparent object with regions of different transmission levels was required. For this experiment, a custom
fabrication which consisted of a clear substrate (microscope slide) with argdisttespin coating was
procured. The slide contains five different regions which attenuate transmitted light according to the
photoresist thickness spun and thus effectively acts as a stepped neutral density filter. A coherent
illumination source at 543m wavelength is employed in the experiment. An optical power sensor
calibrated at this wavelength was used to measure irradiance transmittance of each region and compute

successive boundary contrasts.

Fig. 5.3:Photoresist coated slide having l@antrasts with regions 1 to 5 (from right to left).

All event-based technology is susceptible to generation of undesired events due to intrinsic noise
from circuitry and shot noise from photof7]. These noise sows are known to affect event rates
significantly, with a dependency on absolute illumination ley@ls 32, 95]. These noisénduced event

rates must be properly accounted for establishing accurate event rate predictions in-btRfr imol HPF
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cases. Thus, an assessnadithis event rate production per illumination levels was conducted. Noise event
rate measurenmés are shown in Fi§.4.

Fig. 5.4:Noiseinduced event rate as a function of ambient irradiance levels measured at EBS.

Our setup employed a uniform background with known, ambient illumination level which is
imaged by the EBS. Neutral density filters were positioned directly in front of the EBS camera lens such
that irradiance at the sensor plane is modulated to varioels |&epixel eventrate for each irradiance is
PHDVXUHG XVLQJ (% 6 TMebrhBdsMrementy i Bi§D Bdpict how low scene illumination
yields a higher, detectarise dominated event ratehereas higher scene illumination results in fewer
triggered events that are shaiise dominatedevent rates expected from the five regions of the transparent

object without the HPF enabled are quantified from noise event rate curve fit. The results are seen in Table
5.1 below.

Table 5.1 Measured contragtercentages (relative to successive region) and predicted event rates for transparency
slide regions.

Region | Average Percent Contrast Expected EventRate from
Irradiance relative to next lllumination Level (Events /

(“f 9 region (pixel*sec))

1 358.9 8.17 + 0.09 0.41 + 0.03

2 329.6 6.69 + 0.08 0.46 + 0.03

3 307.5 5.41 + 0.05 0.51 + 0.04

4 290.9 3.53+0.04 0.56 + 0.04

5 280.6 NA 0.59 + 0.04

The photoresist is deposited with a 5 um resolution transition between each region. Using a 4f

system magnification of 0.5, the fine edges between regions on the slide are predicted to be as large as 2.5
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pm at the rear focal plane where the EBS is locatkd.predicted geometrical width of transitions is much
smaller than the 18.5 pm pixel pitch of the DAVIS346 Camera used. A visible boundary will generate
events corresponding to the contrast between the first region of interest and the second regi@sof in
Having the width of boundary transitions be much smaller than an EBS pixel greatly reduces the risk of

having misleading event generation from an intermediate region between the two uniform regions.

A 309 um diameter central obstruction was implated as the High Pass Filter mask at the Fourier
Plane. The circular beam block is mounted onto a standard lens mount as shows .t Fige strength
of the filtering effect depends on the size of the obstruction. The mask used in this experimeettvas on

was readily available for HPF preof-concept (and was not necessarily tailored for maximum HPF effect).

Fig. 5.5:0.309 mm diameter HPF mask (a) and corresponding representation in spatial frequency Domain (b).

To simulate motion and generate events, the EBSwamited on a motorized stage that provided
linear horizontal motion at a constant speed. The EBS outpntseare binned to fixed 20 millisecond time
slices (¢}, while the moving boundary edge is set to a constant velocity (towards decreasing slide
transmission) of 2 millimeters per second. This velocity corresponds to 109 pixels per sgcnithe
senso plane.For this given stimulus velocity and integration time, a single EBS pixel will respond to the
contrast defined between two points in the stimulus signal with spatial separafigrlof@ N2 pixels.

EBS contrast sensitivity was kept at tih@minal event thresholds of 21.2% (0.19®kls) and-18.1% ¢
0.200 efolds) for ON and OFF events respectively via the JAER Wsendly control panel. The overall
4f HPF transmissive system is seen in Figure 6 with each subsystem labelled. Collettiodsrmare

discussed further in section 4.
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Fig. 5.6:Overall transmissive system layout

Based on the system model described in%E=tR2, we obtain a theoretical estimate of irradiance
and event rates before and after HPF, shown in Figure 7.

Fig.5.7: Top Row: Simulated object of photoresistated slide (a); Irradiance profile of object before filtering
across EBS sensor (b). Bottom Row: Simulated image of object after propagating through HPF system as perceived
by EBS (c); Irradiance profile after HRIEross EBS sensor (d). All irradiances are normalized to max irradiance
prior to filtering (region 1).

After spatial filtering, the width of the boundaries in Figure @) sparl0 pixels in each of the
four cases. As discussed in section 2.4, the increased boundary width produces several contrast transitions

across the 10 pixels which will intensify event generation. Gi@nrN 2 pixels, the percent contrast
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perceived by eachixel as the boundary moves across the imaged view are plotted in Figure 8. These
contrasts are used to compute the sum event rate generated for each enhanced boundarg-d€ing Eq

Fig. 5.8: Contrast percentages of HeRhancedboundaries for@= 2

Expected event rates for each boundary prior to and after HPF are tabulated in Table 2. The simulated event
rate before and after amplification is computed, and the figure of merit, Contradifidéation Factor,
guantifies the effect of the HPF. These simulated results set expectations for experimental HPF

implementation.
Table5.2: Predicted event rate productions at{oentrast boundaries (per 20 ms bin).

