• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    BRIDGING THE SEMANTIC GAP: EXPLORING DESCRIPTIVE VOCABULARY FOR IMAGE STRUCTURE

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Beebe___CJB-sigcr07-paper.doc
    Size:
    392.5Kb
    Format:
    Microsoft Word
    Download
    Author
    Beebe, Caroline
    Editors
    Lussky, Joan
    Issue Date
    2007
    Submitted date
    2007-10-20
    Keywords
    Classification
    Local subject classification
    image access
    semantic gap
    image retrieval
    
    Metadata
    Show full item record
    Citation
    BRIDGING THE SEMANTIC GAP: EXPLORING DESCRIPTIVE VOCABULARY FOR IMAGE STRUCTURE 2007,
    URI
    http://hdl.handle.net/10150/106313
    Abstract
    This research makes a methodological contribution to the development of faceted vocabularies and suggests a potentially significant tool for the development of more effective image retrieval systems. The research project applied an innovative experimental methodology to collect terms used by subjects in the description of images drawn from three domains. The resulting natural language vocabulary was then analyzed to identify a set of concepts that were shared across subjects. These concepts were subsequently organized as a faceted vocabulary that can be used to describe the shapes and relationships between shapes that constitute the internal spatial composition -- or internal contextuality -- of images. Because the vocabulary minimizes the terminological confusion surrounding the representation of the content and internal composition of digital images in Content-Based Image Retrieval [CBIR] systems, it can be applied to develop more effective image retrieval metrics and to enhance the selection of criteria for similarity judgments for CBIR systems. CBIR is a technology made possible by the binary nature of the computer. Although CBIR is used for the representation and retrieval of digital images, these systems make no attempt either to establish a basis for similarity judgments generated by query-by-pictorial-example searches or to address the connection between image content and its internal spatial composition. The disconnect between physical data (the binary code of the computer) and its conceptual interpretation (the intellectual code of the searcher) is known as the semantic gap. A descriptive vocabulary capable of representing the internal visual structure of images has the potential to bridge this gap by connecting physical data with its conceptual interpretation. This research project addressed three questions: Is there a shared vocabulary of terms used by subjects to represent the internal contextuality (i.e., composition) of images? Can the natural language terms be organized into concepts? And, if there is a vocabulary of concepts, is it shared across subject pairs? A natural language vocabulary was identified on the basis of term occurrence in oral descriptions provided by 21 pairs of subjects participating in a referential communication task. In this experiment, each subject pair generated oral descriptions for 14 of 182 images drawn from the domains of abstract art, satellite imagery and photo-microscopy. Analysis of the natural language vocabulary identified a set of 1,319 unique terms; these terms were collapsed into 545 concepts which were subsequently organized into a faceted vocabulary. Frequency of occurrence and domain distribution were tallied for each term and concept of the vocabulary. A shared-ness rating scale was devised to measure subject agreement on concept use. Rank ordering of concepts by shared-ness measure demonstrated which concepts were more broadly shared across subject pairs. To determine if the concepts generated by subject pairs were used consistently by each pair across the three domains the subjects were considered to be â judgesâ and the Spearman rank correlation was computed to indicate inter-rater reliability. Correlation analysis indicated that subject pairs tended to agree in the extent to which they used certain concepts across multiple domains and 14 concepts with the highest shared-ness sums would form the heart of a shared vocabulary. This faceted vocabulary can contribute to the development of more effective image retrieval metrics and interfaces to minimize the terminological confusion and conceptual overlap that currently exists in most CBIR systems. For both the user and the system, the concepts in the faceted vocabulary can be used to represent shapes and relationships between shapes (i.e., internal contextuality) that constitute the internal spatial composition of an image. Representation of internal contextuality would contribute to more effective image search and retrieval by facilitating the construction of more precise feature queries by the user as well as the selection of criteria for similarity judgments in CBIR applications. In addition, reliance of subjects on the use of analogy to describe images suggests that the faceted vocabulary of terms and concepts could be used to provide both the user and the CBIR system with a link to the visual shape represented by a verbal construct. Developing a visual vocabulary of shapes and relationships could be an important application of the controlled vocabulary that emerged from this study. Verbal access to concepts could serve as entry points leading into the visual vocabulary where shapes would be paired with specific low-level terms.
    Type
    Conference Paper
    Language
    en
    Collections
    DLIST

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.