• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    GANNET: A machine learning approach to document retrieval

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    GANNET-94.htm
    Size:
    101.7Kb
    Format:
    HTML
    Download
    Author
    Chen, Hsinchun
    Kim, Jinwoo, 1963-
    Issue Date
    1994-12
    Submitted date
    2004-09-04
    Keywords
    Database Searching Instructions
    Information Extraction
    Local subject classification
    National Science Digital Library
    NSDL
    Artificial intelligence lab
    AI lab
    GANNET
    
    Metadata
    Show full item record
    Citation
    GANNET: A machine learning approach to document retrieval 1994-12, 11(3):9-43 Journal of Management Information Systems
    Publisher
    M.E. Sharpe, Inc.
    Journal
    Journal of Management Information Systems
    Description
    Artificial Intelligence Lab, Department of MIS, University of Arizona
    URI
    http://hdl.handle.net/10150/105547
    Abstract
    Information science researchers have recently turned to new artificial intelligence-based inductive learning techniques including neural networks, symbolic learning and genetic algorithms. An overview of the new techniques and their usage in information science research is provided. The algorithms adopted for a hybrid genetic algorithms and neural nets based system, called GANNET, are presented. GANNET performed concept (keyword) optimization for user-selected documents during information retrieval using the genetic algorithms. It then used the optimized concepts to perform concept exploration in a large network of related concepts through the Hopfield net parallel relaxation procedure. Based on a test collection of about 3,000 articles from DIALOG and an automatically created thesaurus, and using Jaccard's score as a performance measure, the experiment showed that GANNET improved the Jaccard's scores by about 50% and helped identify the underlying concepts that best describe the user-selected documents.
    Type
    Journal Article (Paginated)
    Language
    en
    Collections
    DLIST

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.