• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Toward Enhancing Automated Credibility Assessment: A Model for Question Type Classification and Tools for Linguistic Analysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11559_sip1_m.pdf
    Size:
    1.679Mb
    Format:
    PDF
    Download
    Author
    Moffitt, Kevin Christopher
    Issue Date
    2011
    Keywords
    Automated Linguistic Analysis
    Credibility Assessment
    Fraudulent Financial Reporting
    Question Type
    Advisor
    Burgoon, Judee K.
    Nunamaker, Jay F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The three objectives of this dissertation were to develop a question type model for predicting linguistic features of responses to interview questions, create a tool for linguistic analysis of documents, and use lexical bundle analysis to identify linguistic differences between fraudulent and non-fraudulent financial reports. First, The Moffitt Question Type Model (MQTM) was developed to aid in predicting linguistic features of responses to questions. It focuses on three context independent features of questions: tense (past vs. present vs. future), perspective (introspective vs. extrospective), and abstractness (concrete vs. conjectural). The MQTM was tested on responses to real-world pre-polygraph examination questions in which guilty (n = 27) and innocent (n = 20) interviewees were interviewed. The responses were grouped according to question type and the linguistic cues from each groups' transcripts were compared using independent samples t-tests with the following results: future tense questions elicited more future tense words than either past or present tense questions and present tense questions elicited more present tense words than past tense questions; introspective questions elicited more cognitive process words and affective words than extrospective questions; and conjectural questions elicited more auxiliary verbs, tentativeness words, and cognitive process words than concrete questions. Second, a tool for linguistic analysis of text documents, Structured Programming for Linguistic Cue Extraction (SPLICE), was developed to help researchers and software developers compute linguistic values for dictionary-based cues and cues that require natural language processing techniques. SPLICE implements a GUI interface for researchers and an API for developers. Finally, an analysis of 560 lexical bundles detected linguistic differences between 101 fraudulent and 101 non-fraudulent 10-K filings. Phrases such as "the fair value of," and "goodwill and other intangible assets" were used at a much higher rate in fraudulent 10-Ks. A principal component analysis reduced the number of variables to 88 orthogonal components which were used in a discriminant analysis that classified the documents with 71% accuracy. Findings in this dissertation suggest the MQTM could be used to predict features of interviewee responses in most contexts and that lexical bundle analysis is a viable tool for discriminating between fraudulent and non-fraudulent text.
    Type
    Electronic Dissertation
    text
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Management Information Systems
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.