• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    GARNET-ORTHOPYROXENE EQUILIBRIA IN THE FMAS SYSTEM: EXPERIMENTAL AND THEORETICAL STUDIES, AND GEOLOGICAL APPLICATIONS (GEOTHERMOMETRY, GEOBAROMETRY).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8613823_sip1_m.pdf
    Size:
    3.613Mb
    Format:
    PDF
    Description:
    azu_td_8613823_sip1_m.pdf
    Download
    Author
    LEE, HAN YEANG.
    Issue Date
    1986
    Keywords
    Earth temperature.
    Silicate minerals -- Stability.
    Garnet -- Stability.
    Mineralogy, Determinative.
    Advisor
    Ganguly, J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Equilibrium relations between garnet and orthopyroxene have been investigated by reversal experiments in the range of 20-45Kb and 975-1400°C in the FeO-MgO-Al₂O₃-SiO₂(FMAS) system. The Fe-Mg exchange reaction seems to have little or no compositional dependence at these conditions. The experimental results can be fitted adequately by the linear relation: ln K(D) = 2243/T°K - 0.9522 at 25Kb where K(D) = (X(Fe)/X(Mg))ᴳᵗ/(X(Fe)/X(Mg))ᴼᵖˣ. Combination of the available data for the mixing properties of garnet and V° for the Fe-Mg exchange reaction with the above experimental results yields the following geothermometric expression for the common natural assemblages that can be represented essentially within the system CaO-MnO-FeO-MgO-Al₂O₃-SiO₂. T°K = (1968 + 11P(Kb) + 1510(X(Ca)+X(Mn))ᴳᵗ)/(ln K(D) + 0.9522). The stability field of pyrope+quartz, defined by the reaction pryope+quartz=opx+sill, has been calculated as a function of P,T,X(Fe)ᴳᵗ in the FMAS system using the reversal experimental data of Perkins (1983) in the MAS system, and the present data on K(D)(Fe-Mg) between garnet and orthopyroxene. This reaction is very sensitive to pressure and compositional effects. Combination of P,T conditions for the garnet stability and that defined by (K(D)(Fe-Mg))ᴳᵗ⁻ᴼᵖˣ yields a simultaneous solution for both P and T of equilibration of garnet and orthopyroxene in the presence of Al₂SiO₅ and SiO₂. The effect of FeO on Al₂O₃ solubility in orthopyroxene in equilibrium with garnet has been determined experimentally at several pressures at 975 and 1200°C. These data have been modeled to develop a thermodynamic method for the calculation of Al₂O₃ in orthopyroxene as a function of P,T and composition. The Al₂O₃ isopleths have moderate P-T slopes, and provide virtually the only means of determining the pressure of mantle derived rocks.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.