Boundary
1st | 2nd | 3rd | 4th
Non-HPF
Initial Transition Average Contrast [%] 8.17 6.69 5.41 3.53

Total Per-Pixel Event Rate with Noise | 2.15+0.05| 1.90+0.05| 1.68+0.04| 1.33+0.04
Accounted [ON + OFF Events / sec]

HPF
Total Per-Pixel Event Rate with 34.72+ 1.21| 24.74+ 0.98| 17.81+ 0.86| 7.30+ 0.45

Background lllumination Accounted
[ON + OFF Events / sec]
HPF/Non-HPF Event Gain Factor

Contrast Amplification Factor | 16.1+0.7 | 13.0+0.6 | 10.6+0.4 | 55+0.4
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5.4: Experimental Results

In this section we present a collection of images corresponding to the recorded EBS output data and/or
framebased image data for the objects of interest for the implemented transmissive system. Data
collection methodand analysis in terms observed vs. predicted (theoretical) events or contrast
enhancement with the HPF metha@ discussed.

Data was collected by individually placing each of the four total transition boundaries within the
imaged view of the EBS. The EBS is then moveddorarolled manner to measure event output with and
without the HPF enabled to determine how well low contrasts are detected in terms of measured event rates.
The performance is also qualified with the below images, captured when the transparencyioiageds
at the center of the focal plane. The EBS motion is induced so that the irradiance corresponding to the
KLJKHU WUDQVPLWWDQFH UHJLRQ JHQHUDWHM1IHMéiefoveNa tdpHQ LW |
decrease in irradiance across EBS ixelregistered when the HPF is not engaged, as seen in Figure 7(a).
When the HPF is enabled, however, events will be registered as increases in irradiance (ON events) since
the boundary edge is brighter than the background (as in Figure 7(c)).

As a meansf evaluating the effectiveness of this EBS HPF method, the isolatec$iineiated)
region event rate'(,) produced by each boundary edge in thelH®# cases is compared to corresponding
HPFenabled EBS, with event rate' L #1',). Here, # denoes the HPHKenerated contrast
amplification, and the quantitative metric used to establish the validity of this method. The associated event
rates per pixel are extracted via JAER. Figuresl® show the sets of frartmsed and EBS views of each

boundarywith and without filtering.

The images show how each region and boundary exhibitaiméormities and present visible
artifacts. These artifacts are products of the lithography process used to create the prototype photoresist
slide. The required propagaii of a coherent point source of light with a spatial/pinhole filter has the added
complication of forming coherent diffraction patterns at the image plane. These patterns are detected by the
EBS and create extraneous events, primarily when the HPF idedisdhe detected diffraction rings are
seen in the (c) quadrants of Figure&® Therefore, steps for mitigating the event rates contributed by
artifacts and diffraction become necessary. Multiple samples of each boundary were taken and averaged
when the boundaries did not span the entire image height or were surrounded by significant artifact.
Samples were smaller subsections of the boundaries, which werdefieéd and least affected by clutter.

As the slide moves, the event rate was measured iaréiae(covered by subsection) immediately before

and at each boundary. Thus, a baseline event rate formed by diffraction and artifacts is measured, which
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can then be subtracted from the measured event rate at each boundary such-thdu¢#elFevents are
distinguished. Examples of selective regions of interest (ROIs) are shown in Figure 13.

Fig.5.9: Standard (a) and EBS output (c) when HPF is disabled, and standard (b) and EBS output (d) when HPF is
enabled for Boundary 1 between Regions 1 a@b&esponding to an 8.17% average contrast).
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Fig. 5.10: Standard (a) and EBS output (c) when HPF is disabled, and standard (b) and EBS output (d) when HPF is
enabled for Boundary 2 between Regions 2 and 3 (corresponding to an 6.69% average contrast).

Fig.5.11: Sandard (a) and EBS output (c) when HPF is disabled, and standard (b) and EBS output (d) when HPF is
enabled for Boundary 3 between Regions 3 and 4 (corresponding to an 5.41% average contrast).

Fig.5.12: Standard (a) and EBS output (c) whePF is disabled, and standard (b) and EBS output (d) when HPF is
enabled for Boundary 4 between Regions 4 and 5 (corresponding to an 3.53% average contrast).
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Fig. 5.13: Example of selective ROI for case of broken/detached boundary (a). Example of selective ROI for case of
high artifact/nonuniformity presence (b).

Discussed here are the processed results for the transmissive HPF system:

Table5.3: Experimental event rate productions at domntrast boundaries (per 20 ms window).

Boundary 1st 2nd 3rd 4th

Non-HPF (Events per Second / 2.15+0.05 1.90 + 0.05 1.68+0.04 | 1.33+0.04
Pixel)

Theoretical
HPF (Events per Second / Pixel) | 34.72+1.21 24.74+ 0.98 17.81+ 0.86 7.30+ 0.45

Contrast Amplification Factor (A) 16.1+ 0.7 13.0+£ 0.6 10.6+ 0.6 55+04

Non-HPF (Events per Second / 1.83 +0.87 1.63+£1.18 1.07+£064 | 040+0.71
Pixel)

Experimental
HPF (Events per Second Pixel) 25.53+0.65| 19.10+153| 9.77+1.06 | 1.27+0.59

Contrast Amplification Factor (A) 14.0+£6.7 11.7+8.5 9.2+5.6 3.2+58
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Fig. 5.14: Adjustedtheoretical and experimental event rates for-RiBtF cases.

