• Barley and Durum Response to Seeding Rate at Maricopa and Yuma, 1996-97

      Ottman, M. J.; Tickes, B. R.; Ottman, Michael (College of Agriculture, University of Arizona (Tucson, AZ), 1997-10)
      A poor stand as a result of a low seeding rate can cost the grower due to decreased yield potential. A seeding rate higher than optimum can also cost the grower not only due to increased seed cost but also due to increased susceptibility to water and nitrogen stress and frost damage. Seeding rates in small grains are usually expressed on a pound per acre basis, but since varieties differ in seed size, different amounts of seed can be planted at equivalent seeding rates. Defining optimum seeding rates are also complicated by the fact that the number of seeds that actually emerge can vary depending on planting conditions. In our studies, emergence varied from 50 to 100% emergence. At the Maricopa location, the optimum seeding rate was obtained with 12 seedlings per square foot, which corresponded to a seeding rate of 75 lbs /A for the small seeded Brooks wheat and 125 lbs seed /A for the large seeded Kronos durum. No differences in yield were detected at the Yuma Mesa location for barley seeding rates ranging from 75 to 150 lbs seed/A or at the Yuma - Valley location for durum seeding rates from 200 to 250 lbs seed/A. Growers generally seed at rates higher than the optimum suggested by this and other studies, but current commercial seeding rates are seen as cheap insurance against stand establishment problems and may or may not be warranted depending on seedbed conditions and percent emergence.
    • Barley Variety Trial on the Safford Agricultural Center, 1997

      Clark, L. J.; Carpenter, E. W.; Ottman, Michael (College of Agriculture, University of Arizona (Tucson, AZ), 1997-10)
      Sixteen varieties of barley were tested at the Safford Agricultural Center in 1997. Nebula, a new variety from Western Plant Breeders, was the highest yielding variety in the trial with a yield over 5100 pounds per acre. Nebula also had the highest bushel weight of the varieties tested.
    • Intensive Cereal Management for Durum Production, Buckeye and Yuma, 1996-97

      Ottman, M. J.; Husman, S. H.; Tickes, B. R.; Ottman, Michael (College of Agriculture, University of Arizona (Tucson, AZ), 1997-10)
      The highest wheat yields in the world are obtained using a growing system called intensive cereal management (ICM). High yielding varieties are planted at high seeding rates, treated with foliar fungicides, plant growth regulators are applied to control lodging, and high nitrogen fertilizer rates are used to obtain high yields. The ICM system adapted to Arizona does not include fungicide treatments due to our lack of leaf diseases. We tested the effect of ICM on yield, grain protein, and other characteristics at three commercial farms in Arizona. ICM resulted in higher protein in one case due to increased nitrogen application and reduced height in another case due to the plant growth regulator. However, in most cases, we were not able to detect an affect of ICM on the crop, and the increased input cost was not paid for by increased crop performance. Intensive cereal management does not appear to hold much promise under our conditions except perhaps in cases where lodging is predictable or yields do not reach their potential.
    • Small Grains Variety Evaluation at Marana, Maricopa, Paloma, and Yuma, 1997

      Ottman, M. J.; Husman, S. H.; Lindahl, D. A.; Ottman, Michael (College of Agriculture, University of Arizona (Tucson, AZ), 1997-10)
      Small grain varieties are evaluated each year by University of Arizona personnel at one or more locations. The purpose of these tests is to characterize varieties in terms in terms of yield and other attributes. Variety performance varies greatly from year to year and several site years are necessary to adequate characterize the yield potential of a variety. The results contained in this report will be combined with results from previous years in a summary available from Arizona Cooperative Extension.