• Login
    Search 
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • Search
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    Journal
    Decision Support Systems (2)
    Authors
    Chau, Michael (2)
    Chen, Hsinchun (2)
    Zeng, Daniel (2)
    Hendriawan, David (1)Huang, Michael (1)TypesJournal Article (Paginated) (2)

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    CI Spider: a tool for competitive intelligence on the Web

    Chen, Hsinchun; Chau, Michael; Zeng, Daniel (Elsevier, 2002)
    Competitive Intelligence (CI) aims to monitor a firm’s external environment for information relevant to its decision-making process. As an excellent information source, the Internet provides significant opportunities for CI professionals as well as the problem of information overload. Internet search engines have been widely used to facilitate information search on the Internet. However, many problems hinder their effective use in CI research. In this paper, we introduce the Competitive Intelligence Spider, or CI Spider, designed to address some of the problems associated with using Internet search engines in the context of competitive intelligence. CI Spider performs real-time collection of Web pages from sites specified by the user and applies indexing and categorization analysis on the documents collected, thus providing the user with an up-to-date, comprehensive view of the Web sites of user interest. In this paper, we report on the design of the CI Spider system and on a user study of CI Spider, which compares CI Spider with two other alternative focused information gathering methods: Lycos search constrained by Internet domain, and manual within-site browsing and searching. Our study indicates that CI Spider has better precision and recall rate than Lycos. CI Spider also outperforms both Lycos and within-site browsing and searching with respect to ease of use. We conclude that there exists strong evidence in support of the potentially significant value of applying the CI Spider approach in CI applications.
    Thumbnail

    Design and evaluation of a multi-agent collaborative Web mining system

    Chau, Michael; Zeng, Daniel; Chen, Hsinchun; Huang, Michael; Hendriawan, David (Elsevier, 2003-04)
    Most existing Web search tools work only with individual users and do not help a user benefit from previous search experiences of others. In this paper, we present the Collaborative Spider, a multi-agent system designed to provide post-retrieval analysis and enable across-user collaboration in Web search and mining. This system allows the user to annotate search sessions and share them with other users. We also report a user study designed to evaluate the effectiveness of this system. Our experimental findings show that subjectsâ search performance was degraded, compared to individual search scenarios in which users had no access to previous searches, when they had access to a limited number (e.g., 1 or 2) of earlier search sessions done by other users. However, search performance improved significantly when subjects had access to more search sessions. This indicates that gain from collaboration through collaborative Web searching and analysis does not outweigh the overhead of browsing and comprehending other usersâ past searches until a certain number of shared sessions have been reached. In this paper, we also catalog and analyze several different types of user collaboration behavior observed in the context of Web mining.
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.