Fig. 5.15: Adjustedtheoretical and experimental event rates for HPF cases.
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Fig 5.16: Theoretical and experimental contrast amplification ratios with error bars.

According to experimental results in Tabl8 above, it is evident that a boost in event production
occurs after HPF. Across the four lawntrast regions, HigRass Filtering provides, on average, a worst
case contrast amplification factor of 3.2. HPF boosts an imperceftHi#8o average contrastige to
visible levels for the EBS. While there is a mismatch between theoretical and experimental results,
discrepancies maynderstandwvith the nonidealities in our optical implementatioMainly, the custom
photoresist slide has namiformities in theegions seen by our HPF system. When in place, the Pigs
Filter enhances the edges of all scene elements, such thahifiamities are also enhanced, along with
the desired region boundaridherefore, artifacts on optical components. (ideist, gratches, smears),
vignetted elements, or partially blocked DC frequencies will be visible in-H&# and generate
unnecessary events, which degrade HPF sigrabise ratio. In Figure5.9 to5.12, artifacts are seen in
the standard EBS view, and are amplified with the HPF. The quality of the prototype object used sets limits
on lowcontrast levels and event rateseasured andavill likely be demonstrated with further HPF

development beyond proof-concept.

Diffraction artifacts may be mitigatedd., shorter wavelengths or partial coherence system) but
are, to an extent, unavoidable with any coherence setup. The visibility of these patterns is decreased after
HPF in our configuration but mayilshave a presence at higher source illumination levels or with a filter
mask with lower cutoff frequencies. The size and optical quality of the mask will greatly improve the value

of HPF when matched with scene spatial frequency combinations, and afitmiis a goal for future
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work. As discussed isutsections.2.4, having minimal background irradiance levels will maximize relative
irradiance changes and detected objected contrasts. However, given the higher EBS noise limitation at low
illumination lewels (Figure 4), a careful balance between HPF event generation and noise level mitigation
becomes an implicit consideratic@verall, the experiment results demonstrate a significant advantage of
using Fourietbased optical filtering for loveontrast scemaos.

5.5: Summary

We evaluated the effectiveness of optical spatial -p@gss filtering for improving Everased
6 H Q V R UcdrraStRetection. The EBS was used to image actwrast transparency object with a 4f
HPF imaging system to measure atmmnonstrate how this method compares with contrast amplification
theoretical predictions. The HPF system is capable of magnifying and detecting contrasts as low as 3.53%
and may provide greater results when system optimizations are considered. DrawbaektRif method
(active coherent illumination, diffraction, background irradiance, mask size, etc.) and potential mitigation

techniques are discussed.

Integration with HPF enables a higher SNR with EBS, helping to mitigate an important limitation
in EBS adption. The broad utility of EBS cameras allow high spatial filtering to benefit many fields.
Tracking transparent specimens in microscopy, and many astronomy applications which image spatially
coherent stars, are few implementations for EHBS- systems.

Future work may entail implementations of configurable HPF systems with -spenic
optimizations for absolute irradiance levels, mask size/shape, diffractions, and the 4f configuration. This
work may guide future developments of optical hardware enh@us to improve neuromorphic imaging

systems.
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Chapter 6

Summary, Conclusions , Reflections, and Future
Research Directions

6.1: Summary

In this dissertation, attempted to answer the following questionghat are the quantified costs and

benefits of EBS for defense imaging applicatiAad how does EBS integrate withaditionaloptics
technology and metho@s start in the first two chapters with an introduction to the research area and how
| approach the questions. Chapterl, | provided important technical details, followed by a discussion of
my research approach in &tter2. | then investigate the questis in the next three chapters through

technical research.

In Chapter3, | integrated EBS into a hardware image stabilization system, demonstrating three techniques
that cancel background clutter and achieve low-madandwidthChapter3 addressed th@st question

by quantifying the bandwidth advantage of EBS in a long standoff scenario where stabilization would
provide valuableChapter3 addressed the second question by integratingantitiditionally framebased

system capabilitand demonstratinthat EBS benefits frorthis traditional methadChapter 3 also

recovered the bandwidth advantage while imaging clutter under motion, increasing EBS value in many

scenarios.

In Chapterd, | measured the object detection performance of EBS imaging systaums egframédased
imaging system, showing that EBS has worse detection performance, attributed to worse noise
performance, but can also achieve a 2.5 order of magnitude bandwidth redCictipter4 addressed the
first question by showing the cost of etion performance versus the benefit of bandwidth reduction.
Chapterd addressed the second question by showing that the EBS anebftaetksystems could be
matched with respect to detection performance, while closely matching tsensor parts of the
systems. This matching showed that EBS and fraased sensors could be used in the same way and

achieve similar, comparable outcomes, with differences due to the different costs and benefits.

