• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Investigations of the Crust and Upper Mantle of Modern and Ancient Subduction Zones, using Pn Tomography and Seismic Receiver Functions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11440_sip1_m.pdf
    Size:
    146.3Mb
    Format:
    PDF
    Download
    Author
    Gans, Christine
    Issue Date
    2011
    Keywords
    Flat slab subduction
    Pn Tomography
    Receiver Functions
    South America
    Turkey
    Wyoming
    Advisor
    Beck, Susan L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Embargo: Release after 8/28/2011
    Abstract
    Advances in seismology allow us to obtain "high-resolution" images of the Earth's subsurface. This dissertation summarizes the results of three seismic studies on three different continents, with the aim of better understanding the crust and upper mantle structure of seemingly disparate yet ultimately related regions. The seismic techniques of Pn tomography and P-wave receiver function (RF) analysis are applied to central Turkey (Pn tomography), western Argentina and southwestern Wyoming, USA (RF analysis). These studies look at both a present-day convergent margin (Andean subduction zone, Argentina) and two ancient ones (Bitlis-Zagros collision zone of Arabia-Africa with Eurasia, Turkey; Farallon subduction zone, Wyoming).Using Pn tomography, we were able to detect the limit of the slab rupture edge along the Central Anatolian Fault Zone, Turkey. Slab break-off is an important process that modifies the mantle in tectonically active regions, and the limit of the oceanic Arabian slab break-off along the Bitlis-Zagros Suture Zone, thought to have begun at 11 Ma, was previously undetermined.Using RF analysis, we obtained high-resolution images of the subducting slab beneath the Sierras Pampeanas, Argentina. Continental Moho contours roughly follow terrane boundaries, suggesting that ancient terranes continue to exert control over present-day continental deformation. Overthickened oceanic crust is often cited as a cause of flat slab subduction; our RF results indicate that the crust is moderately overthickened, around 11-16 km. Further, we image offsets in the RF arrivals that indicate the subducted slab is broken or offset in along trench-subparallel fractures.The crustal structure beneath southwestern Wyoming, the location of ancient Farallon flat slab subduction, was studied using RF analysis. Looking at regional crustal structure, results include a new depth to Moho map. Coherency of the seismic signal across the dense LaBarge array (55 stations, ~250 m spacing) was investigated, with results showing that complicated shallow structure can greatly impact the resulting RF signal. Modeling of RFs using synthetics helped to separate the complex signal containing multiple primary conversions and their reverberations, which interact constructively and destructively. The dense spacing of the LaBarge array allowed unique opportunities to investigate coherency of waveforms across very short distances.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.