• Login
    Search 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Search
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    Discipline
    Aerospace (1)
    Graduate College (1)Mechanical Engineering (1)AuthorsFasel, Hermann F. (1)Harris, Paul Jeffrey, 1970- (1)TypesDissertation-Reproduction (electronic) (1)
    text (1)

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Numerical investigation of transitional compressible plane wakes

    Harris, Paul Jeffrey, 1970- (The University of Arizona., 1997)
    Air flow in the wake region of a two-dimensional (plane) body with a blunt base has been studied using numerical simulations. The objective of this study is (1) to observe the behavior of large dynamic structures in the plane wake at several Mach numbers from low (almost incompressible) up to M = 2.46 and examine their effect on the base pressure, and (2) to address the nature of the instability in the shear layers bounding the wake flow at M = 2.46 and observe the structures that arise from this instability. A code was developed for this study which solves the compressible Navier-Stokes equations in two or three dimensions. This code may be used for either Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES). A spatial model is used, with the computational domain arranged around the trailing edge of a two-dimensional flat plate with a blunt base. Two-dimensional simulations were carried out at Mach numbers of M = 0.25, M = 1.20, and M = 2.46. At all Mach numbers, the flow was found to be unstable with respect to sinuous (antisymmetric) disturbances, with the critical Reynolds number increasing with increasing Mach number. These disturbances grow to a periodic state, and a Karman vortex street is formed. Examination of the supersonic cases revealed that expansion fans in the flow at the corners are the primary cause of the low base pressure, and that disruptions in the expansions raise the base pressure. At M = 2.46 and Reynolds numbers starting at Re = 100, 000, an intermittent shear layer instability was also found, excited by sinuous disturbances. The two instability 2 modes interact to produce a chaotic behavior. Above Re = 200, 000, the shear layer instability appears close to the base without sinuous disturbances, forming rows of vortices in the shear layers. Preliminary three-dimensional simulations were carried out at M = 2.46, examining the variation in the growth rate of three-dimensional disturbances with spanwise wavelength.
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.