In Chapter5, we integrated EBS into an active imaging sysiéth a spatial higtpass filter and
validated its behavior with simulatiorShapter DGGUHVVHG WKH ILUVW TXHVWLRQ E\ L

contrast limitations and augmenting the contrast performance with th@&ggifilter, enabling lower
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contrast imagig. Chapter5 addressed the second question by integrating the spatigddmsgHilter,
ZKLFK LV D WUDGLWLRQDO RSWLFDO WHFKQRORJ\ WR LPSURYH (%

So, what are the quantified costs and benefits of EBS for defense imaging appiit&RS has costs
including lower noise performance and lower contrast performance. These were quanifiegterd
andChapters. EBS has benefits including lower reagt bandwidth versus a frant@sed sensor, and the
unexplored but straightforwarddtier dynamic range. The former was quantifie@lapter3 and

Chapted. | explored the object detection task for imaging a small object against a cluttered background,
which was alluded to in the FENCE justificatif@Y]. | explored the object detection task for active

imaging inChapter5, which is a research area of growing defense importaegpect that the benefits

will outweigh the costs in many defense applications and that EBS will find its way into many
apdications.

How does EBS integrate withaditionaloptics technology and methédSBS can integrate with

traditional optics capabilities, including hardware image stabilizati@hampter3, optical spatial filtering

in Chapter5, and across most of the @l imaging system i€hapterd. Based on the results heEBS

not only integrates well with traditional optics technologies, but achieves unique benefits by dbing so.
expect that future research will find many other optics technologies that worknaedl/aergize with

EBS.

6.2: Conclusion s and R eflections

| drawhigh-level conclusions on the research questidiibat are the quantified costs and benefits of
EBS for defense imaging applicati@hsnd how does EBS integrate withaditionaloptics technology
and method®

The cost and benefit analygisovides a foundation for researchers to understand the usage of EBS within
LPDJLQJ VA\VWHPY DQG WR PDNH LQIRUPHG GHFLVLR@ateB®BQ WKH VH
sensorsThe quatification of the costs and benefits will justify EBS usage in larger engineering projects,

unseen before because of the unavailability of quantified values.

The integration of EBS with traditional technology gives me, and hopefully interested esgineer
confidence that EBS integrates and interfaces well with traditional technologies. This integration will lead

to new EBS systems that can solve imaging problems in new, creative, and valuable ways.

| found this research challenging because the researttefiteen the traditional imaging community and
the neuromorphic imaging community and does not fit well into either. | foustit was because the

traditional imaging community often views EBS as eseld with too much focus on the bandwidth and
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dynanic range benefits and not enough focus on the moideotheicosts. On the contrary, | found that
the neuromorphic imaging communitiews EBS as a paradigm shift where traditional imaging
approaches do not apply. Specificattye neuromorphic communifgcuses on applications where the
benefits over traditionamaging are clear and the justification for EBS usage is,csappposed to less
clear applications such as defensexpect that my research will provide new approaches to both
communities, where traditional imaging researchers find value in EBS benefits, and neuromorphic

imaging researchers find benefitdiegration withtraditional technologies.

| conducted thisesearch in the context of the College, where a large portion of research is based on
traditional optics and imaging technologies. This had the benefit of providing the resources and the

culture necessary to apply traditional technologies in the wayiddhis dissertation. However, the

context came with the cost that there were few people interested in the neuromorphic imaging technology,
making it difficult to socialize the researdiith support from the Air Force Research Laboratory, a

small team ofesearchers was assembled to work on the technology, reducing the costs of the research but
maintaining the benefits.

| view that the Colleg&as the correct place to conduct this resedrobld this view because the College

is financially structured tbe industry focusedL[L]], through receiving a lower overhead rate from the
University in exchange for less University support. This presented lower costs for industry to support
College research while encouraging the College to support more appliedhebearstandard

University departments.attribute this structure to enabling me to focus my research on providing
maximum benefit to the sponsor. In contrast, if | conducted the research in another department, | expect
that | would have focused more fitting the research into an established commuaityt providing more

benefit to the academic communignd focused less on ensuring that the research benefits the sponsor.
6.3: Future Research Directions

| presented a vision for my research in Sectidnhowever,| was unable to accomplish it due to PhD
program limitations. | present future work here that | believe would help bring that vision closer to reality.
I will not likely complete this work, and as such | encourage interested readers to gesdanth in

these directions.

First, build out the imaging systems. The systerauatechere are simple and do not representreal
world imaging systems. By building and testing more complex EBS imaging systems, more certainty
about their performance cle obtained. | believe that this increase in complexity would encourage larger

engineering projects to incorporate EBS technologies into their imaging systems.
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Second, test more EBS costs and benefits. While | only tested beiBegurage using similar approaches

to test additional benefits such as temporal resolution, power, and dynamic range, as well as additional

costs such aso absolute irradiance measuremeasidual clutter when movingnd focal plane scaling

issues. This additional analysis would provide@e complete picture aboc 6 fV EHKDYLRU DQG ZR

further encourage engineering projects to consider EBS.

Third, further integrate EBS with traditional technologidy.research showed that EBS can integrate
well with traditional technologies. With mopgojects demonstrating integration, | expect that EBS would

become a common imaging tool for optics researchers.
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Chapter 7
Appendices

Here, | present two appendices. These are sections that provide important details about the accomplished

work but did not fit into the flow and highly technical nature of the main body.

