• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mobius Structures, Einstein Metrics, and Discrete Conformal Variations on Piecewise Flat Two and Three Dimensional Manifolds

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11469_sip1_m.pdf
    Size:
    980.1Kb
    Format:
    PDF
    Download
    Author
    Champion, Daniel James
    Issue Date
    2011
    Keywords
    Delaunay
    double tetrahedron
    Einstein metric
    hyperbolic
    pentachoron
    simplex
    Advisor
    Glickenstein, David
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Spherical, Euclidean, and hyperbolic simplices can be characterized by the dihedral angles on their codimension-two faces. These characterizations analyze the Gram matrix, a matrix with entries given by cosines of dihedral angles. Hyperideal hyperbolic simplices are non-compact generalizations of hyperbolic simplices wherein the vertices lie outside hyperbolic space. We extend recent characterization results to include fully general hyperideal simplices. Our analysis utilizes the Gram matrix, however we use inversive distances instead of dihedral angles to accommodate fully general hyperideal simplices.For two-dimensional triangulations, an angle structure is an assignment of three face angles to each triangle. An angle structure permits a globally consistent scaling provided the faces can be simultaneously scaled so that any two contiguous faces assign the same length to their common edge. We show that a class of symmetric Euclidean angle structures permits globally consistent scalings. We develop a notion of virtual scaling to accommodate spherical and hyperbolic triangles of differing curvatures and show that a class of symmetric spherical and hyperbolic angle structures permit globally consistent virtual scalings.The double tetrahedron is a triangulation of the three-sphere obtained by gluing two congruent tetrahedra along their boundaries. The pentachoron is a triangulation of the three-sphere obtained from the boundary of the 4-simplex. As piecewise flat manifolds, the geometries of the double tetrahedron and pentachoron are determined by edge lengths that gives rise to a notion of a metric. We study notions of Einstein metrics on the double tetrahedron and pentachoron. Our analysis utilizes Regge's Einstein-Hilbert functional, a piecewise flat analogue of the Einstein-Hilbert (or total scalar curvature) functional on Riemannian manifolds.A notion of conformal structure on a two dimensional piecewise flat manifold is given by a set of edge constants wherein edge lengths are calculated from the edge constants and vertex based parameters. A conformal variation is a smooth one parameter family of the vertex parameters. The analysis of conformal variations often involves the study of degenerating triangles, where a face angle approaches zero. We show for a conformal variation that remains weighted Delaunay, if the conformal parameters are bounded then no triangle degenerations can occur.
    Type
    Electronic Dissertation
    text
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.