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Rangeland seeding practices in the Intermountain western United States are predominantly implemented in the
year immediately following wildfire for the purposes of Emergency Stabilization and Rehabilitation (ESR). This
necessarily links restoration and rehabilitation outcomes to the probability of a single year providing sufficiently
favorable microclimatic conditions for desirable plant establishment. Field research studies in rangeland restora-
tion are also typically of limited duration, and published resultsmay not represent the full spectrumof conditions
likely to be experienced at a given site.We propose that location-specific and temporal weather analysismay en-
hance the interpretation of historical planting data, support expanded inferences from short-term field studies,
and facilitate meta-analysis of diverse field studies in rangeland restoration. We describe access and use of
new databases and tools that can be used to characterize and rank weather and soil-microclimatic variables
and suggest some standard graphs and weather metrics to establish a longer-term perspective for the interpre-
tation of rangeland restoration outcomes. Tools of this type may also be useful in the interpretation of a wide
range of agricultural and natural resource applications that are driven by similar weather inputs, particularly in
arid and semiarid systems that exhibit high annual and seasonal variability in precipitation and temperature.

Published by Elsevier Inc. on behalf of The Society for Range Management.
Introduction

Millions of hectares of rangelands in the western United States are
undergoing type conversion to invasive annual and woody species (Da-
vies, 2008; Johnson and Miller, 2008; Germino et al., 2016). Western
rangelands have an arid or semiarid climate and exhibit high variability
in seasonal and annualweather (Hardegree et al., 2012a, 2012b). A high
probability of unfavorable site conditions generally results in unaccept-
able restoration outcomes regardless of the choice of species, planting
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56-7449.
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iety for Range Management.
technique, or seedbed preparation treatment (Hardegree et al., 2011).
Rangeland seeding studies are generally of insufficient duration to ade-
quately survey potential variability in seedbed microclimate at a given
field site (Casler, 1999), and the scientific literature on the subject is bi-
ased toward years with above-average precipitation (Hardegree et al.,
2011). High seasonal and interannual weather variability greatly com-
plicates the interpretation of research results and the prospects for
using single-year field studies to inform future treatment recommenda-
tions under adaptive management guidelines (Hardegree et al., 2012a,
2012b; Monaco et al., 2016).

The soil microclimatic conditions necessary for the initial establish-
ment of desirable range plants may occur infrequently in highly dis-
turbed rangeland systems (Westoby et al., 1989; Call and Roundy,
1991; Peters, 2000; Hardegree et al., 2011). It is perhaps unreasonable
to expect a fully successful restoration outcome in any specific year
and, therefore, inappropriate to derive general management recom-
mendations from short-term field studies (Hardegree et al., 2011). Sin-
gle-year seeding events in the year immediately following wildfire,
however, remain the primary management treatment in response to
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Figure 1.Monthly temperature andprecipitation for theOrchardfield test location southeast
of Boise, Idaho, United States (43.32 N, 115.98 W) for the period 1 January, 1979 to 30
September, 2015). Error bars represent 1 standard deviation above the mean.
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annual grass invasion and dominance (Eiswerth and Shonkwiler, 2006;
Eiswerth et al., 2009; Kulpa et al., 2012; Pyke et al., 2013). Site and year-
specific weather information, as well as a historical perspective of
weather variability at a site, may be useful in the development of
long-term restoration management plans that have a realistic expecta-
tion of success (Hardegree et al., 2012a, 2012b).

Recent studies have suggested that postgermination and pre-emer-
gence mortality from relatively short-term temperature or drought
stress are principal bottlenecks for establishment of many perennial
grasses (James et al., 2011; Boyd and Lemos, 2013; Hardegree et al.,
2016). Hardegree et al. (2003, 2013) characterized annual variability
in seedbed favorability for germination but subsequently modified
these descriptions to include an assessment of postgerminationmortal-
ity events that could affect seedling emergence and establishment
(Hardegree et al., 2016). The seasonality of potential frost damage has
historically been a major determinant of planting date for many crop
species (Anapalli et al., 2005). Avoidance of seasonal mortality events
has also provided a functional explanation for the evolution of seed dor-
mancy mechanisms in many wildland species (Finch-Savage and
Leubner-Metzger, 2006). Assessment of potential postgermination/
pre-emergence mortality should be considered when developing ex-
pectations for individual-year treatment effects on seedling establish-
ment (Hardegree et al., 2016).

In this paper, we describe a restoration-climatology report that can
be used to identify seasonal weather and microclimatic conditions
that drive individual site-year responses to rangeland restoration treat-
ments. Data summary and analysis tools are linked to a griddedweather
dataset (Abatzoglou, 2013) that can be used for retrospective analyses
of field studies, expansion of inference fromwhat are typically relatively
short-term field experiments, andmeta-analyses of previous and future
rangeland planting studies. The long-term nature of this dataset allows
for the interpretation of single field events within the context of poten-
tial site variability, as well as to develop probabilistic expectations for
the success of long-term, iterative, adaptive management plans.