Appendix A describes the experimental parameters used in Chapter 3. Appendix B describes additional results
regarding image stabilization with different EBS device biases. AgigpeC discusses how | specified down from a
broad request of the project sponsor to a specific research question. Appendix D discusses radiometric and
luminance units and discusses how | contrast from the literature in using radiance instead of lumpperix E
describes the operation and usage in the experiments and includes discussion on software usage and how the
configuration was decided. Appendix F briefly describes some experiments using the coherent imaging techniques

with a reflective systengnd discusses how EB&eracts with speckle.

Appendix A: Experimental Setup Parameters  for Chapter 3

We introduced and successfully demonstrated several hardware EBS stabilization methods. These
methods demonstrated oreErmagnitude readut bandwidtlreductions versus unstabilized, moving EBS
systems. A reader might apply these methods to reduce bandwidth to meet performance thresholds in
applications such as moving object detection. These methods differentiate from other methods, in the sense
that the leave moving objects in the data stream while removing background chigter, we present
important experiment details and discussion that did not fit with the main body.

We mounted the EBS on a tip/tilt stage attached to a linear stage, whichatlereontrolled with a
network interface. The stages were integrated with the EBSAER) softwarethe framebased camera
software and the displayed background imadesming the full system. The background was located two
meters away from the lineatage, as seen in Fig. 1. The DAVIS346 used a 25mm lens, which corresponds
to a full field-of-view of about 36 centimeters horizontally. The frabbased camera used a 25mm lens with
a 5um pixel pitch. The lens was chosen to have high resolution of tié &pigt, such that we would get
KLJK UHVROXWLRQ RQ WKH EULJKW SRLQWTV SRVLWLRQ :H VHOHI
bandwidth, but large enough to ensure the bright point is in the field of view. The system was wired to the
control FC, which processed the frame and event data and controlled the motion stages.

We configured the individual imaging sensors within the experiment. The DAVIS346 device was
configured with a set of device biases, default to the libCAER software used fatingcand reatime
SURFHVVLQJ :H DOVR HQDEOHG WKH '$9,61V RQERDUG )3*$ EDFNJL
pixel bandwidth, %, ,,; we use the AEDAT 2.0 [48] data format, resulting in an event size of eight bytes
per event. This size is shdrap through the newer AEDAT 4.1 [48] format that specifies 15 bits per event
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per spatial dimension. As such, the device can spet€ifgéations per dimension, equivalent to a maximal
resolution of 32k x 32k pixels.

We employed several complex backgrosimtluding desert and urban, and randomly selected several
subimages within them. We acquired these from U.S. Geological Survey aerial images. These aerial images
were beyond 10,000 x 10,000 pixels and we cropped them at random locations to form 1Q@@d{800
subimages that form scenes like in.B@. Each image was sampled at one scene foot per display pixel,
with one pixel on the display corresponding to one foot in the scene. After calibration, we found that one
EBS pixel corresponds to 1.3 scenetfdéigure 3 shows parts of the two aerial images used in the
experiment and representative features of each.

We considered aliasing issues, as a 1:1 ratio of EBS to display pixels is required to guarantee no
aliasing, but we only had a 1:1.3 ratio becanfsgystem magnification. We added a slight defocus to the
EBS lens and qualitatively ensured no significant aliasing effects were present.

The DAVIS346 was configured with a set of device biases. These include the threshold biases, a
photocurrent bandwidth bias, and a refractory period bias. These biases corresponded to device currents
identified as onBN, offBN, and diffBN for the threshold, prBP and prSFBP for the bandwidth, and refrBP
for the refractory period-or the main experimeés, the prBP 172.1pA and the onBN 387.5nA biases were
used. We also varied the threshold and bandwidth biases, with results presented in Appendix B. The
thresholds were computed using techniques in the literature. The threshold biases were tabulatelé into T
A.1l. The bandwidth biases were tabulated into Tab® ¥We used the default refractory period bias,
refrBP, at 4.7nA.

Table Al: Bias values for experiment thresholds. These were all used i8.F{@). The column with On
29.3% was used in the ra@inder of experiments. The On 21.2% biases correspond to the default JAER settings.

On 16.5% | On 21.2% | On 29.3% | On 33.8%
Off Percent| -14.80% | -18.10% | -21.20% | -25.80%
onBN 176.3nA_ | 305.4nA | 387.5nA | 1.2uA
offBN 2.2nA 1.3nA 189.9nA | 314.6pA
diffBN 20.7nA 20.7nA 7.4nA 20.7nA
Table A2: Bias values for Fig3.7 (b)
prBP 44.1pA | prBP 172.1pA | prBP 667.8pA

prSEBP | 1.5pA 5.9pA 23pA

Appendix B: Stabilization Effects with Changing EBS Configuration for Chapter 3

Here, we address some other factors that may affect stabilization algorithm performance. These include
noise filtering, device threshold bias, and photocurrent bandwidth bias. For each, we construct plots like

Fig. 3.6 with different variations.
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Fornoisel LOWHULQJ ZH UHPRYH WKH '$9,6 fV KDUGZDUH QRLVH ILC
readout bandwidth. We then compare the results with and without the filter, at different velocities but only
optimized at 9.5 pixels per second. We record the dgtanst the desert background, using the same
configuration as in Fig3.6, except without the filter in one case. The goal is to demonstrate the effect of
QRLVH ILOWHULQJ RQ WKH WBHEHO®Y thixrdiga/fil®dhy batdwdh@ItH )L J

Fig. B.1: Bandwidth plot comparing the EBS stabilization with and without the noise filter. The technique is
optimized with the filter at 9.5 px/s, with the noise filter on. The plot shows that removing the filter significantly
degrades performance atler velocities. At higher velocities, the filter suggests some benefits, although
performance is worse than with the filter. We attribute this behavior to the noise losing significant effect on the data
stream at higher velocities.

