• Finite element analysis of continuous prestressed composite girders

      Saadatmanesh, Hamid; Tong, Wenxia, 1958- (The University of Arizona., 1990)
      Prestressing a steel girder reduces the required structural steel weight, limits tension stresses in the section, increases the ultimate strength, and increases the fatigue resistance. The technique of prestressing with tendons can be used for strengthening of existing bridges as well as for construction of new bridges. This thesis presents an analytical study of the behavior of simply-supported and continuous prestressed composite girders and describes the benefits of prestressing steel in composite construction. Analytical models are developed and used as a basis for a computer program that calculates the stresses and displacements in the cables and the girder at discrete number of nodes along the length of the girder. The effects of design variables such as prestress force, tendon profile, eccentricity and tendon length are studied. The results indicate that prestressing is an effective means of increasing the load carrying capacity of simple-span as well as continuous composite girders.
    • Strengthening of concrete beams with composite plastic plates

      Saadatmanesh, Hamid; An, Wei, 1963- (The University of Arizona., 1990)
      This study investigates the feasibility of strengthening reinforced concrete beams with epoxy-bonded Glass-Fiber-Reinforced-Plastic (GFRP) plates. The composite plate is epoxy-bonded to the tension flange of the beam to increase its stiffness and strength. Seven rectangular and one T-beam, retrofitted with composite plates, were tested to failure under symmetrical 4-point bending. The load versus deflection and the load versus strain in the composite plate, steel rebar and the extreme compression fiber of concrete were measured and plotted for the midspan section throughout the entire range of loading up to failure. Analytical models based on the equilibrium of forces and compatibility of deformations were developed to predict the stresses and deformations of the beam in the linear and nonlinear regions. The predicted and measured results correlated well. The analytical models were used in a parametric study to investigate the effects of design variables such as, plate area, plate strength and stiffness, reinforcement ratio, etc., on the moment-curvature relationships of typical rectangular and T cross sections.