Database, Modeling, and Climatology-Report Generation

We developed a website in cooperation with the Joint Fire Science
Program, Great Basin Fire Science Exchange that can be accessed
through their website (http://greatbasinfirescience.org) or directly
(http://greatbasinweatherapplications.org) for a number of weather-
centric restoration planning and analysis tools. In addition to site-spe-
cific climatological information, this site provides a bibliographic data-
base of journal articles related to weather impacts on rangeland plant
establishment and a number of educational modules for university-
level laboratory exercises in weather-centric rangeland restoration
planning.

Site-specific restoration information is accessed by filling out a web
formwith site location (latitude and longitude) surface soil texture and
contact information for the recipient of the output. Three products are
currently available for download: a data file with estimated daily
weather parameters for the site location for the period 1 January 1979
through present (Abatzoglou, 2013); a data file with estimated hourly
temperature and water availability at 2-cm soil depth for the same
time period (Flerchinger and Hardegree, 2004; Flerchinger et al.,
2012); and a restoration-climatology report that synthesizes annual
and seasonal information on both seedbed favorability for establish-
ment (Hardegree et al., 2003, 2013) and potential risk from
postgermination/pre-emergence mortality from freezing and drought
(Hardegree et al., 2016).

The historical weather file is derived from the gridded meteorologi-
cal database (gridMET) developed by Abatzoglou (2013) to support
ecological modeling applications. The gridMET database contains daily
weather variables for the conterminous United States from 1979 to
present at a spatial resolution of approximately 4 km. GridMET is up-
dated daily and resides in NetCDF format on the University of Idaho
Northwest Knowledge Network server (http://climate.nkn.uidaho.
edu/METDATA/).

The historical weather file that we automatically extract from
gridMET with our web form consists of a period-of-record time series
of weather information for the following parameters: precipitation
(mm), air temperature (minimum, maximum; °C), mean humidity
(dew point; °C), mean wind speed (ms−1), and mean solar radiation
(downward short wave; Wm2). We make these core data available for
users who want the flexibility to conduct their own site analysis of
weather variability, but we also use the data for modeling seedbed mi-
croclimate and to develop climatological syntheses for the report
output.

The website automatically takes the long-term site weather file and
soil information and estimates an hourly time series of seedbed water
potential (MPa) and soil temperature (°C) at 2-cm depth using the Si-
multaneous Heat and Water (SHAW) model as described previously
by Flerchinger and Hardegree (2004), Flerchinger et al. (2012), and
Hardegree et al. (2003, 2013). Individual year and seasonal distributions
of near-surface soil freezing (soil temperatures ≤ 0°C) and drought (soil
water potential ≤ −1.5 MPa) are then extracted from the model output
using procedures described by Hardegree et al. (2016). This time series
is also available for direct download for users who want to conduct a
more detailed analysis of potential seedbed conditions for both germi-
nation and postgermination mortality events.

The rangeland restoration climatology report is currently custom-
ized for Great Basin rangeland-restoration scenarios that involve fall
seeding on bare-ground sites in the year following wildfire. We use
the hydrologic year (HY) convention for characterizing weather and
seedbed microclimate with each HY beginning on 1 October and run-
ning through 30 September. The year designation for each HY refers to
the calendar year in which the HY ends. The report cover page indicates
when the report was generated, information about the site location and
surface soil texture, the location of the gridMET node used for weather-
data extraction, and the time period spanned in the weather data. The
body of the report consists of a brief introduction; graphical and tabular
representations of seasonal patterns of temperature and precipitation
(Fig. 1); interannual variability in precipitation; and an annual ranking
of precipitation as a function of HY, initial establishment season
(October− June), spring growth and establishment period (March−
May; Fig. 2), and individual months. Each HY is also represented by a
graph of total monthly precipitation and percent-of-average precipita-
tion to identify intra-annual patterns of precipitation and drought for
specific planting years (Fig. 3a). Seasonal distributions of potential
freezing and drought events are also presented in both the HY summary
pages (Fig. 3b) and a graph of long-term seasonal averages (Fig. 4).

The examples presented in the figures were drawn from a report
generated for a site southeast of Boise, Idaho (43.32 N, 115.98 W) for
the sandy loam soil (72% sand, 22% silt, 6% clay) characterized by
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Figure 2. Interannual variation in cumulative March−May precipitation from 1979 to
2015 for the Orchard field test location southeast of Boise, Idaho, United States (43.32 N,
115.98 W) (a) and ranked cumulative precipitation in descending order of amount (b).
Green horizontal line marks the mean and the blue horizontal line marks the median
precipitation for the period of record.