We observed thdiltering had a major effect on performance, and the EBS technique stopped working
beneath the 9.5 pixels per second point. We also tested wiiltenapptimization at 9.5 pixels per second
and observed similar instabilities. Based on this, we recomimehudling the noise filter before operating
with EBS stabilization.

For device biases, we looked at the photocurrent bandwidth and the event threshold. We view the pixel
bandwidth as behaving as temporal a-jpags filter on the incident irradiance. Whamiotion, we view
this as equivalent to spatial lepass filtering. We expect these biases to add or removeshaghat
frequency events from the EBS output. Varying the event threshold would add or remesentoast
events. We varied both biases andeaived the sensitivity of EB&ased stabilization performance with
respect to the bias. FiB.2 shows the device bias bandwidth plots. For bias values, please refer to Appendix
A. Here, ideal stabilization demonstrated effectiveness with different lmasggurations. An example of
applying these results might be integration with EBS bias co@®dl Here, a user attempting to achieve
high sensitivity or high responsiveness, might apply hardware stabilization, such that increased event rates

from bias control can be reduced. We view this as expanding the trade space available with EBS
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configurations, using the lower event rate to enable lower thresholds, response to higher spatial frequencies,

or higher noise tolerance.

Fig. B.2: Bandwidth plot showig performance with changing EBS biases. a) shows-gaadandwidth versus
photocurrent bandwidth and b) shows read bandwidth versus threshold. Performance was similar in principle to

the velocity plots. Without stabilization, the bandwidth was nearlmwve the performance threshold. With
stabilization, we could achieve performance with at least an order of magnitude improvement and get below the
thresholds.

In the future, we are interested in scaling these techniques with larger EBS, and we conducted some
preliminary tests to show the feasibility here. In Fig. B3, we tested the DVXplorer and plotted the results

alongside the prior DAVIS346 results. We used itieal baseline stabilization method and recorded a
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bandwidth recovery of about 10 with DV Xplorer, which was similar to the reduction with the DAVIS. With
stabilization, we could reduce DVXplorer bandwidth requirements to that of a 346 x 260, 30 FRS frame

based camera. Overall, we were convinced that the techniques scale up with larger focal planes, and with
WKH '9;SO0R Udyriglfronovdgiread XW VFKHPH YHUVXV WKH '$9,61V IXOO0\ V\Q
note that the analysis here is preliminary becausenmation on the DV Xplorer device bias is proprietary.

We searched through the DV and libcAER and found that bias configurations are limited to undefined
TXDOLWDWLYH YDOXHV VXFK DV 3YHU\ KLJK" 3KLJK™ B3PFELXP" 30F
contrasts with DAVIS which can set bias values anchored to and tested against published theoretical
models. However, a recent wof&3] has developed tests to quantify EBS biases againstvoekl

parameters, which will enable a more thorough coieparagainst older cameras such as DAVIS in the

future.

Fig. B.3: Bandwidth plot showing performance with changing EBS biases. a) showsuthdndwidth versus
photocurrent bandwidth and b) shows read bandwidth versus threshold. Performance wagasiin principle to

the velocity plots. Without stabilization, the bandwidth was near or above the performance threshold. With
stabilization, we could achieve performance with at least an order of magnitude improvement and get below the
thresholds. We prade frame bandwidth with respect to the DAVIS, showing that with stabilization, one can achieve
similar bandwidth to the larger pixel count DVXplorer than with the 346x260 fizased sensor.

Appendix C: Research Direction and Context

7KLY UHVHDUFK WRRN WZR RYHUDUFKLQJ GLUHFWLRQV D 3:KDW I
GHIHQVH LPDJLQJ DSSOLFDWLRQV"" D Qt@aditBnaiptRZteGhRdtbyy 46616 L QW H J L
PHWKRGV"" 7KHVH TXHVW L R ®it nkyDeReardiUsBdPs@, Lthe AKX Novce RE3&arch

Laboratory. After an initial literature review, the sponsor wanted to know about the possibilities of them

adopting the technology for their current and future imaging applications.
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| approached this questiavith the trivial step of stating that we should adopt EBS when its imaging

systems are proven to be better than state of the art-raseel imaging systems. This led to abstract,
GLIILFXOW TXHVWLRQV RI F 3+RZ PXFK Ldpé¢Rig pdokhiaRa® i Q RXU DQD
SURYHQ"" G 3:KDW GRHV LW PHDQ IRU DQHB\W6HG WWWHW HPR" E H> BHR M
to simplify my approach by taking an example frabpased system for a common imaging task from the

sponsor, object detection. Thibstract system could have many variations such as active or passive

imaging, moving or stationary relative to the scene, or-reslblved or unresolved objects of interest.

