We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.authorKwon, John Dohyung
dc.creatorKwon, John Dohyungen_US
dc.date.accessioned2011-10-24T16:59:53Z
dc.date.available2011-10-24T16:59:53Z
dc.date.issued2010-05
dc.identifier.citationKwon, John Dohyung. (2010). Occurrence of Non-O1/Non-O139 Vibrio Cholerae and Aeromonas Spp. in Arizona Recreational Waters (Bachelor's thesis, University of Arizona, Tucson, USA).
dc.identifier.urihttp://hdl.handle.net/10150/146600
dc.description.abstractThe goal of the project is to design a plant that is capable of converting an algae feedstock into compressed natural gas (CNG). This product is intended to be sold as a green replacement for CNG produced using traditional methods. In addition to CNG, hydrogen gas is produced; this product will be sold as a biofuel as well. The CNG produced in this process is created by gasifying algae in supercritical water and then reacting the algal matter over an Ru/C catalyst. The resulting gas is then purified and compressed to produce CNG and hydrogen. A process hazard analysis was conducted to identify and help reduce safety and environmental hazards. An economic analysis showed that the plant?s net present value is ($37.5 million); therefore, it was not recommended that the plant be built at this time. Future work includes developing a cheap Ru/zirconia catalyst to replace the expensive Ru/C catalyst currently used in the process. Designs for vessels containing supercritical fluids should also be evaluated to find ways to minimize purchase and installation cost. In addition, pilot scale testing of specific pieces of equipment is required to ensure innovations included in the design function as expected.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleOccurrence of Non-O1/Non-O139 Vibrio Cholerae and Aeromonas Spp. in Arizona Recreational Watersen_US
dc.typetexten_US
dc.typeElectronic Thesisen_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.levelbachelorsen_US
thesis.degree.disciplineHonors Collegeen_US
thesis.degree.disciplineSoil, Water and Environmental Scienceen_US
thesis.degree.nameB.S.en_US
refterms.dateFOA2018-08-22T10:03:04Z
html.description.abstractThe goal of the project is to design a plant that is capable of converting an algae feedstock into compressed natural gas (CNG). This product is intended to be sold as a green replacement for CNG produced using traditional methods. In addition to CNG, hydrogen gas is produced; this product will be sold as a biofuel as well. The CNG produced in this process is created by gasifying algae in supercritical water and then reacting the algal matter over an Ru/C catalyst. The resulting gas is then purified and compressed to produce CNG and hydrogen. A process hazard analysis was conducted to identify and help reduce safety and environmental hazards. An economic analysis showed that the plant?s net present value is ($37.5 million); therefore, it was not recommended that the plant be built at this time. Future work includes developing a cheap Ru/zirconia catalyst to replace the expensive Ru/C catalyst currently used in the process. Designs for vessels containing supercritical fluids should also be evaluated to find ways to minimize purchase and installation cost. In addition, pilot scale testing of specific pieces of equipment is required to ensure innovations included in the design function as expected.


Files in this item

Thumbnail
Name:
azu_etd_mr20100104_sip1_m.pdf
Size:
107.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record