Show simple item record

dc.contributor.advisorChorover, Jonen_US
dc.contributor.authorHernandez Ruiz, Selene
dc.creatorHernandez Ruiz, Seleneen_US
dc.date.accessioned2011-10-14T23:00:43Z
dc.date.available2011-10-14T23:00:43Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/10150/145461
dc.description.abstractThis study examined the interaction of model cationic, neutral and anionic endocrine disrupting compounds, pharmaceuticals and personal care products (EDC/PPCPs) with bulk and fractionated freshwater and waste water dissolved organic matter (DOM). The chemical composition of the freshwater DOM (Suwannee River, GA, SROM) proved to be rich in plant-derived hydrophobic aromatics, while the wastewater DOM (WWOM) contained a greater proportion of microbial biomolecular products, presumably resulting mainly from human waste. Studies focused on the fluorescence quenching of excitation-emission matrices (EEMs) of WWOM indicated that interaction with bis-phenol A (BPA), carbamazepine (CBZ), and ibuprofen (IBU) occurred preferentially with soluble protein-like and fulvic acid-like constituents. However, upon introduction to bulk SROM, BPA and CBZ were observed to quench humic acid-like regions of the EEMs, while negatively charged ibuprofen preferentially quenched the protein-like and fulvic acid components irrespective of DOM source and/or fraction. Despite this evidence of EDC/PPCP interactions with both DOM types, the strength of bonds formed was generally not sufficient to preclude full recovery and quantification of all three contaminants by liquid chromatography tandem mass spectrometry (LC-MSMS). An important exception, however, was for the hydrophilic acid fraction (HiA) of both DOM types, whose apparent bonding to cationic CBZ and anionic IBU significantly diminished LC-MSMS recovery. Thus, water sources rich in HiA character might produce a concentration underestimation of ionized EDC/PPCPs even with the use of sophisticated instruments such as LC-MSMS.The results of this research are consistent with the evolving ""supramolecular"" theory of natural organic matter, which postulates that organic matter itself is comprised of fragments of partially degraded biomolecules that are aggregated into ""supramolecular"" structures of apparent higher molar mass via relatively weak electrostatic, hydrophobic, and van der Waals interaction. Our findings suggest that EDC/PPCP contaminants, which comprise many of the same functional groups as waste water and freshwater DOM, may be incorporated into such DOM supramolecular structures, likely via the same types of intermolecular bonding, when they are present in natural waters under environmentally-relevant conditions.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectComplexen_US
dc.subjectEmerging contaminanten_US
dc.subjectFluorescenceen_US
dc.subjectLC-MSMSen_US
dc.subjectOrganic Matteren_US
dc.subjectWastewateren_US
dc.titleElucidation of Dissolved Organic Matter Interactions with Model Contaminants of Emerging Concernen_US
dc.typeElectronic Dissertationen_US
dc.typetexten_US
dc.identifier.oclc752261466
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberQuanrud, Daviden_US
dc.contributor.committeememberBrusseau, Marken_US
dc.contributor.committeememberCurry, Joanen_US
dc.identifier.proquest11607
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineSoil, Water & Environmental Scienceen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-08-22T08:35:16Z
html.description.abstractThis study examined the interaction of model cationic, neutral and anionic endocrine disrupting compounds, pharmaceuticals and personal care products (EDC/PPCPs) with bulk and fractionated freshwater and waste water dissolved organic matter (DOM). The chemical composition of the freshwater DOM (Suwannee River, GA, SROM) proved to be rich in plant-derived hydrophobic aromatics, while the wastewater DOM (WWOM) contained a greater proportion of microbial biomolecular products, presumably resulting mainly from human waste. Studies focused on the fluorescence quenching of excitation-emission matrices (EEMs) of WWOM indicated that interaction with bis-phenol A (BPA), carbamazepine (CBZ), and ibuprofen (IBU) occurred preferentially with soluble protein-like and fulvic acid-like constituents. However, upon introduction to bulk SROM, BPA and CBZ were observed to quench humic acid-like regions of the EEMs, while negatively charged ibuprofen preferentially quenched the protein-like and fulvic acid components irrespective of DOM source and/or fraction. Despite this evidence of EDC/PPCP interactions with both DOM types, the strength of bonds formed was generally not sufficient to preclude full recovery and quantification of all three contaminants by liquid chromatography tandem mass spectrometry (LC-MSMS). An important exception, however, was for the hydrophilic acid fraction (HiA) of both DOM types, whose apparent bonding to cationic CBZ and anionic IBU significantly diminished LC-MSMS recovery. Thus, water sources rich in HiA character might produce a concentration underestimation of ionized EDC/PPCPs even with the use of sophisticated instruments such as LC-MSMS.The results of this research are consistent with the evolving ""supramolecular"" theory of natural organic matter, which postulates that organic matter itself is comprised of fragments of partially degraded biomolecules that are aggregated into ""supramolecular"" structures of apparent higher molar mass via relatively weak electrostatic, hydrophobic, and van der Waals interaction. Our findings suggest that EDC/PPCP contaminants, which comprise many of the same functional groups as waste water and freshwater DOM, may be incorporated into such DOM supramolecular structures, likely via the same types of intermolecular bonding, when they are present in natural waters under environmentally-relevant conditions.


Files in this item

Thumbnail
Name:
azu_etd_11607_sip1_m.pdf
Size:
5.559Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record