• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Impacts of Floods on Riparian Groundwater and Post-Event Streamflow Across Spatial and Temporal Scales

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11637_sip1_m.pdf
    Size:
    5.061Mb
    Format:
    PDF
    Download
    Author
    Simpson, Scott Carlyle
    Issue Date
    2011
    Keywords
    climate change
    floods
    groundwater recharge
    modeling
    sediment transport
    water quality
    Advisor
    Meixner, Thomas
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Riparian areas are valuable resources, particularly in semi-arid areas where water is usually scarce and rapid streamflow responses to runoff are common. Only recently has the importance of in-channel recharge during high streamflow periods ("floods") been recognized in rivers with gaining and losing reaches where recharge processes and flowpaths can be very complex. This dissertation builds upon this recent work by investigating how three factors influence how riparian systems respond to floods over a range of temporal and spatial scales. First, the impact of differences in local hydrogeologic forcings are investigated at the seasonal and 50 meter-reach scales. Second, the significance of flood event size and duration is studied at the multi-year and river (~50 Km) scale. Third, an underlying mechanism behind how changes in bed sediment composition can influence stream-aquifer interactions at the event- and point-scales is developed. Major findings of this work include observations along the Upper San Pedro River of seasonal floodwater storage below moderately gaining reaches and longer-term storage below losing reaches (seasonal to multi-year depending on the nature of the riparian groundwater flow system). The longest and largest floods (with respect to flow volume) dominate floodwater recharge in the Bill Williams River and an apparent flood size and duration threshold exists. This threshold must be met or exceeded in order for individual events to induce observable amounts of recharge that can then influence the amount and composition of later streamflow. This threshold agrees with the process presented here involving preferential mobilization and deposition of fine bed sediment particles--which dictate hydraulic conductivity--during each event that would lead to disproportionately more recharge during large floods. Forecasts of increased precipitation intensity and decreased annual precipitation in some regions, including the southwestern United States, due to changes in the earth's climate are likely to make floods a more important driver of riparian hydrologic processes. Consequently, the work presented here and other process-based studies of how floods influence riparian hydrology and water quality will be useful in making well-informed decisions regarding riparian preservation, management and restoration as human demands and the global climate change in the future.
    Type
    Electronic Dissertation
    text
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Hydrology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.