• Login
    Search 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Search
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    DisciplineGraduate College (1)Materials Science & Engineering (1)Authors
    Ellis, Marguerite (1)
    Raghavan, Srini (1)
    Seraphin, Supapan (1)
    Uhlmann, Donald (1)TypesElectronic Dissertation (1)
    text (1)

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Investigation of Multiwalled Carbon Nanofiber - Graphite Layer Composites and Analysis of Natural Chalks

    Ellis, Marguerite (The University of Arizona., 2011)
    The first part of this dissertation focuses on self-assembled composites. Self-assembled composites composed of vertically aligned multiwalled carbon nanofibers (VA-MWCNF) combined with a graphitic layer (GL) arranged perpendicular to MWCNF axes‘ have been produced at low temperature (445 °C) using low pressure thermal chemical vapor deposition (LPCVD). Electron microscopy and Raman spectroscopy were used to analyze composite morphology, structure and quality. It is found that different composite morphologies and modification of the GL structure can be obtained by varying the nickel (Ni) catalyst underlayer materials, the catalyst pre-treatment method, the gas recipe, the gas flow rates and the pressure conditions of the LPCVD process. Pre-treatment of the catalyst with H2 plasma or NH₃ gas was also investigated. It is found that even a short, one minute H2 plasma pre-treatment of the catalyst results in a significant break-down of the VA-MWCNF/GL composite structure. On the other hand, a one or ten minute catalyst pre-treatment with NH₃ gas results in a structural modification of the GL but retains the VA-MWCNF/GL composite structure. An increase in time of NH₃ gas pre-treatment leads to reduced VA-MWCNF/GL composite height. A growth mechanism for VA-MWCNF/GL composites was proposed. The focus, of the second part of this dissertation, is on the analysis of natural chalks used in traditional old master drawings. Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) analysis were performed on bulk samples of natural black chalk, steatite and calcite natural white chalks and on samples of these chalks applied to paper using various techniques. Critical information was obtained about the morphology and sub-micron features of the chalk particles, the chalk/paper interaction of each application technique and elemental composition of the bulk chalk samples. It was found that the particle size and morphology of the natural white chalks reduced their ability to hold to the paper. This information provides insight as to why black chalk is more resistant to abrasion than the natural white chalks which is important for the conservation of extant chalk drawings.
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.