• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Element Matching in Concept Maps

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    marshall.pdf
    Size:
    167.8Kb
    Format:
    PDF
    Download
    Author
    Marshall, Byron
    Madhusudan, Therani
    Issue Date
    2004
    Submitted date
    2004-08-31
    Keywords
    Knowledge Representation
    Local subject classification
    National Science Digital Library
    NSDL
    Artificial intelligence lab
    AI lab
    Concept mapping
    Education
    
    Metadata
    Show full item record
    Citation
    Element Matching in Concept Maps 2004,
    Publisher
    ACM
    Description
    Artificial Intelligence Lab, Department of MIS, University of Arizona
    URI
    http://hdl.handle.net/10150/105657
    Abstract
    Concept maps (CM) are informal, semantic, node-link conceptual graphs used to represent knowledge in a variety of applications. Algorithms that compare concept maps would be useful in supporting educational processes and in leveraging indexed digital collections of concept maps. Map comparison begins with element matching and faces computational challenges arising from vocabulary overlap, informality, and organizational variation. Our implementation of an adapted similarity flooding algorithm improves matching of CM knowledge elements over a simple string matching approach.
    Type
    Conference Paper
    Language
    en
    Collections
    DLIST

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.