Here, every part of the frartased system has been well tested and understeogast decades. My

hope here was that the imaging system components, e.g. the scene, optics, processing, and system output,
interface in a similar way between the two sensors, to form similar imaging systems. If this assumption

held, it would enable us gay that because current system behavior using the-fraseel technology is

sufficiently understood, we expect that the EBS system will behave similarly. This answers question (c),

leaving question (d)

With the simplified approach,dm left with two taks to answer (d): (e) Compare EBS to the fréased

sensor. (f) Show that the EBS to the frabased imaging system in the same way as the flmsed

sensor. (f) is a statement form of (b), leaving the translation from (e) to (a). | decided to ftloeis on
VSRQVRUYVY DSSOLFDWLRQV HVSHFLDOO\ REMHFW GHWHFWLRQ Wi
specification in (a). Sponsor discussions convinced me that engineers designing an imaging system with

EBS would need to justify why EBS is used, whichalisutakes the form of a cost and benefit analysis,

finishing the formulation of (a). | left the question broad because | did not know the exact experiments to

conduct at the time.
Appendix D: Radiance Versus Luminance Units

| want to briefly discuss my esof radiance units versus luminance urBggradiance | meanthe spectral

radiance (e.g. Wi#?/nm) integrated over its spectrum. | understand luminance to be the spectral radiance,
PXOWLSOLHG E\ WKH KXPDQ YLVXDO V\Vde¥Ptfiespédrthf Radianbe UHV SR Q
values are technically the most correct, however usage of luminance values is still appropriate in many

cases and research using luminance values should not necessarily be critiqued.

First, | describe the inconsistency betwaeninance and electronic light detection. All cameras used in
this work were semiconductor photodetectors. A semiconductor photodetector normally measures
irradiance(W/m IROORZHG E\ PXOWLSOLFDWLRQ E\ WKH SKRIYWRGHWHFW

over the size of the detector, to present the measurement in units of power.
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The semiconductor material converts this power value to a photocurrent that is integrated over time in a
capacitor to provide a voltage proportional to received energy. Ehefuadiance units is consistent with

this process, and the radiangewer: voltage mapping is invariant on the incident light spectrum.

+RZHYHU OXPLQDQFH YDOXHV LPSOLFLWO\ LQFOXGH WKH KXPDQ Y
respect to thencident light spectrum.

Here, the luminancepower: voltage mapping varies depending on the spectrum. For instance, consider a
semiconductor detector that is 100% responsive to infrared spectrum light and visible light, and we
irradiate a pixel with 1W foinfrared light. We expect the detector to successfully measure the light.
However, the HVS has close to zero responsivity to infrared, so the 1W is equivalent to ablout tero

we replaced the light with 1W of visibEpectrum light, the radiance mapg would stay constant, but

the luminance mapping would chandecause now the Olm generates a significant device response

However, most imaging cases do not require the mapping from radiance/luminance to power or voltage.
The primarily usedhformation in most cases is in the relative measurement between different pixels in a
frame. | am unaware of a common imaging algorithm that requires absolute irradiance/illuminance,
however the absolute value affects the sigaaloise ratio and can &ift the measurement if the sensor is
incorrectly configured. The lack of need makes usage of radiance/luminance units uncommon in camera
research, with luminance units being most common because optical images have traditionally been
consumed by a human geis a sensor. In cases when a correct, absolute measurement is valuable,

metadata such as the light source can enable computation of radiance from luminance.

To summarize, radiance units are technically correct when measuring with a hardware photodetector,
however absolute light levels are often unnecessary in most applications. In addition, luminance levels
have a tradition in the literature, and with given appropriate context, radiance values can often be
computed from luminance values. As such, luminamgts should be accepted as usable, however

radiance units provide more meaningful values in terms of hardware imaging.

Appendix E: EBS Operation and Usage

This subsectionlescribe how a researcher can use the EBS, how to connect to it, and how toeiriteep
data. For device drivers and operations, | discuss the jBBRJUI interface and the libCAERB8] C
library. Additional topics areliscusgdreading out data, both with the AEDJSB] and text flat file
formats, as well as reéime processing wit libCAER. | briefly discuss MATLAB/GNU Octave data

processing and data visualization, followed by discussion of the operating system and other software.

| began my research using the JAER controller for interfacing with EBS. JAER requires Java 8 Lo instal

as well as some additional configuration, but configuration is straightforward if a reader closely reads and
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follows the instructions. JAER provides a GUI interface that allows the main features of starting and
stopping EBS recording, reconfiguring tBBS and bias currents, and selecting filters and data
processing toold.provide an image of the event data from a recording inE-igas a visualization of the
JAER system behavioilo start and stop the EBS, a user can either click on a button,toslgowith a
command through an IP interface. As | started implementing automation in my experimerds, | beg
controlling JAER with its network IP interface through my C programs, enabling more precise timing
performance. The JAER system outputs an AEDd that contains all of the event data from a

recording and can be processed using other software.

Fig E.1: A screenshot of the JAER software, playing back an event data recording. The object of interest-is a twin
propeller aircraft taking off. | animaging the aircraft with the DAVIS346 with a 200mm lens from several hundred
meters away. Edges of major features such as the tail, the front of the wings, the cockpit, and the propellers are

visible in the data.

| began usinghe libCAER software to cordl EBS directly in my C programs. libCAER providaantrol

similar to JAER, except all functionality is directly controllable frorf® @rogram. | specifically used the

device start and stop commands and the bias current reconfiguration functional&Rlpovides the

event data in packets output from the device, which can be parsed into the expected position, timestamp,
and polarity. Because these events are received directly from the device with little latency, it is possible to
reaktime process thidata, ass done in Chapter 3. My approach to réaie processing here is to

aggregate the events within a fixed period, and then process them as a batch. This approach can, with
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some techniques, reduce the overhead associated with receiving and pgoeessis one at a timehe
output data collected from libCAER placednto a text fileto beread into processing software. This text
file is written in a format directly compatible with OctameMATLAB 1V 0$7 GDWD ILOH IRUPDW

| process the dataith nonreal time processing using MATLAB and the syntactically similar Octave
software. When processing an AEDAT file, | read the data using the AEDATtools liBGrylhis

library parses the AEDAT file into a standard data structure containing alisesmed associated data.

