• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CLONING OF BACILLUS SUBTILIS DNA: EXPRESSION IN B. SUBTILIS AND ESCHERICHIA COLI.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8217490_sip1_m.pdf
    Size:
    3.274Mb
    Format:
    PDF
    Description:
    azu_td_8217490_sip1_m.pdf
    Download
    Author
    ZUKOWSKI, MARK MICHAEL.
    Issue Date
    1982
    Keywords
    Recombinant DNA.
    Molecular cloning.
    Bacillus subtilis.
    Escherichia coli.
    Plasmids.
    Advisor
    Mendelson, Neil
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Bacillus subtilis DNA was cloned by ligating restriction endonuclease-generated fragments to plasmid vectors. The plasmid pUB110 was the vehicle in the construction of eight recombinant plasmids, pNM1 through pNM8. Each bears one or more EcoRI fragment(s) of B. subtilis chromosomal DNA. Recovery of the plasmids from host cells demonstrated that recombinant plasmids that bear some homology to the B, subtilis chromosome may be maintained outside of the chromosome in recombination-proficient hosts. The mean size of cloned fragments was 0.78 megadaltons (Mdal). The recombinant plasmid pNM1 interferes with the mechanism that blocks chromosomal recombination in B. subtilis cells that carry the recE4 mutation. Low-level chromosomal recombination at several loci was demonstrated when chromosomal DNA was accompanied by pNM1 in the transformation of recE4 recipient cells. The recombinant plasmid does not appear to code for recE gene products nor does it produce novel proteins when assayed in minicells of B. subtilis. An alternative approach to cloning B. subtilis DNA was successfully accomplished with the vector plasmid pHV33. The vector functions in both B. subtilis and E. coli hosts. B. subtilis chromosomal DNA was digested with Bg1II, then ligated to the unique BamHI site of pHV33. Ligation products were introduced into E. coli by transformation. Plasmid DNAs were isolated from transformants, pooled into several lots, then used to transform auxotrophic B. subtilis recipient cells. The procedure resulted in the construction of two new recombinant plasmids, pNM1055 and pNM1326. B. subtilis cells with the aroD120 mutation restored their ability to synthesize aromatic amino acids when pNM1055 was introduced. The same effect was observed in E. coli recipient cells that had the equivalent mutation. E. coli cells that carried pNM1326 produced granular colonies characteristic of the extraordinary filamentous growth exhibited by individual cells. The pNM1326 plasmid coded for a 16,000 dalton polypeptide produced in abundant quantities in E. coli hosts. A deletion derivative of pNM1326 did not produce the polypeptide, nor was filamentous growth of host cells exhibited. A plasmid-borne fragment of B. subtilis DNA affects cells growth and division of E. coli hosts.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Genetics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.