Figure 3. Monthly pattern of precipitation (mm) for hydrologic year (October
1988−September 1989) at the Orchard field test location southeast of Boise, Idaho,
United States (43.32 N, 115.98 W) (a) and percent of normal for the period of record
(color coding), as well as the percentage of days with at least 1 hr below temperature
(0°C) or water potential (−1.5 MPa) thresholds (b).
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Flerchinger et al. (2012). This site has a typical annual-precipitation and
temperature profile for the northern Great Basin sagebrush steppe, with
precipitation falling predominantly in thewinter and spring, lowwinter
temperatures, and high temperatures and drought through the summer
(see Fig. 1). Precipitation in this region, however, is highly variable from
year to year during periods critical for establishment and seedling
growth (see Figs. 1 and 2). The distribution of both freezing and drought
conditions in the seedbed is also highly variable from year to year (see
Figs. 3b and 4). This variability typically results in a fairly unique profile
of weather and seedbedmicroclimate in any individual planting season
thatmay containmore information for interpretation of restoration out-
comes than can be obtained solely from the seasonal precipitation aver-
age (see Fig. 3). In our example, the March to May period in 1989 was
near the long-term mean for precipitation (see Fig. 2), but a more de-
tailed assessment shows a relatively wet November, followed by a dry
and cold winter, a relatively wet March, and spring drought in April
and May (see Fig. 3). In this year, the possibilities exist for significant
seedling mortality: from high fall germination in November, followed
by postgermination frost mortality during the winter; and significant
postemergence drought in the spring. Using this example for retrospec-
tive assessment of an individual seeding or field study, it would be pos-
sible to classify this year relative to the full spectrum of weather
conditions possible at the site.

Potential Applications

The proposed utility of these tools includes both science and man-
agement applications. The Land Treatment Digital Library (LTDL;
http://ltdl.wr.usgs.gov/) includes data from historical Bureau of Land
Management plantings in the Intermountain western United States.
The LTDL has been previously analyzed for rangeland seeding outcomes,
but not specifically related toweather variability in the year of initial es-
tablishment (Arkle et al., 2014; Knutson et al., 2014). The analysis tool
described in this paper could be used to evaluate weather effects from
these past plantings or specific weather conditions during any past
management activity or published field study (Hardegree et al., 2011).

Ecological site descriptions (ESDs) are a key resource in the imple-
mentation of Natural Resources Conservation Service (NRCS) conserva-
tion plans, and these tools are also a primary resource for rangeland
restoration planning and management (Bestelmeyer et al., 2003;
Stringham et al., 2003; Herrick et al., 2006; Caudle et al., 2013; NRCS,
2013). ESDs include state-and-transition models (STMs) that describe
potential alternative vegetation states at a given site and attempt to ad-
dress transition probabilities for crossing thresholds between states
(Briske et al., 2005, 2006). The tools we describe in this paper could be
used as an ESD supplement for information about probabilistic weather
effects and could yield useful information in understanding transition
probabilities and the likelihood of conditions suitable for successful es-
tablishment of desirable plants.

Most field studies on the subject of rangeland restoration, and in-
deed in almost any agricultural or natural resource application, are of
limited duration due to logistical and budgetary constraints (Casler,
1999; Hardegree et al., 2011. This imposes significant inference limita-
tions for analysis of these short-term studies, but the relevance of indi-
vidual site treatments could perhaps be extended by evaluating them in
the context of long-term expectations for site weather and seedbed
microclimate (Hardegree and Van Vactor, 2000). We recommend that
future rangeland restoration studies include graphs showing the rank-
ing of the experimental year within the historic range of climatic vari-
ability during the planting season and the seasonal progression of
precipitation and potential postgermination mortality events during
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Figure 4. Seasonal pattern of the mean number of hours per day below temperature (a) and water potential (b) thresholds for days with at least 1 hr below 0°C or −1.5 MPa for the
Orchard field test location southeast of Boise, Idaho, United States (43.32 N, 115.98 W) using data from 1979 to 2015. Error bars represent ± 1 standard deviation.
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the experimental period (Hardegree et al., 2012b, 2016; see Figs. 2-4).
Tabular data with this information could also provide a standard con-
text for meta-analysis of historical field studies (Hardegree et al., 2011).

Numerous field studies have used process-based and empirical
models for evaluating weather effects on hydrologic processes (Al-
Hamdan et al., 2015; Rathjens et al., 2015; Williams et al., 2016), seed-
bed microclimate (Hardegree et al., 2013; Bullied et al., 2014b, 2014a),
and agricultural and grazing land productivity (Nielsen et al., 2012;
Fang et al., 2014; Ma et al., 2016). The underlying database and data ac-
cess tools described in this paper could potentially be used to generate
input data for any agricultural or natural resource application that is
driven by similar daily weather data or that requires weather informa-
tion in locations without meteorological infrastructure (Abatzoglou,
2013).
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