• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Rigorous Coupled Wave Analysis for Gyrotropic Materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11457_sip1_m.pdf
    Size:
    1.548Mb
    Format:
    PDF
    Download
    Author
    Onishi, Michihisa
    Issue Date
    2011
    Advisor
    Chipman, Russell A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The goal of this study includes two targets: to extend the region of application for the modal theory, including Classical Modal Theory [CMT] and Rigorous Coupled Wave Theory [RCWT], and to investigate the convergence characteristics of CMT and RCWT.First, the RCWT algorithm for one-dimensional isotropic gratings is reviewed along with the details of its mathematical formulation, and the advantages of applying the inverse rule in the Fourier expansion are also explained. Then the CMT formulation for dielectric lamellar gratings with multiple indices and sub-periods is developed. Several numerical examples are tested and compared with the results obtained from RCWT. The convergence properties of the present CMT formulation are demonstrated with several examples and discussed in relation to the parameters used in the formulation.Next, the convergence characteristics of RCWT for continuously index-modulated gratings are investigated. It is demonstrated that the RCWT convergence is strongly dependent on the convergence of the Fourier coefficients for the index modulation functions, and the convergence profiles of diffraction efficiencies and those of the Fourier series are closely related.Finally, the formulation of RCWT for diffraction gratings in bi-anisotropic media, which exhibit linear birefringence and/or optical activity, is developed. All of the incident, exiting and grating materials can be isotropic, uniaxial or biaxial, with or without optical activity. The principal values of the electric permittivity tensor, the magnetic permeability tensor and the gyrotropic tensor of the materials can take arbitrary values. The optical axes may be arbitrarily and independently oriented. The symmetric constitutive relations for bi-anisotropic materials are adopted. The procedures for Fourier expansion of Maxwell's equations are also described.The present RCWT formulation is implemented and applied to various problems. Diffraction efficiencies for single layer bi-isotropic gratings are calculated and compared with those obtained from scalar diffraction theory. Characteristics of multilayer gratings in gyrotropic biaxial media are also demonstrated. Distinctive polarization coupling effects due to optical activity are observed in both cases. The fast convergence of the present RCWT formulation is also demonstrated. As a limiting case, diffraction efficiencies for a multilayer grating made with non-gyrotropic uniaxial material exhibit good agreement with available data.
    Type
    Electronic Dissertation
    text
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.