• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Searching the long tail: Hidden structure in social tagging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    tonkin.pdf
    Size:
    254.5Kb
    Format:
    PDF
    Download
    Author
    Tonkin, Emma
    Editors
    Furner, Jonathan
    Tennis, Joseph T.
    Issue Date
    2006
    Submitted date
    2007-04-16
    Keywords
    Classification
    World Wide Web
    Web Metrics
    Quantitative Research
    Knowledge Structures
    Knowledge Organization
    Local subject classification
    Social tagging
    Automatic classification
    Tag analysis
    
    Metadata
    Show full item record
    Citation
    Searching the long tail: Hidden structure in social tagging 2006, 17
    Publisher
    dLIST
    URI
    http://hdl.handle.net/10150/105565
    Abstract
    In this paper we explore a method of decomposition of compound tags found in social tagging systems and outline several results, including improvement of search indexes, extraction of semantic information, and benefits to usability. Analysis of tagging habits demonstrates that social tagging systems such as del.icio.us and flickr include both formal metadata, such as geotags, and informally created metadata, such as annotations and descriptions. The majority of tags represent informal metadata; that is, they are not structured according to a formal model, nor do they correspond to a formal ontology. Statistical exploration of the main tag corpus demonstrates that such searches use only a subset of the available tags; for example, many tags are composed as ad hoc compounds of terms. In order to improve accuracy of searching across the data contained within these tags, a method must be employed to decompose compounds in such a way that there is a high degree of confidence in the result. An approach to decomposition of English-language compounds, designed for use within a small initial sample tagset, is described. Possible decompositions are identified from a generous wordlist, subject to selective lexicon snipping. In order to identify the most likely, a Bayesian classifier is used across term elements. To compensate for the limited sample set, a word classifier is employed and the results classified using a similar method, resulting in a successful classification rate of 88%, and a false negative rate of only 1%.
    Type
    Conference Paper
    Language
    en
    Collections
    DLIST

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.