When processing a libCAER text file, it is compatible with the MAT format, and provides data already
stored in the same AEDAT event format. | normally use Octave for data processing on systems using
EBS and MATLAB for post processy on a secondary computer. | chose to process with Octave because
it is free software, which means that | can generate parallel jobs and batch process data simujtaneously
usingall CPU coresSpecifically, | can easily run many instances of the softewaras many computers

as are available without concern for license limitatibmsddition, | can freely copy and use Octave on

any computer without concern for licensing term violations. This became a major concern when | was
working in government laboraties, because nereely licensed software was only allowed after the

entire computer system was registered with their cyber security department. To register, | would have
needed to select a stable set of packages and wait on the order of a year\for\théiP TV UHIJLVWUDWLF
approved, before | could apply for and install a MATLAB license. However, | was building a custom
computer system with software used specifically for the experimentawiahstantly changing software

configuration. As such, Oate was the best choice here.

| use MATLAB to generate plots. To generate the plots in this work, | use large font sizes, thick lines, an
additional scatter plot over actual data locations, atpddnlabels instead of legends. | use error bars on

plots @& appropriate andstimate the variance of the mdarcompute error bars with my ROC curvAs.

secondplot measurethe event rate or equivalently readt bandwidth of the EBS. This plot tells us the

cost of using the EBS at a given time or scendimore complex plot is the ROC plot, which describes

the performance, or the benefit, of using EBSen comparing to fram&E DVHG VHQVRUV (%6TV FR
EHFRPHY D UHODWLYH EHQHILW DQG (%6TV EHQHILW EHFRPHYV D U

The dissertation researoperated EB&om both Windows and Linux operating systems but prefer the
Linux system because of several factors. The first factor ishtbist werdaced binanyile

incompatibilities when building and integrating packages on windows. Here, proprietary software
libraries for the framdased sensor required linking with a specific Application Binary Interface (ABI)
version of the Visual C++ compiler. However, some of the computerized mounts required a different
version of the Visual C++ ABI and would not link intcetekame program. Additionally, libCAER

required a third ABI from the MinGW compiler. By switching to Linux where GCC is the accepted
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compiler, | managed to create a program that could accept all required libraries without binary
incompatibilities. The secanfactor is portability, in the sense that the experimental x8&F RP S XWHU TV
secondary storagean be clonetb a second drivio build a second x864 computer with the same
configuration and behavior. This is possible because all of the softwaredsdstribution licensing.

This second factor enables the same system geyistat multiple locations, such that the software
configuration has reproducibility everywhere, can be shared with others withonfiguration, and can

be used and built updby colleagues on their own projects. The third factor is the same abevith
Octavepackagein that to use Windows, computer with stable software packages requiredwhich

was unfeasible given the state of research.

Appendix F: Reflective Coherent Imaging with EBS

Although the emphasis of this study utilized a transmissive system to indicate the value of contrast
amplification via an optical HPF, an abbreviated analysis was also performed on a reflective configuration.
This reflective system is a more suitable implementation for detection and tracking-eforidlobjects,
in comparison to usagmnstrained transparent objects which are in the direct line of the optical path. The
reflective configurationshown in Fig. F.1gpeiates at a high power so that a strong reflected sajhah
illuminated object may propagate through the 4f sysiéme feature of interest is a vertical grey bar against
a white background. The image view of this bar was captured viatdinelard grayscale feed of the
DAVIS346. A qualitative comparison between the image view of this object was done with and without
the HPF in place.

Fig. F.1:Overall Reflective System layout witdubsystemiabelled

The results from the reflective stgm HPF experiment are seen in Figure 18. Qualitatively, there
is great similarity between the image reaching the sensor before and after placing the HPF mask in the
optical path. Both images depict similar granular features from reflection of the @tiomrsource off the

rough object.
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Fig. F.2:0bject of interest without (Left) and with (Right) HPF in reflective system

It is observed that Optical HigRass Filtering does not produce noticeable changes (or
amplification) in the optical field which reaches the sensor. A major caveat off using this reflective
technique is thenconvenience that arises from using coherent light. Laser speckle is a biproduct of coherent
illumination that occurs on a rough surface when light reflects or scatters from unequal parts of the
illuminated surface to produce an observable granular patBmeckle is a high frequency signal that
overlays the illuminated object of interest, thus degrading the effectiveness of-pabifilter. Edge
detection becomes dependent on the resolution of speckle, strength of illumination source, surface
propertes and reflectivity, as well as distance and size of object-resalution speckle paired with the
HPF method could perhaps be usefulddge detection but was not explored in this study. Hdéglolution
speckle (as seen in Fi$15) may shroud the EB8utput with events through these rapid irradiance
fluctuations. Determining the speckle content of a scene, how to mitigate speckle, and determine when
edgedetection can still be used for the purposes of EBS detection and tracking are suggested future

dewelopments from this paper.
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